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Abstract

Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-
transcriptional mechanisms. Recently, a novel class of regulatory factors termed micro-RNAs (miRNAs)
has been identified as playing an important role in the regulation of many aspects of osteoblast biology
including proliferation, differentiation, metabolism and apoptosis. Also, preliminary data from animal
disease models suggest that targeting miRNAs in bone can be a novel approach to increase bone mass.
This review highlights the current knowledge of miRNA biology and their role in bone formation
and discusses their potential use in future therapeutic applications for metabolic bone diseases.
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Introduction

Osteoblasts are bone-forming cells that are responsible for
bone growth during development and bone formation
during remodelling of the post-natal skeleton (1).
Osteoblasts originate from stem cells within the bone
marrow stroma lying on the abluminal surface of bone
marrow sinusoids and are termed bone marrow stromal
(skeletal or mesenchymal) stem cells (2). Understanding
the mechanisms mediating osteoblast differentiation from
mesenchymal stem cells (MSC) as well as regulation of
osteoblastic cell functions is a prerequisite for developing
new strategies to enhance bone formation and to treat
systemic bone diseases such as osteoporosis (3, 4).

Throughout recent years, extensive molecular and
genetic studies have unravelled several genetic and
epigenetic mechanisms involved in osteoblast differen-
tiation and functions. Differentiation of MSC into mature
osteoblastic cells and regulation of osteoblast functions
involve highly regulated processes mediated by a large
number of hormones and locally produced growth
factors. Regulatory factors for osteoblastic phenotype
include the essential transcription factors, Runx2/Cbfa-1
and osterix/SP7 (5, 6, 7), and major signalling pathways,
bone morphogenetic protein (BMP), Wnt and notch (8, 9,
10, 11, 12), as well as other growth factor-mediated
kinase signalling pathways (13). Emerging evidence
reveals an additional level of regulation that is mediated
by small non-coding single-stranded RNAs termed micro-
ndocrinology
RNAs (miRNAs) (14, 15). This review highlights the
current knowledge about miRNAs and their involvement
in bone development, osteoblast differentiation and
functions. It also discusses the future potential of
miRNA targeting to treat metabolic bone diseases.

miRNA biogenesis

miRNAs are an abundant class of evolutionarily
conserved, short (w22 nt long), single-stranded RNA
molecules that have emerged as important post-
transcriptional regulators of gene expression (16). The
founding members of the miRNA class, lin-4 and let-7,
were discovered in Caenorhabditis elegans to regulate the
developmental timing and progression of the nematode
life cycle (17, 18, 19). Later studies have demonstrated
that miRNAs are widely expressed in multicellular
animals (metazoan eukaryotes) and plants (20). Most
metazoan miRNAs bind to partially complementary
sites in the 3 0-UTRs of the target mRNAs, and thereby
inhibit protein synthesis by translational repression
and/or mRNA degradation. Perfect complementarity
between the miRNA and its target site, as is the case for
most plant miRNAs, leads to cleavage of the mRNA by
miRNA-induced silencing complex (mRISC) (21).

Most miRNA genes are located in regions distant from
annotated genes, suggesting that they derive from
independent transcription units (22, 23). A minority
of miRNA genes are in the introns of protein-coding
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genes, preferentially in the same orientation as the
mRNA, indicating that they are processed from the
introns rather than transcribed from their own
promoters (22, 24). In addition, a significant number
of miRNA genes are clustered in the genome and
transcribed as a multicistronic primary transcript. The
miRNAs within the clusters are often functionally
related (17, 25).

miRNAs are processed through a series of post-
transcriptional biogenesis steps (26) (Fig. 1). They are
transcribed in the nucleus by RNA polymerase II as a
long primary miRNA (pri-miRNA) transcript consisting
of the mature miRNA in an elongated RNA hairpin
structure containing a loop structure directing its
cleavage (27, 28). This loop is recognised by the
RNase III family nuclease, Drosha, which is present in
the w500 kDa ‘microprocessor complex’ containing
Drosha and double-stranded RNA binding protein
(RBP), DGCR8, in humans or its homologue, Pasha, in
Drosophila melanogaster and C. elegans (29, 30). Drosha
cleaves the pri-miRNA into a w70 nt-long stem-loop
structure called precursor miRNA (pre-miRNA) (31).
The pre-miRNA is actively transported from the nucleus
to the cytoplasm by Ran-GTP-dependent nuclear export
factor, exportin-5 (32, 33).

In the cytoplasm, the pre-miRNA is loaded into a
complex of RNAse III endonuclease Dicer and TRBP/
Loquacious (34). This complex cleaves the loop from the
pre-miRNA to produce a double-stranded structure
composed of the miRNA and antisense miRNA* (35).
The miRNA* strand is typically degraded, and the w22
nt-long mature miRNA strand is incorporated into the
argonaute protein (Ago 2)-containing ribonucleopro-
tein complex known as mRISC (36, 37). The mature
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miRNA guides the RISC complex to the UTR of its target
mRNA (21, 38). The seed sequence, comprising
nucleotides 2–8 at 5 0-end of the mature miRNA, is
important for binding of the miRNA to its target site in
the mRNA (39). Association of miRNA with its target
results in mRNA cleavage or repression of translation
(40, 41, 42). Recently, mRNA decay was suggested as a
predominant reason for decreased protein levels of a
target gene (43).
miRNA function

To date, 1424 miRNAs have been identified in human
cells and each is predicted to regulate several target
genes (44, 45). Computational predictions indicate that
more than 50% of all human protein-coding genes
are potentially regulated by miRNAs (39, 46). The
abundance of mature miRNAs varies extensively from
as few as ten to more than 80.000 copies in a single cell,
which provides a high degree of regulation flexibility
(47). The regulation exerted by miRNA is reversible, as
feedback/forward regulatory loops have been shown to
exert modifying effects during translation (48).

miRNAs play critical roles in diverse biological and
cellular processes including metabolism, differentiation
and apoptosis. Aberrant miRNA expression has been
implicated in the pathogenesis of a large number of
human diseases including cancer, diabetes, neurological
disorders, heart failure, pulmonary hypertension and
autoimmune diseases due to dysfunction of their target
genes (49, 50, 51, 52). In addition, numerous miRNAs
are associated with development and progression of
cancer. Such cancer-associated miRNAs have been
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Figure 1 miRNA biogenesis and function.
miRNAs are transcribed as long precursors
(pri-miRNAs) that are cleaved by Drosha
to yield stem-loop pre-miRNAs. The pre-
miRNAs are translocated from the nucleus
to the cytoplasm by the exportin-5
complex. In the cytoplasm, pre-miRNAs
are processed by Dicer into around
22-nucleotide long mature miRNAs. These
are incorporated into the RNA-induced
silencing complex (RISC), which guides
the miRNAs to their target mRNAs, result-
ing in mRNA cleavage or repression of
translation. miRNA, micro-RNA; RISC,
RNA-induced silencing complex.
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reported as both tumour suppressors and oncogenes
(53). Due to aberrant miRNA expression in human
disorders, miRNA expression profiling may be useful as
diagnostic or prognostic tools and can help in treatment
decisions in cancer and other diseases (54).

miRNAs are essential for vertebrate development,
proven by studies demonstrating that universal disrup-
tion of Dicer in mice results in embryonic lethality and
depletion of pluripotent stem cells, and deficiency
of Argonaute results in severe defects in development
(55, 56). Tissue-specific disruption of Dicer leads to
developmental defects, and in most of the examined
tissues, increased cell death, indicating that miRNAs
play a crucial role in the development of various tissues
including the heart, brain, muscle, lungs, limbs and
T cells among others (57, 58).
Mechanisms of action of miRNAs

Mammalian miRNAs tend to have several isoforms
(paralogues) encoded from one or more chromosome,
suggesting that they are functionally redundant
(59, 60). By differences in their expression pattern and
3 0-end binding, they exert variable roles in vivo (61).
Regulation is mainly exerted by binding to 3 0-UTR of
target mRNA, but miRNA binding to other positions on
the target mRNA, e.g. in 5 0-UTR or coding sequence and
CDS region of transcription factors has also been
reported (62, 63, 64). mRNA targeting by miRNA is
highly specific, and even rare splice variants can be
distinguished by spanning of exon–exon junctions (65).
Interestingly, besides generally promoting mRNA clea-
vage or translational repression, miRNA binding to 3 0-
UTR can also induce translation of target mRNAs. Few
miRNAs have been identified to repress translation
during cell proliferation but to activate translation on
cell cycle arrest by directing AGO-containing protein
complexes to AU-rich elements in the 3 0-UTR (66).
Target prediction and validation

Several algorithms are provided online for the predic-
tion of mRNA targets (39). PicTar and TargetScanS are
the most commonly used and have been reported to
produce comparable predictions of targets (67). Compu-
tational target prediction is primarily based on potential
pairing of the miRNA seed sequence to a comp-
lementary site in the 3 0-UTR of a target mRNA
according to specific base-pairing rules. Another criteria
for target prediction is cross species conservation of at
least five species for the miRNA binding mRNA 3 0-UTR
target site.

Computational algorithms predict that over 50% of
all human protein-coding genes may be regulated by
miRNAs and that a single miRNA can have hundreds of
target genes (46). A conventional low-throughput
approach to validate miRNA targets is to clone the
target 3 0-UTR into a luciferase reporter plasmid and
detect luciferase activity in the presence of specific
miRNA precursor and/or inhibitor. Novel immuno-
precipitation (IP)-based methods were recently
developed for target validation. Karginov et al. (68)
combined RISC purification with microarray analysis of
RISC-bound mRNAs. Ago HITS-CLIP method combines
high-throughput sequencing to cross-linking IP to
identify functional interaction sites between miRNA
and target mRNA. Native Ago protein–RNA (miRNA or
mRNA) complexes were covalently cross-linked by
HITS-CLIP and the two data sets were combined with
bioinformatics analysis. As a result, genome-wide
interaction maps were generated for the 21 most
abundant miRNAs in mouse brain (69). Cross-linking
RBP and miRNA-containing ribonucleoprotein
complexes (miRNPs) in a cell-type dependent fashion
was used to transcriptome-wide identify miRNA–target
interactions by a method called PAR-CLIP (70).

In RNP-IP approach, miRNA–RISC complexes were
isolated and miRNA-bound mRNA transcripts were
identified by amplification with seed sequence and
3 0-UTR-derived primers (71). With RNP-IP method,
Hassan et al. validated targets for two Bmp2-responsive
miRNAs, miR-27a and miR-Let7/98, in mouse
preosteoblastic cells. Hlx was identified as target for
miR-27a and miR-Let7/98 family was shown to target
several osteoblast-associated genes including IGF2BP1,
COL1A1 and TGFBR1. As a single miRNA may target
several genes, it is evident that in many biological
processes targeting only one gene is not sufficient for
mediating miRNA-related biological functions. In sup-
port of this, Li et al. (72) demonstrated miR-29b as a key
regulator of osteoblast differentiation by directly
targeting several inhibitors of osteogenesis, histone
deacetylase (HDAC4), TGF-b3, ACVR2 and catenin-
b-interacting protein 1 (CTNNBIP1) and thus promoting
osteoblast phenotype.
Detection of miRNAs

miRNA profiling is a commonly used method for
genome-wide miRNA expression analysis. Commercial
oligonucleotide-based miRNA arrays provide an effi-
cient platform for high-throughput profiling of miRNA
expression (73). Most of the commercially available
arrays are based on miRNAs available in miRBase
(http://www.mirbase.org/) database that is updated
regularly due to increasing number of identified
miRNAs. miRNA expression profiling has been per-
formed for various cell lines during the osteoblast
differentiation process. In global microarray profiling in
C2C12 mesenchymal cells, most of the significantly
changed miRNAS were down-regulated in response to
BMP2 (74, 75). In hMSCs, miRNA profiling with locked
nucleic acid (LNA)-based microarray (76) revealed 33
miRNAs being significantly altered between undiffer-
entiated and differentiated cells (77). Among them,
www.eje-online.org
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Table 1 miRNAs involved in osteoblastogenesis.

microRNA Target Supporting observations Cell source References

Let-7 – More regulated in osteogenic than
adipogenic and chondrogenic cells

hMSC (128)

miR-9, miR-98 Clinically identified as varying between
OA and normal tissue

Human tissues (117)

miR-20b§ PPARg Upregulates BMP2 and Runx2 hMSC (129)
Bambi
Crim1

miR-23aw27aw24-2 Runx2 Down-regulate SATB2 that synergizes
with Runx2 to facilitate bone formation

rOB, MC3T3-E1 (105)

miR-26a SMAD1 Decreases SMAD1 protein levels by
diminishing availability to active SMAD1

hASC (97)

miR-27§ APC Activates Wnt signalling through
accumulation of b-catenin

hFOB (130)

miR-29a Osteonectin, Decreases ON levels by 3 0-UTR binding,
down-regulates

hFOB (102, 103)

sFRP2, Dkk1 Wnt antagonists hOB
Kremen mOB

miR-29b§ HDAC4, TGF-b3,
ACVR2A,
CTNNBIP1,
DUSP2

Up-regulated at the matrix maturation
stage, down-regulated during
mineralisation

mBMSC,
MC3T3-E1

(72, 110)

Down-regulates several inhibitors of OB
differentiation

Col1A1
Col5A3
Col4A2

miR-30c, miR-34 Runx2 Group of miRNAs target Runx2 and inhibit
osteoblastogenesis

MC3T3-E1 (94)

miR-125b ErbB2 Inhibits OB differentiation ST2 (131)
miR-133 Runx2 Belongs to group of Runx2 targeting

miRNAs
C2C12 (75, 94)

miR-135 SMAD5, Runx2 Decreases SMAD5 phosphorylation and
Runx2

C2C12, MC3T3 (75, 94)

miR-135b Decreases mineralisation hUSSC (132)
miR-138 PTK2 Inhibits FAK/ERK pathway and Runx2

activation
hMSC (77)

miR-140 HDAC4 Accumulates in cartilage, down-regulated
in OA

Mouse embryos (109, 120, 121)
ADAMTS5

miR-141, miR-200a Dlx5 Down-regulate Dlx5 and osterix MC3T3-E1 (101)
miR-146 – Inhibits NF-kB activation and inhibits

mineralisation
hASC (133)

miR-148b§, miR-27a,
miR-489

miR-27a and miR-489 inhibit osteogenesis
through repressing grancalcin

hMSC (108)

miR-155 SMAD1, SMAD5 Inhibits endogenous SMADs and
decreases ID3

MUTU I, A5499 (134)

Reduces osteoclast number and causes
trabeculae thickening

Dicer deficient OB
and OC

(135)

miR-196a§ HoxC8 Down-regulates HoxC8, a transcriptional
repressor of osteogenesis

hASC (106)

miR-199a SMAD1 Regulates chondrogenesis and may play
an important role in osteogenesis

C3H10T (136)

miR-199a, miR-346 LIF Decrease LIF and induce differentiation
by unidentified pathway

hBMSC (137)

miR-204, miR-205 Runx2 Belong to group of Runx2 targeting miRNAs MC3T3 (94)
miR-206 Cx43 Down-regulates osteocalcin C2C12 (74, 138)

BMP2 prevents Pri-miR-206 maturation
process

MC3T3-E1, ST2

miR-208 Ets1 Down-regulates OPN, Runx2, PTHrP,
tenascin-C and type I procollagen

MC3T3-E1 (139)
mOB

miR-210§ ActR1B Inhibits the TGF-b/activin signalling
pathway

ST2 (107)

miR-217, miR-218, Runx2 Belong to group of Runx2 targeting miRNAs MC3T3-E1 (94)
miR-338
miR-335-5p§ Dkk1 Promotes osteogenesis by activating

Wnt signalling
MC3T3-E1,

MLO-Y4
(78)

miR-378 GalNT-7 Increases nephronectin MC3T3-E1 (140)

362 H Taipaleenmäki and others EUROPEAN JOURNAL OF ENDOCRINOLOGY (2012) 166

www.eje-online.org

Downloaded from Bioscientifica.com at 08/23/2022 05:57:09AM
via free access



Table 1 Continued

microRNA Target Supporting observations Cell source References

miR-2861§ HDAC5 Causes Runx2 accumulation ST2 (63)
Mutations cause osteoporosis in humans

miR-3960§ Hoxa2 Induced by Runx2 and promotes
osteoblastogenesis

ST2 (104)

C2C12, murine myoblast cell line; MC3T3-E1, murine pre-osteoblastic cell line; 3T3-L1, sub-line of murine embryonic fibroblast cell line; ST2, murine fetal liver-
derived stromal cell line; hASC, human adipose tissue-derived stem cells; hFOB, human fetal osteoblasts; hPLSC, human periodontal ligament stem cells;
hUSSC, human unrestricted somatic stem cells; m- and hBMSC, murine and human bone marrow mesenchymal stem cells; OB, osteoblast; OC, osteoclast;
OA, osteoarthritis. §, microRNAs that positively regulate osteogenesis.
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an almost equal number of miRNAs was up- and
down-regulated during differentiation (15 up- and 18
down-regulated). In contrast to MSC, a great number of
miRNAs are up-regulated during osteoblast maturation
and mineralisation. In preosteoblastic calvarial cells,
the majority of miRNAs (58 of 68 significantly altered
miRNAs) were up-regulated during mineralisation stage
(72), and in mouse pre-osteocyte-like MLO-A5 cells, 14
out of 20 miRNAs were up-regulated in response to
ascorbic acid treatment (78). One of the most sensitive
methods for miRNA profiling and identification of novel
miRNAs is ultra high-throughput sequencing or ‘deep
sequencing’ (79). Deep sequencing produces millions of
sequencing reads encompassing the transcriptome of
choice for mapping and quantitative and qualitative
analysis of small RNA fragments (80). Several programs
are available to distinguish miRNA sequences from
other non-coding RNAs, mRNAs and degraded RNA,
including publicly available programs miRDeep and
miRanalyser (81, 82).

Validation of miRNA expression data is commonly
performed with small RNA northern blots, RNAse
protection assays or qRT-PCR analysis. In situ hybrid-
isation provides an approach to detect expression and
in vivo distribution of miRNA. Wienholds et al. (83)
compared in situ expression patterns with expression
profiles obtained from miRNA array in zebrafish and
were able to confirm more than 77% of the in situ
expression patterns by at least one microarray data set.
By in situ hybridisation, Inose et al. (74) confirmed
miRNA array observations and detected miR-206
expression in perichondrium in E14.4 old mice with
decreased expression during in vivo skeletogenesis. miR-
335-5p was observed in perichondrial cells in E13.5
embryos and in E16.5 in mandible and in osteoblasts
aligning on the surface of cranial base cartilage sup-
porting its role as a positive regulator of osteogenesis (78).
Regulation of osteoblast differentiation
and bone development by miRNA

The osteogenic differentiation of MSCs is a coordinated
process defined by four stages: cellular commitment,
proliferation, matrix maturation and mineralisation.
Osteoblast differentiation is tightly regulated by hor-
mones such as parathyroid hormone and by local
growth factors including BMPs, IGF and FGFs (84, 85,
86). These factors activate specific intracellular
pathways that trigger the expression of several
osteoblast-specific transcription factors. Runx2 is an
essential transcription factor for the differentiation of
MSCs into the osteogenic lineage and for bone formation
(87, 88). It regulates the expression of several
osteoblastic genes, such as COL1A1, alkaline phospha-
tase (ALPL), bone sialoprotein (IBSP), SPP1 (osteo-
pontin) and BGLAP (osteocalcin) (89, 90). Runx2
transcriptional activity is negatively regulated by
HDACs. Osterix/SP1 is another crucial transcription
factor required for the differentiation of preosteoblasts
into fully functioning osteoblasts (91). Other important
transcription factors involved in osteoblast differen-
tiation include activating transcription factor 4, tran-
scriptional modulator (TAZ), TWIST and homeodomain
proteins Msx1, Msx2, Dlx5 and Dlx6 (6, 7, 92).
Role of miRNAs in mesenchymal precursor cell
differentiation

An increasing number of miRNAs have been identified
to regulate osteoblast differentiation and bone forma-
tion positively by targeting negative regulators of
osteogenesis or negatively by targeting important
osteogenic factors (Table 1 and Fig. 2). Several studies
have demonstrated that miRNAs target the principal
transcription factors and signalling molecules involved
in osteoblast differentiation of MSCs and osteoblast
functions (Figs 2 and 3). miRNAs 133 and 204/211
attenuated osteoblast differentiation by directly target-
ing Runx2 in C2C12 mesenchymal progenitor cells and
MSCs respectively (75, 93). Recently, a group of 11
miRNAs was discovered to control Runx2 levels during
osteoblast and chondrocyte differentiation suggesting
complex regulation of lineage commitment by multiple
miRNAs targeting key lineage-specific transcription
factors (94). In addition, several miRNAs indirectly affect
Runx2 expression or activation to modulate osteoblast
differentiation. Focal adhesion kinase is a key activator
of extracellular signal-related kinase (ERK) pathway
in extracellular matrix (ECM)-induced osteoblast
differentiation (95, 96). By directly targeting PTK2, a
gene encoding FAK, miR-138 was shown to attenuate
the ERK-dependent pathway, phosphorylation of
www.eje-online.org
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Figure 2 Diagrammatic representation of
miRNAs regulating osteoblast differentiation.
miRNAs are involved in various steps during
MSC differentiation to osteoblasts. miRNAs
regulate each differentiation step by targeting
important transcription factors, growth
factors and other molecules. Depending on
the target, miRNAs have either a positive or
negative effect on osteoblast differentiation.
miR, micro-RNA; Osx, osterix; HDAC,
histone deacetylase; BMP, bone morpho-
genetic protein; ECM, extracellular matrix;
BSP, bone sialoprotein. §, miRNAs that
positively regulate osteogenesis. Red font
indicates direct target and black font
indicates indirect effect.
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Runx2, OSX expression and, subsequently, inhibit
osteoblast differentiation and bone formation of MSCs
in vitro and in vivo (77). miR-26a and miR-135
functionally repress osteoblast differentiation by target-
ing Smad1 and Smad5 respectively (75, 97).

Since osteoblasts and adipocytes share common stem
cells (MSCs), miRNA regulation of OB differentiation
may regulate adipocytic differentiation indirectly. miR-
138 was highly expressed in undifferentiated MSCs and
down-regulated upon differentiation to osteoblastic,
adipogenic and chondrogenic lineages. Based on its
expression profile and functional inhibition of osteo-
genesis and adipogenesis (77, 98), it is thus possible that
miR-138 maintains MSCs in undifferentiated stage.
Similarly, miR-335 down-regulation was shown to be
critical for MSC differentiation, and over-expression of
miR-335 inhibited both osteoblastic and adipogenic
differentiation of MSCs (99). A hypothetical model
was proposed by Tome et al. in which miR-335 is
down-regulated in response to tissue damage signals
leading to de-repression of its target genes and MSC
migration and differentiation. While the above-
mentioned miRNAs inhibited both osteoblastic and
adipogenic differentiation, miR-204/211 and miR-637
were shown to play a role in the inverse relationship
www.eje-online.org
between osteoblastogenesis and adipogenesis by target-
ing Runx2 and Osx respectively (93, 100).
miRNAs regulating osteoblast maturation
and function

In addition to regulating MSC differentiation to
osteoblastic lineage, miRNAs contribute to osteoblast
maturation (14). miRNAs miR-141 and miR-200a were
down-regulated during preosteoblast differentiation and
inhibited osteoblastogenesis by targeting Dlx5 (101).
Inose et al. (74) identified miR-206 in perichondral cells
and not in mature osteoblast and accordingly demon-
strated inhibition of osteoblast maturation and in vivo
bone formation with miR-206.

Activation of canonical Wnt signalling is crucial for
osteoblast function. miR-335-5p was shown to directly
target and down-regulate Wnt inhibitor DKK1,
enhance Wnt signalling and promote osteogenesis in
a cell- and development-dependent manner (78).
miR-29a potentiates osteoblastogenesis by modulating
Wnt signalling through a positive feedback loop (102).
While canonical Wnt signalling induced miR-29
expression, miR-29 targets negative regulators of
Wnt signalling: Dkk1, Kremen and sFRP2, thus further
Downloaded from Bioscientifica.com at 08/23/2022 05:57:09AM
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signalling pathways by miRNAs. (A) miRNAs
regulate positively and negatively Runx2, the
key transcription factor of osteogenesis.
Positive regulation of Runx2 is obtained by
miRNAs targeting Runx2 inhibitors HDACs.
Direct binding of miRNAs to Runx2 3 0-UTR
results in negative regulation. Both negative
and positive regulatory loops are shown
between Runx2 and miRNAs. (B) miRNA
regulation of BMP/Smad signalling results in
inhibition of osteoblastogenesis. (C) miRNAs
can activate Wnt signalling by targeting Wnt
inhibitors. miR-29a expression is activated by
Wnt signalling leading to a positive regulatory
loop. miR, micro-RNA; HDAC, histone
deacetylase; BMP, bone morphogenetic
protein; APC, adenomatous polyposis coli.
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promoting Wnt activity and osteoblast differentiation
(103). Additional regulatory loops were recently
identified involving miRNAs and Runx2, implying
sophisticated regulatory mechanisms between miRNAs
and their targets. miR-3960/miR-2861/Runx2 form a
positive regulatory loop promoting osteogenesis (104)
while the miR-23a-27a-24-2/Runx2/SATB2 loop func-
tions as a negative regulator of the osteoblast differen-
tiation program. However, Runx2 down-regulates this
miR cluster to promote differentiation (105).

Although most of the miRNAs identified thus
far negatively regulate osteoblast differentiation, several
miRNAs are capable of enhancing osteoblast differen-
tiation and osteogenesis (Table 1). miR-29b, miR-148b,
miR-196a, miR-210, miR-335-5p, miR-2861 and miR-
3960 have been reported to target and cause down-
regulation of various inhibitors of osteoblast differen-
tiation and hence exert stimulatory effects (72, 102,
104, 106, 107, 108). The effects are applied through
several mediators, such as HDAC4, HDAC5, TGF-b3,
HoxC8, ActR1b, PEX7 and grancalcin, a Ca2C-binding
protein abundantly expressed by neutrophils and
macrophages. Interestingly, miR-29b exhibits differen-
tiation stage-dependent expression where it is up-regu-
lated during matrix maturation and down-regulated
during matrix mineralisation (72). Several inhibitors of
osteoblast differentiation were identified as direct targets
for miR-29b: HDAC4, TGF-b3, activin A receptor type
IIA (ACVRA2A) and CTNNBIP1, suggesting that not
only multiple proteins but also various signalling
pathways can be affected by specific miRNAs.
miRNAs in skeletal development

The importance of miRNAs in skeletal development
has been addressed by generating conditional limb
mesenchyme- and osteoblast-specific Dicer knockout
mice. The disruption of Dicer in chondrocytes resulted in
an abnormal cartilage phenotype with impaired
chondrocyte proliferation and accelerated maturation,
indicating that miRNAs play a crucial role in chon-
drogenesis by maintaining chondrocyte proliferation
and inhibiting their premature hypertrophy (58).
Tuddenham et al. (109) provided evidence for miR-
140 accumulation in the cartilage of developing long
and flat bones of mice embryos. During bone formation,
miRNAs are important in two periods of the process: in
promoting the osteoblast differentiation and in control-
ling bone accrual in a post-natal organism (110). Gaur
et al. (110) additionally showed that miR-29b and let-7a
are up-regulated at matrix maturation stage (d19) and
down-regulated during mineralisation (d27) in devel-
oping mice. However, our current knowledge on
expression and function of specific miRNAs during
bone development in vivo is still limited. miR-206
expression was detected in developing mouse embryos
with decreased expression during osteoblast differen-
tiation and bone formation. Correspondingly, over-
expression of miR-206 resulted in a low bone mass
due to defected bone formation in mice (74).
Utility of miRNA targeting for treatment
of skeletal diseases

miRNAs as therapeutic targets

miRNAs may represent novel therapeutic targets for
pharmacological control of bone cell functions and
enhancement of bone formation. Several approaches
are currently being investigated to be utilised in
therapeutic applications (111). By expression of a
short hairpin RNA containing either the miRNA from
www.eje-online.org
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a plasmid or viral vector with either a polymerase II or III
promoter upstream, Dicer could modify the hairpin
structure to produce the mature miRNA (112). The use
of miRNA sponges to inhibit miRNA function was first
described by Ebert et al. (113). By transfection with a
sponge plasmid containing multiple tandem binding
sites for specific miRNA(s), cells expressing sponge RNAs
sequester the miRNA, thereby preventing the interaction
between targets and endogenous miRNAs. Chemically
modified antisense oligonucleotides complementary to
the mature miRNA (designated as anti-miRs) provide
another approach to silence specific miRNA in cultured
cells and in vivo (114). Most advanced studies using LNA-
modified anti-miRs were performed with miR-122,
abundant liver-expressed miRNA. miR-122 binds in
the 5 0-non-coding region of the hepatitis C virus (HCV)
genome, resulting in the up-regulation of viral RNA
levels (115). Targeting miR-122 with anti-miRs resulted
in decreased cholesterol levels in mice and African
monkeys and was recently shown to lead to long-lasting
suppression of HCV (116).
miRNAs as targets in skeletal disease

Few specific miRNAs have been identified as playing
a role in skeletal diseases, e.g. osteoporosis and
osteoarthritis (OA) (117, 118). A novel miRNA, miR-
2861, was identified by Li et al. (63) to contribute to
osteoporosis in mice and humans. miR-2861 promoted
osteoblast differentiation by targeting HDAC5 and
thereby increasing levels of Runx2. In vivo silencing of
miR-2861 inhibited bone formation and resulted in
decreased bone mass in mice. Consistently, mutations in
pre-miR-2861 were associated with early osteoporosis
in humans. Not only mutations in the miRNA gene but
also in the 3 0-UTR of the target gene can predispose to
diseases such as osteoporosis (119). Polymorphisms in
the 3 0-UTR may alter miRNA binding leading to
dysregulation of the target gene and aberrant protein
level. By comparing known polymorphisms in miRNA
target sites (poly-miRTSs) and osteoporosis, Lei et al.
recently discovered three polymorphisms in the FGF2
gene that were significantly associated with femoral
neck bone mineral density (BMD). These poly-miRTSs
harboured binding sites for nine miRs whose binding is
potentially altered due to polymorphisms, which can
contribute to susceptibility to osteoporosis.

Besides playing a role in osteoporosis, miRNAs are
associated with destructive joint diseases such as OA and
rheumatoid arthritis (RA). miR-140 has been shown to
be highly expressed in normal human articular cartilage,
and the expression is reduced in OA (120). Disruption of
miR-140 predisposed to age-related OA and, conversely,
its over-expression in chondrocytes protected from OA,
indicating that miR-140 prevents development of the
disease by a mechanism that may involve regulation of
ADAMTS5 (121). MiR-146a has been associated with
both OA and RA (122, 123, 124). It is a negative
www.eje-online.org
regulator of inflammatory and innate immune responses
and was recently discovered to inhibit osteoclastogenesis
(125, 126). These studies suggest that miRNAs play
important roles in the articular cartilage pathology and
skeletal homeostasis in vivo.

miRNA targeting represents a novel therapeutic
opportunity for treatment of osteoporosis and arthritis.
Down-regulated miRNAs could be restored by over-
expression using stable vector transfection or transient
transfection by double-stranded miRNAs (ds miRNA).
By artificial expression of a miRNA that is up-regulated
during osteoblastic differentiation and osteogenesis,
restoration of down-regulated miRNAs may be a
potential treatment strategy in osteoporosis. This
approach was applied to suppress bone and cartilage
destruction in RA. In vivo administration of double-
stranded miR-146a prevented joint destruction in
arthritic mice, thus demonstrating potential as a
therapeutic target for bone destruction in RA (125, 126).

Anti-miRs were used to investigate the in vivo
function of miR-2861 in osteoporosis in mice. Anti-
miR-2861 was injected into the tail vein in sham
operated or ovariectomised (OVX) mice. Inhibition of
miR-2861 by anti-miR resulted in significantly reduced
BMD, the bone loss being most severe in OVX mice (63).
Another approach is to combine miRNA technology
with stem cell therapy. MSCs are successfully used as
vehicles in gene therapy in skeletal repair purposes
(127). We recently demonstrated enhanced in vivo bone
formation by functional inhibition of miR-138 in
hMSCs using an LNA-modified anti-miR oligonucleotide
(77). The approach in using MSCs as vehicles to deliver
miRNA mimics or anti-miRs may serve as a potential
tool in future bone regeneration applications.

Future challenges

miRNA based therapy is successfully used in several
diseases and an increasing number of reports have been
published with evidence of their potential use in skeletal
conditions such as osteoporosis and arthritis. Although
studies have shown promising results in using miRNAs in
skeletal therapy, further investigation is required to better
understand the advantages and limitations of this
approach. In order to develop effective and safe delivery
methods, localisation of ds miRNAs or anti-miRs uptake
after systemic delivery should be identified. Designing cell-
or tissue-specific administration systems to avoid off-
target or even opposing effects in non-targeted tissues
remains to be a challenge. Optimisation of delivery dose as
well as potential use, whether as a combination of several
miRNAs as a cocktail or with other biological agents,
needs to be carefully investigated for each application.
Conclusions and perspectives

miRNAs are increasingly recognised as important
regulatory molecules of a large number of biological
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functions. Understanding their expression profiles and
dynamic regulation may be the key to enhance
osteoblastic differentiation and bone formation in the
treatment of pathological bone diseases. Recent
advances in miRNA research have provided new
perspectives on the regulation of skeletal development.
Moreover, understanding the function of miRNAs and
their association with the molecular pathogenesis of
various diseases, including OA and osteoporosis, has
provided novel insights into the development of thera-
peutic treatments. Using miRNAs as therapeutic targets
by manipulating the miRNA levels to promote osteoblast
differentiation may well become a powerful tool in the
development of new therapeutic approaches. However,
numerous questions including potential off-target effects
and efficient delivery in vivo need to be solved before
using miRNAs in bone disease therapeutics.
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