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Abstract

Autophagy is the process of cellular self-eating by a double-membrane organelle, the 

autophagosome. A range of signaling processes converge on two protein complexes to initiate 

autophagy: the ULK1 protein kinase complex and the PI3KC3-C1 lipid kinase complex. Some 

90 % of the mass of these large protein complexes consists on non-catalytic domains and subunits, 

and the ULK1 complex has essential non-catalytic activities. Structural studies of these complexes 

have shed increasing light on the regulation of their catalytic and non-catalytic activities in 

autophagy initiation. The autophagosome is thought to nucleate from vesicles containing the 

integral membrane protein Atg9, COPII vesicles, and possibly other sources. In the wake of 

reconstitution and superresolution imaging studies, we are beginning to understand how the ULK1 

and PI3KC3-C1 complexes might coordinate the nucleation and fusion of Atg9 and COPII 

vesicles at the start of autophagosome biogenesis.
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Introduction

Macroautophagy (hereafter “autophagy”) is the main mechanism used by eukaryotic cells to 

degrade cargoes that are larger than individual proteins. It is also the main mechanism for 

eukaryotic cells to replenish pools of biosynthetic precursors and energy sources by 

recycling cytosolic contents during starvation. Both the process of autophagy and its 

machinery is conserved from yeasts (S. cerevisiae and S. pombe) (1) to mammals (2). 

Autophagy can be either selective or non-selective (“bulk”). Selective autophagy removes 

and recycles harmful or simply unneeded materials from the cell. These include protein 

aggregates, damaged mitochondria, unneeded peroxisomes, excess ribosomes, ER and 

endosomes, lipid droplets, and intracellular pathogens (3, 4). Failure to control the 

accumulation of any of these types of materials can lead to disease in humans. Excellent 

reviews cover the relationship of autophagy to neurodegeneration (5), cancer (6), aging (7), 

infection (8), and other diseases. Bulk autophagy is triggered by starvation, and is critical for 
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maintaining a cellular supply of lipids, amino acids, carbohydrates, and nucleotides. 

Selective and bulk autophagy are triggered by different signals. Yet, these diverse signals are 

thought to funnel into a single pathway that initiates the mechanical events and membrane 

remodeling needed to create the autophagosome. This review will focus on the conserved 

and common events that initiate both selective and bulk autophagy. Far more is known about 

bulk autophagy initiation. The review will focus mostly on data from bulk autophagy 

research, with the understanding that most of the findings probably apply to selective 

autophagy.

Autophagy is initiated in yeast at a punctate structure called the Pre-Autophagosomal 

Structure (9) (PAS, also sometimes called the Phagophore Assembly Site; Fig. 1). In 

mammals, initiation is associated with an endoplasmic reticulum (ER) subdomain enriched 

for the lipid phosphatidylinositol 3-phosphate (PI(3)P), known as the omegasome (10). From 

its inception at the PAS or omegasome, the phagophore elongates into a cup-shaped 

structure and begins to engulf cellular material. The membrane supply for phagophore 

growth can apparently be sourced to a variety of cellular reservoirs (11). In selective 

autophagy, the cargo itself templates the size and shape of the phagophore (4, 12, 13). In 

bulk autophagy, it is less clear how this occurs, but the actin cytoskeleton is involved (14). 

Finally, the cup closes upon itself. The narrow gap at the tip of the cup fuses, leading to the 

complete sequestration of the material inside. The outer membrane of the autophagosome 

then fuses with the lysosome (vacuole in yeast or plants) to form structure known as the 

autolysosome. At this stage, the inner membrane and all of its contents are degraded. This 

review will focus on the earliest steps in the process: the formation of the PAS in yeast and 

the formation of autophagy initiation sites in mammals, and the initial nucleation of the 

phagophore.

The conserved machinery for autophagosome formation (15–17) contains two major 

initiation complexes that are a central focus of this review: the ULK1 complex (known as the 

Atg1 complex in yeast) and the class III PI 3-kinase complex I (PI3KC3-C1) (Table 1). The 

sole conserved transmembrane protein in the core machinery, Atg9, is also closely connected 

to initiation. The PI3P binding WIPI 1–4 proteins and the Atg8-family and Atg12 

conjugation systems (Atg3, Atg4, Atg5, Atg7, Atg10, Atg12, Atg16, LC3s, and 

GABARAPs; Table 1) function downstream and drive phagophore elongation. Conjugation 

of Atg8/LC3 family proteins to phosphatidylethanolamine, known as “LC3 lipidation” for 

short, is the hallmark downstream reaction driven by these proteins. These Atg proteins were 

discovered for their roles in autophagy and are primarily dedicated to this function, although 

“moonlighting” roles in non-autophagic functions have been reported (18). Multipurpose 

membrane trafficking factors also have essential roles in the pathway. In many cases, these 

roles are also conserved from yeast to humans. These factors include the coat complexes 

COPI and COPII, the vesicle- and organelle-identifying RAB GTPases, and SNARE 

proteins of vesicle fusion (19–21). In selective autophagy, a variety of adaptor proteins link 

cargoes to the autophagy machinery, including p62, Optineurin (OPTN), and NDP52 (3, 4, 

22).
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The ULK1/Atg1 Complex

Autophagy initiation starts with the activation of the ULK1 complex (Atg1 complex in 

yeast) (23–25). ULK1 is part of a family of kinases ULK1–4 in humans. Isoform ULK1 is 

the most important of these in autophagy. In some cells lines it is necessary to block both 

ULK1 and ULK2 to completely shut down autophagy, however ULK2 is less characterized 

and will not be discussed further. The ULK1 complex consists of ULK1 itself, and the non-

catalytic subunits FIP200, ATG13, and ATG101 (26–28) (Fig. 2B). FIP200 is a large 

predicted coiled coil protein involved in scaffolding (29). ATG13 and ATG101 contain 

HORMA (Hop/Rev7/Mad2) domains (30) which heterodimerize with each another (31–33). 

ATG13 contains a long IDR (intrinsically disordered region) following the HORMA 

domain, and the C-terminal part of its IDR contains motifs that bind to the C-terminal EAT/

tMIT domain of ULK1 (34). The budding yeasts organize their Atg1 complexes in a 

uniquely complicated way. The Atg1 subunit itself is organized into the same domain 

structure as ULK1. Atg13 is conserved, but ATG101 is absent from budding yeasts. FIP200 

is replaced by two scaffolding subunits: Atg11, which functions in selective autophagy (35), 

and Atg17, which functions in bulk autophagy (36, 37). Atg17 in turn co-assembles with 

two smaller subunits, Atg29 and Atg31 (38, 39) (Fig. 2A).

The large scaffolding subunits Atg11 and FIP200, whose structures are unknown, are similar 

to each other in size and predicted helical content. Their C-terminal domains are 

homologous, suggesting a common function. Atg17 is smaller than Atg11 and FIP200, and 

aside from a similar helical content, has little sequence similarity with Atg11 and FIP200. It 

is often stated in the literature that Atg17 and FIP200 are orthologs. It is important to bear in 

mind that this inference, while reasonable, is based on functional parallelism, not detailed 

sequence or structural similarity.

ULK1/Atg1 kinase activation and inactivation

ULK1/Atg1 is activated in at least three ways upon autophagy induction, and all three are 

essential. Protein kinase activity needs to be switched on, the active kinase needs to be 

recruited to the PAS, and essential – though still vaguely defined–non-catalytic scaffolding 

activities must be turned on. Autophosphorylation of the kinase domain’s activation loop at 

Thr180 of ULK1 (40, 41) (Thr226 in yeast Atg1 (42, 43)) is essential for activation. 

Autophosphorylation is promoted by conditions that induce autophagy and by co-assembly 

with other subunits of the complex (42, 44, 45). This co-assembly in turn increases the local 

concentration of Atg1 molecules and promotes their mutual autophosphorylation. This can 

occur both in selective autophagy under nutrient-rich conditions (44) and in starvation (45). 

Following activation, ULK1 (and PI3KC3-C1) can be ubiquitinated by the Cul3-KLHL20 

ligase complex and degraded (46), thereby switching off the autophagy initiating signal.

How does starvation trigger Thr180 phosphorylation of ULK1? Autophosphorylation is 

usually promoted by the dimerization or higher-order oligomerization of kinases. The C-

terminal EAT domain of Atg1 dimerizes in isolation (34, 39, 47), however, full-length Atg1 

is reportedly a monomer in the absence of other subunits (48). It is currently not clear 

whether Atg1 undergoes regulated dimerization via its EAT domain under some conditions. 
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ULK1 is bridged by ATG13 to the scaffolding subunit FIP200 (26–28). In yeast, Atg13 

bridges to Atg11 (49) and Atg17 (36, 37). While the oligomeric state of FIP200 and Atg11 

is unknown, Atg17 is a constitutive dimer (38, 39). The recruitment of ULK1 to FIP200 via 

the intermediation of ATG13 could in principle be a mechanism for ULK1 trans-

autophosphorylation.

Whether and how starvation regulates formation of the Atg1 complex has been intensively 

investigated, yet consensus has been elusive. mTORC1 (TORC1 in yeast) is a master 

regulator of cell growth and metabolism, and its inactivation in response to amino acid 

depletion is a major trigger for autophagy (50). In the canonical model of the process in 

yeast, Atg13 is phosphorylated by TORC1 under non-starved conditions (51). The extensive 

phosphorylation inhibits the assembly of Atg13 with Atg1, and Atg13 with Atg17, by 

introducing steric and electrostatic repulsion into the binding sites on Atg1 and Atg17 (34). 

In a contrasting report, it was found that the Atg1 complex is assembled constitutively in 

yeast in both nutrient-rich and starved conditions (52). Of 51 reported phosphorylation sites 

within yeast Atg13, six fall within the crystallographically defined Atg1-binding site. 

Mutation of all of these sites from Ser to the phosphomimetic Asp only reduces Atg1 

binding by a factor of three (34). The effect of Atg13 phosphorylation on Atg17 binding 

may be larger. Two of the 51 reported phosphorylation sites occur in the Atg17 binding site 

of Atg13. Phosphomimetic mutations in these two residues substantially disrupt binding 

(34). Phosphoregulation at the level of the Atg17-Atg13 interaction thus seems to lead to 

bigger affinity changes than for the Atg1-Atg13 interaction. FIP200 and Atg11 are less 

tractable biochemically than Atg17, and little is known at the quantitative and structural 

level about how ULK1 and Atg1 association with these two scaffolds is regulated. It is often 

stated that ULK1 is assembled constitutively in mammalian cells (26–29), yet on the other 

hand, the mammalian ATG13-ATG101 subcomplex appears to have autophagic functions 

that are independent of the ULK1 complex (53).

Other regulatory mechanisms function in parallel to, or even antagonize mTORC1/TORC1 

regulation (Fig. 2C). AMPK (AMP-activated protein kinase) upregulates autophagy in 

response to energy depletion as detected by an increase in cytosolic AMP (54). AMPK 

directly phosphorylates ULK1 at multiple sites in its central IDR (40, 55–59), leading to its 

activation. The details of how these IDR phosphorylation sites communicate with the 

catalytic domain remain to be elucidated. In selective autophagy, ULK1 must be locally 

active even under fed conditions when mTORC1/TORC1 is also active. Relatively little is 

known about how the ULK1 complex is sheltered from inactivation under these conditions. 

Huntingtin, the protein product of the gene mutated in Huntington’s disease, interacts with 

ULK1 and has been proposed to have such an ULK1-shielding function (60)

ULK1 recruitment to initiation sites

Recruitment of the ULK1 complex to sites of autophagy initiation is the second regulated 

step in its activation. In bulk autophagy in yeast, PAS recruitment is regulated at the level of 

Atg13 phosphorylation. Atg17, along with its accessory proteins Atg29 and Atg31, is the 

first protein to arrive at the PAS is yeast (61), which set the stage for the recruitment of 

Atg13 and Atg1 as described above. The EAT domain of ULK1, the locus for ATG13 
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binding, is essential for its recruitment to the sites of phagophore initiation in human cells 

(62). This suggests that the principles for recruitment are similar in this respect in yeast and 

mammals.

A number of other protein-protein interactions influence ULK1 localization to the site of 

phagophore initiation. The LC3 family proteins bind to LIR/AIM motifs in both human and 

yeast ULK1/Atg1 (52, 63) and in human ATG13 (63). LC3 conjugation is thought to occur 

downstream of ULK1 activation, however, and the LIR/AIM motifs seem likely to be 

involved in later events in autophagosome biogenesis. The yeast Atg1 complex binds to 

Atg9 through a direct interaction between the HORMA domain of Atg13 and the N-terminal 

soluble domain of Atg9 (64), and perhaps also through Atg17 (48, 65). Yeast Rab1 (Ypt1) is 

a small G-protein better known as a regulator of ER-Golgi and intra-Golgi traffic, binds to 

Atg1 and helps recruit it to the PAS (66). Ypt1 is activated and recruited to the PAS by the 

TRAPPIII complex, which binds to Atg9 (67) and Atg17 (66). TRAPPIII is also implicated 

in mammalian autophagy (68, 69).

C9orf72 is a protein that is mutated in the most common hereditary forms of amyotrophic 

lateral sclerosis (ALS) and frontotemporal dementia (FTD). C9orf72 was very recently 

shown to be important for the RAB1A dependent recruitment of ULK1 to the sites of 

phagophore initiation in human cells (70). C9orf72 contains a DENN domain, and in many 

cases DENN domain proteins act as RAB guanine nucleotide exchange factors (GEFs). 

Apparently the C9orf72 DENN binds to RAB1A but lacks GEF activity, making C9orf72 a 

RAB1A effector rather than a RAB1A GEF. It has been proposed that impairment of ULK1 

recruitment to autophagy initiation sites in C9orf72 mutants is responsible for their disease 

phenotype (70). Thus, a circuit involving ATG9, RAB1A, and TRAPPIII appears to be 

important for the recruitment of ULK1 to autophagy initiation sites.

ULK1 substrates

The ULK1 kinase transduces pro-autophagic signals by phosphorylating many substrate 

proteins (25). The ULK1 consensus site is characterized by a preference for hydrophobic 

residues surrounding the serine phosphoacceptor (71, 72). This is not a rare sequence, and 

the numerous substrates of ULK1 include itself and other subunits of the ULK1 complex; 

other elements of the core autophagy machinery, including PI3KC3-C1 subunits and Atg9; 

and other proteins whose connections to autophagy are understood to varying extents (25, 

71). Within the ULK1 complex, there are phosphorylation sites in ATG101 and multiple 

sites in FIP200 and ATG13 (72). The ATG101 phosphorylation sites, Ser11 and Ser203, are 

at the start of the ATG101 HORMA domain, and in a flexible region just past the end of the 

HORMA domain, respectively.

The PI3KC3-C1 complex, another pivotal autophagy initiating complex, is one of the most 

important and best understood targets of ULK1 phosphorylation. ULK1 phosphorylates 

Ser15 and other sites in BECN1, activating the PI3KC3-C1 complex and promoting 

autophagy (72, 73). The PI3KC3-C1 catalytic subunit VPS34 contains a major ULK1 

phosphorylation site at Ser249 (72). The consequences of these phosphorylations are 

discussed further in the PI3KC3-C1 section. The massive PI3KC3-C1-associated IDR 
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protein AMBRA1 is another ULK1 substrate (74). In yeast, Atg9 is an important substrate 

for Atg1 (71). ULK1 is critical for selective as well as bulk autophagy. It phosphorylates the 

cargo adaptor protein p62, increasing the binding affinity of p62 for ubiquitin (75). ULK1 

also phosphorylates FUNDC1 to promote mitophagy (76). Many of these phosphorylations, 

including those of ULK1 and PI3KC3-C1 subunits, seem to be very important in autophagy 

initiation, while in other cases such as Atg9, the effect is further downstream.

Non-catalytic functions of the ULK1/Atg1 complex

ULK1/Atg1 probably regulates autophagy induction at a third level, through its non-catalytic 

activities. These are essential for autophagy initiation, at least in yeast (77–79). Some 90 % 

of the mass of the ULK1/Atg1 complex consists of non-catalytic domains (24). We will 

enumerate some of the non-catalytic functions imputed to these domains. The ULK1/Atg1 

EAT domain dimerizes and is capable of tethering high curvature lipid vesicles in vitro (39, 

47), which could be relevant to vesicle clustering at the PAS. The dimeric Atg17 subunit of 

the yeast Atg1 complex has a double crescent shape (39) that suggests it could not just tether 

vesicles, but scaffold them rigidly into a specific geometry preceding cup formation. The 

combination of Atg1 and Atg17 dimers provides a mechanism for higher-order assembly of 

daisy-chained or branched assemblies of Atg1 complexes at the PAS (80). Moreover, the C-

terminal IDR of Atg13 has at least two Atg17 binding sites, located such that they must 

bridge different Atg17 dimers (45). Taken together, the dimerization data and the 

crosslinking ability of Atg13 suggests a meshwork model for organization of the PAS (Fig 

2D).

Mammalian ATG13 and ATG101 form a heterodimeric subcomplex consisting of the 

HORMA domains of the two proteins. ATG101 has a hydrophobic binding site revealed by 

the crystal structures that has been dubbed the “WF finger” (31–33). The binding partner of 

the WF finger is not known, however it is clear that the ATG13, ATG101 and FIP200 have 

functions in autophagy that are fundamentally important and independent of the ULK1 (and 

ULK2) kinases (53, 81).

The PI3KC3-C1 Complex

The class III Phosphatidylinositol 3-kinase (PI3KC3) phosphorylates the lipid head group of 

phosphatiylinositol to generate phosphatidylinositol 3-phosphate (PI(3)P) (82). Formation of 

PI(3)P is an essential early event in autophagy initiation, occurring just downstream of 

ULK1 (83, 84). PI3KC3 forms at least two distinct complexes, known as complexes–I and II 

(PI3KC3-C1 and –C2) (83, 84). Both complexes contain the catalytic subunit VPS34/Vps34, 

the putative protein kinase VPS15/Vps15, and BECN1/Atg6. PI3KC3-C1 contains ATG14L/

Atg14 (84–89), which directs the complex to phagophore initiation sites. PI3KC3-C1 

facilitates elongation while complex II containing UVRAG directs endosome and 

autophagosome maturation, reviewed elsewhere (82).

For many years, progress in understanding the structure of PI3KC3-C1 was gradual and 

fragmentary. Structures of the VPS34 catalytic and associated helical domain (90), the 

central coiled coil (91) and C-terminal BARA (92, 93) domains of Vps30/BECN1, and the 
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WD40 domain of Vps15 (94) were all solved separately. More recently, the structure of the 

complete human complex I was solved by electron microscopy (95), revealing a V-shaped 

architecture. The x-ray crystal structure of yeast complex II showed a conserved architecture 

and domain placement (96) and added new information, including the presence of a BARA-

like domain in Vps38 (yeast UVRAG). The left hand side of the complex (as seen in the 

canonical view, Fig. 3A) includes the central coiled coils and C-terminal domains of BECN1 

and ATG14L. The N-termini of BECN1 and ATG14L are at the base of the V. A number of 

regulatory signals, described below, converge on these sites. On the right hand side is the 

catalytic subunit VPS34 and the protein kinase domain of VPS15. VPS15 bridges the left 

and right arms of the complex. Its WD40 domain is part of the left arm, and serves as a 

docking site for BECN1 and ATG14L, while its HEAT domain spans the two arms. Similar 

to the situation with the ULK1 complex, the catalytic domain of VPS34 comprises just 

~10 % of the mass of the PI3KC3-C1 complex. Its placement within the context of the rest 

of the much larger V-shaped complex highlights the likely importance of the regulatory and 

scaffolding roles of the non-catalytic ~90%.

PI3KC3-C1 recruitment to the PAS

The functioning of PI3KC3-C1 in autophagy requires its translocation to the PAS, which is 

driven by its unique ATG14L subunit (84–89). A cysteine-rich domain near the N-terminus 

of ATG14L is essential for its starvation-induced translocation to the phagophore initiation 

sites (88). The structure of this domain is unknown, as is its putative interaction partner at 

phagophore initiation sites. A C-terminal amphiphatic helix deemed the BATS domain 

(Barkor/ATG14L Autophagosome Targeting Sequence) (97), which is an example of the 

larger class of amphipathic lipid packing sensor (ALPS) motifs (98), is also important for 

targeting. This is thought to be due to its ability to bind high-curvature lipids, although it is 

important to note that ALPS motifs can also bind loosely packed low curvature membranes 

such as are found at the ER (99).

In addition to the complex I- and autophagy-specific PAS- and ER-targeting motifs in 

ATG14L, other regions of the PI3KC3-C1 and –C2 have been implicated in binding less 

specifically to membranes. The C-terminal BARA domain of BECN1, at the tip of the left 

arm, is proposed to insert into membranes via an aromatic finger (93). On the opposite side 

of the V-shape is VPS34, whose final kα12 helix must bind membranes in order for lipid 

phosphorylation to take place (90). On the other hand, although it had been expected that the 

C2 domain of VPS34 would binds membranes, the structure of complex II suggests that the 

C2 domain is only involved in protein-protein interactions. Finally, the N-myristoylation of 

VPS15 provides one more membrane contact (100). The actual geometry of PI3KC3-C1 and 

–C2 docking on membranes through the various known and putative anchoring motifs is still 

unknown, and will be important to clarify.

PI3KC3-C1 regulatory proteins

The kinase activity of PI3KC3-C1 is regulated through post-translational modifications and 

a variety of protein-protein interactions. The cast of players that interact with PI3KC3-C1 is 

extensive and leads to the suggestion that the “two-complex” model is an oversimplification. 

Hurley and Young Page 7

Annu Rev Biochem. Author manuscript; available in PMC 2018 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PI3KC3-C1 associates tightly with a fifth subunit, known as NRBF2 (Nuclear Receptor 

Binding Factor 2) (101–103) in mammals and Atg38 (104) in yeast. NRBF2/Atg38 contain 

an N-terminal three-helix bundle MIT (Microtubule-Interacting and Transport) domain and a 

coiled-coil-containing domain at the C-terminus (105) that induces dimerization. NRBF2 

binds to the base of complex I through interactions with the N-terminus of ATG14L and 

BECN1, enhances kinase activity in vitro and leads to the dimerization of human complex I 

(106) (Fig 3B). Although yeast Atg38 is dimeric as well, it does not facilitate yeast PI3KC3-

C1 dimerization (105). Mammalian PI3KC3-C1 dimerization and kinase activation by 

NRBF2 seem to be completely decoupled from one another (106). Since kinase dimerization 

is not required for its enzymatic activation, both the mechanism of allosteric activation and 

the biological function of dimerization remain to be clarified.

The anti-apoptotic factor Bcl-2 (B-Cell lymphoma 2) binds to the BH3 (Bcl-2 Homology 

domain) of BECN1 (107), which places its location in the complex close to, and perhaps 

even overlapping, with the NRBF2 binding site (106). The affinity of Bcl-2 is fifty time 

lower than that of NRBF2 (106). Unlike NRBF2, Bcl-2 rapidly exchanges on and off 

PI3KC3-C1 (106). Bcl-2 binding to BECN1 inhibits VPS34 kinase activity and antagonizes 

autophagy (108). Because the binding site is remote from the lipid kinase domain, the 

mechanism for this inhibition is unknown, but presumably must involve long-range 

allosteric communication. Additionally, BECN1 is capable of binding with other anti-

apoptotic Bcl-2 family members (Bcl-XL, Bcl-w, Mcl-l) through its BH3 domain (107). 

Only ER-localized Bcl-2 is capable of inhibiting autophagy, and mitochondrial Bcl-2 was 

not (108).

AMBRA1 (Autophagy and Beclin 1 Regulator 1) binds to PI3KC3-C1 in cells and promotes 

autophagy (109). A full biochemical characterization with recombinant proteins is still 

lacking, as the size of this IDR protein makes it challenging to study. AMBRA1 is 

phosphorylated by ULK1 as described above, which is proposed to activate PI3KC3-C1 by 

releasing it from microtubules (74). The most recent addition to the family of PI3KC3-C1 

interactors is PAQR3 (progestin and adipoQ receptor 3), a Golgi localized multipass 

transmembrane protein that has been proposed to promote autophagy by helping to assemble 

PI3KC3-C1 (110). The degree to which PI3KC3-C1 assembly (as opposed to the better-

studied topics of the acute regulation of its enzyme activity and localization) as a regulated 

step has been relatively less explored.

PI3KC3-C1 phosphoregulation

BECN1 is phosphoregulated by at least six kinases: ULK1, MAPKAP2 (mitogen-activated 

protein kinase-activated protein kinase 2), AMPK, and DAPK (death-associated protein 

kinase) that promote autophagy activation while Akt and EGFR phosphorylations suppress 

autophagy. ULK1 activates PI3KC3-C1 by phosphorylating BECN1 at Ser15 (73). Upon 

stress, the kinases MAPKAPK2/3 phosphorylate BECN1 at Ser90, leading to autophagy 

activation (111). Upon glucose starvation, AMPK enhances autophagy by phosphorylating 

BECN1 at Ser90 and Ser94 (112). Ser90 phosphorylation is reversed by protein phosphatase 

2A (PP2A) (113), which is upregulated by starvation (114). Ser15, Ser90, and Ser94 are all 
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located in the flexible N-terminal portion of BENC1, and it is still unknown how these 

signals are communicated to the catalytic domain.

DAPK phosphorylates BECN1 at Thr119, which is located within the BH3 domain, and 

thereby inhibits binding of Bcl-2 and Bcl-X-L (115). AMPK, which is generally pro-

autophagic, seems to selectively suppress the activity of the endosomal and late autophagy 

PI3KC3-C2 by phosphorylating Thr163 and Ser165 in VPS34 (112). EGFR suppresses 

autophagy through phosphorylation of BECN1 at Tyr229, Tyr233, Tyr352 (116), which 

might, in principle, regulate assembly of the coiled-coil complex. Additionally, autophagy 

suppression can occur through phosphorylation at the C-terminus of ATG14L by mTORC1 

(mechanistic Target Of Rapamycin Complex 1) at positions Ser3, Ser223, Ser233, Ser383, 

and Ser440 (117). Akt catalyzes yet another negative regulatory event, phosphorylation of 

Ser295 on an exposed loop of the BECN1 BARA domain. Ser295 phosphorylation seems to 

inhibit autophagy by promoting PI3KC3 association with 14-3-3 proteins and vimentin, 

rather than by directly modulating lipid kinase activity (118). Phosphatases that remove 

these signals have not been reported, however it has been reported that the Cul3-KLHL20 

ligase complex promotes the ubiquitination of BECN1 and VPS34, thereby targeting 

PI3KC3-C1 for degradation (46). It is still difficult to rationalize many of these effects at the 

structural level. This will require obtaining structures at higher resolution and comparison of 

phosphorylated and dephosphorylated states at the structural level.

Role of vesicles in autophagy initiation

In yeast, a growing body of evidence suggests that the autophagosome is nucleated by the 

coalescence of Atg9 and COPII vesicles (119–122). In yeast, Atg9 vesicles are derived from 

the trans-Golgi network (TGN) (119), while COPII vesicles emerge from ER exit sites 

(ERES) (123). Both Atg9 and COPII vesicles seem to have central roles in autophagy 

initiation in mammals, as well. In mammals, the phagophore begins at a tubular outgrowth 

(124–126) of the PI(3)P-positive domain of the ER known as the omegasome (10). The 

relationship between the tubular outgrowth and the pool of COPII vesicles is still unclear. 

Here we focus on recent advances in understanding the roles of the vesicles themselves in 

initiating autophagy.

Atg9 vesicles

Atg9 is the only integral membrane protein that is essential for autophagy (127, 128). This 

large protein (997 residues in yeast) contains six predicted transmembrane helices spread 

through its central region, and has large cytosolic IDRs in its N- and C-terminal regions. 

Atg9 self-associates within membranes into a higher-order assembly (129). Atg9 is 

incorporated in small vesicles of diameter 30–40 nm (119) or 30–60 nm (120). While other 

Atg proteins are often diffusely distributed in the cytosol under nutrient rich conditions, as a 

membrane protein, Atg9 vesicles reside in a vesicular reservoir (130). Atg9 vesicles are 

generated and transported from the Golgi (131, 132). In yeast, the process depends on Atg23 

and Atg27 (131) and the Rab/Rab GEF pair Sec4 and Sec2 (133). In nutrient rich conditions, 

Atg9 localizes to the trans-Golgi network and early and late post-Golgi endosomes (134).
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In starvation, Atg9 vesicles are mobilized to the PAS by TRAPPIII (67, 69, 134) and, in 

yeast (64) but apparently not mammals (135), by the Atg1 complex. Specifically, the yeast 

Atg13 HORMA domain binds to the N-terminus of Atg9, which is much shorter in 

mammals. In one estimate, three Atg9 vesicles containing ~27 molecules of Atg9 each 

assemble at the PAS (120). In yeast, Atg9 is important for recruiting Atg2 (136, 137) and 

PI3KC3-C1 (64) to the PAS. The amount of Atg9 expressed in cells appears to control the 

frequency of autophagosome formation (138). Phosphorylation of the N-terminal domain of 

Atg9 by an unknown kinase upregulates the recruitment of Atg9 to the PAS and its ability to 

initiate autophagy (139). Clearly, the bulk lipid contributed by such a small number of 

vesicles is a miniscule fraction of what is needed to generate an autophagosome. Consistent 

with this idea, mammalian ATG9A is not a bulk component of autophagosomes (140), but 

rather seems to recycle out of the phagophore prior to closure. Thus, the importance of Atg9 

seems to more as an organizing center for the initial nucleation of the phagophore.

COPII vesicles in autophagy

The COPII coat consists of the Sar1 GTPase, the inner membrane- and cargo-binding Sec23 

and Sec24 subunits, and the outer cage-forming Sec13 and Sec31 subunits (141). COPII 

vesicles have a long-established role, unrelated to autophagy, as the initial carriers of 

secretory cargo out of the ER (123). COPII was first implicated in autophagosome 

biogenesis when mutants in Sec23 and Sec24 and in the COPII associated ERES proteins 

Sec12 and Sec16 were shown to be defective in autophagy (142). COPII was subsequently 

found to be physically connected to other core elements of autophagy initiation in yeast, 

including the Atg1 and PI3KC3-C1 complexes (121). In yeast, the Rab1 ortholog Ypt1 

activates the casein kinase 1 (CK1) ortholog Hrr25 to phosphorylate Sec23, which is 

required for COPII vesicle sorting to the PAS (143). COPII vesicles are targeted for 

membrane fusion in autophagy by the ER SNARE protein Ufe1, which is a Q(a) SNARE 

and a member of the syntaxin family (144). The COPII vesicle tethering TRAPPIII complex 

is implicated in autophagy initiation in both yeast (134, 145, 146) and mammals (68, 69).

In mammals, most of the output of ERES is directed to the cis-Golgi via the ER-Golgi 

intermediate compartment (ERGIC) (123). The ERGIC is the depot for sorting by both the 

COPI and COPII coats in mammals (123). ERGIC membranes support LC3 lipidation in a 

cell-free system (147, 148). In human cells, the ERES protein tectonin β-propeller 

containing protein 2 (TECPR2), which is mutated in a hereditary spastic paraplegia, 

connects the COPII subunit SEC24D to LC3C (149). Super-resolution imaging of 

mammalian autophagy initiation sites shows that ATG9 vesicles and the ULK1 complex 

subunit ATG13 coalesce with ERGIC components COPI, COPII, and ERGIC53 (150) (Fig. 

4). Collectively, these data provide compelling evidence that COPII vesicles have a 

conserved role in autophagy initiation. The ER is closely associated with autophagosome 

biogenesis, and COPII vesicle production provides an appealing mechanism for the 

exchange of membrane from the ER to the phagophore. In contrast to the situation with 

ATG9 vesicles, COPII vesicles can be formed in large amounts and so could presumably 

account for the bulk membrane needed for autophagosome biogenesis, but this has yet to be 

confirmed quantitatively.
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Conclusion

The “parts list” of autophagy initiation is becoming increasingly well defined. Building on 

the identification of the key initiating proteins in yeast (1, 15), proteomics and mammalian 

cell biology have fleshed out many additional components (15, 68). With the parts list 

approaching, perhaps, completion, the big question is how all these parts work together to 

create the phagophore de novo. As with many other complex processes of cells, the 

mechanics of how Atg proteins come together with vesicles to create phagophores occurs on 

the nanoscale, i.e., the length scale of 10s on nm. In the recent past, the experimental 

autophagy research has relied extensively on diffraction-limited fluorescence microscopy, 

co-immunoprecipitation, and protein phosphorylation studies. These now-traditional 

approaches have yielded many important discoveries, yet they will not be able to break 

through to resolving the nanoscale mechanisms involved in phagophore initiation. 

Superresolution and cryo-electron microscopy methodologies are advancing quickly, and the 

advances are quickly being adopted in autophagy research (151). The imaging approaches 

will generate more insights that can be contemplated on the structural scale, and the 

structural biology studies are expanding in scope to approach the size scales reachable by 

superresolution imaging. Thus far the insights generated by cell imaging and structural 

biology have yet to truly converge. Yet it seems that such a convergence will be inevitable. 

At that point, the rate-limiting step may change from technical challenges to the conceptual 

challenge of embracing the complexity that these methods are bound to reveal.
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Figure 1. The autophagy program
(A) Preautophagosome assembly site (PAS). (B) PAS elongates into phagophore to surround 

bulk cytosolic materials. (C) The geometry of phagophore closure. (D) The closed 

autophagosome. (E) The autophagosome merges with the lysosome; the new organelle is the 

autolysosome.
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Figure 2. 
The autophagy initiation complex in yeast and mammals. (A) In budding yeast, vesicles 

containing Atg9 are phosphorylated by the S/T kinase Atg1, additionally, the N-terminus of 

Atg9 makes a direct contact with the HORMA domain Atg13. Atg13 in turn make contacts 

with the Atg17-29-31 scaffold. (B) Based on yeast observations, it is proposed that small 

vesicles containing ATG9 interact with the autophagy initiation complex- the S/T kinase 

ULK1, the HORMA domain containing ATG13 forms a heterodimer with the HORMA 

domain of ATG101, FIP200 is modeled on the structure of Atg17. However, the yeast 

interaction site in Atg9 is not conserved in humans. (C) ULK1 is inhibited by mTORC1. 

When mTORC1 is inactivated, ULK1 becomes activated, thereby leading to 

autophosphorylation within ULK1, ATG13, ATG101 and FIP200- multiple phosphorylation 

sites occur within ATG13, one is shown for clarity. ULK1 then phosphorylates ATG9, and 

PI3KC3-C1- at the N-terminus of BECN1 and within the C2 domain of VPS34. Inset: 

mTORC1 directly phosphorylates ATG14L of PI3KC3-C1. (D) From research in the 

budding yeast model system, the Intrinsically Disordered Regions (IDRs) within Atg1 and 

Atg13 as well as the position of Atg13-Atg17 contacts lead a proposed mechanism in which 

ATG proteins form a “meshwork.”
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Figure 3. Autophagy specific PI3KC3-C1
(A) Yeast PI3KC3-C1 is composed of the lipid kinase Vps34, the scaffold and potential 

protein kinase Vps15, the regulatory subunit Atg6, the phagophore targeting subunit Atg14. 

A dimer of Atg38 binds to one heterotetramer. (B) Mammalian PI3KC3-C1 is composed of 

the lipid kinase VPS34, the scaffold and potential protein kinase VPS15, the regulatory 

subunit BECN1, the phagophore targeting subunit ATG14L. The binding of dimer of 

NRBF2 to the heterotetramer creates leads to the dimerization and the formation of a 

homopentamer.
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Figure 4. Model for Autophagy initiation at ER Exit Sites, the Omegasome
The omegasome provides for the initiation of autophagy. The omegasome is enriched with 

the lipid PI3P that is generated by PI3KC3-C1. The ULK1 complex activates PI3KC3-C1 

through phosphorylation. Arrows denote that PI3P can diffuse through the membrane. PI3P 

is also enriched at ER Exit Sites (ERES), where COPII vesicles emerge. Inset: COPII 

vesicles interact with the TRAPPIII complex, which binds to ATG9/Atg9 and ULK1/Atg1.
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