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Angiogenesis is facilitated by the proteolytic activities of members of the matrix

metalloproteinase (MMP) family. More specifically, MMP-9 and MT1-MMP directly

regulate angiogenesis, while several studies indicate a role for MMP-2 as well. The

correlation of MMP activity to tumor angiogenesis has instigated numerous drug

development programs. However, broad-based and Zn2+-chelating MMP inhibitors have

fared poorly in the clinic. Selective MMP inhibition by antibodies, biologicals, and small

molecules has utilized unique modes of action, such as (a) binding to protease secondary

binding sites (exosites), (b) allosterically blocking the protease active site, or (c) preventing

proMMP activation. Clinical trials have been undertaken with several of these inhibitors,

while others are in advanced pre-clinical stages. The mechanistically non-traditional

MMP inhibitors offer treatment strategies for tumor angiogenesis that avoid the off-target

toxicities and lack of specificity that plagued Zn2+-chelating inhibitors.
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INTRODUCTION

During the process of angiogenesis (the development of new blood vessels), the extracellular matrix
(ECM) is degraded by matrix metalloproteinases (MMPs), facilitating endothelial cell invasion
and leading to sprouting of new vessels (1–3). The MMP family (Figure 1) has fairly conserved
sequences between species, indicating that they are part of essential biological processes. The
domain organization ofMMPs is also fairly conserved, as all contain a signal peptide, a pro-domain,
and a catalytic (CAT) domain with a Zn2+ binding His-Glu-X-X-His-X-X-Gly-X-X-His motif
(Figure 1). Most MMPs contain a linker region and a hemopexin-like (HPX) domain (Figure 1).
In addition, some harbor specific features such as a furin activation domain (MMP-14/MT1-
MMP, MMP-15/MT2-MMP, MMP-16/MT3-MMP, MMP-21, MMP-24/MT5-MMP, MMP-23, and
MMP-28), fibronectin type II middle inserts (MMP-2 and MMP-9), and/or a transmembrane
domain (MMP-14/MT1-MMP, MMP-15/MT2-MMP, MMP-16/MT3-MMP, and MMP-24/MT5-
MMP) (Figure 1).

MMP-9 and MT1-MMP directly regulate angiogenesis, while some studies indicate a role for
MMP-2 as well (1, 4). Tumor angiogenesis and growth is reduced in MMP-2 knockout mice
(1). MMP-9 has been well-documented as a key contributor to the “angiogenic switch” in cancer
progression (5–8). The roles of MMP-9 in angiogenesis include the release of vascular endothelial
growth factor (VEGF) and/or basic fibroblast growth factor (FGF-2) (5, 7). Tumor-associated
macrophages, once polarized into the M2 phenotype, release VEGF and MMP-9 (9). MT1-
MMP contributes to blood vessel invasion, FGF-2-induced corneal angiogenesis, endothelial cell

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.01278
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.01278&domain=pdf&date_stamp=2019-06-04
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fieldsg@fau.edu
https://doi.org/10.3389/fimmu.2019.01278
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01278/full
http://loop.frontiersin.org/people/656172/overview


Fields Targeting Angiogenesis

FIGURE 1 | Diagrammatic representation of MMP domain organization.

migration and tubulogenesis in three-dimensional collagen
matrices, and vascular lumen formation (10–15).

Inhibiting enzymes involved in tumor-driven angiogenesis
has been recognized as a potential anticancer therapy (16). Broad
spectrum and moderately selective MMP inhibitors have been
recognized as possessing antiangiogenic activity (17–19). The
majority of MMP inhibitors contain a hydroxamic acid group
which chelates the active site Zn2+ (20–24). Problems with
hydroxamic acid-based metalloprotease inhibitors include the
tendency of hydroxamic acids to chelate zinc in a non-selective
fashion (25). An often observed side effect of hydroxamic
acid-based MMP inhibitors has been musculoskeletal syndrome
(MSS). MSS has been attributed to combined inhibition of MMP-
1 and a disintegrin and metalloproteinase 17 (ADAM17) (26). A
pyrimidine-2,4,6-trione derivative that selectively inhibits MT1-
MMP, MMP-2, and MMP-9 is not associated with MSS (27).

Abbreviations: Abs, antibodies; ADAM, a disintegrin and metalloproteinase;

CAT, catalytic; ClC-3, chloride channel-3; ClTx, chlorotoxin; ECM, extracellular

matrix; EGFR, epidermal growth factor receptor; FGF-2, basic fibroblast growth

factor 2; Flp, (2S,4R)-4-fluoroproline; HPX, hemopexin-like; mep, (2S,4R)-4-

methylproline; MMP, matrix metalloproteinase; MSS, musculoskeletal syndrome;

PDAC, pancreatic ductal adenocarcinoma; scFv, single chain variable fragment;

THP, triple-helical peptide; THPI, triple-helical peptide inhibitor; TIMP, tissue

inhibitor of metalloproteinase; UC, ulcerative colitis; VEGF, vascular endothelial

growth factor.

Recent advances in the development of selective MMP inhibitors
have included unique modes of action for inhibiting MMPs
implicated in angiogenesis (MMP-2, MMP-9, and MT1-MMP).

MMP-2/MMP-9 INHIBITORS

Mechanism-based inhibitors selective for MMP-2 and MMP-
9 were developed based on the thiirane moiety (Figure 2A)
(28). Although it was initially proposed that the thiirane
would be activated via coordination with the active site Zn2+,
allowing for covalent modification by an active site nucleophile
(28), subsequent studies revealed a mechanism by which
deprotonation at the methylene adjacent to the sulfone occurred,
initiating ring opening of the thiirane and formation of a stable
Zn2+-thiolate complex (31). The thiirane-based inhibitor SB-
3CT (Figure 2A) exhibited antiangiogenic and antimetastatic
behaviors (32, 33). In vivo, SB-3CT was found to be metabolized
by several routes, including p-hydroxylation, hydroxylation
at the methylene adjacent to the sulfone leading to sulfinic
acid formation, and glutathione-based Cys conjugation of the
thiirane ring (34). α-Methyl variants of SB-3CT had improved
metabolic profiles, as only oxidation of the thiirane sulfur was
observed (35). Unfortunately, SB-3CT was poorly water soluble.
Thiirane-based inhibitors with improved water solubility were
subsequently developed (36). ND-322 (which was selective for
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FIGURE 2 | Structures of MMP small molecule inhibitors (A) thiiranes (where n = 1 for SB-3CT), (B) N-[4-(difluoromethoxy)phenyl]-2-[(4-oxo-6-propyl-1

H-pyrimidin-2-yl)sulfanyl]-acetamide, (C) N-(4-fluorophenyl)-4-(4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-ylthio)butanamide, (D) JNJ0966 [N-(2-((2-methoxyphenyl)

amino)-4′-methyl-[4,5′-bithiazol]-2′-yl)acetamide], and (E) NSC405020 [3,4-dichloro-N-(1-methylbutyl)benzamide], and (bottom) MMP inhibitory antibodies (IgG) and

antibody fragments. Illustrations reprinted with permission from Brown et al. (28), Alford et al. (29), and Santamaria and de Groot (30). Copyright 2000 and 2017

American Chemical Society and 2018 John Wiley and Sons.

MMP-2 and MT1-MMP) was found to have antimetastatic
activity (37), while the O-phosphate prodrug form of SB-3CT
crossed the blood-brain barrier (38).

Targeting antibodies (Abs) (Figure 2, bottom) directly to the
Zn2+ complex in the MMP active site (designated metallobodies)
could have superior properties over classical Abs by mimicking
the molecular recognition offered by the endogenous inhibitors
of MMPs, tissue inhibitor of metalloproteinases (TIMPs),
while providing better selectivity (39). Mice were immunized
with synthetic organic ligands bound to a metal ion (Zinc-
Tripod), which mimicked the MMP catalytic Zn2+ complex.
This was followed by immunization with the full-length
MMP. The immunization procedure yielded function blocking
metallobodies (SDS3 and SDS4) directed at the catalytic
Zn2+ and enzyme surface epitopes in activated MMP-9 (39).
Metallobodies SDS3 and SDS4 bound and inhibited MMP-9 with
KD = 200 and 20 nM, respectively, and Ki = 1µM and 54 nM,
respectively. SDS3 and SDS4 also effectively inhibited MMP-2,
but had no inhibitory activity toward MMP-1, MMP-7, MMP-12,

or ADAM17, andmore than an order of magnitude lower activity
toward MT1-MMP. SDS3 was shown, in both prophylactic and
therapeutic applications, to protect mice from dextran sodium
sulfate-induced colitis (39).

In general, metalloproteinases use the nucleophilic attack of a
water molecule as one of the steps of amide bond hydrolysis (40).
Water addition to the amide carbonyl results in a tetrahedral
transition state. Phosphinic peptides [9{PO2H-CH2}] are
analogs of this transition state and behave as inhibitors of
MMPs (41). Phosphinate triple-helical (collagen mimic) MMP
inhibitors allow incorporation of specificity elements for both
the S and S’ subsites of the enzyme. Although binding to
the non-primed region of the active site is generally weaker
than the primed site to prevent product inhibition (40), it
does add sequence diversity and potential selectivity. Triple-
helical structure allows for interaction with both the active
site and secondary binding sites (exosites) of collagenolytic
MMPs (42–44), which include MMP-2, MMP-9, and
MT1-MMP (45).
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Our laboratory produced a series of triple-helical
peptide inhibitors (THPIs) based on Gly9{PO2H-CH2}Leu,
Gly9{PO2H-CH2}Val, and Gly9{PO2H-CH2}Ile transition
state analogs (42, 46–51). The α1(V)Gly9{PO2H-CH2}Val THPI
[C6-(Gly-Pro-Hyp)4-Gly-Pro-Pro-Gly9{PO2H-CH2}(R,S)Val-
Val-Gly-Glu-Gln-Gly-Glu-Gln-Gly-Pro-Pro-(Gly-Pro-Hyp)4-
NH2], based on the cleavage site in type V collagen by
MMP-9 (52), was a selective inhibitor for MMP-2 and
MMP-9 (46). The thermal stability of the α1(V)Gly9{PO2H-
CH2}Val THPI was greatly reduced compared to the parent
substrate (46, 53). We synthesized a stabilized version
of the α1(V)Gly9{PO2H-CH2}Val THPI, designated
α1(V)Gly9{PO2H-CH2}Val [mep14,32,Flp15,33] THPI,
where mep was (2S,4R)-4-methylproline and Flp was
(2S,4R)-4-fluoroproline (51). α1(V)Gly9{PO2H-CH2}Val
[mep14,32,Flp15,33] THPI had a melting point (Tm value)
18 ◦C higher than α1(V)Gly9{PO2H-CH2}Val THPI (51).
α1(V)Gly9{PO2H-CH2}Val [mep14,32,Flp15,33] THPI exhibited
Ki values against MMP-2 and MMP-9 of 189.1 and 90.6 nM,
respectively, at 25◦C, and 2.24 and 0.98 nM, respectively, at
37◦C (51).

Triple-helical peptides (THPs) have been found to be
reasonably stable to general proteolysis, as observed in vitro
in mouse, rat, and human serum and/or plasma and in
vivo in rats (54–58). The stability of THPs has allowed for
their administration orally (59). The α1(V)Gly9{PO2H-CH2}Val
[mep14,32,Flp15,33] THPI was effective in vivo in a mouse
model of multiple sclerosis, reducing clinical severity and
weight loss (51).

MMP-2 SELECTIVE INHIBITORS

Chlorotoxin (ClTx) is 36-residue peptide isolated from the
venom of the Israeli Yellow scorpion Leiurus quinquestriatus
(60). ClTx preferentially binds neuroectodermal tumors and
exhibits antiangiogenic and anti-invasion activity (61–65). ClTx
selectively inhibits MMP-2 in a dose-dependent manner (KD ∼

115 nM) (62). The ClTx interaction with a membrane complex
of chloride channel-3 (ClC-3) and MMP-2 (66) has been used
to create numerous cancer imaging agents (63, 65, 67–69). ClTx
can pass through the blood-brain barrier (65), and has yielded
promising preclinical and clinical results in the treatment of
glioblastoma (64, 68).

MMP-9 SELECTIVE INHIBITORS

Mouse mAb REGA-3G12, a selective inhibitor of MMP-9, was
prepared using MMP-9 as antigen (70). REGA-3G12 recognized
the MMP-9 Trp116 to Lys214 region, located in the CAT domain
but not part of the Zn2+ binding site (71). REGA-3G12 bound
to MMP-9 with KD = 2.1 nM (70). REGA-3G12 prevented
interleukin-8-induced mobilization of hematopoietic progenitor
cells in rhesus monkeys (72). A single chain variable fragment
(scFv) (Figure 2, bottom) derived from REGA-3G12 selectively
inhibited MMP-9 compared to MMP-2 (73). Gelatin hydrolysis
was inhibited 44% at a scFv concentration of 5 µM (73).

Two monoclonal anti-MMP-9 antibodies, AB0041 and
AB0046, were shown to inhibit tumor growth and metastasis in
a surgical orthotopic xenograft model of colorectal carcinoma
(74). AB0046 improved immune responses to tumors, as
the inhibition of MMP-9 reversed MMP-9 inactivation of T-
cell chemoattractant CXCR3 ligands (CXCL9, CXCL10, and
CXCL11) (75). A humanized version of AB0041, GS-5745
(Andecaliximab), was generated for use in clinical trials (74). GS-
5745 was found to bind to MMP-9 near the junction between
the pro-domain and CAT domain, distal to the active site, and
(a) inhibited proMMP-9 activation and (b) non-competitively
inhibited MMP-9 activity (76). GS-5745 bound to MMP-9 with
∼150-400-fold weaker affinity compared with proMMP-9 (KD

= 2.0–6.6 vs. 0.008–0.043 nM) (76). GS-5745/Andecaliximab
has been evaluated under several clinical trials. A randomized
placebo controlled phase 1b single and multiple ascending dose-
ranging clinical trial on 72 patients diagnosed with moderately to
severely active ulcerative colitis (UC) showed that GS-5745 was
safe, well-tolerated, and could be used as a potential therapeutic
agent for UC (77). A phase 2/3 UC study with 165 patients treated
over 8 weeks further indicated that GS-5745 was well-tolerated
(78). A phase 1b trial investigating the safety, pharmacokinetics,
and disease-related outcomes for 15 rheumatoid arthritis patients
(ClinicalTrials.gov Identifier NCT02176876) demonstrated that
GS-5745 was safe, with adverse events that were only grade 1 or 2
in severity and no indication of MSS (79).

Several non-active site small molecule MMP-9 inhibitors
have been described. N-[4-(difluoromethoxy)phenyl]-2-
[(4-oxo-6-propyl-1H-pyrimidin-2-yl)sulfanyl]-acetamide
(Figure 2B) bound selectively to the MMP-9 HPX domain
with KD = 2.1µM and inhibited tumor growth and lung
metastasis in MDA-MB-435 mouse models (80). Based on
this lead compound a library of analogs was generated, and
N-(4-fluorophenyl)-4-(4-oxo-3,4,5,6,7,8-hexahydroquinazolin-
2-ylthio)butanamide (Figure 2C) emerged as a more potent
inhibitor (KD = 320 nM) (29). This compound prevented
association of proMMP-9 with the α4β1 integrin and CD44,
resulting in the dissociation of epidermal growth factor receptor
(EGFR) from the β1 integrin subunit and CD44 (29). High-
throughput screening led to the identification of compound
JNJ0966 [N-(2-((2-methoxyphenyl)amino)-4′-methyl-[4,5′-
bithiazol]-2′-yl)acetamide] (Figure 2D), which bound selectively
to proMMP-9 with KD = 5.0µM (81). JNJ0966 inhibited the
activation of proMMP-9 and the migration of HT1080 cells, and
was able to penetrate the blood-brain barrier (81).

MT1-MMP SELECTIVE INHIBITORS

Several selective MT1-MMP inhibitory antibodies and antibody
fragments have been described (27, 30, 82–84). Screening a
human Fab display phage library resulted in the development
of DX-2400, a selective, fully human MT1-MMP inhibitory
antibody (Ki = 0.8 nM) (27, 85). DX-2400 was a competitive
inhibitor of MT1-MMP (85). DX-2400 inhibited tumor MT1-
MMP activity, resulting in the inhibition of MDA-MB-231
primary tumor growth but notMCF-7 tumor growth in xenograft
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mouse models (85). DX-2400 also inhibited metastasis (85), and
enhanced tumor response to radiation therapy (86).

Recombinant human scFv antibodies (Figure 2, bottom) were
generated against the MT1-MMP HPX domain (87). Two scFv
antibodies, CHA and CHL (KD = 10.7 and 169 nM, respectively),
were found to have differing activities. CHL inhibitedMT1-MMP
binding to collagen, while CHA had the opposite effect, yet both
scFv antibodies inhibited HT1080 invasion of type I collagen.
CHA inhibited CD44 shedding and endothelial cell sprouting
from endothelial cell/fibroblast co-cultures in type I collagen,
while CHL had no effect on either activity (87).

Monoclonal antibody (mAb) 9E8 (KD = 0.6 nM) inhibited
MT1-MMP activation of proMMP-2, but not other MT1-MMP
catalytic activities (88). mAb 9E8 bound to the Pro163 to Gln174
loop in the MT1-MMP CAT domain (89). This loop region
is present in the CAT domain of MT1-MT6-MMPs, but is
not found in all other MMPs. mAb 9E8 prevented formation
of the MT1-MMP•TIMP-2•proMMP-2 complex required for
proMMP-2 activation by interfering with TIMP-2 binding (89).
Another antibody raised against the loop region, LOOPAb, also
inhibited MT1-MMP activation of proMMP-2, but not MT1-
MMP collagenolysis (90).

The LEM-2/15 antibody was generated using a cyclic peptide
mimicking the MT1-MMP CAT domain V-B loop (residues
218-233) (91). A minimized Fab fragment (Figure 2, bottom)
of LEM-2/15 was designed, and possessed a reasonable binding
affinity compared to the intact antibody (KD = 2.3 vs. 0.4 nM,
respectively) (92). The Fab fragment was a non-competitive
inhibitor of MT1-MMP activities, including collagenolysis (92).
The Fab fragment of LEM-2/15 induced a conformational change
in MT1-MMP by destabilizing the exposed region of the V-B
loop, ultimately narrowing the substrate binding cleft (30, 84,
92). Treatment with the Fab fragment of LEM-2/15 significantly
increased the ability of virally infected mice to fight off secondary
Strep. pneumoniae bacterial infection (93). Treatment with the
Fab fragment of LEM-2/15, before or after infection, helped to
maintain tissue integrity (93).

Human scFv-Fc (Figure 2, bottom) antibody E3 bound to the
MT1-MMP CAT domain and inhibited type I collagen binding
(94). A second generation E3 clone (E2_C6, KD = 0.11 nM)
inhibited tumor growth and metastasis (94).

Human antibody Fab libraries were synthesized where
the Peptide G sequence (Phe-Ser-Ile-Ala-His-Glu) (95) was
incorporated into complementarity determining region (CDR)-
H3 (96). Fab 1F8 exhibited EC50 = 8.3 nM against theMT1-MMP
CAT domain, and inhibited MT1-MMP CAT domain activity
with Ki = 110 nM (96).

Screening of a phage displayed synthetic humanized Fab
library led to the identification of Fab 3369 (97). Fab 3369
inhibited the activity of the MT1-MMP CAT domain with IC50

= 62 nM (97). IgG 3369 treatment of MDA-MB-231 mammary
orthotopic xenograft mice reduced lung metastases, collagen
processing, and tumor density of CD31+ blood vessels (97).

It has been noted that antibody antigen binding sites are not
complimentary to the concave shape of catalytic clefts, as antigen
binding sites are planar or concave (84). To overcome this, the
convex-shaped paratope of camelid antibodies was incorporated

into the human antibody scaffold (98). Fab 3A2 bound selectively
to MT1-MMP CAT domain outside of the active site cavity
with KD = 4.8 nM, and was a competitive inhibitor with Ki =

9.7 nM (98, 99). Fab 3A2 inhibitedMT1-MMP collagenolysis and
reduced metastasis in a melanoma mouse model (99).

Virtual ligand screening of the NCI/NIH Developmental
Therapeutics Program ∼275,000 compound library resulted in
the identification of compound NSC405020 [3,4-dichloro-N-(1-
methylbutyl)benzamide] (Figure 2E), a small molecule MT1-
MMP HPX domain inhibitor (100). NSC405020 inhibited MT1-
MMP homodimerization but not proMMP-2 activation or
catalytic activity toward a peptide substrate. NSC405020 reduced
the collagenolytic activity of MCF7-β3/MT1-MMP cells and was
effective in vivo, as intratumoral injections reduced tumor size
significantly (100).

CRITICAL OVERVIEW

Tumor growth is limited without the ability of the tumor to create
its own blood supply (101). The use of antiangiogenic therapeutic
agents is viewed as beneficial due to (a) the prevention of new
blood vessel formation and/or (b) the normalization of tumor-
associated vasculature (102). Normalizing the tumor-associated
vasculature can enhance the penetration of therapeutic agents
(102, 103). Clinically utilized antiangiogenic agents typically
target VEGF or the VEGF receptor (VEGFR), or are multikinase
inhibitors (102). Significant improvement in overall survival
and prolonged progression-free survival was observed when
angiogenesis inhibitors were applied in gastric cancer (104).
Anti-VEGFR-2 and multikinase inhibitor treatments were more
efficacious than anti-VEGF treatment (104). This was suggested
to be due to blocking only VEGF-A in the latter treatment
(104). Thus, angiogenesis targeting via MMP inhibition could be
very efficacious based on the potential broader impact than just
VEGF-A inhibition (as discussed in the Introduction). The ability
of the combination of angiogenesis inhibition and chemotherapy
to prolong progression-free survival in patients with gastric
cancer was dependent upon the antiangiogenic agent used (104).

Antiangiogenic therapies can have serious side effects, such
as bleeding, venous or arterial thromboembolisms, proteinuria,
and hypertension, and can also increase drug resistance, cancer
invasion, and metastasis (102, 104–106). An obvious concern is
that antiangiogenic approaches can negatively impact capillaries
and blood flow in healthy tissues (104). Additionally, targeting
VEGF can lead to upregulation of other pro-angiogenic factors
(107, 108). All in all, side effects from the use of angiogenesis
inhibitors are often viewed as manageable (104, 105, 109).

Unique modes of action have been used to develop antibody-
based, triple-helical peptide, and small molecule inhibitors of
MMPs implicated in angiogenesis. The selective, small molecule
MMP-9 and MT1-MMP inhibitors do not yet have preferred
affinities, but represent a promising start based on their novel
mechanisms of inhibition. Clinical trials utilizing antibodies
have provided evidence that selective MMP inhibitors do not
induce MSS. Unfortunately, antibodies are subject to proteolysis,
may be removed from circulation rapidly, and are costly.
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Nonetheless, antibodies have provided truly selective, high
affinity MMP inhibitors. Selective, high affinity inhibitors can
be developed for MMPs based on triple-helical structure. THPIs
have excellent pharmacokinetic properties compared with other
peptide-based therapeutics. The mechanistically non-traditional
MMP inhibitors offer treatment strategies for tumor angiogenesis
that avoid the off-target toxicities and lack of specificity that
plagued Zn2+-chelating inhibitors.

One must consider that when applied as antiangiogenic
agents, MMP inhibitors may have the undesired effect of (a)
limiting turnover of already existing tumor vessels and (b)
disrupting vascular homoeostatis, where normal vessel turnover
and other related activities are needed. This would be dependent
upon which MMP was targeted. For example, MT1-MMP has
been shown to contribute to both angiogenesis and vascular
regression in an aortic ring model (110). Inhibition of MT1-
MMP catalytic activity following the vessel growth phase resulted
in reduced vascular regression due to inhibition of collagenolysis
(110). Vessels are destabilized by MT1-MMP shedding of Tie-
2 from endothelial cells (111), and thus enzyme inhibition
could stabilize tumor vessels (103). In similar fashion, TIMP-
2 and TIMP-3 were found to stabilize newly formed vascular
networks by (a) inhibiting regression and (b) preventing further
endothelial cell tube morphogenesis (112). The action of TIMP-
2 and TIMP-3 was correlated to MT1-MMP activity, and thus
inhibition of MT1-MMP could stabilize vascular networks (112).
Deletion of MT1-MMP or inhibition of MT1-MMP activity
resulted in increased vascular leakage (103). In this latter
case, MT1-MMP was proposed to modulate TGFβ availability,
with decreased TGFβ levels impacting vascular homoeostatsis
(103). MT1-MMP shedding of endoglin (CD105) results in the
release of sEndoglin, which inhibits angiogenesis (113). MMP-
9 contributes to edema prevention, which is a component
of vascular homoeostasis (103). MMP-2 cleavage of ECM
biomolecules leads to disruption of endothelial cell β1 integrin
binding and subsequent signaling (114, 115). In turn, disruption
of signaling leads to a decrease in MT1-MMP production (114).

Another consideration for MMP inhibition is the effect on
the production of antiangiogenic agents, such as angiostatin
(from plasminogen), endostatin (from type XVIII collagen),
arresten (from the α1(IV) collagen chain), canstatin (from

the α2(IV) collagen chain), and tumstatin (from the α3(IV)
collagen chain). MMP-9 is capable of generating angiostatin
(116, 117), endostatin (118, 119), arresten (120), canstatin (120),
and tumstatin (120, 121). However, the redundancy of proteases
capable of generating these agents (116, 118, 120) suggests that
inhibiting one (such as MMP-9) may have little effect on these
particular antiangiogenic activities.

While selective MMP inhibitors are greatly needed, often
overlooked is that the timing of MMP inhibitor application
is also critical (see above). Application of a broad spectrum
MMP inhibitor (marimostat) in combination with gemcitabine
significantly improved survival in pancreatic cancer patients with
disease confined to the pancreas (122). Presurgical treatment with
an oral MMP inhibitor improved survival from 67 to 92% in a
mouse breast cancer model (123). As discussed earlier, MMP-9 is
a key contributor to the angiogenic switch during carcinogenesis
of pancreatic islets (5). However, MMP-9 deficiency in pancreatic
ductal adenocarcinoma (PDAC) mouse models resulted in more
invasive tumors and an increase in desmoplastic stroma (124).
The absence of MMP-9 led to increased interleukin 6 levels in the
bone marrow, which activated tumor cell STAT3 signaling and
promoted PDAC invasion and metastasis (124). Thus, MMP-9
represents an anti-target in the later stage of pancreatic cancer.
The “window of opportunity” for MMP inhibitor application is
often in premetastatic disease (125).
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