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Minireview

Mechanisms of adverse effects of anti-VEGF therapy for cancer

T Kamba1 and DM McDonald*,2,3

1Department of Urology, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; 2Comprehensive Cancer Center and
Cardiovascular Research Institute, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0452, USA; 3Department of
Anatomy, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0452, USA

Advances in understanding the role of vascular endothelial growth factor (VEGF) in normal physiology are giving insight into the basis
of adverse effects attributed to the use of VEGF inhibitors in clinical oncology. These effects are typically downstream consequences
of suppression of cellular signalling pathways important in the regulation and maintenance of the microvasculature. Downregulation of
these pathways in normal organs can lead to vascular disturbances and even regression of blood vessels, which could be intensified by
concurrent pathological conditions. These changes are generally manageable and pose less risk than the tumours being treated, but
they highlight the properties shared by tumour vessels and the vasculature of normal organs.
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Proliferation of new blood vessels is necessary for tumours to grow
and contributes to the spread of blood-borne metastases (Folk-
man, 1971). Vascular endothelial growth factor (VEGF) not only
drives angiogenesis, but also serves as a survival factor for
endothelial cells and promotes the abnormal phenotype of blood
vessels in tumours (Inai et al, 2004). Unlike tumour vessels that
have VEGF as survival factor, the normal adult vasculature is
regarded as largely independent of VEGF for survival, stability, and
normal function (Longo et al, 2002). Indeed, the rationale for using
VEGF inhibitors on tumours is based on the assumption that
tumour vessels can be impacted without harming other vessels.
Consistent with this assumption, clinical studies have demon-
strated that VEGF inhibitors have robust actions on certain types
of tumours with infrequent serious side events (Herbst, 2006;
Hurwitz and Saini, 2006).

This review examines current views of the basis of adverse
events associated with VEGF inhibitors in the treatment of cancer.
Many agents that inhibit VEGF signalling are under development,
in clinical trials, or approved for use in cancer (http://www.
cancer.gov/clinicaltrials/developments/anti-angio-table). Rapidly
expanding use of these agents in the clinic reflects their efficacy.
Increased use is also advancing the understanding of their actions
in tumours and increasing familiarity with the adverse effects
associated with their use (Hurwitz and Saini, 2006). Adverse events
in cancer therapy include any unfavourable symptom, sign,
laboratory finding, or disease temporally associated with the use
of a medical treatment that may or may not be related to the
treatment (Common Toxicity Criteria Manual (NCI-CTC), Cancer
Therapy Evaluation Program, National Cancer Institute, U.S.
National Institutes of Health, http://ctep.cancer.gov/. Adverse

events are graded as absent (Grade 0), mild (Grade 1), moderate
(Grade 2), severe and undesirable (Grade 3), life-threatening
or disabling (Grade 4), or fatal (Grade 5)). Tumour progression
or signs and symptoms directly related to the tumour are not
considered as adverse events in this context.

ANTI-VEGF AGENTS IN CLINICAL USE

Three drugs, bevacizumab (Avastins), sunitinib malate (Sutents,
SU11248), and sorafenib (Nexavars, BAY 43-9006) that were
developed for antiangiogenic actions have been approved by the
United States Food and Drug Administration (FDA) for treatment
of patients with specific types of cancer. All three agents inhibit
VEGF signalling by blocking VEGF ligand or VEGF receptor
function. Sunitinib and sorafenib inhibit platelet-derived growth
factor receptors (PDGFR) and some other receptor tyrosine
kinases as well.

Bevacizumab

Bevacizumab is a humanised, function-blocking monoclonal
antibody that selectively binds VEGF. Bevacizumab is the first
VEGF inhibitor approved by the FDA for systemic use in cancer.
The anti-VEGF antibody is currently approved in combination
with intravenous 5-fluorouracil (5-FU)-based chemotherapy,
which typically is a combination of irinotecan, 5-FU, and
leucovorin (IFL), for first- or second-line treatment of metastatic
carcinoma of the colon or rectum (Hurwitz et al, 2004; Hurwitz
and Saini, 2006) and, in conjunction with paclitaxel and
carboplatin, for first-line treatment of unresectable, locally
advanced, recurrent or metastatic nonsquamous, non-small cell
lung cancer (NSCLC) (Sandler et al, 2006). Bevacizumab also has
activity in breast cancer and kidney cancer. Bevacizumab is
generally safe and well tolerated but can be accompanied by a
variety of adverse effects, which are broadened or intensified by
concurrent chemotherapeutic agents (Gordon and Cunningham,
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2005; Hurwitz and Saini, 2006). The most common are hyper-
tension, proteinuria, epistaxis, upper respiratory infection, anor-
exia, stomatitis, diarrhoea or other gastrointestinal symptoms,
headache, dyspnea, fatigue, and exfoliative dermatitis. Infrequent
serious adverse events include gastrointestinal perforation, hae-
morrhage, arterial thromboembolic events, hypertensive crisis,
wound healing complications, neutropenia, nephrotic syndrome,
reversible posterior leukoencephalopathy syndrome (RPLS), and
congestive heart failure (http://www.gene.com/gene/products/
information/oncology/avastin/index.jsp).

Sunitinib

Sunitinib is an orally administered, small molecule inhibitor of
multiple receptor tyrosine kinases implicated in tumour growth,
angiogenesis, and metastatic progression. Sunitinib inhibits
phosphorylation of VEGF receptors (VEGFR-1, -2, -3), platelet
derived growth factor receptors (PDGFR-a and -b), stem cell factor
receptor (KIT), Fms-like tyrosine kinase-3 (FLT3), colony
stimulating factor receptor Type 1, and glial cell-derived neuro-
trophic factor receptor. Sunitinib is approved for treatment of
advanced renal cell carcinoma and gastrointestinal stromal
tumours (GIST) after disease progression on or intolerance to
imatinib mesylate (Gleevecs). Clinical trials of patients with
anthracycline- and taxane-resistant breast cancer are evaluating
sunitinib in combination with taxanes (paclitaxel and docetaxel) in
the first-line setting, in combination with capecitabine in the
second-line setting, and as a single agent for tumours lacking
HER2 receptors, estrogen receptors, and progesterone receptors
(http://www.clinicaltrials.gov/ct/show). Sunitinib is generally well
tolerated. The most common adverse reactions, occurring in more
than 20% of patients, are fatigue, asthenia, diarrhoea, nausea,
mucositis/stomatitis, vomiting, dyspepsia, abdominal pain, con-
stipation, hypertension, rash, hand-foot syndrome, skin disco-
louration, altered taste, anorexia, and mild bleeding (http://
www.sutenthcp.com/prescribing_information.asp).

Sorafenib

Sorafenib is an oral, small molecule inhibitor of multiple tyrosine
kinase receptors involved both in angiogenesis and tumour cell
proliferation: VEGFR-2, VEGFR-3, PDGFR-b, RAF kinase, FLT3,
KIT, p38 MAP kinase (p38-alpha, MAPK14). Sorafenib is approved
for treatment of advanced renal cell carcinoma and is in phase III
clinical trials for hepatocellular carcinoma, metastatic melanoma,
and NSCLC. Phase I/II trials of sorafenib plus chemotherapy are
ongoing for other solid tumours (Morabito et al, 2006). Side effects
associated with sorafenib are mostly mild to moderate, with few
severe (Grade 3– 4) toxicities. Rash, exfoliative dermatitis, hand-
foot skin reaction, diarrhoea, and fatigue are the most common
adverse events, occurring in 33– 38% of patients, and are usually
Grade 1 or 2. Mild hypertension, leukopenia, or bleeding is also
common. Life-threatening haemorrhage, cardiac ischaemia or
infarction, RPLS, and gastrointestinal perforation are uncommon
(http://www.nexavar.com/wt/page/index).

PRECLINICAL EVIDENCE OF EFFECTS OF VEGF
INHIBITION ON THE NORMAL ADULT
VASCULATURE

Preclinical studies of VEGF inhibitors are beginning to elucidate
the mechanism of some adverse events found in the clinic. From
one perspective, adverse effects of VEGF inhibitors may be
considered consequences of blocking actions of VEGF in normal
physiology. The essential role of VEGF during embryonic
development is well established and widely accepted, but this
dependency was thought not to persist into adult life. Yet, actions

of VEGF are beginning to be identified in normal organs of the
adult, examples being the role of VEGF in function and survival of
normal blood vessels, blood pressure regulation, and renal,
neurological, and hepatic function (Horowitz et al, 1997; Eremina
et al, 2003; DeLeve et al, 2004; Kamba et al, 2006; Lambrechts and
Carmeliet, 2006). Findings from studies of structural or functional
changes in normal organs after inhibition of VEGF signalling
provide clues into mechanisms of side effects in cancer patients
treated with VEGF inhibitors.

Studies of the effects of pharmacologic inhibitors in mice
indicate that VEGF participates in blood vessel survival and
plasticity in adult life. Examination of the simple vascular network
of the mouse trachea (Figure 1A), treated systemically for 1– 28
days with an inhibitor of VEGF signalling, revealed rapid
regression of some normal mucosal capillaries (Baffert et al,
2004, 2006a; Inai et al, 2004). After only 1 day of treatment,
fibrin accumulated and patency was lost in some capillaries
(Figure 1B–D; Baffert et al, 2004, 2006a; Inai et al, 2004). By
2 days, endothelial cells underwent apoptosis and regression.
The magnitude of capillary loss after 10-day treatment depended
on the age of the mice: 39% at 4 weeks of age, 28% at 8 weeks, and
14% at 16 weeks (Baffert et al, 2004). Empty sleeves of vascular
basement membrane persisted for several weeks after endothelial
cells regressed (Figure 1E and F), and not only marked the location
of capillary regression, but also served as a scaffold for vascular
regrowth (Figure 1G and H; Inai et al, 2004; Baffert et al, 2006a).

A survey of 18 organs of normal adult mice revealed significant
regression of capillaries in some organs and not in others (Kamba
et al, 2006; Baffert et al, 2006a). After inhibition of VEGF signalling
for 1 to 3 weeks, significant capillary regression occurred in
pancreatic islets (Figure 2A and B), thyroid, adrenal cortex,
pituitary, villi of small intestine (Figure 2C and D), choroid plexus,
adipose tissue, and trachea (Kamba et al, 2006; Baffert et al,
2006a). The amount of regression was dose-dependent and varied
from organ to organ, with a maximum of 68% in thyroid. But two
tumours examined under the same conditions had even greater
vascular regression (Inai et al, 2004; Kamba et al, 2006). Little or
no capillary regression was detected in brain, retina, skeletal
muscle, cardiac muscle, or lung under these conditions. Capillaries
that underwent regression had the same pericyte coverage and
apparent structural maturity as capillaries that survived.

A feature that distinguished capillaries that underwent regres-
sion from those that survived was expression of relatively high
levels of VEGFR-2 and VEGFR-3 in endothelial cells (Figure 2E and
F). Inhibition of VEGF signalling was accompanied by decreased
expression of VEGFR-2 and VEGFR-3 in surviving capillaries
(Figure 2E and F; Baffert et al, 2004; Kamba et al, 2006). Another
distinguishing feature of VEGF-dependent capillaries was the
presence of endothelial fenestrations. These 80 –100-nm pores are
a normal component of endothelial cells of endocrine organs,
gastrointestinal tract, choroid plexus, and kidney (Kamba et al,
2006).

Studies of the reversibility of capillary regression after inhibition
of VEGF signalling showed that, strikingly, most capillaries in the
thyroid grew back within 1 or 2 weeks, even when 50 –60% of
capillaries had regressed during the 7-day treatment (Figure 2G–I;
Mancuso et al, 2006). Tracheal capillaries also regrew (Baffert et al,
2006a). Rapid regrowth appears to be facilitated by empty sleeves
of basement membrane and accompanying pericytes that provide a
scaffold for revascularisation (Mancuso et al, 2006).

Reductions in endothelial fenestrations were evident within 24 h
of inhibition of VEGF signalling (Inai et al, 2004). In the thyroid,
which has heavily fenestrated capillaries, fenestrations were
reduced by as much as 88% on capillaries that survived 7 days
of treatment. Pancreatic islet capillaries showed a similar reduction
in endothelial fenestrations (Figure 3A and B; Kamba et al, 2006).
By comparison, skeletal muscle capillaries, which have no
endothelial fenestrations, showed no significant reduction in
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number after treatment for 7 days (Inai et al, 2004). Endothelial
fenestrations were also conspicuously reduced in the renal
glomerulus, whether assessed by transmission electron microscopy
(Figure 3C and D) or by scanning electron microscopy (Figure 3E
and F; Kamba et al, 2006).

Mice treated with inhibitors of VEGF signalling did not lose
weight and appeared healthy, but did have certain physiological
changes. Among these were elevation of thyroid stimulating
hormone (TSH), indicative of altered thyroid function
(Figure 3G), and dose-related proteinuria (Figure 3H; Inai et al,
2004; Kamba et al, 2006).

Together, these preclinical findings indicate that many capil-
laries with endothelial fenestrations are dependent on VEGF
signalling (Inai et al, 2004; Kamba et al, 2006). Changes in this
population of blood vessels also reflect the dynamic nature of
endothelial fenestrations (Figure 3I) and the potential plasticity of

the microvasculature in some normal organs (Kamba et al, 2006).
Further, the findings raise the possibility that tumours with
fenestrated capillaries, such as those arising in endocrine glands or
the gastrointestinal tract, are particularly sensitive to inhibitors of
VEGF signalling. Presence of endothelial fenestrations in tumour
vessels may reflect sensitivity to VEGF inhibition and help predict
therapeutic response (Inai et al, 2004; Kamba et al, 2006).

ASSESSMENT OF ADVERSE EFFECTS OF VEGF
SIGNALLING INHIBITORS FROM PRECLINICAL
AND CLINICAL PERSPECTIVES

Hypertension

Hypertension is one of the best-documented and most frequently
observed side effects of systemic inhibition of VEGF signalling.
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Figure 1 Simple vascular network of tracheal mucosa used to examine effects of VEGF inhibition on normal blood vessels in adult mice. (A) Tracheal
vasculature has a simple, repetitive network of arterioles, capillaries, and venules aligned with each cartilaginous ring (Baffert et al, 2004). (B–D) Confocal
microscopic images of tracheal capillaries showing deposits of fibrin in nonpatent segment of tracheal capillary after inhibition of VEGF signalling by AG-
013736 for 1 day. Fibrin deposit (arrow) is shown to be in a nonperfused capillary segment by absence of lectin binding, and is near a region of capillary
regression that lacks CD31 immunoreactivity (arrowheads) (Baffert et al, 2006b). (E–F) Confocal images of tracheal vasculature showing apoptotic
endothelial cells stained for activated caspase-3 (arrow), near region of capillary regression (arrowheads) shown by absence of CD31 immunoreactivity (E).
Vascular basement membrane persists after endothelial cells regress, as shown by uninterrupted nidogen immunoreactivity (F) (Baffert et al, 2004). (G–H)
Confocal micrographs show colocalisation of CD31 (green) and type IV collagen (red) on normal vasculature (G). After AG-013736 for 7 days, empty
sleeves of type IV collagen (red, arrows) replace some normal mucosal blood vessels (H) (Inai et al, 2004). Scale bar in (H): 20mm in (B–D); 25 mm in (E)
and (F); 30mm in (G) and (H).
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Hypertension, which can occur anytime after the initiation of
treatment, usually can be managed with oral antihypertensive
agents, and treatment can be continued without reduction in dose.
In patients on bevacizumab, hypertension had an overall incidence
of up to 32% (Hurwitz et al, 2004; Kabbinavar et al, 2005); 11– 16%
of patients required intensive therapy with multiple drugs (Grade
3), but only 1% had life-threatening hypertensive crisis (Grade 4).
In patients on sunitinib, hypertension had an incidence of 28%
(6% had Grade 3) in phase II trials in metastatic renal cell
carcinoma (Motzer et al, 2006) and an incidence of 15% (4% had
Grade 3) in a phase III trial in GIST (Demetri et al, 2005).

In patients on sorafenib, hypertension had an overall incidence
of 17% (3% had Grade 3 or 4) (Kane et al, 2006).

An important part of the mechanism of hypertension associated
with VEGF inhibition is thought to involve decreased production
of nitric oxide (NO) in the wall of arterioles and other resistance
vessels. Vascular endothelial growth factor increases NO synthesis
through upregulation of endothelial NO synthase, and VEGF
inhibition diminishes NO synthesis (Horowitz et al, 1997; Hood
et al, 1998). Because NO is a vasodilator, decreased NO synthesis
promotes vasoconstriction, increased peripheral resistance, and
increased blood pressure. Effects of VEGF inhibition on the
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Figure 2 Regression of capillaries in vasculature of normal adult mice after inhibition of VEGF signalling. (A–D) Confocal microscopic images showing
capillaries in pancreatic islets (A and B) and villi of small intestine (C and D) under baseline conditions and after VEGF inhibition. After Ad-sVEGFR-1 for 14
days, endothelial cells of some capillaries have regressed, leaving pericytes (red, NG2, arrowheads) at sites of regression (Kamba et al, 2006). (E) Comparison of
VEGFR-2 and VEGFR-3 immunofluorescence in pancreatic islet capillaries after VEGF inhibition. Stronger endothelial cell VEGFR-2 immunoreactivity under
baseline conditions (upper left) than after Ad-sVEGFR-1 for 14 days (upper right). Stronger endothelial cell VEGFR-3 immunoreactivity under baseline
conditions (lower left) than after Ad-sVEGFR-1 for 14 days (lower right). (F) Bar graphs showing fluorescence intensities of VEGFR-2 and VEGFR-3
immunoreactivities under baseline conditions and after Ad-sVEGFR-1 for 14 days (Kamba et al, 2006). *Po0.05, significantly different from corresponding
control. wPo0.05, significantly different from islets. (G– I) Fluorescence micrographs of thyroid capillaries stained for CD31 immunoreactivity show dense
vascularity under baseline conditions (G), loss of half of the capillaries after AG-013736 for 7 days (H), and complete regrowth of vasculature during 14 days
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control of blood pressure by the kidney may also be involved after
prolonged treatment.

Proteinuria

The common occurrence of proteinuria after inhibition of VEGF
signalling reflects the importance of VEGF in normal renal
function (Eremina et al, 2003; Schrijvers et al, 2004). Proteinuria
was found in 23% of 1132 patients in clinical trials of bevacizumab
in various types of cancer and was more common in patients
receiving bevacizumab plus chemotherapy than in patients on
chemotherapy alone (Hurwitz et al, 2004; Kabbinavar et al, 2005).
Proteinuria is typically asymptomatic and decreases after treat-
ment ends. Serious impairment of renal function is rare.

The filtration barrier of the renal glomerulus is formed by
endothelial cells, basement membrane, and podocytes. Vascular
endothelial growth factor, which is expressed by podocytes both
during development and in the adult, activates VEGFR-2 on
glomerular capillary endothelial cells. Targeted heterozygous dele-
tion of VEGF in podocytes results in renal pathology manifested by
loss of endothelial fenestrations in glomerular capillaries, prolifera-
tion of glomerular endothelial cells (endotheliosis), loss of
podocytes, and proteinuria in mice (Eremina et al, 2003; Schrijvers
et al, 2004). Pharmacological inhibition of VEGF signalling in mice
also reduces endothelial fenestrations in glomerular capillaries
(Kamba et al, 2006). Inhibition of VEGF-dependent interactions
between podocytes and glomerular endothelial cells disrupts the
filtration barrier, which in turn leads to dose-dependent proteinuria
(Figure 3H; Eremina et al, 2003; Kamba et al, 2006).
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Figure 3 Reduction in endothelial fenestrations (arrowheads) after inhibition of VEGF signalling. (A and B) Transmission electron microscopic images of
islet capillaries showing thin endothelium and abundant fenestrations with diaphragms under baseline conditions compared to thick endothelium, few
fenestrations, and abundant caveolae after AG-013736 for 21 days (Kamba et al, 2006). (C and D) Transmission EM images of renal glomerular capillaries
comparing thin endothelium and abundant fenestrations under baseline conditions with thick endothelium and few fenestrations after Ad-sVEGFR-1 for 14
days (Kamba et al, 2006). (E and F) Scanning electron microscopic images of luminal surface of glomerular capillaries showing abundant endothelial
fenestrations under baseline conditions and few fenestrations after Ad-sVEGFR-1 for 14 days (Kamba et al, 2006). (G) Bar graph showing significantly higher
concentration of TSH in serum as a measure of altered thyroid function after AG-013736 for 21 days. (H) Bar graph showing increasing amount of
proteinuria, indicated by proportion of mice with Albustix values of þ þ or greater (X100 mg albumin/dl of urine), with increasing dose of AG-013736 for
7 days. (I) Diagram of hypothetical shuttling of diaphragms between endothelial fenestrations and caveolae, with VEGF inhibition driving the process to the
right and VEGF signalling driving it to the left (Kamba et al, 2006). Scale bars: 0.3mm in (A) and (B); 1 mm in (C) and (D); 0.5 mm in (E) and (F).
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Impaired wound healing

Angiogenesis is a necessary step in wound healing (Bates and
Jones, 2003). Agents that impair blood vessel growth might
therefore be expected to interfere with wound repair. Wound
healing was evaluated in patients who underwent surgery 0– 60
days after the last dose of bevacizumab or 28– 60 days before the
first dose of bevacizumab in phase II and III trials in colorectal
cancer (Scappaticci et al, 2005). Bevacizumab in serum has a half-
life of about 20 days. Grade 3 or 4 complications included delayed
or abnormal wound healing, wound dehiscence, bowel perforation,
fistula, abscess, and haemorrhage. In patients who had already
received bevacizumab, complications occurred in 10 of 75 patients
(13%), when surgery was performed within 60 days of the last
dose, but only 1 of 29 patients (3.4%) had complications when
surgery followed chemotherapy alone. Another arm of the study
found complications in 3 of 230 patients (1.3%), when surgery
preceded bevacizumab and in 1 of 194 patients (0.5%) when
surgery preceded chemotherapy alone.

Results of preclinical studies suggest that effects of inhibition of
VEGF signalling are more complex than simple impairment of
revascularisation (Ko et al, 2005). Wound strength, re-epithelia-
lisation, and other factors may also be involved, and agents that
block multiple targets may have different effects than agents that
selectively inhibit VEGF (Ko et al, 2005). Shorter half-lives of
sunitinib, sorafenib, and other small-molecule inhibitors would be
expected to be accompanied by more rapid recovery of normal
wound healing.

Gastrointestinal perforation

Gastrointestinal perforation is an infrequent but potentially life-
threatening event during anti-VEGF therapy (Hurwitz and Saini,
2006). In a phase III study of colorectal cancer, gastrointestinal
perforation occurred in six patients (1.5%) in the bevacizumab/IFL
arm, compared to none in the placebo/IFL arm (Hurwitz et al,
2004). One of the affected patients died and two discontinued
therapy. Similarly, gastrointestinal perforation was found in 1.7%
of 1968 patients receiving bevacizumab plus first-line chemo-
therapy for metastatic colorectal cancer in a community-based
observational registry (Hedrick et al, 2006). Perforations occurred
most commonly (68%) during the first 60 days of treatment.
Gastrointestinal perforation occurs in less than 1% of patients on
sorafenib. Perforation and fistula formation or peritonitis are also
uncommon adverse events in patients treated with sunitinib for
intra-abdominal malignancies. Risk factors include tumour at the
site of perforation, abdominal carcinomatosis, acute diverticulitis,
bowel obstruction, recent history of sigmoidoscopy or colono-
scopy, and history of pelvic or abdominal irradiation.

Although the mechanism underlying gastrointestinal perfora-
tion is unknown, abscesses, diverticula, and sites of bowel
resection and anastomosis have been implicated in some cases
(Kabbinavar et al, 2005; Giantonio, 2006). In normal adult mice,
inhibition of VEGF signalling for 2 –3 weeks causes regression of
34–46% of capillaries of intestinal villi (Kamba et al, 2006). This
change does not appreciably impair intestinal function as judged
from maintenance of body weight, but could contribute to
perforation in the presence of concurrent inflammation or other
pathological conditions.

Haemorrhage and thrombosis

Bleeding events, including epistaxis, haemoptysis, haematemesis,
gastrointestinal bleeding, vaginal bleeding, and brain haemor-
rhage, are found in some patients on bevacizumab, sunitinib, or
sorafenib. Mild epistaxis (Grade 1) is the most common form of
haemorrhage found with bevacizumab and usually resolves
without medical intervention. Mild epistaxis and other mild

haemorrhagic events were found in 26% of patients receiving
sunitinib for metastatic renal cell carcinoma. Rectal, gingival,
upper gastrointestinal, genital, and wound bleeding were less
common.

Grade 3– 5 haemorrhage occurred with an incidence of 9% and
mortality of 6% of patients treated with bevacizumab for NSCLC
(Johnson et al, 2004; Sandler et al, 2006). When patients with
squamous cell carcinoma were excluded from the phase II trial of
bevacizumab, fatal haemoptysis had an incidence of 1% (5/420)
(http://www.roche.com/inv-update-2005-05-16). Fatal pulmonary
haemorrhage occurred in two patients in a trial of sunitinib in
metastatic NSCLC (Socinski et al, 2006), and the agent is not
approved for this form of cancer. Patients with metastatic
colorectal cancer who receive bevacizumab plus chemotherapy
generally have a higher incidence of serious haemorrhage (3– 9%)
than those on chemotherapy alone (Kabbinavar et al, 2003;
Hurwitz et al, 2004; Giantonio et al, 2005; Gordon and Cunningham,
2005; Kabbinavar et al, 2005; Hurwitz and Saini, 2006) (Other
information at: http://www.avastin-info.com/portal/eipf/pb/avastin/
com/clinicalslidekit). Haemorrhagic events of all types had a higher
incidence in patients on sorafenib (15%) than on placebo (8%). No
difference in haemorrhagic events was found between patients with
GIST receiving sunitinib (18%) and those receiving placebo (17%).

Treatment with bevacizumab is also accompanied by increased
risk of arterial thromboembolic events, including stroke, transient
ischaemic attack, subarachnoid haemorrhage, myocardial infarc-
tion, and angina, particularly in patients over 65 years of age or
with a history of thromboembolic events. In a pooled analysis of
data from five trials in colorectal cancer, NSCLC, and metastatic
breast cancer, the overall incidence of thromboembolic events was
4% in patients on bevacizumab plus chemotherapy and 2% in
patients on chemotherapy alone (Skillings et al, 2005). Mortality
associated with thromboembolic events was 0.8% in patients on
bevacizumab plus chemotherapy compared to 0.4% in patients on
chemotherapy alone. Venous thrombosis was reported in 3% of
patients on sunitinib, compared to 2% of patients overall, in two
trials in renal cell carcinoma. No venous thrombosis was found in
patients on placebo in a GIST trial.

Predisposition to thrombosis and bleeding after inhibition of
VEGF signalling reflects the multiplicity of actions of VEGF on
vascular walls and perhaps on components of the coagulation
system. Vascular endothelial growth factor not only stimulates
endothelial cell proliferation, but also promotes endothelial cell
survival and helps maintain vascular integrity. Inhibition of VEGF
could thereby diminish the regenerative capacity of endothelial
cells and cause defects that expose pro-coagulant phospholipids on
the luminal plasma membrane or underlying matrix, leading to
thrombosis or haemorrhage (Kilickap et al, 2003). Vascular
endothelial growth factor increases production of NO and
prostacyclin (PGI2, prostaglandin I2), suppresses pathways involved
in endothelial cell activation, apoptosis, and pro-coagulant changes,
and inhibits proliferation of vascular smooth muscle cells (Zachary,
2001). Reduction in NO and PGI2 after inhibition of VEGF signalling
may predispose to thromboembolic events. Vascular endothelial
growth factor inhibition may also increase risk of thrombosis by
increasing haematocrit and blood viscosity via overproduction of
erythropoietin (Spivak, 2002; Tam et al, 2006).

However, endothelial cell defects alone are unlikely to explain
life-threatening haemorrhage in patients on anti-VEGF therapy for
squamous cell lung cancer and certain other solid tumours. Rather,
weakening of the wall of major vessels by tumour erosion,
necrosis, cavitation, or other concurrent pathological conditions
are likely to play a central role.

Reversible posterior leukoencephalopathy

Reversible posterior leukoencephalopathy syndrome is a serious
but reversible condition characterised by onset of headache,
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altered mental function, seizures, visual impairment or blindness,
usually hypertension, and occipital-parietal subcortical cerebral
oedema evident by computed tomography and magnetic resonance
imaging. Reversible posterior leukoencephalopathy syndrome has
been reported in patients on bevacizumab (Allen et al, 2006),
sunitinib, or sorafenib (Govindarajan et al, 2006), and has been
found after chemotherapy alone (Connolly et al, 2007). Because
RPLS is attributed to hypertensive encephalopathy and endothelial
dysfunction leading to breakdown of the blood-brain barrier, focal
cerebral oedema, or vasospasm, inhibition of VEGF signalling is
implicated in the pathophysiology, but the syndrome often has
other contributing factors and has not yet been replicated after
VEGF inhibition in preclinical models.

Cardiac impairment

Impaired cardiac function has been observed in some patients on
sunitinib or sorafenib. Left ventricular ejection fraction was below
the lower limit of normal in 15% of patients receiving sunitinib for
renal cell carcinoma, and 11% of patients on sunitinib required
treatment for low ventricular ejection fraction in a study of GIST.
Cardiac ischaemia or infarction was reported in 2.9% of patients
on sorafenib in a randomised phase III trial in advanced renal cell
carcinoma (Kane et al, 2006; Escudier et al, 2007). VEGF inhibition
by systemic administration of soluble ectodomain of VEGFR-1 for
2 weeks resulted in a 32% reduction in cardiac output, but no
change in myocardial vascularity, heart rate, left ventricular
ejection fraction, or left ventricular fractional shortening in
unanaesthetised adult mice (Kamba et al, 2006).

Endocrine dysfunction

Clinical or laboratory evidence of hypothyroidism has been found
in a significant proportion of patients on sunitinib for metastatic
renal cell carcinoma or GIST and may contribute to fatigue in these
patients (Chow and Eckhardt, 2007). Hypothyroidism has also
been seen after bevacizumab. Thyroid function could be impaired
by regression of capillaries around thyroid follicles. Inhibition of
VEGF signalling in adult mice for 1– 3 weeks resulted in regression
of more than half of the capillaries in the thyroid (Kamba et al,
2006). Fenestrated capillaries also regressed in the pituitary,
adrenal cortex, and pancreatic islets (Inoue et al, 2002; Lammert
et al, 2003; Kamba et al, 2006). Inhibition of VEGF receptor
signalling for 3 weeks was accompanied by elevation of blood TSH
(Figure 3G), presumably from impairment of the thyroid-
hypothalamic feedback loop (Kamba et al, 2006).

Mice treated with either of two different VEGF inhibitors had
improved glucose handling, despite reduction in vascularisation of
pancreatic islets (Kamba et al, 2006). Facilitation of glucose
handling is paradoxical, because loss of capillaries in pancreatic
islets would be expected to impair glucose sensing. It also contrasts
with observations of defective glucose sensing found after targeted
disruption of VEGF signalling in pancreatic islets of genetically
altered mice (Inoue et al, 2002; Lammert et al, 2003). Therefore,
improved glucose handling after systemic inhibition of VEGF
signalling probably involves mechanisms other than reduction in
islet vascularisation. Consistent changes in glucose handling have
not been reported in clinical studies of VEGF inhibitors in cancer
patients.

CONCLUSIONS

A growing number of drugs that inhibit VEGF signalling are being
used in the treatment of cancer, commonly in combination with
chemotherapy. The efficacy of these agents raises hope for patients
with otherwise unresponsive tumours. The agents are generally
well tolerated, but may be accompanied by distinct adverse effects,
including hypertension and proteinuria. Although usually manage-
able by conventional medical approaches, side effects of VEGF
inhibitors tend not to include alopecia, myelosuppression, or
neutropenia found with conventional chemotherapy. Instead, most
are downstream effects of suppression of VEGF signalling in
endothelial cells of normal organs. Among these are endothelial
cell dysfunction and regression of fenestrated capillaries. Better
understanding of the underlying mechanism of adverse effects,
optimal dosing, and ways of monitoring drug actions is becoming
increasingly important as VEGF inhibitors are used more widely
and applied earlier in disease, in younger patients, and with longer
duration.
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