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Abstract

The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to

become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize

nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes

from DNA. These remodeling complexes are often categorized based on the domain organization of

their catalytic subunit. The biochemical properties and structural information of several of these

remodeling complexes are reviewed. The different models for how these complexes are able to

mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent

findings. Finally the role of histone tails and their respective modifications in ATP-dependent

remodeling are discussed.
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Introduction

Nucleosomes are the fundamental unit of chromatin that are a highly compact and yet dynamic

nucleoprotein complex. Nucleosomes are formed by wrapping ∼147 bp of DNA around a

histone octamer[1]. All DNA related processes in eukaryotes have to overcome the compaction

of DNA by chromatin. Histone octamers which were long considered to be just a structural

backbone or molecular spools have recently been found to be more dynamic and to have a

regulatory role. The dynamic nature of chromatin is caused by two distinct mechanisms. The

first kind involves covalent modifications of the histone N-terminal tails and occurs without

the hydrolysis of ATP [2]. The second mode requires the hydrolysis of ATP and involves the

movement of histone octamers relative to DNA in order to make the DNA accessible[3]. Even

though these mechanisms are distinct, they are functionally interconnected inside the cell. In

certain cases these two functions co-exist in the same complex or they exist in separate

complexes that are both required for maximum opening of chromatin and activation of

transcription, DNA replication and repair.
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Movement of nucleosomes along DNA has to overcome at least 100 contacts between the

histone octamer and DNA[4]. A wide variety of nucleosome remodeling complexes exists

inside the cell and hence it is possible to have a wide variety of mechanisms for nucleosome

mobilization. Recent discoveries have shown that different chromatin remodeling complexes

share a common mechanism for remodeling chromatin. First, we review the general properties

of several of the different ATP remodeling families and second, examine the emerging view

of the underlying mechanism of remodeling that is in common with these different remodelers.

Nucleosome remodeling complexes

SWI/SNF family

The discovery of chromatin remodeling factors started with that of SWI/SNF which is a ∼11-

subunit complex. It was originally identified as a regulator of mating type switching (SWI) or

as a requirement for growth on energy sources other than sucrose (SNF – sucrose

nonfermenting)[5-7]. In S.cerevisiae, as in Drosophila and humans, there appears to be two

versions (SWI/SNF and RSC) of the SWI/SNF complex (Figures 1 and 2). RSC is more

abundant in the cell than SWI/SNF and RSC is essential for cell growth while SWI/SNF is not.

SWI/SNF and RSC have been shown to have distinct, non-overlapping roles. The catalytic

subunit of yeast SWI/SNF is the Swi2 or Snf2 protein and its paralog in RSC is the Sth1 subunit

[8]. RSC has also been shown to exist in two functionally distinct complexes that differ by

containing either Rsc1 or 2 [9]. In Drosophila the two forms of SWI/SNF called BAP (Brahma

associated proteins) and PBAP (Polybromo-associated BAP) both contain the same catalytic

subunit (Brahma), but are distinguished by BAP containing the OSA subunit and PBAF

containing the Polybromo and BAP170 subunits[10]. Although human SWI/SNF can be

characterized as being of two forms, namely BAF (BRG1/hBRM-Associated Factors) and

PBAF (Polybromo-associated BAF), there are many forms of human SWI/SNF that acquire

tissue-specific subunits[11] or additional sub-complexes in which the SWI/SNF-type

remodelers are associated with other factors such as BRCA1 [12,13], components of the histone

deacetylase Sin3 complex [14] and histone methylases [15,16]. Recently, Rtt102p was

identified as the newest subunit of both SWI/SNF and RSC complexes by MudPIT or mass

spectrometry analysis[17]. The loss of RTT102 created similar phenotypes consistent with the

loss of other SWI/SNF subunits[18]. The role of SWI/SNF by all indications is far reaching.

In mammals it is involved in many developmental programs such as muscle [19-22], heart

[23], blood[24], skeletal[25], neuron[26-29], adipocyte [30], liver[31] and immune system/T-

cell development[32,33]. Yeast SWI/SNF has been shown to be involved in an early step in

homologous recombination (HR) while RSC promotes HR at the stage of strand invasion

[34,35]. RSC is involved in sister chromatid cohesion and chromosome segregation[36-38].

SWI/SNF has an impact on alternative splicing as BRM has been shown to regulate the

crosstalk of RNA polymerase II (Pol II) with RNA processing enzymes by reducing the rate

of Pol II elongation to promote splicing of less than optimal splice sites [39]. Telomeric

silencing and silencing transcription of rRNA genes by RNA polymerase II also requires yeast

SWI/SNF[40].

Several structural domains have been identified for the subunits of SWI/SNF that have been

indicated to have either DNA or histone binding activity and could conceivably help SWI/SNF

to grip the nucleosome for efficient restructuring of the nucleosome[10] (Figure 3). The ATPase

domain consists of seven subdomains that structurally forms two lobes referred to as the DEXD

and helicase motifs that form a cleft to which DNA binds based on X-ray crystal structure from

the related Rad54 ATPase domain[41,42]. In addition the Swi2/Snf2 protein contains at its C-

terminus a bromo domain which has been shown to recognize specific acetylated lysines in

histone tails[43-50]. The Swi1 contains an ARID domain (an AT-rich interaction domain) that

is found in its orthologs OSA in Drosophila and BAF250 in mammals. It is also found in the

Rsc9 subunit of RSC and BAP170 for mammals. The ARID domain, sometimes referred to as
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the BRIGHT domain (B-cell-specific trans-activator of IgH transcription), has been

demonstrated to have both sequence specific as well as sequence independent DNA binding

activity[51-55]. The ARID domain forms a helix-turn helix structure that prefers to bind AT

rich DNA. The ARID domain in the Dead ringer protein has been shown to have DNA-

sequence specific binding; whereas ARID from OSA binds DNA with no sequence specificity

[51,55-57]. The ARID domain from yeast Swi1 is not a typical member of the ARID family,

because it likely has weaker DNA binding affinity due to changes in key residues that normally

interact with the major groove of DNA[58]. Swi3 has two known domains that have affinity

for nucleosomes and DNA that are called SWIRM and SANT. SWIRM is a conserved domain

of about 85 residues that is found in Rsc8 and Moira, respectively the paralog and ortholog of

Swi3, as well as in Ada2, a component of a histone acetyltransferase complex (HAT) and

LSD1/BHC110, a histone demethylase[59-61]. The SWIRM domain of Swi3 is essential for

proper assembly of Swi3 into SWI/SNF and is required in vivo for SWI/SNF activity. The

SWIRM domain was shown to bind DNA and mononucleosomes with comparable high

affinity. SANT domain is found in several ATP-dependent chromatin remodeling complexes

such as RSC and ISWI, and in histone modifying enzymes Ada2, NCoR that interacts with

HDAC and Sin3, and SPR1 from C. elegans that is part of the co-repressor complex that is

essential for HDAC1 activation[62-67]. The SANT domain is also present in other repressor

complexes such as MLL, SMRT and some members of the polycomb group of proteins and

has been shown to stimulate binding to histone tails[68-70]. The SANT domain contains ∼50

residues and is structurally related to the c-Myb DNA binding domain [71]. It has three alpha

helices containing bulky aromatic residues in a helix-turn-helix arrangement. Structural and

biochemical data of the SANT domain in ISWI from Drosophila indicates that the SANT

domain may bind to histones[72].

ISWI family

The first members of this growing group of chromatin remodeling enzymes, dNURF and

dCHRAC, were originally identified by biochemical characterization from Drosophila embryo

extracts using an in vitro assay for activities allowing transcription factor access to sites in

nucleosomal arrays [73,74]. Later multiple additional remodelers belonging to this group were

identified in yeast[75], humans[76,77], mouse[78], and Xenopus[79] (Figure 2). The ATPase

subunit of this group of chromatin remodeling enzymes has been named Imitation SWItch

(ISWI) because of its similarity to the SWI2 ATPase in the SNF2 subfamily. Characteristic of

the ISWI type ATPases is the presence of a SANT (SWI3, ADA2, N-CoR and TFIIIB B”)

domain and the absence of a bromodomain[80]. The SANT domain is similar to the putative

DNA binding domains of the ADA HAT complexes, the transcriptional co-repressor N-CoR

and the transcription factor TFIIIB [81]. This has prompted speculations that the SANT domain

might be responsible for the nonspecific binding of ISWI complexes to DNA and their

preferential binding to nucleosomes containing linker DNA over core nucleosomes [82]. The

complexes in this group are relatively smaller (300-800 kDa) and contain fewer subunits

ranging from 2-4 as compared with the larger complexes in the SNF2, CHD and INO80

subfamilies which contain up to 15 subunits and are often ∼2 mDa.

In Drosophila, ISWI is assembled into three distinct complexes: NURF, ACF and CHRAC.

NURF(Nucleosome Remodeling Factor) is a four subunit complex containing BPTF/Nurf301,

ISWI, Nurf-55 and Nurf-38 [73]. NURF was first identified by its requirement for making the

hsp70 heat shock promoter accessible in the presence of the GAGA transcription factor [83].

This duo was also shown to activate the fushi tarazu gene[84]. The ATPase activity of this

complex is specifically stimulated by nucleosomes and not DNA, in contrast to the SWI/SNF

complex where DNA and nucleosomes equally stimulate the ATPase activity. NURF interacts

with the histone H4 N-terminal tail and this interaction is essential for its ATPase and

nucleosome mobilization activity [85]. Using alanine scanning mutagenesis, residues 16
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through 19 (KRHR) in the N-terminal tail of histone H4 were shown to be important for

nucleosome mobilization by NURF[86]. NURF has been shown to activate transcription in

vitro[87] and in vivo. NURF also appears to have a role in X chromosome morphology[88]

and steroid signaling during larval to pupal metamorphosis[89]. Transcriptional activation by

NURF is brought about by mobilizing nucleosomes along the DNA [90] which requires the

largest subunit of NURF, NURF 301[91]. The direction of nucleosome mobilization is

modulated by transcription factor Gal4[92].

ISWI in Drosophila forms another multisubunit complex called ACF (ATP-utilizing chromatin

factor) which can processively deposit histone octamers along the DNA to form long periodic

arrays of nucleosomes[93,94]. ACF mediated chromatin assembly also requires the histone

chaperone NAP1. Non-histone architectural protein HMGB1 was found to regulate ACF

remodeling activity by acting as a DNA chaperone that can facilitate rate limiting distortion

of DNA. ACF translocates along DNA in the process of chromatin assembly [95]. Acf1 plays

an important role in development as Acf1 null mutants were found to die during larval to pupal

transition[96]. Biochemical experiments have shown that ACF/CHRAC is a major chromatin

assembly protein in Drosophila. Cells lacking ACF/CHRAC more rapidly proceed through S

phase due to the lack of resistance from chromatin consistent with these complexes functioning

in the formation of repressive chromatin.

CHRAC (chromatin accessibility complex) has ISWI, Acf1 and two small histone fold

containing proteins CHRAC-14 and CHRAC-16[74]. CHRAC can also generate nucleosome

arrays with regular spacing. The two small subunits, CHRAC-14 and CHRAC-16, were shown

to be involved in early Drosophila development[97].

In S.cerevisiae there are two ISWI genes - ISW1 and ISW2 (reviewed in [98]) which were

identified based on their extensive homology with dISWI [75]. Isw1p forms two distinct

complexes inside the cell – ISW1a (contains Isw1p, Ioc3p) and ISW1b (Isw1p, Ioc2p and

Ioc4p)[99]. ISW1a shows a strong nucleosome spacing activity while ISW1b does not. Isw2p

was found to be associated with a 140 kDa protein referred to as Itc1p which appears to be

partially related to the Acf1 protein sharing the structural domains WAC, WAKZ, PHD fingers,

DDT and bromodomain motifs. ISW2 also has two additional smaller subunits Dpb4 and Dls1

that have histone fold domains and are homologs respectively of the hCHRAC 15/17 and the

dCHRAC 14/16 histone fold of protein pairs from the human and Drosophila CHRAC

complexes, respectively. ISW2 has a nucleosome spacing activity that is not as tightly regulated

as ISW1a and ISW2 has no detectable nucleosome disruption activity [75,100]. These

similarities suggest that ISW2may be viewed as a yeast CHRAC homolog underscoring the

extensive organizational and functional conservation of chromatin remodeling complexes from

divergent species.

A number of structural domains have been identified in both the catalytic subunit and accessory

subunits of this class. Besides the conserved Swi2/Snf2 ATPase domain, ISWI contains the

SANT, SLIDE (SANT-like ISWI domain), HAND and AID (Acf1 interaction domain)

domains [80]. The SANT and SLIDE domains are connected by a highly conserved spacer

helix. The SLIDE domain was found to mediate the DNA binding activity of ISWI. Deletion

of either the SANT or SLIDE domains did not affect binding to nucleosomes, while deletion

of both adversely affected binding. The ‘C’ terminus of ISWI is therefore vital for nucleosome

recognition. Deletion of SLIDE also largely abolished the ATPase activity of ISWI. Acf1

contains WAC (WSTF, Acf1, cbp146p), WAKZ (WSTF, Acf1, KIAA0314, ZK783.4), DDT

(DNA binding homeobox and Different Transcription factors), BAZ , two PHD (Plant

homeodomain) fingers and a bromodomain[101]. The two PHD fingers were found to increase

the efficiency of nucleosome mobilization by ACF in Drosophila [102]. Isw1p and Isw2p of

S.cerevisiae share the same domain organization as dISWI except that the AID domain is absent

Gangaraju and Bartholomew Page 4

Mutat Res. Author manuscript; available in PMC 2008 November 18.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



in the yeast counterparts. Itc1p is partially related to Acf1 of ACF complex in Drosophila. Ioc3

(Imitation switch one complex 3) of ISW1a complex has no detectable domain organization,

while Ioc2 and Ioc4 of ISW1b complex have PHD and PWWP domains respectively[99].

CHD family

CHD-1 (chromodomain-helicase DNA binding protein [103]) was first isolated from mouse

as a protein which contains features of both the Swi2/Snf2 family of ATPases and the

Polycomb/HP1 chromodomain family of proteins[104]. In contrast to polycomb/HP1, CHD1

is not localized to condensed chromatin but possesses a minor groove DNA binding motif

found in H1, HMG I/Y, D1 and datin [105]. Consequently, the Drosophila CHD1 homolog

was found to be localized to interbands (extended chromatin regions) and puffs (regions of

high transcriptional activity) on polytene chromosomes[106]. The chromo- and helicase-

domains of CHD1 are required for its association with chromatin. CHD1 isolated from yeast

was shown to be an ATP dependent nucleosome remodeling factor which can reposition

nucleosomes along the DNA. Unlike SWI/SNF, nucleosome mobilization mediated by CHD1

does not expose large regions of nucleosomal DNA[107].

INO80 and SWR1 family

INO80 and SWR1 are both large complexes containing 15 and 14 different subunits,

respectively that are involved in transcription activation and DNA repair. Ino80p, the largest

subunit of the INO80 complex, contains a conserved ATPase/helicase domain. While the

ATPase/helicase domain of other members of the SNF2 superfamily, such as Swi2/Snf2 and

ISWI, are continuous, the ATPase/helicase domain of Ino80 and Swr1 are split by a large spacer

region. Comparison of INO80 and its orthologs from human (hINO80) and Drosophila

(dINO80) reveal two conserved regions, the TELY motif at the amino terminus and the GTIE

motif at the carboxy terminus [108]. Actin (Act1) and three actin-related proteins, Arp4, Arp5

and Arp8, are associated with the complex in addition to Ino80. Two other subunits are present

as multiple copies per Ino80 are Rvb1 and Rvb2 that were previously identified as ‘RuvB-like’

proteins with homology to the bacterial RuvB protein or the Holliday junction DNA helicase

[108]. Glycerol gradient sedimentation of the purified INO80 complex showed that all of the

polypeptides sedimented together as a high molecular weight complex, consistent with all 15

proteins belonging to the same complex [108]. Coomassie blue staining of INO80 shows that

Rvb1 and Rvb2 have about 6 copies to one of Ino80 in the complex, corresponding well to the

double hexamer composition of bacterial RuvB [108]. INO80 exhibits ATP dependent 3'-5'

helicase activity likely due to the presence of Rvb1 and Rvb2. The SWR1 complex has in

common with INO80 for subunits namely Rvb1, Rvb2, Act1 and Arp4. Yeast strains lacking

INO80 not only have mis-regulated transcription, but also are hypersensitive to DNA-

damaging agents suggesting that INO80 may not only regulate transcription but also facilitate

DNA repair [109,110].

One of the earliest events correlated with the cell's response to DNA damage is the rapid

phosphorylation of histone H2AX adjacent to the DNA break site[111]. There are no H2A

variants in yeast, but H2A is phosphorylated on the homologous serine that is located four

residues from the carboxy terminus in response to DNA damage and the phosphorylated species

is referred to as γ-H2AX. Interestingly, recent studies have shown that there is a strong

interaction between the INO80 complex and γ-H2AX. This interaction was stable under harsh

conditions and provides a potential mechanism for the recruitment of the INO80 complex to

double strand breaks[110]. Further analyses have suggested that actin and the Arps are not

required for the interaction between INO80 and γ-H2AX, but instead is the Nhp10 subunit

[109].
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The composition of INO80 suggests it has additional roles in DNA repair through homologous

recombination. Since INO80 contains Rvb1/2 belonging to AAA+ family ATPases, they could

use their DNA helicase/tracking function to disrupt nucleosomes proximal to the break. Rvb1/

Rvb2 could promote the migration of the Holliday structure, while the remodeling function of

INO80 slides or transfers nucleosomes encountered during migration[112].

The discovery of Swr1 (Swi2/Snf2 related) complex has defined a new mode of ATP dependent

chromatin remodeling – histone variant exchange (reviewed in [113,114]). Almost at the same

time three groups discovered the existence of this ∼13 subunit complex that interacts with the

histone variant H2A.Z[115-117]. The catalytic subunit of this complex is Swr1 which has an

ATPase domain related to Snf2. In vitro, SWR1 can catalyze ATP dependent replacement of

H2A/H2B dimers with the H2A.Z/H2B dimers independent of replication[117]. In vivo, SWR1

is required for incorporation of H2A.Z at approximately 25 chromosomal locations scattered

across the yeast genome [118]. Htz1 has a role in transcription and can also act as a barrier

inhibiting spread of silent telomeric and mating locus heterochromatin into transcriptionally

active regions. SWR1 dependent deposition of Htz1 was observed at telomeres (which requires

Yaf9 component) [119], centromeres[120] and other intergenic regions[121]. Biochemical

analyses have shown that Swc2 component binds Htz1 physically and is needed for Htz1

deposition[122]. SWR1 complex shares four subunits with NuA4 HAT and have been shown

to work together in efficient blockage of spreading heterochromatin [123,124].

Mechanisms of nucleosome remodeling

Different outcomes of nucleosome mobilization – differences in step sizes

Both ISWI and SWI/SNF were shown to change the translational position of nucleosomes

[125,126], but they seem to differ in their ability to disrupt nucleosomes. This difference is

made most evident using a restriction endonuclease accessibility assay. SWI/SNF has been

shown to make nucleosomal DNA accessible to endonuclease cutting presumably by the

creation of DNA loops on the surface[127]. The increased accessibility of nucleosomal DNA

caused by SWI/SNF remodeling occurs without moving the entire nucleosome from the

particular DNA site to a new distal translational position in which the site would be located in

the linker DNA region. ISWI complexes on the other hand appear not to make nucleosomal

DNA accessible through the process of remodeling itself, but only do so as the entire

nucleosome is moved far enough to place the DNA site into the linker DNA region. These

differences are likely reflected in their differing roles in the cell since SWI/SNF generally

makes nucleosomal DNA sites accessible to either transcription activators or repressors, while

ISWI appears to be generally involved in moving nucleosomes in order to establish a repressive

chromatin environment.

Evidence suggests that both of these complexes mobilize nucleosomes using a loop recapture

type mechanism and thus both appear to create DNA bulges on the surface of the nucleosome

as discussed later. The differences in remodeling outcomes could therefore be due to

differences in the size of the DNA bulge created by these complexes and would likely be

reflected in the step size of DNA moving through the nucleosome. Two different reports

suggest that ISWI complexes have a small DNA step size of ∼10 bp which would likely cause

the formation of a small bulge on the surface of the nucleosome that would not be readily

cleaved by DNA endonucleases. One study mapped the translational positioning before and

during remodeling by NURF with hydroxyl radical footprinting and found that NURF moved

the nucleosome in ten base pair steps[128]. Hydroxyl radical footprinting shows all the regions

that are protected by the nucleosome, but it was possible to tract the location of the dyad axis

of the nucleosome because the dyad had a rather distinctive footprint pattern. The one difficulty

in this study was that nucleosomes were reconstituted on a DNA that had a high affinity for

the histone octamer and that preferentially positioned the nucleosome to a single translational
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position. The DNA would then likely constrain the nucleosome to be offset from its original

position in 10 bp increments in order to maintain the preferred rotational phasing of the

nucleosome. Thus the 10 bp increments observed in these studies may not reflect the intrinsic

step size of NURF, but rather the thermodynamically preferred positioning of the nucleosome

on this particular DNA sequence.

Another approach to map the step size of another ISWI complex ( i.e ISW2) was to use a DNA

that did not bind the nucleosome as tightly[129]. Second, the movement of the nucleosome

was rapidly tracked such that it was possible to observe nucleosome movement after hydrolysis

of a single ATP by ISW2. Fortuitously, the new nucleosome position seen under these rapid

conditions was not a position on the DNA that was thermodynamically preferred to be bound

by the nucleosome, thus helping to avoid the potential confusion of the observed nucleosome

movement being due to the intrinsic property of the DNA template rather than that of ISW2.

Reaction conditions were slowed by lowering the temperature and the ATP concentration such

that ISW2 hydrolyzed 0.52 ATP per second making it possible to examine the early events of

ISW2 remodeling. ISW2 moved nucleosomes 9 and 11 bp in the time it took to hydrolyze one

ATP. These movements were found not to be thermodynamically preferred and would slip a

few more bp farther from the original position to move nucleosomes a total of 14 and 16 bp.

There was no evidence for single bp movements by ISW2 which is often considered to be a

trademark of the twist diffusion model.

Similar experiments were done with SWI/SNF in which the reaction was slowed down so that

SWI/SNF hydrolyzed 0.36 ATP per second [129]. Using the same DNA template as for the

ISW2 experiments, SWI/SNF was found to move nucleosomes 52 bp from their original

position with no other intermediates evident. The approach used to map nucleosome

mobilization by SWI/SNF and ISW2 monitored the DNA contact point of residue 53 of histone

H2B[125,126]. The site-directed mapping showed that for SWI/SNF there were two steps, the

first being the loss of the H2B contact with DNA and then shortly afterwards its reappearance

with DNA at a distance of 52 bp from it prior position. These data suggest that SWI/SNF may

first peel off a large segment of DNA from the nucleosome surface which could be used to

form a large DNA bulge. After this bulge has migrated along the surface of the nucleosome

the contact with histone H2B would be restored as observed. The different step sizes of SWI/

SNF and ISW2 had a striking similarity to their respective footprints on the nucleosome. ISW2

contacts ∼10bp of nucleosomal DNA at SHL2 [130] while SWI/SNF contacts ∼60bp of

nucleosomal DNA from the entry site to SHL2 (JP and BB, unpublished data).

A Common Unifying Characteristic of ISWI and SWI/SNF Remodeling

Translocation along DNA that is driven by ATP hydrolysis of these enzymes is believed to be

required for nucleosome mobilization. Recent discoveries have revealed key aspects of how

DNA translocation is used to disrupt some of the over 100 histone-DNA contacts involved in

the nucleosome architecture. An approach that has provided vital insight into this problem has

been the identification of nucleosomal regions contacted by the remodeler followed by

determination of those regions the remodeler needs to translocate along for remodeling to

occur. High-resolution DNA footprinting has shown that ISW2 contacts three distinct regions

on the nucleosome – the linker DNA, a 10 bp region inside the nucleosome at the entry/exit

site, and a 10 bp region two helical turns from the dyad axis (SHL-2)(Figure 4)[130]. The site

where DNA translocation is required for remodeling was determined by blocking translocation

through the placement of 1 nucleotide (nt) gaps into DNA. A scanning approach was used to

identify the region(s) at which the 1 nt gap would interfere with ISW2 remodeling. A set of

nucleosomes were constructed with gapped DNA containing the 1 nt gap at different positions.

These nucleosomes were remodeled by ISW2 and the remodeled nucleosomes were

electrophoretically separated from the unremodeled nucleosomes. The distribution of DNA
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gaps in the remodeled and unremodeled nucleosomes were compared to find the gap location

(s) that were enriched in the unremodeled nucleosomes and thus those gaps that interfered with

ISW2 remodeling. The striking result was that there was only one region where the 1 nt gap

interfered with ISW2 remodeling coinciding with the region two helical turns from the dyad.

This result was unexpected as it is more difficult to translocate along DNA far inside the

nucleosome in which the flanking regions of DNA are firmly secured by extensive histone-

DNA interactions than DNA either at the entry/exit sites of the nucleosome or linker DNA

region. Similarly, translocation of the remodeler near the dyad axis has been found to be

required for nucleosome mobilization by NURF[128], SWI/SNF[131], and RSC[132]. Yeast

SWI/SNF was shown to have 3'-5'strand-specific translocation activity[129]. Although these

ATP-dependent remodeling complexes have different outcomes in terms of nucleosome

accessibility, they all have in common the requirement for DNA translocation near the dyad

for nucleosome remodeling. DNA photoaffinity labeling studies with ISW2 and SWI/SNF

have shown that the catalytic subunit of these complexes contacts nucleosomal DNA two

helical turns from the dyad consistent with DNA translocation occurring at this site[130].

Two Models

There are two models as to how DNA translocation inside the nucleosome causes nucleosome

movement. The first model proposes that DNA moves in 1 bp waves from the translocation

site to the edge of the nucleosome (Figure 5C). The advantage of this model is it allows

movement of DNA to the outside of the nucleosome without causing any large changes of the

core nucleosome structure and the ease in which DNA torsional strain created by translocation

can be released. Nucleosome crystallographic studies have found that the nucleosome can

readily accommodate overtwisted DNA on its surface. However, data not consistent with this

model has already been mentioned of nucleosome movement occurring in increments much

larger than 1 bp. This model would also not be consistent with the ISW2 data mentioned earlier

as the 1 nt gaps that interfere with remodeling were only in a ∼20 bp region encompassing the

internal contact site and 10 nts to one side of this site. If the 1 bp wave was required to propagate

from the internal translocation site to the entry/exit site of the nucleosome then 1 nt gaps

anywhere between these sites spanning a range of ∼60 bps should interfere rather than the

observed highly localized region.

A second model proposes that translocation of the remodeler synergistically functions in

conjunction with other parts of the remodeler-nucleosome complex to create a DNA bulge of

at least 10 bp on the nucleosome surface. The two prong approach for mobilizing nucleosomes

by ISW2 would involve ISW2 interactions with linker DNA and the entry site associated with

a conformational shift of ISW2 to promote the entry of extra DNA to release the DNA torsional

strain created by ISW2 at the internal site (Figure 5B). This small DNA bulge created between

the entry site and the translocation site is trapped on the nucleosome surface until one of the

two major ISW2 contacts is released. Due to the uniform direction of nucleosome movement

observed for ISW2, it is evident a priori that the internal contact would need to be released for

the subsequent passage of the bulge and proper movement of DNA in the nucleosome. The

model would be essentially the same for SWI/SNF with a few adjustments. The interactions

of SWI/SNF with nucleosomal DNA are much more extensive than ISW2 and thus have the

potential for creating a larger DNA bulge. DNA translocation remains the catalysis that

promotes release of DNA from the nucleosome surface and coordinated with the extensive

binding of SWI/SNF to this DNA region creates a large DNA loop for propagation around the

nucleosome as depicted in Figure 5A.

Further evidence for the loop recapture model with bulge propagation comes from

incorporation of ethidium bromide during nucleosome sliding by ACF [133]. Ethidium

bromide intercalates into free DNA better than nucleosomal DNA and if nucleosomal DNA is
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made accessible during nucleosome mobilization, then site specific intercalation occurs

followed by laser-induced crosslinking creating single-strand breaks at the intercalation sites

[134,135]. Ethidium bromide incorporation was dependent on ACF but independent of ATP

showing that the interaction of remodeler with the nucleosome generated free DNA on the

surface of the nucleosome. Further, ACF can remodel nucleosomes with large biotin moieties

attached to the DNA showing that ‘loop recapture’ could be the actual mechanism for

nucleosome mobilization.

Directional nucleosome mobilization – Role of accessory subunits

While the translocation of the whole complex is brought about by the above mentioned

mechanisms, what determines the direction in which the translocation happens has remained

elusive until recently. The first insights into the directional mobilization came from studies in

Drosophila where ISWI forms multiple complexes which share the same catalytic subunit, but

differ in their subunit composition. ISWI forms NURF, ACF and CHRAC inside the cell. ISWI

alone was able to reposition nucleosomes from the center to the end of a DNA fragment, while

CHRAC complex containing Acf1 and two small histone fold proteins in addition to ISWI

moved nucleosomes from the end to the center[136]. Acf1 appears to be responsible for the

change in the direction of nucleosome mobilization, since addition of Acf1 and ISWI separately

provided the same directional nucleosome mobilization properties as CHRAC. Topological

studies of ISW2 provided vital functional aspects of accessory subunits[130]. Using site-

specific photoaffinity labeling, Itc1p was shown to exclusively interact with linker DNA.

Efficient interaction of ISW2 needs ∼67bp of linker DNA and the majority of this linker DNA

is contacted by Itc1p. Hence, it is most likely that Itc1 orients the complex by contacting the

linker DNA (Figure 5). When a bulge is fed into the nucleosome, Itc1 helps in the directional

propagation of the bulge by preventing the bulge from entering the linker DNA region so that

the bulge can exit from the other side of the nucleosome resulting in directional nucleosome

movement. Absence of the accessory subunits like Itc1p and Acf1 might compromise the

orientation of the remodeling complex and hence directional preference for nucleosome

mobilization.

Directional nucleosome mobilization and nucleosome spacing activity

Nucleosome spacing is defined as the arrangement of nucleosomes in an array with similar

linker DNA lengths between nucleosomes. Only ISWI class of nucleosome remodeling factors

has been shown to possess this property. Drosophila and human ACF and CHRAC, human

RSF[93,137-139] and yeast ISW1a[99] and ISW2[75] complexes can space nucleosomes.

ISW2 complex has nucleosome spacing activity that is not as uniform as that of ISW1a. The

molecular basis for the nucleosome spacing activity of ISWI has not been clear. Interestingly,

the ISWI complexes having a strong directional preference for nucleosome mobilization are

all those that exhibit this spacing activity. For example, ISW1b which can remodel

nucleosomes in both directions from the center to the end of DNA or visa versa does not exhibit

this nucleosome spacing activity (VKG and BB, submitted). ISW1a which has the same

catalytic subunit as ISW1b has a preferred direction for mobilizing nucleosomes and spaces

nucleosomes[99].

ISW2 spaces nucleosomes every ∼200bp (linker DNA length of 67bp) and ISW1a spaces

nucleosomes every ∼175bp (linker DNA length of 30bp). Nucleosome spacing by ISW2 is a

function of its affinity to linker DNA which is predominantly dictated by its accessory subunit

Itc1. Extensive binding of Itc1 with the linker region could prevent nucleosomes from moving

too close to each other and hence the extent of linker DNA interaction determines the spacing

of nucleosomes. Recent studies have shown that a concerted action between the length of the

extranucleosomal DNA and that of the histone H4 tail regulates nucleosome sliding by ISW2

(paper in press). H4 tail helps recruit Isw2p and Itc1p to SHL2, but this is also dependent on
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the length of extranucleosomal DNA. Optimal recruitment by H4 tail occurs when the length

of the extranucleosomal DNA is 70-85 bp. ISW1a appears to have a distinct manner for

regulating spacing. ISW1a interacts with both the entry/exit sites simultaneously when there

is an optimal extranucleosomal DNA length of 30 bp ob both sides and this interaction in turn

abrogates its interaction with the H4 tail.

Role of histone tails and their modification in chromatin remodeling

Initial evidence for the role of histone N-terminal tails came from studies on NURF where the

removal of histone H4 N-terminal tail affected nucleosome remodeling[85,86]. Subsequently,

this feature was found to be a characteristic feature of ISWI containing complexes in other

organisms too. The basic patch of histone H4 tail R17H18R19 is specifically recognized by

ISWI containing complexes[140]. The presence of such an epitope was found to be essential

in generating ATP-dependent regularly spaced nucleosome arrays by RSF[141]. Recent reports

have shown that H3K9me3 mark can actively recruit the PHD domain of NURF[142,143].

Similarly, the same mark was also shown to recruit Isw1p ATPase to chromatin[144].

Interestingly, an essential requirement for the H4 N-terminal tail is not shared by other classes

of chromatin remodelers. Histone modifications were however found to effect the interaction

of SWI/SNF with nucleosomes. Acetylation by SAGA and NuA4 was found to stabilize SWI/

SNF interaction with nucleosome in a bromodomain dependent manner [49,145]. Acetylation

of lysine 8 of histone H4 has also been shown to facilitate recruitment of SWI/SNF[146]. Other

studies in yeast and mammalian systems similarly demonstrate that histone acetylation

mediates the in vivo binding of SWI/SNF to a variety of promoters[147-149]. Acetylation of

histone H3 at a globular region instead of the flexible tail region was also recently shown to

facilitate the in vivo recruitment of SWI/SNF[150]. It was suggested that this enhanced binding

of SWI/SNF could be due to acetylation opening the nucleosome near the entry/exit site at the

site of acetylation. The integrity of the globular domain of H3 seems to be important for SWI/

SNF binding. The L61W change in H3 causes the binding of SWI/SNF to the PHO84 and

SER3 promoters to be lowered and as shown for the PHO84 promoter in a direct manner

[151]. In biochemical assays, histone tails were found not to be essential for remodeling by

SWI/SNF, but were required for the catalytic turnover of SWI/SNF on nucleosomal arrays

[152]. Similarly, deacetylation of histone tails was found to have a similar effect.
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Figure 1.

Similarity of different ATP dependent remodeling complexes in S.cerevisiae. Clustering

of complexes into different subfamilies is dependent on the sequence homology between the

members of the subfamily.
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Figure 2.

Subunit composition of members of each subfamily of remodeling complexes. The

catalytic subunit is marked by an asterisk on the side. Subunits which are shared by multiple

complexes in the same organism are underlined. Sub units which are homologous in different

organisms by virtue of their sequence are shadowed in grey.
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Figure 3.

Domain organization of the various subunits of different chromatin remodeling

complexes. (A) Shown are the domains that have been found in three of the SWI/SNF subunits,

namely Snf2, Snf5, and Swi3. (B) The catalytic subunit of the ISWI complexes from yeast and

flies are compared, as well as that of the large accessory subunit of CHRAC/ACF and ISW2.

(C) The domain organization of the catalytic subunit of the INO80 complex is shown. The

abbreviations for the different domains are bromo for bromo domain, ‘Q’ represents the Q rich

region, ‘CC’ for coiled coil region, ‘R/K’ for Arginine/Lysine rich basic region, and ‘LZ’ for

Leucine Zipper.
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Figure 4.

Nucleosome interactions by ISW2. ISW2 interacts at three distinct sites on the nucleosome

– linker DNA, 10bp into entry/exit site and two helical turns away from the dyad axis (SHL-2)

[130]. Itc1p interacts predominantly with the linker DNA and is represented in red. Isw2p

interacts with linker DNA close to the entry/exit site and near SHL2 and is represented in black.

Regions where both Isw2p and Itc1p are present are represented in blue. Dpb4p interaction is

restricted to the linker DNA and is represented by green circles.
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Figure 5.

Two models for nucleosome remodeling.

(A) SWI/SNF interacts with a large section of nucleosomal DNA and this interaction may

facilitate in peeling DNA off the surface of the histone octamer. The generation of a large DNA

loop on the surface of the histone octamer would next propagate along the nucleosome surface

[129].

(B) Unlike SWI/SNF, ISW2 generates smaller bulges of ∼10bp by a concerted action of two

contact points along the nucleosomal DNA – one at SHL2 and the other at the entry/exit site

and extranucleosomal DNA (1 and 2) [129]. After formation of the bulge, the bulge is allowed

to move in the correct position by release of the contact at SHL2 (3).

(C) The RSC model with generation of a 1bp wave by a concerted action between the torsion

and tracking domains within the ATPase motif of Sth1p. The 1bp wave propagates along the

nucleosomal DNA as depicted [132]
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