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Obesity is now widespread around the world. Obesity-associated chronic low-grade in�ammation is responsible for the decrease of
insulin sensitivity, whichmakes obesity amajor risk factor for insulin resistance and related diseases such as type 2 diabetes mellitus
and metabolic syndromes. �e state of low-grade in�ammation is caused by overnutrition which leads to lipid accumulation in
adipocytes. Obesity might increase the expression of some in�ammatory cytokines and activate several signaling pathways, both of
which are involved in the pathogenesis of insulin resistance by interfering with insulin signaling and action. It has been suggested
that specic factors and signaling pathways are o�en correlated with each other; therefore, both of the �uctuation of cytokines and
the status of relevant signaling pathways should be considered during studies analyzing in�ammation-related insulin resistance.
In this paper, we discuss how these factors and signaling pathways contribute to insulin resistance and the therapeutic promise
targeting in�ammation in insulin resistance based on the latest experimental studies.

1. Introduction

Insulin resistance (IR) is a complicated condition in which
three primary metabolic tissues that are sensitive to insulin,
skeletalmuscle, liver, andwhite adipose tissue (WAT) become
less sensitive to insulin and its downstreammetabolic actions
under normal serum glucose concentrations [1]. IR is closely
associated with obesity, hypertension, hyperglycaemia, poly-
cystic ovary syndrome, and metabolic syndrome (see glos-
sary) [2, 3]. As the key component of metabolic syndrome, IR
is also closely associated with nonalcoholic fatty liver disease
(NAFLD) [4]. �e antilipolytic e�ect of insulin is decreased
in insulin-resistant conditions, which may promote hepatic
triglyceride synthesis. Another feature of insulin resistance is
an increasing release of free fatty acid. As we know, FFA could
be taken up by organs and accumulated as ectopic fat, such as
hepatic and cardiac lipids [5]. And hepatic lipids including
triglyceride deposition are involved in the pathogenesis and
development of NAFLD. Several factors are implicated in
the pathology of obesity-related NAFLD, including complex
interactions between glucose and lipid metabolism, genetic

predisposition, environmental conditions, andmodulation of
the intestinal microbiota [6]. IR encompasses a wide spec-
trum of disorders, such as defective insulin receptor signal
transduction and mitochondrial function [7, 8], microvas-
cular dysfunction [9, 10], and in�ammation [11–13]. Obesity,
characterized as a state of chronic low-grade in�ammation
caused by overnutrition, is a major cause of decreased insulin
sensitivity, which makes obesity a major risk factor for IR
[14–16]. Obesity, also manifested as excess adiposity, is a
main cause of NAFLD [17]. NAFLD is recognized as a
typical feature of metabolic syndrome and manifested as a
series of hepatic injuries including steatosis, nonalcoholic
steatohepatitis (NASH), and even hepatocellular carcinoma
[18]. Obesity causes lipid accumulation in adipocytes, which
activates c-Jun N-terminal kinase (JNK) and nuclear factor-
kappa B (NF-�B) signaling pathways andmight subsequently
increase the production of proin�ammatory cytokines such
as tumor necrosis factor-alpha (TNF-�) and interleukin-6
(IL-6) [11, 19]. In most cases, adipose tissue (AT) is an impor-
tant site of obesity-induced IR, and it can also a�ect the liver
andmuscle by releasing cytokines, including adipokines such
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Figure 1: In�uence of the in�ammatory cytokines on the status of insulin resistance. TNF-� causes insulin resistance by enhancing adipocyte
lipolysis stimulating JNK and IKK�/NF-�B pathway which may increase serine/threonine phosphorylation of IRS1. IL-6 induces IR by
reducing the expression of GLUT4 and IRS-1 by activating the JAK-STAT signaling pathway and increasing SOCS3 expression, and IL-6
can also lead to IR in skeletal muscle by inducing TLR-4 gene expression through activation of STAT3; besides, TLR4 is suggested to be
major upstreammolecules in the activation of NF-�B. Besides, IL-6 is also found to induce IR by impairing the synthesis of glycogen through
downregulating the expression of miR-200s and upregulating that of FOG-2.

as TNF-� [11, 18]. AT consists of several cell types. Among
these, adipocytes and immune cells, such asmacrophages and
dendritic cells (DCs), have attracted signicant attention as
contributors that link in�ammation to IR.

�is reviewwill focus on the relationship between in�am-
mation and IR, and we analyze the mechanisms relating to
how in�ammatory cytokines, signaling pathways, and some
other factors link in�ammation to IR.

2. Cytokines That Link Inflammation to IR

2.1. TNF-�. Studies of TNF-� in the 1990s rst analyzed
the relationship between in�ammation and IR [20]. TNF-�
is an adipose tissue-derived proin�ammatory cytokine that
causes insulin resistance by enhancing adipocyte lipolysis
and increasing the serine/threonine phosphorylation of IRS-1
(insulin receptor substrate-1) [11, 21]. Several signaling path-
ways, including the IKK�/NF-�B pathway, are involved in the
pathogenesis of IR (see Figure 1) [22, 23]. It was reported that
TNF-� can increase glucose uptake in both visceral and sub-
cutaneous adipocytes by activating the adenosinemonophos-
phate activated protein kinase (AMPK) pathway, whereas it
triggers insulin resistance in visceral adipocytes by activating
JNK1/2. Because of the depot-specic e�ects of TNF-� on
glucose uptake, approaches to treat IR by modulating TNF-
� signaling are ongoing [24]. However, studies of therapies
such as the TNF-� superfamily member sTWEAK (soluble
tumour necrosis factor-like weak inducer of apoptosis),
which aims to block TNF signaling to treat IR, have demon-
strated that TNF-� plays a role in IR [25]. Interestingly, the
plasma levels of TNF-� are higher in males than in females,
as well as in obese individuals compared with lean ones. �is
suggests that obese males are more likely to su�er from IR
and related diseases such as cardiovascular disease [26].

2.2. IL-1�. Interleukin-1� (IL-1�) is a proin�ammatory
cytokine whose secretion is regulated by in�ammasome
activity. IL-1� contributes to IR by impairing insulin signaling
in peripheral tissues and macrophages, which leads to the
reduced insulin sensitivity of �-cells and possible impaired
insulin secretion [27, 28]. �e levels of IL-1� in various cells
such as endothelial cells and monocytes are increased during
hyperglycemia [29]. IL-1� also plays a vital role in initiating
andmaintaining in�ammation-induced organ dysfunction in
type 2 diabetes mellitus (T2DM) [30]. IL-1� might increase
systemic in�ammation and inhibit insulin action in themajor
insulin-target cells, such as macrophages [31].

2.3. IL-6. IL-6 is secreted by multiple tissues, particularly
adipose tissue, and is recognized as an in�ammatory medi-
ator that causes IR by reducing the expression of glucose
transporter-4 (GLUT-4) and insulin receptor substrate-1
(IRS-1). �ese e�ects are exerted by the activation of the
Janus kinase-signal transducer and activator of transcription
(JAK-STAT) signaling pathway (see Box 1) and increased the
expression of suppressor of cytokine signaling 3 (SOCS3) [32,
33] (see Figure 1). �erefore, hybrid training can ameliorate
insulin resistance by suppressing serum IL-6 in skeletal
muscle [34]. IL-6 also induces IR by blocking the phospho-
inositide 3-kinase (PI3K) pathway and impairing glycogen
synthesis by downregulating the expression of microRNA-
200s (miR-200s) and upregulating that of friend of GATA 2
(FOG-2) [35, 36]. It was suggested that IR in human skeletal
muscle is related to IL-6 stimulation, which induces toll-like
receptor-4 (TLR-4) gene expression by activating STAT3 [37]
(see Figure 1).

2.4. Leptin. Leptin is a protein that is derived primarily from
white adipose tissue (WAT) [38]. It suppresses appetite and
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increases energy expenditure by repressing anabolic neu-
ronal circuits and activating catabolic neuronal circuits. In
addition, leptin levels are a�ected by nutriture [39]. Leptin-
mediated appetite and energy homeostasis are associated
with the progression of IR [40]. Furthermore, a state called
leptin resistance, which was disputed lately by the concept
of hypothalamic leptin insu�ciency, is o�en observed in the
obese individuals, and weight loss simultaneously reduces
serum leptin levels. �is suggests that leptin might have a
role in regulating IR. Consistent with this, the stimulation of
PI3K signaling by leptin is essential for modulating glucose
metabolism and the function of pancreatic �-cells [31–42].
It is likely that an increased concentration of leptin, an anti-
in�ammatory cytokine, during in�ammation in AT is associ-
ated with leptin resistance in obese individuals. Interestingly,
leptin was recommended as a biomarker for in utero insulin
resistance based on the link between maternal and fetal
leptin and IR [43, 44]. Leptin is a potential treatment for IR
because it improves glycometabolism, insulin sensitivity, and
lipometabolism [45, 46].

2.5. Adiponectin. Adiponectin is produced mainly by WAT.
Its levels reduce in obesity, IR, or T2DM, where it acts as an
anti-in�ammatory cytokine, but increase in osteoarthritis
(OA) and type 1 diabetes mellitus (T1DM), where it acts
as a proin�ammatory cytokine [39, 47]. Two receptors are
involved in the glucose metabolism that links adiponectin
to the amelioration of IR. Adiponectin receptor 1 (AdipoR1)
is likely to reduce the expression of the genes that encode
hepatic gluconeogenic enzymes and molecules involved in
lipogenesis by activating AMPK. In contrast, adiponectin
receptor 2 (AdipoR2) increases the expression of the genes
that contribute to glucose consumption by activating perox-
isome proliferator activated receptor-alpha (PPAR-�) signal-
ing [48, 49]. AdipoR1 and AdipoR2 are expressed at high
levels in skeletal muscle and the liver, respectively [28, 50].
In brief, adiponectin ameliorates hepatic insulin resistance by
reducing glycogenesis and lipogenesis, as well as increasing
glucose consumption.

2.6. Resistin. �e production of resistin is complex. In
rodents, it is generated from adipocytes, whereas it is pro-
duced mostly by macrophages in humans. Its concentrations
increase concurrently with the levels of in�ammatory medi-
ators [51]. It was suggested that resistin participates in the
pathogenesis of IR and that its levels might be elevated due
to obesity and IR [52]. Resistin promotes IR by regulating the
expression of proin�ammatory cytokines, including TNF-�
and IL-6, in macrophages via an NF-�B-dependent pathway.
It also plays roles in in�ammation and IR by binding directly
to TLR4 receptors in the hypothalamus to activate JNK
and mitogen-activated protein kinase (MAPK) signaling
pathways [53].

2.7. MCP-1. Monocyte chemoattractant protein-1 (MCP-1)
is a proin�ammatory chemokine produced by adipocytes,
macrophages, and endothelial cells, which might lead to
the recruitment of macrophages, DCs, and memory T

cells [11, 54]. Adipocytes and macrophages are the main
source of proin�ammatory cytokines. However, the expres-
sion of MCP-1 increases during adiposity, which might
stimulate the recruitment of macrophages and DCs, which
further increases the expression of cytokines to exacerbate
in�ammation-induced IR [22]. �e expression of MCP-1
increases during obesity, particularly in visceral fat areas,
whichmight contribute to the pathogenesis of IR, particularly
in the liver [54, 55]. It plays a role in IR by regulating the
in�ammatory response, insulin sensitivity, lipid metabolism,
macrophage polarization and inltration, and the phospho-
rylation of extracellular signal-regulated kinase-1/2 (ERK-
1/2) and p38 MAPK [56]. C-C motif chemokine receptor 2
(CCR2) is a vital MCP-1 receptor. In adipose tissue of CCR2
knockout mice, macrophage content and in�ammatory pro-
le were reduced. CCR2 deciency also ameliorated hepatic
steatosis and improved insulin sensitivity [57]. �is suggests
that MCP-1 plays a crucial role in the development of both
in�ammation and IR.

3. Signaling Pathways Linking Inflammation
to Insulin Resistance

3.1. IKK�/NF-�B Pathway. NF-�B is a transcription factor
comprised of Rel family proteins such as p65/RelA, RelB, c-
Rel, p50/p105, and p52/p100. It is involved in a series of patho-
logical processes such as in�ammation and innate and adap-
tive immune responses [58, 59]. NF-�B is sequestered in the
cytoplasm bound to I�B proteins in normal circumstances,
which prevents the nuclear localization of NF-�B. A�er
stimulation with various pathogenic stimuli, such as those in
obese individuals, the IKK complex that contains two sub-
units (IKK� and IKK�) is activated, which triggers the phos-
phorylation of I�B� on Ser32 and 36.�is leads to the degra-
dation of I�B�, exposes the nuclear localization sequence of
NF-�B, and triggers its translocation to the nucleus and the
upregulation of target genes that encode in�ammatory medi-
ators such as TNF-�, IL-1�, and IL-6 [20, 58] (see Figure 2).
IKK� deciency in adipocytes completely prevented the free
fatty acid- (FFA-) induced expression of TNF-� and IL-6,
whereas the activation of IKK� inhibited the expression of
anti-in�ammatory cytokines such as leptin and adiponectin
[60]. According to this, the deletion of IKK� improved
glucose tolerance and insulin sensitivity [61]. In addition,
treatments that inhibit NF-�B always improve IR, which
suggests that the NF-�B pathway plays an important role in
in�ammation-associated IR [62]. NF-�B is also a vital inter-
mediary that couples IR to the proin�ammatory cytokine IL-
1� in IR-related diseases such as obesity and T2DM [27].

3.2. JNK Pathway. �ere are three di�erent JNK isoforms
(JNK-1, -2, and -3), which belong to MAPK family. JNK
contributes to in�ammation and metabolic syndrome (MS),
obesity, and IR by regulating the production of proin�am-
matory cytokines, karyomitosis, and cellular apoptosis [63–
65]. JNK can also be stimulated by endoplasmic reticulum
(ER) stress, which leads to the serine phosphorylation of IRS-
1 (see Figure 2). JNK plays a role in the phosphorylation of
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Figure 2: In�ammatory pathways linking in�ammation to insulin resistance. Activation of JNK and NF-�B pathways causes serine kinase
phosphorylation of IRS-1 or IRS-2, which may block insulin signaling and nally lead to the occurrence of IR. In addition, JNK and NF-�B
pathways are involved in the production of proin�ammatory cytokines which may in turn become activation stimuli of the pathways.

the c-Jun component of activator protein (AP-1) transcription
factor, but there is no evidence of a direct relationship
between this transcriptional pathway and JNK-reduced IR.
�e JNK pathway can be activated under diabetic conditions,
which might increase IR. Conversely, suppressing the JNK
pathway improves IR and glucose tolerance [66]. JNK plays
an important role in IR by inhibiting insulin secretion from
pancreatic �-cells via proin�ammatory stimuli including IL-
1. Moreover, the excessive activation of JNK in peripheral
insulin-sensitive tissues promotes IR [67]. It was demon-
strated that inhibiting JNK reduced the release of IR-related
proin�ammatory cytokines such as TNF-� and MCP-1 [68–
70]. Interestingly, JNK-1 deciency in adipose tissue protects
against hepatic steatosis and promotes glucose intolerance,
insulin clearance, IR, and hepatic steatosis. In skeletal muscle,
JNK-1 does not a�ect the development of obesity and IR [65,
71]. However, JNK in isolated rat skeletal muscle plays a vital
role during oxidant-induced IR because insulin-stimulated
glucose transport activity was improved by the selective inhi-
bition of JNK [72]. Taken together, these studies suggest that
further studies are needed to analyze the e�ects of JNK in IR.

3.3. In
ammasome Pathway. �e in�ammasome consists of
a large group of cytosolic protein complexes and plays roles
in in�ammation by regulating the secretion of IL-1� and
IL-18. �erefore, it is important in innate immunity and
metabolic syndromes such as obesity and IR [30, 73]. NOD-
like receptor proteins (NLRPs), neutrophilic alkaline phos-
phatases (NALPs), apoptosis associated speck-like protein
(ASC), and caspase-1 are the essential components of in�am-
masome complexes [20]. In�ammasomeNLRP3 (nucleotide-
binding domain, leucine-rich-containing family, and pyrin
domain-containing-3), which links saturated FFAs to chronic
in�ammation, is being studied extensively because it is highly

sensitive to nonmicrobial stress. It can be activated by mito-
chondrial dysfunction. In addition, the reduced expression
of NLRP3 in obesity results in enhanced insulin signaling,
decreased in�ammation, and improved insulin sensitivity
[73, 74] (see Figure 3). Caspase-1 is a cysteine protease that
contributes to IR by counteracting the metabolic function of
adipose tissue to impair insulin sensitivity and also mediates
the inltration of macrophages into adipose tissues [75, 76].
It was reported that the elimination of ASC and caspase-1
lowers the plasma levels of insulin, leptin, and resistin. More-
over, ASC deciency might protect individuals against HFD-
induced IR, hepatic steatosis, and adipocyte hypertrophy. In
addition, caspase-1-decient mice have high energy expendi-
ture. Taken together, these studies suggest that the in�amma-
some plays a vital role in obesity-induced IR and that it is an
important therapeutic target for the treatment of IR [76].

4. Other Factors Linking Inflammation to IR

4.1. Macrophages. Macrophages inltrate and reside in adi-
pose tissue, named ATMs, and usually play an important role
in obesity-induced IR.�ere are two types of ATM: classically
activated (M1) in obese animals and alternatively activated
(M2) in lean species [77]. ATMs have an important role in
the development of chronic in�ammation, including obesity-
induced in�ammation, because they are the primary source
of cytokine production. In addition, obesitymight change the
number of ATMs by increasing the triple positive CD11b +
F4/80 + CD11 + ATM subpopulation [20]. As well as using
CD11c as an M1 marker, Fujisaka et al. used CD206 rather
than CD209 and CD301 as M2 markers by �ow cytometry to
demonstrate that IR might be regulated by the number of M1
ATMs and the M1 :M2 ratio. In addition, intervention with
pioglitazone could reduce in�ammation and ameliorate IR by
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Figure 3: In�ammasome pathway andmacrophages are involved in
development of insulin resistance. �e secretion of IL-� and IL-18
can be regulated by in�ammasome pathway. In�ammasome consists
of a large group of cytosolic protein complexes includingNLRP3 and
caspase-1. NLRP3 can be activated by mitochondrial dysfunction
through causing ROS accumulation, and NLRP3 is also a novel
molecular link between saturated FFA and chronic in�ammation.
Caspase-1 mediates macrophages that inltrate into adipose tissues.
Dietary saturated fatty acids lead to activation of TLR2 and TLR4 in
ATMs, giving rise to the activation of IRF3, JNK, and NF-�B.

upregulating the expression of IL-10, which might contribute
to the reduction of M2 quantity [77]. In another study, it
was suggested that the MCP-1/CCR2 axis might contribute
to a shi� from M2 to M1 polarization, which is an important
cause of IR as it leads to the production of in�ammatory
factors such as TNF-� and IL-6 [78]. During obesity, dietary
saturated fatty acids lead to the activation of TLR2 and TLR4
in ATMs, which is followed by the activation of interferon
regulatory factor-3 (IRF3), JNK, and NF-�B and subsequent
in�ammatory signaling (see Figure 3) [1].

4.2. hs-CRP. C-reactive protein (CRP) is an acute-phase
protein synthesized by the liver. It is an in�ammatory marker
whose expression is increased signicantly during in�am-
mation, mainly due to its regulation by proin�ammatory
cytokines such as IL-6 and TNF-� [79, 80]. In most clinical
and scientic studies, CRP is measured using high-sensitivity
assays and is known as high-sensitivity CRP (hs-CRP) [81]. It
was suggested that increased hs-CRP levels might be caused
by an insu�cient insulin-induced suppression of CRP syn-
thesis. Moreover, CRP might contribute to vascular in�am-
mation by activating complement proteins and increasing
the production of thrombogenic components bound to the
membranes of injured vascular cells, which contributes to the
development of IR [80]. In addition, elevated CRP expression
is a potential risk factor and indicator for T2DM. However,
there is no apparent causality between serum CRP, IR, and
diabetes, which suggests that CRP is more likely to be a
downstream marker rather than an upstream e�ector that
links in�ammation to IR [82]. Nevertheless, hs-CRP is closely
associated with IR, and thus its expression should be assessed
during investigations of IR.

5. Concluding Remarks

In�ammation plays an important role in the development
of IR via various cytokines and molecular pathways, and so
in�ammation should be targeted with appropriate interven-
tions to prevent IR. Because dietary fat might play a role in
the production of in�ammatory molecules by modifying the
intestinal microbiota, which might result in an inappropriate
immune reaction [83], it is important for individuals to
develop good dietary and living habits. Specic factors and
signaling pathways are o�en correlated with each other.
For example, the activation of IKK�/NF-�B signaling might
increase the secretion of proin�ammatory cytokines such as
TNF-� and IL-1�, which might in turn stimulate IKK�/NF-
�B signaling. �erefore, both of the �uctuation of cytokines
and the status of relevant signaling pathways should be taken
into account during studies analyzing in�ammation-related
IR. Most current studies of in�ammation-related IR are
performed in animals, which makes it challenging to apply
these methods to humans to exert a curative e�ect of IR in
the clinic. Because the mechanisms that link in�ammation to
IR are not understood completely, additional well-designed
clinical and laboratory studies are in demand to elaborate
their relationship.

6. Box 1

6.1. �e JAK-STAT Signaling Pathway. �e Janus kinase-sig-
nal transducers and activators of transcription (JAK-STAT)
signaling pathway are a cytokines-activated cascade involved
in many important biological processes including the pro-
liferation, di�erentiation, and apoptosis of the cells [84].
�is signaling pathway contains three components: tyrosine
kinase associated receptor, Janus kinase and signal trans-
ducer, and activator of transcription [85]. To date, four
members of JAK kinase family have been identied including
JAK1, JAK2, JAK3, and TYK2, and the STAT family consists
of seven proteins (STATs 1, 2, 3, 4, 5A, 5B, and 6) [86].
�e signaling pathway is initiated through binding of ligands
to membrane-bound receptors which may lead to receptor
dimerization and then activate the JAK kinases; in turn,
the activation of JAK kinases phosphorylates the tyrosine
residues with the receptors [87]. As a result, STAT proteins
are phosphorylated by JAK, then dimerize via their src-
homology 2 (SH2) domains, and translocate to the nucleus
where they regulate transcription of specic target genes
involved inmultiple diseases including leukemia, rheumatoid
arthritis, cancer, and diabetic nephropathy [88, 89].

Glossary

Metabolic Syndrome. A pathophysiological disorder charac-
terized by a cluster of risk factors for cardiovascular disease,
type 2 diabetes, and renal disease.

Adenosine Monophosphate Activated Protein Kinase. A key
molecule implicated in metabolic modulation as it increases
O2 consumption, glucose metabolism, and fatty acid oxida-
tion.
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Soluble Tumour Necrosis Factor-Like Weak Inducer of Apop-
tosis. Tumor necrosis factor-like weak inducer of apoptosis
(TWEAK) is a member of the tumor necrosis factor (TNF)
superfamily. Soluble tumour necrosis factor-like weak indu-
cer of apoptosis (sTWEAK) is a soluble variant of TWEAK.
sTWEAK plays a role in a series of biological processes
including cellular proliferation, di�erentiation, apoptosis,
and in�ammation.

Glucose Transporter. It is a wide group of membrane proteins
that facilitate the transport of glucose.

Phosphoinositide 3-Kinase. It is an enzyme that generates lipid
second messenger molecules, resulting in the activation of
multiple intracellular signalling cascades.

Friend of GATA. �e GATA family refers to a kind of tran-
scription factors that recognizes and binds to the GATA
motifs. GATAproteins play an essential role in hematopoiesis
and tissue specic gene expression through functional inter-
actions with friend of GATA (FOG-) proteins. �ere are two
FOGproteins, FOG-1 and FOG-2. FOG-1 ismainly expressed
in hematopoietic tissues and FOG-2 in the heart, brain, and
gonads.

Toll-Like Receptors.Toll-like receptors are pattern recognition
receptors that play an important role in recognizing the
conserved molecular structure of pathogens and triggering
of the innate immune response.

Peroxisome Proliferator Activated Receptors. Peroxisome pro-
liferator activated receptors are a group of ligand-activated
nuclear receptors involved in the gene expressions associated
with the metabolic processes.

Mitogen-Activated Protein Kinase. It is an important signal
transducer acting as a regulator of physiology and immune
responses.
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