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Abstract 

The burden of multidrug resistance in Gram-negative bacilli (GNB) now represents a daily issue for the management 
of antimicrobial therapy in intensive care unit (ICU) patients. In Enterobacteriaceae, the dramatic increase in the rates 
of resistance to third-generation cephalosporins mainly results from the spread of plasmid-borne extended-spectrum 
beta-lactamase (ESBL), especially those belonging to the CTX-M family. The efficacy of beta-lactam/beta-lactamase 
inhibitor associations for severe infections due to ESBL-producing Enterobacteriaceae has not been adequately 
evaluated in critically ill patients, and carbapenems still stands as the first-line choice in this situation. However, 
carbapenemase-producing strains have emerged worldwide over the past decade. VIM- and NDM-type metallo-beta-
lactamases, OXA-48 and KPC appear as the most successful enzymes and may threaten the efficacy of carbapenems 
in the near future. ESBL- and carbapenemase-encoding plasmids frequently bear resistance determinants for other 
antimicrobial classes, including aminoglycosides (aminoglycoside-modifying enzymes or 16S rRNA methylases) and 
fluoroquinolones (Qnr, AAC(6′)-Ib-cr or efflux pumps), a key feature that fosters the spread of multidrug resistance 
in Enterobacteriaceae. In non-fermenting GNB such as Pseudomonas aeruginosa, Acinetobacter baumannii and Steno-

trophomonas maltophilia, multidrug resistance may emerge following the sole occurrence of sequential chromosomal 
mutations, which may lead to the overproduction of intrinsic beta-lactamases, hyper-expression of efflux pumps, tar-
get modifications and permeability alterations. P. aeruginosa and A. baumannii also have the ability to acquire mobile 
genetic elements encoding resistance determinants, including carbapenemases. Available options for the treatment 
of ICU-acquired infections due to carbapenem-resistant GNB are currently scarce, and recent reports emphasizing the 
spread of colistin resistance in environments with high volume of polymyxins use elicit major concern.

Keywords: Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, 
Antimicrobial resistance, Extended-spectrum beta-lactamase, Carbapenemase, Colistin, Intestinal microbiota, 
Intensive care unit

© 2015 Ruppé et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Background
�e burden of antimicrobial resistance in Gram-negative 

bacilli (GNB) is a daily challenge to face for intensive care 

unit (ICU) physicians. Indeed, GNB are responsible for 

45–70% of ventilator-associated pneumonia (VAP) [1], 

20–30% of catheter-related bloodstream infections [2], 

and commonly cause other ICU-acquired sepsis such as 

surgical site or urinary tract infections (UTI) [3]. In such 

situations, the timely administration of adequate antibi-

otic coverage is a crucial determinant of patient outcome, 

especially when criteria for severe sepsis are present [4]. 

Nevertheless, alarming resistance rates are now reported 

worldwide, and rising trends may elicit concerns for the 

coming years [2, 3, 5–9]. Almost exclusively restricted to 

the hospital setting till the beginning of the century, this 

issue increasingly applies for patients with healthcare-

associated [10, 11] and even community-acquired infec-

tions [12–14]. Enterobacteriaceae and non-fermenting 

GNB (Pseudomonas aeruginosa, Acinetobacter bauman-

nii and Stenotrophomonas maltophilia) account for the 

major part of the problem [15].

Antimicrobial resistance in GNB results from the 

expression of antibiotic-inactivating enzymes and non-

enzymatic mechanisms [16]. Both may be intrinsically 
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expressed by a given species (chromosomal genes), or 

acquired by a subset of strains as a consequence of two 

distinct albeit not mutually exclusive genetic events:

1. Mutations in chromosomal genes resulting in an 

increase in the expression of intrinsic resistance 

mechanisms (either antibiotic-inactivating enzymes 

or efflux pumps), permeability alterations by loss of 

outer membrane porins, or target modifications;

2. Horizontal transfers of mobile genetic elements 

(MGEs) carrying resistance genes, most notably 

plasmid-encoding beta-lactamases, aminoglyco-

sides-modifying enzymes (AMEs), or non-enzymatic 

mechanisms such as Qnr for fluoroquinolone resist-

ance in Enterobacteriaceae. Since these plasmids 

commonly bear multiple resistance determinants, 

a single plasmid conjugation may suffice to confer 

a multidrug resistance phenotype to the recipient 

strain.

�e mechanisms of antimicrobial resistance in GNB 

may interfere with several facets of antibiotic stewardship 

algorithms in critically ill patients, including the choice 

of empirical regimen, available options for de-escalation, 

and the management of clinical failure due to the emer-

gence of resistance under therapy [17, 18]. In this concise 

review, we sought to summarize the current knowledge 

on resistance mechanisms and epidemiologic trends in 

the main clinically relevant species belonging to Entero-

bacteriaceae and non-fermenting GNB, and make the 

connection with the use of antimicrobial therapy in the 

ICU.

Review
Current trends in the global epidemiology 

of multidrug‑resistant GNB

Each given ICU has its own bacterial ecology, which may 

fluctuate owing to antibiotic use policies, patient recruit-

ment and sporadic outbreaks. Yet, data from large sur-

veillance networks yield a general overview of resistance 

rates in GNB causing ICU-acquired infections (Table 1). 

Following a decade of steady rise [19], rates of resistance 

to third-generation cephalosporins (3GC) in Enterobacte-

riaceae are now constantly above 10% and may reach 70% 

Table 1 Rates of antimicrobial resistance in Gram-negative bacilli responsible for hospital-acquired infections

ICU intensive care unit, 3GC third-generation cephalosporins.

a Indicator: gentamicin.

b Indicator: meropenem.

Study/surveillance network INICC [3] SENTRY [9] ANSRPRG [8] EARS‑NET [5]

Geographic area International (36 countries) International (Europe/USA) International (Asia) International (Europe)

Study years 2004–2009 2009–2011 2008–2009 2013

Setting ICU ICU ICU/non-ICU ICU/non-ICU

Type of hospital-acquired infections Catheter-related infections and ventila-
tor-associated pneumonia

All (pooled) Pneumonia Bloodstream infections

Species/antimicrobial

 Escherichia coli

  Fluoroquinolones 53% 30% – 11–52%

  3GC 67% 13% – 5–40%

  Carbapenems 4% <1% – 0–3%

 Klebsiella pneumoniae

  Fluoroquinolones – 17% 31% 0–70%

  3GC 72% 19% 43% 0–70%

  Carbapenems 7% 4% 2% 0–59%

 Pseudomonas aeruginosa

  Fluoroquinolones 45% 30% 30% 0–53%

  Aminoglycosides 28% 17%a – 0–51%

  Piperacillin–tazobactam 39% 32% 37% 0–55%

  Ceftazidime – 27% 35% 0–44%

  Carbapenems 45% 30%b 30% 3–60%

 Acinetobacter baumannii

  Ceftazidime – 63% – –

  Carbapenems 63% 57%b 67% 0–90%
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in certain settings [3, 5, 9]. �is situation mainly results 

from the rapid spread of extended-spectrum beta-lacta-

mase (ESBL)-producing strains, which currently account 

for 15–25% of Enterobacteriaceae isolated from clinical 

samples in critically ill patients [2, 9]. Far more worrying 

is the on-going dissemination of carbapenem-resistant 

Enterobacteriaceae (CRE), with an overall prevalence of 

2–7% in ICUs in Europe, Asia and the United States [3, 

5, 8, 9]. �is issue appears especially critical for Klebsiella 

pneumoniae, with carbapenem resistance rates above 25% 

in several Southern European countries such as Italy or 

Greece [5]. Current rates of ceftazidime and carbapenem 

resistance in P. aeruginosa range from 20 to 40%. Multid-

rug resistance (i.e., resistance to at least three antimicro-

bial classes out of piperacillin–tazobactam, ceftazidime, 

fluoroquinolones, aminoglycosides and carbapenems) and 

extensive drug resistance (i.e., resistance to the five classes 

mentioned above) accounted for, respectively, 13 and 4% 

of P. aeruginosa isolates reported to the European Center 

for Disease Prevention and Control in 2013 [5]. Resistance 

rates are equally on the rise in A. baumannii, with 40 to 

70% of isolates responsible for ICU-acquired infections 

being carbapenem resistant [2, 3, 8, 9].

Antimicrobial resistance in Enterobacteriaceae

Resistance to beta‑lactams

Beta-lactamase production is the main mechanism of 

beta-lactam resistance in Enterobacteriaceae (Fig.  1) 

[20]. �ese highly diversified enzymes hydrolyze beta-

lactams in the periplasmic space, thus preventing pen-

icillin-binding protein inhibition. Enterobacteriaceae 

are usually classified with regard to their intrinsic beta-

lactamase content (Additional file  1: Table S1). A pecu-

liar phenotype is observed in species that produce an 

inducible, chromosome-encoded AmpC cephalospori-

nase, notably Enterobacter sp., Citrobacter freundii, 

Hafnia alvei, Morganella morganii, Serratia marcescens 

and Providencia sp. [21]. AmpC is strongly induced by 

amoxicillin, clavulanic acid, cefoxitin and first-gener-

ation cephalosporins (1GC), which results in intrinsic 

resistance. Carbapenems are also potent inducers but 

remain active due to lack of significant AmpC-mediated 

hydrolysis, whereas other beta-lactams are weaker induc-

ers. Infections caused by wild-type-inducible AmpC 

producers should be preferably treated by ticarcillin or 

piperacillin: 3GC, while active, must be avoided owing to 

a higher risk for selecting resistant mutants (see below) 
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Fig. 1 Intrinsic and acquired beta-lactamases in Enterobacteriaceae.
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and a larger ecological impact [22–24]. Mutations in the 

induction system may permanently lead to AmpC over-

expression (i.e., derepression). Of note, these mutations 

happen spontaneously and are only selected—but not 

prompted—by beta-lactams [25]. AmpC-hyperproducing 

mutants are resistant to penicillins, aztreonam, 3GC and 

even ertapenem when the enzyme is massively expressed 

[26] : imipenem and meropenem remain the most active 

beta-lactams, although cefepime stands as a valuable 

carbapenem-sparing option when tested susceptible and 

provided that the source of infection is controlled [27, 

28]. �e selection of a resistant mutant must be ruled 

out when a VAP or another infection due to wild-type-

inducible AmpC producers does not improve, or relapse, 

under a first-line beta-lactam: in this case, a new sam-

ple should be obtained for susceptibility control [29]. 

Overall, AmpC hyperproducers account for 50–65% of 

3GC-resistant Enterobacteriaceae recovered from car-

riage or clinical specimen in ICU with high prevalence of 

ESBL-producing strains [2, 30, 31]. Besides, the genome 

of Escherichia coli holds a very low-level expressed chro-

mosomal AmpC not regulated by the induction system 

mentioned above [21]. Hyperproducing mutants may 

occasionally emerge; however, this mechanism of 3GC 

resistance remains anecdotal in E. coli when compared to 

ESBL [32].

�e dissemination of plasmid-borne beta-lactamases 

constitutes by far the most critical resistance issue in 

Enterobacteriaceae. Inhibitor-susceptible TEM and SHV 

penicillinases emerged first in the 1960s, and spread 

rapidly afterwards. �en, mutations in the catalytic site 

enabled several TEM and SHV variants to resist to cla-

vulanate or tazobactam, without hydrolyzing cephalo-

sporins (Fig.  1) [33]. Besides, other mutations extended 

their hydrolysis spectrum to 3GC: these ESBL variants of 

TEM and SHV were described in the 1980s, soon after 

the introduction of 3GC [34]. �ey spread successfully in 

healthcare-associated strains of K. pneumoniae, Entero-

bacter sp. and, in a lesser extent, E. coli, causing major 

hospital outbreaks in the 1990s [35–37]. Nowadays, 

TEM-type and SHV-type ESBL are still endemic in many 

hospitals around the world; nevertheless, they tend to be 

outnumbered by another ESBL class, referred as CTX-M 

and first described in the early 1990s [38–40]. A key epi-

demiological aspect of CTX-M-type ESBL is to be mostly 

found in E. coli colonizing subjects with no medical con-

dition, antibiotic exposure, or previous contact with the 

healthcare setting [41, 42]. �is community reservoir 

fuels a continuous influx of ESBL into the hospital system 

[43, 44]. �e diffusion of CTX-M-producing Enterobac-

teriaceae has been particularly massive in Southeast Asia 

and Eastern Mediterranean countries (estimated rates of 

intestinal carriage, ~60% and ~30%, respectively), and 

traveling in these areas is a major risk factor for carriage 

acquisition [42, 45, 46]. Carriage rates in the community 

are now above 5–10% in many other geographic areas 

[42], and concerns may logically be raised by reports of 

ESBL-producing Enterobacteriaceae (ESBL-PE) in com-

munity-acquired UTI [47], intra-abdominal sepsis [13], 

or even pneumonia [14]. In Europe, at present, 5–15% of 

critically ill patients are colonized with ESBL-PE at ICU 

admission [12, 30, 48]; however, very few among them 

are admitted for a community-acquired ESBL-PE infec-

tion [12].

ESBL-PE are resistant to most beta-lactams except 

cefoxitin, carbapenems and, for a subset of strains, temo-

cillin [49]. Cefoxitin and temocillin have proven efficacy 

in murine models of urinary sepsis [50, 51], yet clinical 

data are still pending [52]. Meanwhile, co-resistances to 

fluoroquinolones, cotrimoxazole and aminoglycosides 

are commonly observed in ESBL-PE [7], leaving few alter-

natives to carbapenems for the treatment of severe infec-

tions. However, TEM, SHV and CTX-M are all class A 

beta-lactamases, and many ESBL variants remain suscep-

tible in vitro to beta-lactamase inhibitors. Consequently, 

the careful use of certain beta-lactam/beta-lactamase 

inhibitor (BLBLI) associations (namely, amoxicillin–

clavulanate, ticarcillin–clavulanate and piperacillin–

tazobactam) to treat ESBL-PE with minimal inhibitory 

concentrations (MIC) ≤8  mg/L is now approved by the 

European Committee for Antimicrobial Susceptibility 

Testing (EUCAST), in an attempt to reduce carbapenem 

consumption and slow down the spread of carbapenem-

resistant GNB [53]. Amoxicillin–clavulanate is most 

frequently inactive (many ESBL-PE coproduce clavula-

nate-resistant beta-lactamases such as AmpC or OXA-1), 

and clinical data are lacking for the ticarcillin–clavula-

nate association, thereby restricting the issue to the use 

of piperacillin–tazobactam for ESBL-PE with MIC below 

the aforementioned breakpoint. A meta-analysis pub-

lished in 2012 reported no statistically significant dif-

ference in mortality between carbapenems and BLBLIs 

administered as either empirical or definite therapy; nev-

ertheless, as underlined by the authors, included studies 

were heterogeneous and non-randomized, and most of 

severe patients were initially treated with carbapenems 

[54]. Piperacillin–tazobactam is probably a suitable car-

bapenem-sparing option in bacteraemic UTI [55], and 

shall be safely used in non-urinary sepsis when MICs are 

≤2 mg/L [55, 56]. Conversely, an increase in 14-day mor-

tality has been recently reported in patients with ESBL-

PE bacteremia (MIC of piperacillin–tazobactam ranging 

from 4 to 16 mg/L, i.e., the US Clinical Laboratory Stand-

ards Institute’s breakpoint) and treated with piperacil-

lin–tazobactam versus carbapenems [57]. �e marked 

inoculum effect observed with tazobactam in ESBL-PE 
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may contribute to explain why in  vitro susceptibility 

does not systematically translate to clinical efficacy [58]. 

As a whole, the efficacy of BLBLI associations remains 

scarcely described in severe ESBL-PE infections [59], 

and has not been specifically investigated in ICU patients 

(Table 2). In this population, the pharmacokinetic prop-

erties of beta-lactams are dramatically modified [60–62], 

a pivotal point that may lead to sub-optimal BLBLI dos-

ing even for ESBL-PE strains with relatively low MICs. 

Likewise, and according to the EUCAST guidelines [53], 

the use of cefepime might be discussed for infections due 

to ESBL-PE with MIC ≤1  mg/L [63, 64], but high-dose 

regimen should be used to overstep the risk of sub-opti-

mal concentrations (Table 3) [18]. 

In parallel to ESBL, plasmid-borne cephalosporinases 

have gained increasing prominence in Enterobacte-

riaceae, including in community-acquired strains [21]. 

�ese beta-lactamases are actually encoded by chro-

mosomal blaAmpC genes of Enterobacteriaceae that have 

been captured on MGE. CMY-2 from Citrobacter freun-

dii is the most frequently encountered type [65]. Most of 

plasmid-borne cephalosporinases confer a similar pat-

tern of resistance to that of derepressed AmpC.

As the prevalence of ESBL and plasmid-borne cephalo-

sporinases rose, so did the consumption of carbapenems, 

which promoted the emergence of CRE through the dif-

fusion of plasmid-borne carbapenemases. Unfortunately, 

their story shall be similar to that of ESBL-PE, namely a 

first step in K. pneumoniae (more rarely in Enterobac-

ter sp.) affecting hospital settings with local outbreaks 

(e.g., VIM and KPC) [66, 67], and then emerging in the 

community in E. coli (NDM and OXA-48 variants) [68, 

69] (Fig.  1). �is new wave after the CTX-M pandemic 

raises high concerns as CRE are a step ahead of ESBL-PE 

in terms of multidrug resistance: for most, only colistin, 

tigecycline and gentamicin (for some KPC-producing 

strains) still have an activity (Table  3). OXA-48 is an 

exception as it hydrolyzes penicillins (with or without 

inhibitor) and carbapenems (low level of resistance), but 

not 3GC [70]. Yet, many OXA-48-producing Enterobac-

teriaceae coproduce an ESBL, jeopardizing all regular 

beta-lactam antibiotics [69]. While originally restricted 

to certain geographic areas (USA and Israel for KPC, 

Greece and Italy for VIM, India and Pakistan for NDM 

and the Eastern and Southern Mediterranean area for 

OXA-48) [71], CRE are currently spreading worldwide 

through travelers and repatriated patients [72–74], and 

are now isolated in subjects with no previous stay in 

endemic areas [75, 76]. Lastly, it should be underlined 

that carbapenemase production is not the sole mecha-

nism of carbapenem resistance in Enterobacteriaceae, 

since this phenotype may also emerge under therapy in 

ESBL-PE or AmpC hyperproducers with acquired imper-

meability to carbapenems due to mutation-derived loss 

of outer membrane porins [77–79].

Resistance to other antimicrobials

Aminoglycosides resistance in Enterobacteriaceae 

mainly relies on AMEs that hamper antibiotic activity 

by engrafting various radicals (aminoglycoside phospho-

transferase, APH, aminoglycoside nucleotidyltransferase, 

ANT and aminoglycoside acetyltransferase, AAC, see 

Additional file  1: Table S2). An intrinsic AME produc-

tion is met in Providencia stuartii (AAC(2′), resistance 

to gentamicin and tobramycin) and Serratia marces-

cens (AAC(6′)-I, low-level resistance to tobramycin and 

Table 2 Mechanisms of resistance in Enterobacteriaceae and non-fermenting Gram-negative bacilli: 10 key-points for the 

management of antimicrobial therapy in the intensive care unit

3GC third-generation cephalosporins, ESBL-PE extended-spectrum beta-lactamase-producing Enterobacteriaceae, BLBLI beta-lactam/beta-lactamase inhibitor, MIC 

minimal inhibitory concentration, ICU intensive care unit, GNB Gram-negative bacilli, SOD/SDD selective oral decontamination/selective digestive decontamination.

1. Carboxy- and ureido-penicillins should be preferred to 3GC to treat wild-type inducible AmpC-producing Enterobacteriaceae  
(notably Enterobacter sp.)

2. The use of cefepime could be considered as a carbapenem-sparing option in infections due AmpC-hyperproducing Enterobacteriaceae

3. Carbapenems are the first-line choice for severe ESBL-PE infections

4. The efficacy of BLBLI associations has not been adequately investigated in critically ill patients with ESBL-PE infections: piperacillin–tazobac-
tam might be discussed as a carbapenem-sparing regimen for strains with low MICs (≤2 mg/L), using optimized administration (high doses, 
extended or continuous infusion, therapeutic drug monitoring) and provided that the source of infection is controlled

5. In Pseudomonas aeruginosa, the rate of resistance emergence under therapy is notably high with imipenem, which should be used only when 
other beta-lactams are inactive

6. The empirical use of colistin may be considered in ICU with high prevalence of carbapenemase-producing GNB

7. Colistin resistance may emerge in carbapenem-resistant GNB after exposure to this drug

8. Whether combination therapy prevents the emergence of resistance in non-fermenting GNB is not proven

9. In spite of a strong rational, the ecological benefit of de-escalation remains to be confirmed in adequate prospective studies

10. The long-term ecological impact of SOD/SDD must be assessed in ICUs with high prevalence of multidrug-resistant GNB
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amikacin). Other species are intrinsically susceptible but 

can acquire AME-encoding genes on plasmids that often 

carry multiple resistance determinants, including ESBL 

[80]. Current rates of co-resistance in hospital-acquired 

ESBL-PE are 50–60% for gentamicin and 10–20% to ami-

kacin [81, 82], although local variations are observed. 

Methylases of the 16S ribosomal subunit (i.e., the target 

of aminoglycosides) have been more recently described, 

notably in NDM-producing strains [83]: these enzymes, 

named ArmA and Rmt, confer resistance to all aminogly-

cosides except neomycin.

All Enterobacteriaceae are naturally susceptible to 

quinolones and fluoroquinolones. High-level resistance 

emerges after successive chromosomal mutations in the 

DNA gyrase- and topoisomerase IV-encoding genes 

(gyrA and parC, respectively), each mutation causing a 

rise in the MICs [84]. �us, strains with a single mutation 

can appear susceptible to fluoroquinolones but highly 

resistant to quinolones [53]. �is phenotype may ease the 

emergence of mutants with high-level fluoroquinolone 

resistance under fluoroquinolone monotherapy, espe-

cially when the bacterial inoculum is high [85]. Chromo-

somal mutations may also lead to decreased permeability 

or overexpression of efflux pumps, resulting in reduced 

susceptibility. Besides mutations, plasmid-encoded 

resistance has emerged in the 2000s with Qnr (A, B, C, 

D and S subtypes), a small DNA-mimicking protein 

that confers low-level fluoroquinolone resistance [86], 

Table 3 Antimicrobial agents for the treatment of Entero-

bacteriaceae, Pseudomonas aeruginosa and  Acinetobacter 

baumannii infections in  critically ill patients: MIC break-

points (European Committee of Antimicrobial Susceptibil-

ity Testing, guidelines 2015) and �rst-line daily doses

Based on references [53], [18], [116], [170], [171] and [172].

Extended infusion means administration over a 3- to 4-h period.

MIC minimal inhibitory concentration, ND not de�ned, IR intrinsic resistance, LD loading dose, VAP ventilator-associated pneumonia.

a Daily doses of beta-lactams, �uoroquinolones and colistin must be adjusted in patients with renal failure.

Antimicrobial agent MIC breakpoint (mg/L) for susceptibility Usual daily dosea (intra‑venous) Comment

Enterobacteriaceae P. aeruginosa A. baumannii

Piperacillin ≤8 ≤16 ND 4 g/6 h Consider extended or continuous 
infusion after a LD

Piperacillin–tazobactam ≤8 ≤16 ND 4 g–500 mg/6 h Consider extended or continuous 
infusion after a LD

Aztreonam ≤1 ≤1 IR 2 g/6–8 h Consider extended or continuous 
infusion after a LD

Ceftazidime ≤1 ≤8 ND 2 g/6–8 h Consider extended or continuous 
infusion after a LD

Cefepime ≤1 ≤8 ND 1–2 g/8 h Consider extended or continuous 
infusion after a LD

High doses for P. aeruginosa infec-
tions

Ertapenem ≤0.5 IR IR 2 gr/24 h Once-daily administration

Meropenem ≤2 ≤2 ≤ 2 1–2 g/8 h Consider extended infusion after 
a LD

Imipenem ≤2 ≤4 ≤ 2 1 g/6–8 h No extended infusion (instability)

Gentamicin ≤2 ≤4 ≤ 4 6–8 mg/kg/24 h Once-daily administration

Tobramycin ≤2 ≤4 ≤ 4 6–8 mg/kg/24 h Once-daily administration

Amikacin ≤8 ≤8 ≤ 8 25–30 mg/kg/24 h Once-daily administration

Ciprofloxacin ≤0.5 ≤0.5 ≤ 1 400 mg/8 h

Colistin ≤2 ≤4 ≤ 2 4.5 MU/12 h after a LD of 9 MU Nebulized administration may be 
considered for VAP

Tigecycline ≤1 IR ND 50 mg/12 h after a LD of 100 mg High-dosing regimen 
(100 mg/12 h after a LD of 
200 mg) has been proposed 
for severe and/or A. baumannii 
infections, notably VAP

Fosfomycin ≤32 ND ND ND High doses may be considered 
(in combination) for extensively 
drug-resistant Gram-negative 
bacilli
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AAC(6′)-Ib-cr, an AME for which two mutations extend 

the resistance spectrum to ciprofloxacin and norfloxacin 

[87], and the QepA efflux pump [88]. It is noteworthy that 

these plasmid-borne determinants of fluoroquinolone 

resistance are frequently associated with ESBL [89].

Resistance to colistin, the last-resort antibiotic for CRE 

infections, is now under scrutiny. Proteus sp., Providen-

cia sp., Serratia sp. and Morganella sp. are intrinsically 

resistant to colistin, and the acquisition of carbapene-

mase-encoding genes by these species is of major con-

cern [71]. To date, no transferable resistance determinant 

has been described, and colistin resistance mainly rests 

on mutations in genes involved in the outer membrane 

polarity [90]. �e spread of colistin-resistant Enterobac-

teriaceae, most notably K. pneumoniae, is alarming in 

environments with high prevalence of CRE, that is, in 

ICU with high volume of colistin consumption [91].

Antimicrobial resistance in non‑fermenting GNB

Pseudomonas aeruginosa

Similarly to AmpC-producing Enterobacteriaceae, P. aer-

uginosa harbors an inducible AmpC-type cephalospori-

nase that can be derepressed following mutations in the 

regulation system [92]. Wild-type strains of P. aeruginosa 

are resistant to amoxicillin (with or without clavulanate), 

1GC, 2GC, cefotaxime, ceftriaxone and ertapenem, while 

they remain susceptible to ticarcillin, piperacillin, ceftazi-

dime, cefepime, imipenem, meropenem and doripenem. 

Aztreonam activity is variable. Unlike tazobactam, cla-

vulanate is a strong inducer of AmpC in P. aeruginosa, 

and experimental data suggest a risk of clinical failure 

with the ticarcillin–clavulanate association [93]. AmpC-

hyperproducing strains remain susceptible to carbapen-

ems only.

P. aeruginosa has several three-component efflux 

systems, some of which confer resistance to beta-lac-

tams when strongly expressed after mutations in their 

promoter regions (Table  4) [94]. �e most frequently 

involved system is MexAB-OprM, whose overexpression 

confers resistance to ticarcillin, aztreonam, cefepime and 

meropenem. Efflux pumps are major determinants of the 

multidrug resistance phenotypes that are increasingly 

observed in P. aeruginosa. A key feature is that different 

antimicrobial classes may be substrates of a single pump: 

exposure to a given class (e.g., beta-lactams) may thereby 

select mutants with resistance to other classes (e.g., beta-

lactams plus fluoroquinolones or aminoglycosides) [95].

Imipenem resistance in otherwise beta-lactam-sus-

ceptible strains of P. aeruginosa indicates the functional 

loss of OprD, a porin which manages the passage of 

imipenem through the outer membrane [95, 96]. �e 

emergence of imipenem resistance under therapy results 

almost exclusively from the selection of OprD mutants, 

either from a previously imipenem-susceptible inoculum 

or, more occasionally, after cross-transmission of another 

clone [97]. �e risk appears notably high in clinical prac-

tice. Indeed, in four randomized controlled trials (RCTs) 

including patients with hospital-acquired P. aeruginosa 

pneumonia, the average rate of resistance emergence 

under therapy was 30% (range, 6–53%) for imipenem, 

Table 4 Main mechanisms of acquired antimicrobial resistance in Pseudomonas aeruginosa

MGE mobile genetic element (plasmid or transposon).

Most common enzyme types: a PSE and OXA; bPER, SHV, GES and OXA; cVIM and IMP (SIM, GIM and SPM types are less common); dAAC(3)-I, AAC(3)-II, AAC(6′)-I, 

AAC(6′)-II and ANT(2′)-I.

Mechanism Genetic event Antimicrobials

High-level expressed AmpC cephalosporinase Chromosomal mutation Penicillins (with or without beta-lactamase inhibitors), cephalosporins, 
aztreonam

Other beta-lactamases

 Penicillinasesa MGE acquisition Penicillins

 Extended-spectrum beta-lactamasesb Penicillins, cephalosporins, aztreonam

 Metallo-beta-lactamasesc (carbapenemases) Penicillins, cephalosporins, carbapenems

Loss of OprD (impermeability) Chromosomal mutation Imipenem

Active efflux pumps

 MexAB-OprM Chromosomal mutation Ticarcillin, cephalosporins, aztreonam, meropenem, fluoroquinolones

 MexXY-OprM Cefepime (±penicillins), aminoglycosides, fluoroquinolones

 MexEF-OprN Meropenem, fluoroquinolones

 MexCD-OprJ Cefepime, aztreonam (+/− penicillins), fluoroquinolones

Aminoglycoside-modifying enzymesd MGE acquisition Aminoglycosides

16S rRNA methylases MGE acquisition Aminoglycosides

Topoisomerases modifications Chromosomal mutation Fluoroquinolones

Lipid A (LPS) modifications Chromosomal mutation Polymyxins



Page 8 of 15Ruppé et al. Ann. Intensive Care  (2015) 5:21 

while only 15% (range, 6–36%) for other beta-lactams 

[98].

P. aeruginosa has the ability to develop resistance 

to all beta-lactams as the sole result of chromosomal 

mutations. Nonetheless, the species can acquire MGE-

encoded beta-lactamases, including ESBL and carbap-

enemases (Table  4) [96]. Major hospital outbreaks have 

notably been observed with VIM or IMP carbapene-

mase-producing clones [99, 100].

Resistance to tobramycin mostly occurs through the 

acquisition of AMEs, while resistance to amikacin mostly 

depends on the over-expression of efflux pumps [101]. 

MGE-borne 16S rRNA methylases such as ArmA, RmtA 

and RmtD are also reported as an emerging mechanism 

of aminoglycoside resistance in P. aeruginosa [102]. Fluo-

roquinolone resistance results from mutations in the 

topoisomerase-encoding genes and/or the hyper-expres-

sion of efflux systems [95]. Lastly, and as for Enterobac-

teriaceae, colistin-resistant mutants of P. aeruginosa may 

emerge in settings with high frequency of colistin use 

[90].

Acinetobacter baumannii

Acinetobacter baumannii naturally produces a non-

inducible AmpC-type cephalosporinase (ACE-1 or 

ACE-2) and an OXA-51-like oxacillinase which con-

fer, at basal levels of expression, intrinsic resistance 

to aminopenicillins, 1GC, 2GC and aztreonam [103]. 

Ertapenem naturally lacks activity against A. bauman-

nii. Together with a marked impermeability and the 

expression of multiple efflux systems, the plasticity of 

its genome enables the species to gather many resist-

ance mechanisms, leading easily to multidrug resistance 

(Table  5). Most of the time, acquired resistance to car-

boxypenicillins, ureidopenicillins and 3GC rests on the 

overproduction of the AmpC-type cephalosporinase. 

However, in addition to plasmidic narrow-spectrum 

beta-lactamases, several ESBLs have also been acquired 

by A. baumannii: PER and VEB are the most frequently 

encountered types, particularly within pandemic clones 

[104]. In both cases, imipenem and meropenem remain 

the drugs of choice. More worrying are the emergence 

and dissemination of carbapenem-resistant clones since 

the end of the 1980s. Although carbapenem resistance 

can result from the over-expression of the chromosomal 

OXA-51-like enzyme [105], this phenotype is mostly due 

to the acquisition of plasmid-borne OXA-23-like, IMP, 

VIM, SIM or, more recently, NDM-type carbapenemases 

[102]. Of note, the prevalence of such carbapenemase-

producing strains increases steadily from Northern to 

Southern European countries [104]. Acquired resist-

ances to fluoroquinolones (mutations in gyrA and/or 

parC) and aminoglycosides (plasmid-borne AMEs—par-

ticularly AAC(3), AAC(6′) and APH(3′)—and 16S rRNA 

Table 5 Main mechanisms of acquired antimicrobial resistance in Acinetobacter baumannii

MGE mobile genetic element (plasmid or transposon), 3GC third-generation cephalosporins.

Most common enzyme types: a PER, VEB and GES (TEM, SHV and CTX-M are rare in A. baumannii); bVIM, SIM, IMP and NDM; cOXA-23-, OXA-40-, OXA-58-, OXA-143 and 

OXA-235-like; dAAC(3), AAC(6′) and APH(3′).

Mechanism Genetic event Antimicrobials

High-level expressed AmpC cephalosporinase Chromosomal mutation Penicillins (with or without beta-lactamase  
inhibitors), 3GC

High-level expressed OXA-51-like  
beta-lactamase

Chromosomal mutation (insertion of ISAba1 
upstream of blaOXA-51)

Carbapenems

Other beta-lactamases

 Extended-spectrum beta-lactamasesa MGE acquisition Penicillins, 3GC

 Metallo-beta-lactamasesb (carbapenemases) Penicillins, 3GC, carbapenems

 Oxacillinase-type carbapenemases3 Penicillins, carbapenems

Functional loss of porins (impermeability) Chromosomal mutation Variable

Altered penicillin-binding proteins Chromosomal mutation Variable

Active efflux pumps

 AdeABC Chromosomal mutation Beta-lactams (variable), aminoglycosides,  
fluoroquinolones, tigecycline

 AdeM Aminoglycosides, fluoroquinolones

 AdeIJK Tigecycline

Aminoglycoside-modifying enzymesd MGE acquisition Aminoglycosides

16S rRNA methylases MGE acquisition Aminoglycosides

Topoisomerases modifications Chromosomal mutation Fluoroquinolones

Lipid A (LPS) modifications Chromosomal mutation Polymyxins
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methylases) are commonly observed in ESBL- as well as 

carbapenemase-producing A. baumannii strains.

Colistin stands as the main therapeutic option for ICU-

acquired infections due to extensively drug-resistant 

A. baumannii, and should be considered as part of the 

empirical antibiotic regimen in settings with high densi-

ties of carbapenem-resistant strains [106]. Nevertheless, 

colistin-resistant isolates are now increasingly reported 

worldwide, especially in patients previously exposed to 

this drug [107]. �is phenotype mainly depends on the 

loss of lipopolysaccharide (LPS) production secondary 

to the insertion of the ISAba11 sequence in genes encod-

ing the lipid A biosynthesis [108]. Increased expression of 

the PmrAB two-component regulatory system is another 

mechanism of LPS alteration resulting in colistin resist-

ance [109]. Interestingly, the reduction of the negative 

charge of the lipid A, which lowers the affinity for colis-

tin (positively charged), may also induce cross-resistance 

to host cationic antimicrobials such as lysozyme [110]. 

Furthermore, colistin exposure may select for a resist-

ant fraction among an otherwise colistin-susceptible 

A. baumannii population [111, 112]. �e prevalence of 

this mechanism of resistance—referred as heteroresist-

ance—is poorly documented due to missed detection by 

conventional microbiological methods but could have 

significant clinical consequences [113].

For infection due to colistin-susceptible A. bauman-

nii strains, the benefit of combination with rifampin has 

not been confirmed by a recent RCT [114]. Sulbactam, 

a BLI with intrinsic activity against A. baumannii, may 

be useful alone or in combination [103], although clini-

cal data are still scarce. Clinical experience is also lim-

ited for minocycline, despite of a high in  vitro activity 

against multidrug-resistant isolates [115]. �e use of tige-

cycline may be discussed in the absence of other option 

(i.e., colistin resistance or toxicity) [104]: double-dose 

regimens appear well tolerated and could be more active 

than standard dosing owing to pharmacokinetic consid-

erations, notably in patients with VAP [116].

Stenotrophomonas maltophilia

S. maltophilia is an emerging pathogen responsible 

for hospital-acquired infections in patients previously 

exposed to carbapenems or other broad-spectrum anti-

biotics [117, 118]. Its intrinsic multidrug resistance phe-

notype involves several chromosomal determinants. 

First, the species expresses various efflux systems and 

most notably the SmeDEF pump, which takes part in 

the extrusion of certain beta-lactams, quinolones and 

aminoglycosides [118]. Also, this GNB should be con-

sidered as naturally resistant to aminoglycosides, owing 

to the presence of a chromosomal AAC(6′)-Iz and the 

thermo-dependent permeability of its outer membrane 

to this antimicrobial class [119, 120]. Next, S. malt-

ophilia produces two chromosomal beta-lactamases, 

namely, the inducible L1 carbapenemase (conferring an 

intrinsic resistance to all carbapenems) and the induc-

ible, inhibitor-susceptible L2 cephalosporinase. Together, 

these enzymes may confer various resistance phenotypes, 

according to their respective degrees of expression and 

the concomitant levels of impermeability and efflux [118, 

121]. �e ticarcillin–clavulanate association remains usu-

ally the most effective beta-lactam regimen, while cepha-

losporins are almost constantly inactive.

S. maltophilia is highly susceptible to the trimetho-

prim–sulfamethoxazole combination, which is tradition-

ally seen as the cornerstone of therapy [121]. Acquired 

resistance is however reported with various frequen-

cies and rests on dihydropteroate synthases encoded by 

the MGE-borne sul genes. Fluoroquinolones, particu-

larly ciprofloxacin, levofloxacin and moxifloxacin, are 

active despite the low-level expression of a Qnr protein 

encoded by the chromosomal SmQnr gene [122]. High-

level resistance to fluoroquinolones may emerge through 

the selection of mutants with increased expression of 

SmQnr proteins or efflux pumps (SmeDEF or SmeVWX) 

[123].

�e association of trimethoprim–sulfamethoxazole 

(high-dosing regimen) with ticarcillin–clavulanate or 

fluoroquinolones is generally advocated as a first-line 

regimen for serious infections [121]. Indeed, synergy with 

these combinations is observed in  vitro for more than 

half of isolates [124]. Alternatives include monotherapy 

with trimethoprim–sulfamethoxazole, fluoroquinolones, 

or tigecycline [125, 126], with a possible synergic effect 

when the latter is associated to colistin [127, 128].

Is administration of combination therapy needed 

to prevent resistance?

To increase the likelihood of adequate coverage, the 

empirical antimicrobial regimen for VAP or other ICU-

acquired infections in patients at risk for multidrug-

resistant GNB usually combines a broad-spectrum 

beta-lactam with anti-pseudomonal activity and either an 

aminoglycoside or an anti-pseudomonal fluoroquinolone 

[29]. However, when both agents are active, the benefit of 

combination therapy over adequate monotherapy has not 

been proven in terms of clinical cure or microbiological 

eradication [129–131]. Convincing evidence is similarly 

lacking to support the routine use of antimicrobial com-

binations (including a beta-lactam) as definite regimen in 

an attempt to prevent the emergence of resistance under 

therapy [129, 132–134]. In P. aeruginosa infections, add-

ing an aminoglycoside to an effective beta-lactam does 

not prevent from the emergence of beta-lactam resist-

ance [133, 135, 136], including in patients treated with 
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imipenem [137]. In Enterobacteriaceae, the main mecha-

nism of acquired beta-lactam resistance under therapy 

is chromosomal AmpC derepression. In a prospective 

cohort of 218 patients infected with natural AmpC pro-

ducers and receiving 3GC, the emergence of 3GC resist-

ance was observed in 11 cases (5%): combining 3GC 

with an aminoglycoside or a fluoroquinolone did not 

significantly reduce the rate of mutant selection [138]. 

�erefore, once susceptibility testing results are known, 

monotherapy with the most active beta-lactam could be 

considered, with high-dosing regimen and optimized 

administration (Table 3). Clinical data remain scarce for 

infections due to multidrug-resistant A. baumannii [139], 

although in  vitro studies indicate that combining colis-

tin with rifampicine, carbapenems or tigecycline may be 

effective to prevent the emergence of colistin-resistant 

mutants [109].

A pivotal role for the gut microbiota

�e intestinal microbiota forms the main reservoir of 

multidrug-resistant GNB in critically ill patients [30, 31, 

140]. While similar data are currently not available for 

ICU-acquired infections, some studies have showed that 

high intestinal densities of resistant bacteria increase the 

risk of intestinal translocation [141], urinary tract infec-

tions [142] and cross-transmission [143]. Antibiotics that 

reach this microbiome promote the growth of resistant 

bacteria over the susceptible ones, and each daily dose 

may exert a significant impact in terms of selective pres-

sure [144]. �is appears notably relevant for carbapen-

ems [26], fluoroquinolones [145] or cephalosporins with 

biliary excretion such as ceftriaxone [146]. Extended 

treatment with colistin has also been shown to increase 

the likelihood of colonization with colistin-resistant 

GNB, including both mutants from otherwise colistin-

susceptible species, and intrinsically colistin-resistant 

Enterobacteriaceae [147].

�e spectrum, duration of exposure and fecal concen-

tration of the antibiotic may all play a role. �erefore, 

and although the ecological benefit of such an approach 

remains to be formally demonstrated [148], de-esca-

lation to the antimicrobial regimen with the narrower 

spectrum and the lower intestinal excretion should be 

logically discussed when culture and susceptibility test-

ing results become available. In this respect, new phe-

notypic and molecular diagnostic tools may fasten the 

detection of multidrug-resistant GNB—or rule them out 

precociously—thereby assisting ICU physicians for ear-

lier adjustments of broad-spectrum empirical regimen 

[149–151].

Another unresolved issue is whether selective oral or 

digestive decontamination (SOD/SDD) with colistin and/

or aminoglycosides compromises the efficacy of these 

agents by selecting resistant GNB in the ICU. SOD and 

SDD are infection prevention measures with proven effi-

cacy in reducing the incidence of ICU-acquired bacteremia 

[152], the all-cause mortality rate at day 28 [153] and, for 

SDD combined with systemic antibiotic administration, 

the mortality attributable to VAP [154]. In a meta-analy-

sis published in 2013, SOD and SDD were not associated 

with an increased risk of acquisition of aminoglycoside-

resistant GNB, and were even protective against the acqui-

sition of polymyxin-resistant GNB when compared to 

standard care [155]. However, the number of included 

studies was relatively low, most of them were conducted 

in the 1990s—that is, one decade before the pandemic of 

carbapenemase-producing Enterobacteriaceae—and car-

riage samples were pooled with clinical samples to assess 

the acquisition rates of resistant GNB, making the authors 

conclude that the impact of SOD/SDD on ICU-level anti-

microbial resistance rates was understudied. In a recent 

RCT conducted in Dutch ICUs with low levels of resist-

ance, the use of a tobramycin-based SDD regimen was 

associated with a gradual increase in the prevalence of 

aminoglycoside-resistant GNB when compared to SOD 

[156]. More strikingly, a worrisome rise in the rates of 

colistin and aminoglycoside resistance has been observed 

following the implementation of SOD/SDD policies with 

these antibiotics in ICUs facing outbreaks of ESBL- or car-

bapenemase-producing K. pneumoniae [157–159]. Con-

versely, two prospective trials reported that colistin-based 

SDD regimen might help eradicating CRE carriage [160, 

161]. Overall, pending further longitudinal studies, SOD/

SDD should probably be used with caution in environ-

ments with high prevalence of multidrug-resistant GNB to 

preserve the efficacy of polymyxins and aminoglycosides 

as last-resort agents [162, 163].

Concluding remarks and perspectives
�e spread of multidrug-resistant GNB in the hospital set-

ting is now seen as a globalized threat [15], and ICU patients 

are especially exposed to the risk. �e number of potential 

novel agents in the pipeline is low; nevertheless, the devel-

opment of new BLBLI combinations may raise significant 

hopes [164]. Avibactam (NXL104) is a synthetic BLI with 

activity on Ambler’s class A (including ESBL and KPC-

type carbapenemases), class C (derepressed chromosomal 

AmpC or plasmid-borne AmpC) and some class D (oxa-

cillinases) beta-lactamases [165]. In vitro, ceftazidime–avi-

bactam, ceftaroline–avibactam and aztreonam–avibactam 

associations have shown promising results against 3GC-

resistant and even KPC-producing Enterobacteriaceae [166, 

167]. Avibactam also lessens the MICs of ceftazidime in 

AmpC-hyperproducing P. aeruginosa [168]. Other cephalo-

sporin-BLI associations such as cefepime–tazobactam, cef-

triaxone–sulbactam and ceftolozane–tazobactam are under 
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evaluation [59, 169]. Clinical works addressing the yield of 

these new combinations in the ICU are highly warranted. 

Besides, improvements in the use of already available drugs 

are still possible (e.g., piperacillin–tazobactam for ESBL-PE 

with low MICs, or colistin for carbapenem-resistant GNB), 

both when indications and modalities of administration 

(including therapeutic drug monitoring) are considered. 

Unfortunately, the emergence of bacterial resistance follow-

ing the introduction of new drugs appears as an unavoidable 

and endless process and every initiative aiming at limiting 

the selective pressure of antibiotics on the intestinal flora is 

more than ever justified.
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