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Propositions 
 

1. A farm is still infectious even when it no longer exists (This thesis: Chapters 5 
and 6). 
 

2. Farms visited by the people in white coverall (call them crisis organisation teams) 
are the most likely to be infected but these people are the least likely to have 
caused this infection (This thesis: Chapter 3). 
 

 
3. Without models (mathematical or statistical), data is nothing more than just some 

numbers or noise (adapted from Chris Anderson, wired magazine 2008). 
 

4. In managing disease epidemics, it is equally important to know more about the 
transmission dynamics of a pathogen as it is to have an efficacious drug against 
the pathogen.  
 

 
5. The frequency of social gatherings (BBQs and drinks) is directly proportional to 

the quality and progress of scientific research. 
 

6. Good quality research is related to the mode of travel to meetings: asking a 
senior scientist for a ride is the best option to  obtain new scientific ideas. 
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Abstract 

Ssematimba, A. (2013). Mechanisms of avian influenza virus transmission between 

farms: combining data collection and mathematical modelling. PhD Thesis, 

Wageningen University, Wageningen, the Netherlands. 

 

The lack of sufficient knowledge on the mechanisms of between-farm spread of 
livestock diseases hampers the development of much needed effective and fast control 
strategies. Some of the mechanisms responsible for pathogen spread can be deduced 
from epidemic tracing reports and literature while others can only be hypothesized from 
findings of studies on daily farm practices throughout the production round. For 
outbreaks without known/traced transmission routes, the concept of ‘neighbourhood’ 
infection is often adopted. This concept was founded based on the distance-
dependence of the transmission risk with geographical proximity to an infectious farm 
being the key determinant of risk. Mathematical modelling plays an important role in 
obtaining quantitative insights into the contributions of the different mechanisms to 
disease spread. This can be by ranking the contributions of the individual transmission 
routes and/or obtaining a generic distance-dependent transmission risk. The models 
can guide the design of control strategies by providing a means to assess the efficacy 
of intervention strategies. In this thesis, modelling was used to assess the contributions 
of the wind-borne route and the other (traced) between-farm contacts to the 
transmission of highly pathogenic avian influenza during an epidemic in the 
Netherlands in 2003. It was found that these two routes together could only explain 
approximately 31% of the infections/cases. Visits by epidemic control teams were the 
least risky indicating the effectiveness of their biosecurity protocols in preventing 
transmission. New data on day-to-day farm practices and farmer opinion was collected 
in an attempt to generate hypotheses on transmission pathways and mechanisms that 
were yet to be appreciated. Indeed relevant unappreciated practices were found. They 
include irregularities in compliance to biosecurity as well as a broad category of 
neighbourhood-related risks. A new modelling approach to study neighbourhood 
transmission was developed guided by indirect transmission experiments. It involves 
the approximation of the pathogen dispersal process by a diffusive transport 
mechanism. Applying this diffusion model to the outbreak data of 2003, it was found 
that assuming delayed transmission, as opposed to instantaneous transmission, is an 
important phenomenon to be considered when modelling disease spread between 
locations.  This modelling approach has the added advantage of availing an opportunity 
to assess the performance of intervention strategies without detailed mechanism-
specific information. 
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Highly Pathogenic Avian Influenza  
 
Background on outbreaks in poultry and humans 
 

Highly Pathogenic Avian Influenza (HPAI) is among the World Organisation for Animal 
Health (OIE) listed diseases. Its first description dates back to 1878 in Italy [1].The first 
report of an HPAI outbreak caused by a virus of H5 subtype was in 1959 [2] and more 
have been reported since then. H5 and H7 are so far the only subtypes that are highly 
pathogenic in poultry.  HPAI viruses in poultry evolve from Low Pathogenic Avian 
Influenza (LPAI) viruses that are common in wild waterfowl [3-5]. The virus may enter 
into poultry as a LPAI strain and subsequently evolve into an HPAI strain. The 1999 
H7N1 epidemic in Italy [6] and the 2003 H7N7 epidemic in the Netherlands [7,8] are 
examples of the devastating HPAI epidemics involving H7 subtype strains that are said to 
have evolved from LPAI strains. Alexander and Brown[9] mentioned that HPAI virus 
emerged independently at least 11 times of which four epidemics involved millions of 
birds. Consequences of these epidemics are enormous and include among others: a high 
risk of spread to other farms [10], high mortality rates, economic losses incurred in 
implementing control strategies and reduction in exports [11,12] and, above all, a risk of 
spread to humans for some strains (both of the H5 and H7 subtypes) [7,13].   

One of the most catastrophic influenza pandemics in the previous century is the 1918-
1919 Spanish flu which resulted into between 20 and 50 million human fatalities[14]. 
Because of this catastrophic epidemic, the panzootic and zoonotic characteristics of the 
H5 and H7 subtype strains have raised public health concern [3]. It is hypothesized that 
the H5 and H7 subtype strains may evolve into future pandemic human strains [5,15,16]. 
The first outbreak of an avian influenza A virus strain (of the H5N1 type)  in humans 
occurred in 1997 Hong Kong, affecting at least 18 individuals, six of whom died [17]. 
From 2003 until 2nd May, 2012, a total of 603 human cases of influenza A/H5N1 type 
strains, different from the 1997 Hong Kong strain, have been reported with 356 deaths 
registered. For the H7 subtype strain, during the Dutch 2003 epidemic, 89 people were 
infected one of whom died [7]. Therefore, thorough knowledge on the dynamics of avian 
influenza viruses and on the control of its epidemics is not only important to livestock 
industry but also for public health. 
 
The Dutch 2003 H7N7 HPAI epidemic 
 

In 2003, an H7N7 HPAI epidemic occurred in the Netherlands and spread to a few 
farms in Belgium and Germany. In the Netherlands, the virus was isolated from 241 
flocks and 14 flocks were serologically positive and approximately 30 million birds were 
killed [7,8,18]. Specifically 168 layers, 18 turkeys, 34 breeders, two broilers, two ducks, 
13 pets and four categorized as others were affected [19]. The virus affected eight 
farms in Belgium and one farm in Germany [20,21]. The OIE and European Commission 
guidelines and regulations to control HPAI epidemics include among others a ban on 
transport of live poultry and poultry products, and the implementation of strict biosecurity 
measures. In reference to the Dutch 2003 epidemic, following diagnosis of the first 
cases in late February, movement bans were implemented after five days and other 
control measures followed. However, more farms became infected and in the second 
week of March the preventive culling of contiguous flocks was introduced[8]. The direct 
costs such as costs of lost birds and costs of controlling the epidemic in the 
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Netherlands alone were more than 250 million euros, whereas the indirect costs such 
as lost markets were even higher [11,12].  

This epidemic was characterized by high attack rates, high mortality and a rapid 
spread to naïve farms through untraced transmission routes [8,10,22]. More than 80% 
of the cases of the Dutch epidemic are reported to have occurred through spread 
between farms by untraced routes [8,10,22,23]. Pathogens can be spread through both 
‘direct’ and ‘indirect’ contacts. Direct contact involves the introduction of infected 
animals onto a susceptible farm whereas indirect contacts involve the transfer of 
infectious material between farms by other routes than live animals. Transmission 
during most of the epidemic is likely to be dominated by indirect routes as this 
transmission occurred in the presence of a ban on animal movement. This indirect 
transmission may probably be associated with human or fomite involvement by 
transferring infective organic material such as manure between locations [2,5,22,24-26].  
The continued spread of the HPAI during epidemics may indicate the existence of 
unappreciated mechanisms. It is likely to be aided by transmission routes/mechanisms 
(untraced) that are neither controlled by the control strategies nor by the enhanced 
biosecurity. This spread is also referred to as ‘neighbourhood’ transmission.  For the 
Dutch epidemic, the transmission risk was found to increase with decreasing distance to 
infected farms (Figure 1) and therefore the risk was higher for farms in the high poultry 
farm density areas [10].  

Stegeman et al. [8] concluded that the epidemic was only contained due the reduction 
in the number of susceptible flocks by complete depopulation of the affected areas and 
not likely to have been due to a reduction in transmission by other control measures. 
However, the massive preventive killing of animals is criticized more and more, mainly 
on ethical grounds. One of the reasons for the use of massive slaughter as a means to 
prevent further transmission of the pathogen may be the lack of substantive knowledge 
about the underlying mechanism(s) of neighbourhood transmission of the infection. Yet 
the development of alternative control strategies, in particular individual biosecurity 
measures, requires more insight into these underlying mechanisms [22]. This is because, 
in contrast to measures that eliminate susceptible farms which have the same effect on 
all transmission routes, improving biosecurity typically acts on a subset of the between-
farm transmission routes. More insights into the between-farm disease mechanisms can 
be gained through a combination of experimental and modelling work [27]. For 
example, mathematical models can be used to extrapolate findings from experimental 
studies on indirect transmission to infer about the general problem of neighbourhood 
transmissions between farms. 
 
Mathematical models as a tool to guide the design of control strategies  
 

Mathematical models play an important role in understanding the dynamics of 
infectious diseases [27-30]. They can be used to guide predictive and contingency 
planning during epidemics [31,32]. They provide a means to interpret data from past 
and on-going epidemics as well as experiments by aiding the estimation of disease- 
and epidemic-related parameters. The quantitative information obtained helps to 
improve preparedness for future epidemics. This information can be used to estimate 
the required vaccination coverage to achieve herd immunity as well as to guide the 
assessment of the efficiency of newly proposed control strategies. For example the role 
of interventions such as improved biosecurity can be assessed through quantifying 
transmission probabilities and incidence rates. 
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Using data from the 2003 HPAI epidemic in the Netherlands, models have been 
used to estimate important parameters such as the transmission rate, the basic 
reproduction ratio, the date of introduction of the virus on to the farm and to assess the 
effectiveness of control strategies [8,10,33,34]. Other examples on the use of models 
and data from other epidemics can be found in [35-39]. Quantitative information 
provides a basis for the design of control strategies for HPAI epidemics. Through a 
review on avian influenza modelling literature, de Jong and Hagenaars [40] describe 
how quantitative information can be used to guide model building, parameter estimation 
and model validation. They emphasize the importance of combining modelling with data 
(from outbreaks and/or experiments) in order to generate this information.  
 
Mechanistic and statistical modelling 
 

Through quantitative approaches such as modelling, mechanistic insights into the 
spread of infectious diseases are gained. This insight is needed to improve intervention 
strategies during epidemics. Mathematical models are generally grouped into analytical 
and simulation models with the former being further subdivided into the mechanistic 
(stochastic or deterministic) and statistical models [40] although some statistical 
techniques such as the Bayesian approaches may involve simulation. Therefore, 
typically, analytical models are not necessarily fully analytically solvable and are often 
times evaluated in part analytically (e.g. in the calculation of ܴ ଴) and in part numerically. 
Numerical evaluation can be exact (almost always possible for deterministic models) or 
through model simulation (often necessary for stochastic models).Statistical and 
spatiotemporal modelling and analysis techniques are used to generate risk maps for 
geographical disease spread as well as to determine the critical farm density for spread 
among others [10,28,41-43].  

In relation to HPAI spread, this approach has been used by Boender et al. [10] to 
analyse the 2003 Dutch epidemic and also by Dorigatti et al. [41] to analyse the 1999 
H7N1 Italian epidemic. The transmission kernel (depicting the distance-dependent 
transmission risk) obtained in the Boender et al.[10] study is shown in Figure 1. That 
study aimed at determining the distance-dependence of the overall transmission risk as 
well as to generate risk maps for HPAI spread. No attempt was made to assess the 
contribution of the individual mechanisms to this risk, an aspect that would largely 
benefit the development of better control strategies. For example, if derived, the route-
specific quantitative information can be used to parameterise mathematical models that 
assess the efficacy of intervention strategies such as improved biosecurity against 
those mechanisms during epidemics.  

Using mechanistic approaches as opposed to the statistical ones provide an 
opportunity to gain deeper understanding into the mechanisms underlying 
neighbourhood transmission. In this thesis, an attempt to ‘break down’ the transmission 
kernel (Figure 1) into its constituent mechanisms based on the outbreak and modelled 
data is made. 
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Figure 1.  The transmission kernel as a function of inter-farm distance (Obtained from 
Boender et al. (2007)) 
 
Mathematical modelling and other approaches in this thesis 
 

In this thesis, a comprehensive approach is adopted to analyse the Dutch 2003 
epidemic data to quantify the possible contributions of various between farm links to the 
overall transmission risk (Figure 1). The dispersal mechanisms may include the traced 
and untraced between farm contacts as well as the other untraceable (i.e., mechanisms 
that are impossible to trace for example rodents and insects that may move between 
farms) and indirect mechanisms such as the wind-borne route.  The contribution of the 
direct contacts (human and fomites) −hence the assumption of instantaneous 
transmission− and the windborne route is determined. Thereafter an attempt is made to 
fill the gaps in the known (and hence traced) contacts by collecting more data. Lastly, the 
possibility of between farm spread being a combination of instantaneous and delayed 
transmission−in which pathogen dispersal is approximated by a step-by-step diffusion 
process is investigated.  

The quantitative contributions to disease spread of the between-farm contacts during 
the Dutch 2003 HPAI epidemic are determined. They are quantified through per-contact 
probabilities of virus transmission as well as through estimating distance-dependent 
transmission probabilities. In addition to that, the proportion of cases explained by each 
of these routes is determined. Figure 1 is used as a reference for the comparison to 
access the proportion explained by a given route for example the windborne route. New 
data on possible HPAI transmission routes and mechanisms was collected to guide the 
elucidation of new pathways and mathematical and statistical models are used to 
analyse this and the existing data from the epidemic.  

When analysing epidemic data, it is difficult to make the link between the timing of 
individual between farm contacts and the onset of infection at the receiving farms. The 
lack of knowledge on the exact timing of onset of infection as well as the possibility of 
long distance transmission motivate the search for more insight on the dispersal 
mechanisms of pathogens between farms. For example, for long distances, 
transmission may not be instantaneous because infectious material may take time to 
disperse between the two farms. To explore this possibility, the original assumption of 
instantaneous transmission adopted in estimating the transmission kernel for the Dutch 
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2003 epidemic [10] is put to test. The effect of incorporating delayed transmission on 
the predictive power of transmission kernels estimated from epidemic data is also 
investigated.  
 
Thesis aim and outline 
 

Indirect transmission plays a role in the spread of livestock diseases between farms. 
The approaches developed in this thesis help in gaining more insight into the 
transmission mechanisms by already implicated and the newly hypothesized 
mechanisms. The main aim of this thesis was to gain more quantitative insight into 
plausible mechanisms underlying neighbourhood transmission of HPAI. The techniques 
developed throughout this thesis are also applicable in the study of indirect transmission 
of other livestock and human diseases. It is hoped that the outcomes of this study will 
guide the update and extension of the existing control measures against the spread of 
infectious livestock disease between farms.  

In Chapter 2, mathematical models are used to assess the role of the windborne route 
in the between-farm spread of the virus. In Chapter 3, the contributions of the traced and 
modelled/unknown between-farm contacts during the 2003 epidemic are assessed 
through the quantification of their per-contact transmission probabilities and the 
estimation of the number of new infections they potentially caused. In Chapter 4, based 
on the findings from an interview study conducted in the Dutch poultry industry, new 
potential transmission pathways are hypothesized and a qualitative transmission risk 
assessment of these and the already known pathways is made.  In Chapter 5, 
experimental and modelling approaches are combined to gain insight into indirect 
transmission. Pathogen dispersal is approximated by a diffusion process and a diffusion 
model is used to analyse transmission data from experiments. Finally in Chapter 6, the 
role of delayed transmission during epidemics is investigated. Spatiotemporal analysis on 
part of the Dutch 2003 HPAI outbreak data is performed by applying the diffusion model 
derived in Chapter 5 to the data to explore the use of the model as a description of the 
between-farm transmission of avian influenza during that epidemic. 
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Abstract 

 

A quantitative understanding of the spread of contaminated farm dust between 

locations is a prerequisite for obtaining much-needed insight into one of the possible 

mechanisms of disease spread between farms. Here, we develop a model to calculate 

the quantity of contaminated farm-dust particles deposited at various locations 

downwind of a source farm and apply the model to assess the possible contribution of 

the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus 

(HPAI) during the 2003 epidemic in the Netherlands. The model is obtained from a 

Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, 

and a model for the infection process on exposed farms. Using poultry- and avian 

influenza-specific parameter values we calculate the distance-dependent probability of 

between-farm transmission by this route. A comparison between the transmission risk 

pattern predicted by the model and the pattern observed during the 2003 epidemic 

reveals that the wind-borne route alone is insufficient to explain the observations 

although it could contribute substantially to the spread over short distance ranges, for 

example, explaining 24 % of the transmission over distances up to 25 km.  

 

Keywords: highly pathogenic avian influenza; windborne spread; Gaussian plume 

model; particle settling; pathogen decay; deposition 

 

Introduction 

 

Highly Pathogenic Avian Influenza virus (HPAI), Classical Swine Fever Virus (CSFV), 

and Foot-and-Mouth Disease Virus (FMDV) are highly contagious viruses affecting 

livestock and are among the World Organisation for Animal Health (OIE) listed diseases. 

The consequences of their recent epidemics in the Netherlands [8,44,45] have been 

enormous and include high mortality rates, economic losses incurred in implementing 

control strategies and reduced exports, and for HPAI, a risk of spread to humans [7,8]. 

During the 2003 HPAI epidemic in the Netherlands, following detection of the first 

outbreaks in late February, movement bans were implemented followed by other 

control measures. Nevertheless, more farms became infected and therefore in the 

second week of March the measure of preventively culling contiguous flocks was 

adopted. In the end, 255 flocks were affected over the course of the epidemic and close 

to 30 million birds were culled; in addition, the virus was transmitted to 89 people 

causing one fatality [7]. Between 80% and 90% of the outbreaks occurred through 

untraced routes, with the farm infection hazard increasing in the vicinity of earlier infected 

(but as yet undetected) farms [10,22]. The sustained between-farm transmission despite 

extensive control measures demonstrated the difficulty of controlling HPAI spread in 

poultry-dense areas. 
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The mechanisms underlying the between-farm spread of HPAI are not clearly 

understood, especially those of indirect transmission (involving vectors or fomites and 

possibly wind-borne transfer), as opposed to direct transmission (transportation of live 

animals between farms) [8,10,22]. Indirect transmission has played a major role in large 

epidemics involving viruses such as CSFV [46,47] and FMDV [42].  In the analysis of the 

Dutch 2003 HPAI epidemic data, Boender et al. [10]  used statistical spatial-temporal 

modelling techniques and identified high risk areas for epidemic spread. The same 

technique of using a spatial transmission kernel was used by [42,48] in studies on the 

between-farm spread of FMDV in Great Britain. Although important insights, helpful for 

the development of control strategies laid out in contingency plans, were gained from 

these analyses, a lack of mechanistic (as opposed to statistical) understanding of the 

between-farm spread currently impedes the further improvement of these strategies. 

For example, the extent to which biosecurity measures on farms contribute to limiting 

indirect transmission is unclear, as is how these measures can be improved. 

With stringent control measures put in place during epidemics including bans on the 

movement of animals, the direct spread of the virus is reduced. Therefore, indirect 

routes such as contamination of personnel and fomites do become the only pathway of 

virus spread. Indirect transmission could arise from human vectors transferring infective 

excreta such as manure from infected to recipient animals [24,25,49], mechanical transfer 

of excreta [5,22,24] or a possible combination of these mechanisms. 

The need to determine whether wind-borne transportation of the virus is one of the 

untraced routes of HPAI spread between farms is apparent. The simplest way possible 

is that where the virus is transported by wind from an infected farm directly to an 

uninfected farm as has been considered in plume models for FMDV spread [50-54]. 

Otherwise, the dispersal may be through a multi-stage process. In such a process, the 

virus may be transported from infected animals to recipient animals by wind during 

certain parts of the route and by other means (for example humans and vehicles) on 

other parts. Both scenarios require quantitative insight into the deposition pattern of 

(contaminated) farm dust. 

Davis et al. [55] conducted a study on the spread of Equine Influenza in Australia in 

2007. They concluded that virus was spread over 1-2 km via wind-borne aerosols. 

However, the significance of wind-borne spread of HPAI is subject to divergent opinion. 

This lack of consensus was mentioned by Power [56], who also noted the absence of 

any testing to support or refute a wind-borne theory of HPAI spread during the 

epidemics in Italy and the Netherlands. This route is often considered insignificant, but 

with no serious underpinning based on quantitative evidence. For example, Swayne 

and Suarez [25] suggest that although aerosols and wind-borne contamination may 

have caused some secondary spread during the New South Wales HPAI H7N4 

epidemic in 1997, they should not be regarded as important in the spread of infection. 

Yet in the analysis by Power [56] of the 2004 H7N3 AI epidemic in Abbotsford, BC 

Canada, air samples taken around the infected poultry houses confirmed the circulation 

of HPAI in the air outside the barns. This motivates our aim to quantitatively assess 
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whether, and to what extent, this route may have played a role in the Dutch 2003 HPAI 

epidemic.  

We do this by developing a model for wind-borne transmission of HPAI between 

farms, and comparing its predictions for the distance-dependent wind-borne 

transmission risk with the observed transmission risk in the Dutch 2003 H7N7 epidemic 

[10]. In our analysis, where possible, we use the Dutch 2003 H7N7 HPAI strain to 

quantify HPAI-specific parameters such as the within-flock basic reproduction ratio 0R . 

In our model, we consider the wind-borne dispersal and deposition of farm dust 

contaminated with HPAI. Our way of including deposition (that is, particle settling and 

accumulation on the ground) is in contrast to the existing plume models for wind-borne 

spread of FMDV and allows us to consider infection risks from inhalation by poultry of 

the originally deposited dust that becomes air-borne due to chicken activity instead of 

direct inhalation of air-borne dust arriving at ground level. We also include virus decay, 

as this influences the infection risks arising from deposited dust. Our model framework 

also allowed us to investigate dust deposition patterns between farms, which is relevant 

as a possible component of multi-stage indirect transmission mechanisms.  

 

 

Materials and Methods  

 

In this section, we describe all the processes involved in the wind-borne spread of 

disease between two poultry farms. We start by modelling particle dispersion and 

deposition and proceed to determine the quantity of viable virus available in the 

deposited quantity. We then determine the distance-dependent risk of infection for 

farms downwind of an infected farm. Lastly, we compare our model estimates for 

distance-dependent probability of infection with a kernel derived from the Dutch 2003 

HPAI epidemic data [10] that presents the averaged distance-dependent probability of 

infection. 

 

Dispersion model 

 

Dust plume dispersion is assumed to originate from an elevated point source on a 

poultry house. A model of the motion and deposition of the (contaminated) dust plume 

is then used to calculate the quantity of viable virus in dust deposited at various 

locations as the plume moves. This model incorporates particle settling and pathogen 

decay and the principles of a 3D-Gaussian Plume Model (GPM) and assumes no 

barriers to the plume. This is a worst-case assumption for the Dutch situation since 

these barriers would reduce the distance covered by wind-dispersed particles. 

The GPM used in this study was obtained by solving a simplified version of the 

general Advection-Diffusion (A-D) equation (Supporting Information S1). The classic 

GPM does not consider that during downwind motion the dust particles may settle 

down due to gravitational and other forces. However, we consider this process to be 
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essential for two reasons: first, particle settling reduces the amount of dust moving 

further downwind, and second, we will be interested in the exposure of animals 

downwind to virus in settled dust. Hence, the first extension we make is incorporating 

particle settling, at a velocity v, into the classic GPM (Supporting Information S1). 

Particle settling leads to a shift, of magnitude 
x

v
u

, in the plume centre, where 
x

u
 is the 

duration of plume flight. This gives the adjusted model as   

 
 
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2 2
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Here H is the effective release height, u is the wind speed,  , , ,C x y z t  is the 

concentration of material at any location  , ,x y z  at time t,  xQ t
u

  is the “mass 

flux” or strength of the emitting source, and 
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y
K   

and zK  are respectively the lateral and vertical eddy diffusivities. The factor 

 xQ t
u

u


 represents the total cross-sectional amount of dust per meter at a given 

location a distance x away from the source and 
   

2

2

1
exp

22 yy

y

xx 

  
      

 and 

   

2

2

1
exp

22 zz

x
z H v

u

xx 

           
 
  

are respectively the lateral and vertical 

dispersion components. Equation (1) was derived earlier (see Peterson and Lighthart 

[57] and Lighthart and Mohr [58]) and is used here as a starting point in the 

development of a calculation of the deposition pattern of the emitted particles.  

  

Deposition model 
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Particle deposition occurs as a consequence of the vertical plume expansion due to 

diffusion and particle settling due to gravitation. To model deposition, we first calculate 

the cumulative quantity deposited per square meter between the source and distance x, 

 cum , ,D x y t from the difference between the total quantity emitted and the part of the 

plume that is still air-borne at this point. Mathematically, this quantity is given by 

integrating the product of the total cross-sectional amount of dust and the vertical 

dispersion component in equation (1) with respect to z from negative infinity up to zero 

and multiplying it with the lateral dispersion component as  

   
   

2

cum cum 2

1
, , , exp

22 yy

y
D x y t D x t

xx 

  
       

   (2a) 

where 

 
 

   

2

0

cum 2
, exp

22 zz

x
z H vxQ t uu

D x t dz
xu x  

             
 
  

 .  (2b) 

The quantity deposited per unit area per second at a specific point at a distance x from 

the source  , ,D x y t  is now obtained from equation (2a) by taking the co-moving 

derivative 
d

u
dx

 of the cumulative quantity  cum ,D x t  as 

   
   

2
cum

2

, 1
, , exp

22 yy

dD x t y
D x y t u

dx xx 

  
       

.   (3) 

An alternative way to calculate the total deposited quantity in a GPM, by integrating  the 

vertical diffusion and settling rates of particles at ground level, is described in [59]. 

We then calculate the total quantity deposited per second on a rectangular area hA  

that is 2a units wide (crosswind direction) and 2b units long (downwind direction). If this 

area is always directly under the plume centre (that is, with no change in wind direction 

during the time of interest), we obtain this quantity by first integrating equation (3) with 

respect to y between the limits  ,a a  and integrate with respect to x between the 

limits  ,x b x b  . If we consider an off-plume-centre location  cos , sinr r   at 

distance r from the source farm and at an angle   with the wind direction, the 

integration with respect to x is between the limits  cos , cosr b r b    and the one 
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with respect to y is between the limits  sin , sinr a r a    that is, 

   
sin 2

2

sin

1
exp

2 cos2 cos

r a

yr a y

y
dy

rr



   





  
      

 . 

Carrying out the lateral integration explicitly yields the expression that estimates the 

total quantity deposited per second on an area hA that is 4ab square units, located at a 

distance r from the source as  

 
 

       

2

cos

2

cos

1 sin sin
, , exp Erf Erf .

4 22 2 2

r b

zr b z y y

x
H vxQ t x a r a ruu

f r t H v dx
x u xx x x





 


  





                                   
 

  (4) 

  

Accumulation and pathogen decay 

Consider virus particles emitted in a “puff” spanning a time interval  0 1,t t  and 

decaying exponentially with rate constant  . The accumulation and decay factor is 

obtained (see Supporting Information S1) as 

 

  

     

0 0 1

1 0 1

1
exp exp ,

1
, exp exp ,

0, otherwise

x x x
t t t t t

u u u

x
A t x t t t t t t

u

 


 


               
           





.  (5)  

It describes the accumulation of viable pathogen over time and gives the expected 

proportion of the particles that are still viable at time t. It takes into account virus decay 

during plume flight and while on the ground after deposition and its distance-

independence is due to the fact that decay starts as soon as particles are released. 

The total contaminated quantity  Total , ,D r t  available at a given location 

 cos , sinr r   downwind after time t is obtained by taking the product of equations 

(4) and (5) as 

     Total , , , , ,D r t A r t f r t  .   (6) 

Equation (6) defines the model for our study. In order to make a direct comparison of 

our predictions with the result of Boender et al. [10] which is a kernel describing the 

distance-dependence of transmission risk (averaged over all directions), we integrate 
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the deposition function over all possible downwind directions and normalize the 

outcome. This gives the average contaminated quantity deposited as 

   
2

2

Average Total

1
, , ,D r t D r t d





 
 

  .   (7) 

 

This yields a fairly complex expression and thus the analytical insight obtained from it is 

limited. Therefore, most of the results discussed below are obtained by numerical 

analysis.  

 One question of interest is the distance from the source to the point of maximum 

deposition. This distance is calculated by solving the equation 
 Average ,

0
dD r t

dr
  for 

r, which again gives a complicated expression. Hence a numerical exploration of the 

effects of varying the model parameters is performed in the sensitivity analysis 

(Supporting Information S1).  

 

Estimating the distance-dependent infection risk for the receiving farms 

 

Virus amount and infection probability models 

 

 To translate the predicted deposition of dust into virus amount we use results reported 

by Shortridge et al. [60] for the  virus titer v  in originally wet faeces held at 25oC for 4 

days. The log-transformed virus amount in w  grams,  w is given by 

  10log
v

w w        (8) 

in units of log10EID50. Subsequently, we determine the probability of infection of a chicken 

for a given virus amount inhaled based on a dose-response curve that we obtain by fitting 

to experimental data of Spekreijse et al.[61]. We use a dose-response function 

(probability of infection as a function of dose) as derived by Lange and Ferguson [62] 

based on assuming that there is a finite probability of infection for any virus amount even 

though the probability decays exponentially fast with reducing virus amount. For an 

inhalation involving w  grams, the probability of infection  p w  is given by 

 
  

1

1 exp
p w

w 


 
.    (9) 

where   and   are the shape parameters for the fitted logistic curve. This dose-

response function is consistent with the Independent Action Hypothesis [63]. 

 

The inhalation model 



Modelling Wind-Borne Spread of Avian Influenza 

23 

Chicken activities such as pecking, wing flapping, dust bathing and other 

movements suspend the already settled virus particles that they subsequently inhale. A 

study on determining the lung volume of chickens [64] reports a volume of 
5 31.4 10 m for a 24 days-old broiler chicken (which gives the limiting air sampling 

capacity  maxV  used in this study) and another study to determine the respiratory rate 

of chickens [65] reports a range of 27 to 31 min-1. Furthermore, since the components 

of farm dust which include faeces, skin and feathers, bedding material and feed-

remains are not equally infectious, part of this material acts merely as a vector onto 

which the infectious part colloids during dispersal. The contaminated fraction  c
F  is 

taken to be 10% which is the relative amount of excreta in the litter attributable to 

chicken droppings [66]. More to that, the contaminated dust originating from infected 

premises is diluted upon mixing with (initially uncontaminated) resident dust. The 

resulting composition of the dust to be inhaled is determined by scaling the quantity of 

the incoming contaminated dust by the amount of resident dust per unit area in a 

poultry house  ResidentD  to obtain the fraction of contaminated dust in the total 

whirled-up dust. The concentration of inhaled dust is estimated by multiplying an 

estimate of the average dust concentration in a poultry house  C  with a concentration 

ratio c describing how much the average concentration is exceeded closely above the 

ground.  We use the average of the ratios of dust concentrations at 40 cm and 260 cm 

from [67]. Combining these model elements gives the weight of infectious material Iw  

inhaled per inhalation as 

 Average

max

Resident

,
I c

D r t
w V F c C

D

 
      
 

.   (10) 

 

The within-flock epidemic model 

 

 Upon intake of the virus, infection may or may not occur depending on the virus 

amount inhaled. Given a successful first infection, subsequent infections at the farm 

level may occur, resulting into a major outbreak on the farm. In this study, infection risk 

is defined as the ability of the deposited virus to cause an infection of at least one 

susceptible bird in a flock and this bird being able to set off a major within-flock 

epidemic. For a flock with N birds, the hourly probability  k
p t of infecting k birds is 

given by 

       
1

1 1 1
i k

N k f f

k

k

N
p t p p

k





 
    

 
 ,   (11) 
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where p  is the probability of infection per inhalation defined using equation (9) as 

 I
p p w . 

 For a disease which has a within-flock basic reproduction ratio 0R  (defined as the 

number of secondary infections caused by a primary case in an entirely susceptible 

population), where for 0 1R  , a major outbreak can occur, otherwise only a minor 

outbreak can occur [68], the probability of a major outbreak within the flock given k 

initial infections is 

0

1
1

k

R

 
  
 

. Therefore, the overall probability of infection of the flock 

FinalP  can be obtained from the product of the probability of having k initial infections 

and the probability that these infections cause a major within-flock epidemic as 

 Final
11 0

1
1 1 1

k
i

k

kt

P p t
R





               
 .   (12) 

We note that, unlike the deposition pattern, the probability of infection does not depend 

on available chicken space hA . Rather, as described by equation (10), it is limited by 

the sampling capacity maxV  of the chicken. 

 

Assessing the contribution of the wind-borne route 

 

The contribution of the wind-borne route to the epidemic is here determined by the 

fraction of new cases that it can explain. We use the concept of the between-farm 

(basic) reproduction ratio (as defined in the Supporting Information S1) to compute this 

fraction.   

 

Estimates for the parameters applicable to the HPAI situation 

 

General and HPAI-specific parameter estimates are used in this study to 

quantitatively assess the possible role of the wind-borne route in the indirect 

transmission of the virus. They are categorised into dispersion, pathogen, host and 

farm related parameters. 

Dispersion-related parameters include the emission quantity  1gsQ


 (which 

depends on the number birds on the farm, concentration of dust  3gmC


 and 

ventilation rate  1gs ), particle settling velocity  1msv


, effective release height 
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 mH , wind speed  1msu


, vertical and lateral eddy diffusivity  2 -1m szK  and 

 2 -1m syK  respectively. The total dust emission rate (both inhalable and respirable), 

taken from Takai et al. [69] is 
10.0122 ghr per bird and the total dust concentration is 

30.0052gm
. The average settling velocity for broiler house particles reported by 

Gustafsson and Mårtensson [70] is approximately 
10.01ms . The effective release 

height was estimated as 6 m, based on the poultry house height of 5 m [67]  and 

assuming an initial plume rise due to buoyancy of 1 m. According to Berge et al. [71], 

the vertical eddy diffusivity for outdoor plume modelling is 
2 -10.03m s . 

The pathogen-specific parameters are the decay rate constant  1s 
 and dose-

response parameters which depend on the combination of pathogen- and host-specific 

characteristics. For a virus that survives for 4 days [60,72], the decay rate constant is 

calculated to be 
6 12.89 10 s  . The host-specific parameters include the number of 

breathes per chicken per hour  f  and the parameters that (through equation (9)) 

determine the probability of infection given an inhalation  p . The farm-specific 

parameters include the flock size and the basic reproduction ratio  0R . The estimate 

for the transmission rate parameter    that Bos et al. [73] obtained using Dutch 2003 

epidemic data is 4.5 per infectious chicken per day.  To estimate the chicken infectious 

period infT , they used data from an experiment in which 7 out of 10 chickens died 

(resulting into inf 4T  days), and the remaining 3 survived till the end of the 

experiment, here taken as 7.5 days that is, the average time between infection and 

depopulation during the outbreak [10]. In this study, these two pieces of information are 

combined to obtain a weighted average for the infectious period of 5.05 days and 

consequently, a within-flock 0R  for the H7N7 HPAI strain of 22.7. For other strains of 

the virus, 0R  may be smaller, for example, it is estimated to be between 2.2 and 3.2 for 

the H5N1 HPAI strain [35]. Based on 7-days mortality data used in [73] and using a 

simple SIR model for within-flock transmission, we estimate that the reported mortality 

would correspond to an average number of infectious birds per day in a flock of roughly 

100.  To estimate the prevailing wind speed, we used  data recorded at three weather 

stations ( two in the central and one in the southern part) in the Netherlands during the 

epidemic ( the period between February 28th and May 31st 2003) (available on the 

website: http://www.knmi.nl/klimatologie/daggegevens/selectie.cgi). From the 

downloaded data, we calculated the average (minimum-maximum) wind speed during 
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the outbreak as   13.7 1.0 8.5 ms . Here we use the average and perform a 

sensitivity analysis over the whole range (Supporting Information S1).  A summary of all 

the parameter estimates is given in Table 1.  

 

Table 1. Default parameter values used in the model calculations 
 

Parameter Value Source 
Total dust emission rate, ܳ 0.0122	g hr-1per bird

 Takai et al. [69] 

Total dust concentration, 0.0052 ܥ	gm-3 Takai et al. [69] 

Concentration ratio, ܿ 1.03∗ Yushu and Baoming [67] 
Log-transformed virus titer, ߬v 

1.5 log
10

EID
50

/g
 Shortridge et al. [60] 

Particle settling velocity, 0.01 ݒ	ms-1 Gustafsson and Mårtensson [70]; 
Hinds [74] 

Decay rate constant, 2.89 ߣ × 10ି଺ s-1 Webster et al. [72]; 
Shortridge et al. [60] 

Wind speed, 3.7 ݑ	ms-1* Meteorological data (KNMI) 

Flock size, ܰ 10,000∗ Thomas et al. [22] 
Effective release height, 6 ܪ	m* Yushu and Baoming [67] 
Eddy diffusivities, ܭ௭ 	and ܭ௬ 0.03	m2s-1 Berge et al.  [71] 

Infection rate per day, 4.5 ߚ	day-1 Bos et al. [73] 

Weighted infectious period, ܶ 5.05	days*
 

Bos et al. [73] 
Basic reproduction ratio, ܴ଴ 22.7* Bos et al. [73] 

Dose-response curve 
parameters ߙ and ߛ 

4.76	and − 1.87* Spekreijse et al. [75] 

Area per hen (free range),	ܣh =

4ܾܽ
 
 

4	m2 EC [76] 

Sampling capacity, mܸax 1.4 × 10ିହ mଷ Julian [64] 
Contaminated fraction, ܨc 10%

 
Koerkamp et al. [66] 

Inhalations per hour, ݂ 1.62 × 10ଷ*  Pampori and Iqbal [65] 
Resident dust amount per day, 	ܦResident 

1.97	gm-2* Gustafsson and von   Wachenfelt 
[77] 

*parameter value estimated from the data in the indicated reference 
 

 

Results 

 

The model predictions presented here were obtained using the parameters given in 

Table 1 and the models given by equations (7 - 12). We present the model-predicted 

deposition pattern for contaminated dust in Figure 1, and in Figure 2 we show the 

comparison between the distance-dependent probability of infection as estimated by 

Boender et al. [10] from the 2003 epidemic data and our wind-borne spread model 

prediction. The fraction of new cases caused by the wind-borne route up until a given 

distance cut-offr  during the epidemic is presented in Figure 3. It is calculated for various 

choices of the cut-off distance cut-offr . In the Supporting Information S1, we present 
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detailed sensitivity analyses of the effect, on the deposition pattern, of varying; the wind 

speed (Figure S1), settling velocity (Figure S2), eddy diffusivity (Figure S3), effective 

release height (Figure S4), and decay rate (Figure S5). In Figure S6, we present the 

effect of varying the decay rate, the settling velocity and the within-flock basic 

reproduction ratio on the distance-dependent probability of infection. 

 

The predicted dispersal pattern of HPAI virus on dust 

 

 Following wind-borne dispersal of contaminated farm dust, we calculated the 

quantity of contaminated dust present on a given space (area per hen, 4hA ab ) on 

an outdoor run of a farm. The predicted deposition pattern after a 24 hour-long emission 

is presented in Figure 1.   

 
Figure 1. Contaminated dust quantity present on a 4 m square space at various 

distances from the source for the parameter values given in Table 1 at the moment that 

the deposition arising from a 24 hour-long emission period ends.  

 

 We observe (Figure 1) that for our choice of parameter values, there were no 

substantial quantities of contaminated dust present at distances less than 0.05 km from 

the source. This is because the model assumes that the particles are released through a 

raised vent (5 m above ground level). Beyond 0.05 km, the contaminated quantity present 

at a given location increased to its maximum at approximately 0.45 km from the source 

after which it starts to decrease. We use this result to estimate the distance-dependent 

risk of infection associated with the contaminated quantity present at a given location and 

compare the outcome with observed epidemic transmission pattern. 

 

Comparison with Dutch 2003 HPAI epidemic pattern 
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We calculate the distance-dependent probability of infection for farms downwind of an 

infected farm by combining our model predictions of the hourly depositions with the virus 

amount and infection probability models, the inhalation model and the within-flock 

epidemic model as described in the Materials and Methods section. We use the Dutch 

2003 epidemic data to test whether wind-borne HPAI spread was possible and if so, 

determine its possible contribution during the epidemic by comparing our model 

predictions with the observed pattern in the epidemic. As can be seen from equations 

(7-12), for small infection probability per inhalation the model-predicted probabilities are to 

a very good approximation proportional to the deposition pattern (as given by equation 

(7)). As a result, in the parameter range of interest here, the distance-dependence of the 

model-predicted probabilities is practically indistinguishable from that of the deposition 

pattern.  

 
Figure 2. The distance-dependent probability of infection for the parameter values 

given in Table 1 and the Boender et al. (2007) transmission kernel (and its 95% 

confidence bounds). The calculation caters for the prolonged infectiousness of the 

wind-dispersed material beyond the (direct-contact) infectious period of the source 

farm. 

 

The comparison in Figure 2 more importantly shows a qualitative difference in the 

tail. Compared to the observed pattern, there is a faster drop in the predicted infection 

probability beyond 0.45 km. At all distances from the source, the predicted probabilities 

are smaller than the observed risk. Also, beyond 1 km distance the predicted risk of 

solo wind-borne infection is decaying significantly faster with distance than the 

observed risk. The observed rapid decrease of the predicted risk with distance (Figure 

2) is only very weakly sensitive to the precise value of pathogen decay rate, settling 

velocity and the within-flock basic reproduction ratio as shown in Figure S6. Based on 

these results, we conclude that the wind-borne route alone could not explain the pattern 

of the 2003 epidemic.  
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Figure 3. The fraction of the total number of new infections as estimated by Boender et 

al. (2007) from the 2003 epidemic data attributable to the wind-borne route for various 

choices of a cut-off distance up until which the new infections are occurring.  

 

Figure 3 shows that the fraction of new cases that could be solely attributed to the 

wind-borne route decreases with increasing cut-off value cut-offr . We consider the 

distance range of cut-off 25r   km to be most relevant as it corresponds to the width of 

the poultry-dense area in which the 2003 outbreak started [10]. Within this distance 

range, we estimate that the wind-borne route on its own could explain up to 24% of the 

new cases. Consequently, we conclude that the wind-borne route may have played a 

significant role in the spread of HPAI during the Dutch 2003 epidemic although it was 

not the only transmission route.  

 

Discussion  

 

Quantification of the dispersal pattern of contaminated farm dust is of great 

importance in developing an understanding of the indirect transmission of livestock 

diseases between farms. In this paper, the quantity of viable virus deposited at 

locations downwind of a source farm is calculated using a GPM, and the significance of 

various model parameters to the deposition pattern is assessed. Based on our model 

predictions in the context of the spread of HPAI, the wind-borne route alone is 

insufficient to explain the observed pattern during the 2003 epidemic in the 

Netherlands. In particular, although it could have played a significant role in the shorter 

distance transmission events, it cannot explain the long-range transmission 

probabilities estimated in [10] from the observations in 2003. The calculation of the 

contaminated dust quantity deposited between farms could be a starting point for 

studies on multi-stage indirect transmission through a combination of different routes. 
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This modelling framework can also be used to study the wind-borne spread of other 

pathogens.  

In the sensitivity analysis (Supporting Information S1), we analysed the effects of 

varying wind speed (Figure S1), settling velocity (Figures S2 and S6), vertical eddy 

diffusivity (Figure S3), effective release height (Figure S4), the decay rate (Figures S5 

and S6) and the within-flock basic reproduction ratio (Figure S6). The parameters to be 

explored were chosen based either on their importance to the dispersion process or on 

the uncertainty in estimating their values. A further reason for selecting the settling 

velocity and decay rate was to elucidate their importance in the study of wind-borne 

spread of livestock diseases, given that they are often neglected, for example in plume 

model studies of wind-borne spread of FMDV. The results of these analyses (Supporting 

Information S1) reveal the robustness of our main result. In other words, the 

discrepancy at farther away distances of the predicted risk and that observed during the 

epidemic as depicted in Figure 2 for the default parameter values of Table 1 holds for 

all ranges of parameter values explored. This is because, for all explorations, the 

resulting kernels have thinner tails compared to the pattern of the Dutch 2003 epidemic. 

Since we were interested in assessing the role of wind-borne spread during the 

Dutch 2003 epidemic that involved an H7N7 HPAI subtype, we chose a within-flock 

basic reproduction ratio  0R specific to this strain. However, for other strains such as 

the H5N1, the corresponding 0R is smaller that is, in the range of 2.2 to 3.2 [35], and this 

consequently reduces the probability of a major within-flock outbreak although it is within 

the same order of magnitude as that predicted for the H7N7 HPAI virus strain considered 

in this study. Hence, we conclude that the predicted risk of infection by other virus strains 

at farther away locations will ultimately follow the same pattern as that of the H7N7 HPAI 

strain. Due to the lack of data on dose response and virus shedding for the H7N7 HPAI 

strain, we used data on H5N1 HPAI strain. However, the sensitivity analyses performed 

revealed that changes in these parameters do not alter the main conclusion of this 

study. 

We conclude that the wind-borne route cannot fully explain observed patterns of 

between-farm spread of the virus especially for longer distances. This conclusion is 

robust to changes in uncertain model parameters. We also estimate that, up until 25 km 

distance, wind-borne transmission could explain up to 24% of the observed infections. 

This latter percentage is subject to some uncertainty. Nevertheless, this result supports 

the need to identify supplementary mechanisms that aid the transportation of the virus 

between locations. It also implies that: a) the experienced neighbourhood transmission 

was not entirely due to wind dispersal of the virus, b) virus transportation may either 

have entirely been by a different mechanism in a single-stage process, or c) virus 

transportation may have been by a multi-stage process that also involves the wind 

dispersal. Consequently, in-depth studies on the role of fomites in the transfer of 

infectious material between flocks are essential to develop alternative models for 

indirect transmission. 
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The deposition modelling approach developed here is likely to be relevant to 

modelling of wind-borne spread of other livestock diseases as well. Particles to which 

pathogens may be attached in wind-borne dispersal, have a size range of 1 to 100 μm 
and they sediment under gravity [74,78,79]. Therefore, it seems unrealistic to neglect 

the effect of deposition on the risk of wind-borne spread of livestock diseases. Also, it is 

important to incorporate pathogen decay when studying the wind-borne virus spread, 

especially for spread over more than just a few kilometres. For the case of FMDV this 

has previously been  shown by Hess and others [80]. We have found, in the sensitivity 

analysis, that both deposition and pathogen decay have a significant effect on the 

ground level air-borne dust concentration at larger distances from the source 

(Supporting Information S1). These findings illustrate the general importance of 

considering the survival characteristics of the virus strain involved as well as the 

process of particle settling during plume motion if a reliable assessment of the risk of 

wind-borne spread of the livestock diseases is to be made.  
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Supporting Information  

 

1. Derivation of the Gaussian Plume Model 

The GPM used in this study was obtained by solving a simplified version of the 
general Advection-Diffusion (A-D) equation given by 
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where  , ,i x y z  are Cartesian point coordinates  , ,i x y zu u u u , where 0iu  , 

is the wind speed vector,  , ,i x y zK K K K  is the eddy diffusivity vector, and C is 

the concentration of material at any location  , ,x y z  at time t. Assuming that the wind 

direction is along the x axis and denoting xu u  and that the advection in the 

downwind direction is overwhelmingly large compared to the turbulent diffusion in the 
same direction, that is, 

2

2x

C C
u K

x x

 
 
 , 

and considering the steady state solution 0
C

t





 since the concentration at time t and 

a distance x downwind from the source is proportional to the source strength at the time 

x
t

u

  
 

, the A-D equation simplifies to the second-order parabolic partial differential 
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As Hunter et al. [81] showed, for constant eddy diffusivities, Taylor series 
expansions of Ky and Kz about the origin lead to variances that increase at rates equal 

to twice the eddy diffusivities as 
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The classic GPM is a particular solution to an A-D equation under the assumption of 
constant eddy diffusivities. This particular solution, which defines the GPM model, is 
given by 
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. (S1) 

Equation (S1) applies to emissions from an elevated point source at  0, 0, H , 

where H is the effective release height given by the sum of a height h and an initial 

plume rise h  due to buoyancy.  
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 Some authors, for example Gloster and others[53] consider ground level release of 

particles (i.e., 0H  ) and are only interested in the Ground Level Concentration 

 glC  of particles (i.e. when 0z  ). Thus their model takes the form 

 
 
     

2

2
, ,0,

2 2y z y

xQ t yu
C x y t exp

u x x x   

  
  

  
.   (S2) 

 
2.  Deriving the accumulation and decay function 

Consider virus particles emitted in a “puff” spanning a time interval  0 1,t t  and 

decaying exponentially with rate constant  . For a unit release per second, the 
amount of viable virus at time t is given by the convolution of the emission and decay 
functions as 

0 1
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Where H(t) denotes the Heaviside function, and ,  and xt t
u

  are respectively the time of 

deposition, time of interest and plume flight-time until locations  , ,x y z . Applying the 

definition of H(t) and carrying out the integration in (S3) yields the accumulation and 
decay factor as 
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3.  The between-farm (basic) reproduction ratio and the contribution of 
wind-borne route 

 The between-farm (basic) reproduction ratio (R) is defined as the expected number of 
secondary infections caused by one infected farm in a totally susceptible population of 

surrounding farms. For a constant farm density , it is given by  
0

2 ,R p r rdr


   

where    1 ( )p r exp h r T    and T is the infectious period of the farm (set at 7.5 

days) and h(r) is the transmission kernel. We use this formulation to calculate the fraction 



Chapter 2 

34 

of new infections attributable to the wind-borne route for the infections occurring up until a 

distance cut-offr from 

 

cut-off

cut-off

Final0

0

r

r

P rdr

p r rdr




, 

where FinalP  is given in equation (12) (main text). We explore a number of values for 

cut-offr  up to 30 km in Figure 3 (main text). 

 
4.  Sensitivity Analysis  

 In these sensitivity analyses we concentrate on the viable contaminated dust quantity 
present at a given location at the moment that the deposition arising from a 24-hour 
emission period ends.  The intrinsic multiplicative character of exposure and dose 
response obtained in the derivation of the probability of infection (equation (12) in the 
main text) guarantees the proportionality of the effect of parameter changes on the model 
predictions for the probability of infection and the quantity deposited. The graphs present 
the viable quantity available on a 4 m2 area at the moment that the deposition arising from 
a 24 hour-long emission period ends. 
 
Wind speed effect 
 

The predicted deposition patterns for a range of wind speeds (1-8 ms-1) are presented 
in Figure S1.  This range is chosen to cover a whole range of plausible wind speeds that 
prevailed during the 2003 epidemic available at      
http://www.knmi.nl/klimatologie/daggegevens/selectie.cgi. 

 
Figure S1. Effect of varying wind speed u on the contaminated dust quantity present on a 
4 m square space at various distances from the source at the moment that the deposition 
arising from a 24 hour-long emission period ends. 
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As the prevailing wind speed increases, the maximum viable quantity present declines 
and there is a shift, away from the source farm, of the point where it occurs (Figure S1). 
Across the whole range of wind speeds explored, the deposition pattern still qualitatively 
conforms to that depicted in Figure 1(main text), which differs from the observed pattern 
of the epidemic.  

 
Particle settling velocity effect 
 

The settling of the particles in a plume is partially as a result of gravitational pull. 
When the force of gravity on the particle is greater than the attraction between the 
particle and the surrounding air molecules, they will sediment [82,83]. The effect of 
varying this parameter in the range 0.0002 ms-1 to 0.017 ms-1 is explored in Figure S2. 
This range is in agreement with the values reported in [70,74].  

 
Figure S2. Effect of varying the settling velocity v on the contaminated dust quantity 
present on a 4 m square space at various distances from the source at the moment that 
the deposition arising from a 24 hour-long emission period ends. 
 

As the settling velocity increases, the dispersal range decreases and the maximum 
quantity present increases. In other words, particles with a higher settling velocity (e.g., 
heavier particles) tend to be deposited closer to the source than those with a lower 
velocity which can be airborne for a longer time. The interaction between the settling 
velocity and the point of maximum deposition is non-linear, which agrees with the results 
of Näslund and Thaning [84] and Tellier [85]. For the whole range of the explored 
parameter values, the feature of a very thin large-distance tail is preserved; hence our 
conclusion that the wind-borne route is insufficient to explain the observed epidemic 
pattern holds for all choices of the settling velocity explored.    

 
Vertical eddy diffusivity effect 
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The rate of growth of the plume surface area due the movement of particles away 
from the plume centre is defined by the Eddy diffusivity. The effect of varying vertical 

eddy diffusivity is explored in Figure S3 for the range 
4 2 18.33  1  0 m s   to 

1 2 11.83  1  0 m s  ; the reported range for indoor and outdoor particle diffusion [71]. 

 
Figure S3. The effect of varying the vertical eddy diffusivity Kz on the contaminated dust 
quantity present on a 4 m square space at various distances from the source at the 
moment that the deposition arising from a 24 hour-long emission period ends. 

The vertical eddy diffusivity governs the vertical spread-out of the plume. In a stable 
atmosphere (i.e., small Kz), particles remain airborne for a longer time and the plume is 
narrower than in an unstable environment. In our model calculations, the effect of this 
parameter seems insignificant across the range of explored values (Figure S3). 
Therefore, our result that the infection risk predicted by the model for locations farther 
away from the source farm is much lower that the observed risk during the 2003 epidemic 
is robust to changes in the vertical eddy diffusivity.  

 
Effective release height effect 
 

Results for the effect of varying the effective release height in the range 4 to 8 m are 
presented in Figure S4. 
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Figure S4. Effect of varying the effective release height H on the contaminated dust 
quantity present on a 4 m square space at various distances from the source at the 
moment that the deposition arising from a 24 hour-long emission period ends. 
 

There is a non-linear relationship between the effective release height and distance 
from the source to the point of maximum deposition. For higher release heights, particles 
remain airborne for a longer time and end up being deposited farther away from the 
source than those released near the ground surface. For all parameter values explored in 
Figure S4, the predicted risk of infection is smaller than that observed during the epidemic 
at farther distances from the source. 

 
 Decay rate effect 
 

In Figure S5, we present the results on the effects of varying the decay rate in the 

range 
7 13.86 10 s

  to 
6 11.653  10  s   (i.e., virus survival ranging from 4 to 30 

days)[72]. 
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Figure S5. Effect of varying the decay rate   on the contaminated dust quantity present 
on a 4 m square space at various distances from the source at the moment that the 
deposition arising from a 24 hour-long emission period ends. 
 
 The point of maximum deposition is the same in all cases but the viable quantity 
varies: for example, the peak amounts of viable contaminated dust quantities present 
after a 24-hour long emission are 0.018 and 0.02 mg for 4 and 30 days virus survival 
respectively.  
  
Effect of the pathogen decay rate, the particle settling velocity and the within-flock basic 
reproduction ratio on distance-dependent probability of infection 
 
 Figures S5 and S2 show the sensitivity of the predicted deposition pattern to the 
pathogen decay rate and to the particle settling velocity respectively. In Figure S6A-B 
we indicate how this sensitivity translates to the model-predicted probabilities, and to 
the comparison of these to the kernel estimated from the 2003 epidemic. In Figure S6C 
we consider the sensitivity to the within-flock basic reproduction ratio.  
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Figure S6. Comparison of the distance-dependent probability of infection as estimated 
by Boender et al. (2007) from the 2003 epidemic data and our wind-borne spread 
model prediction with default parameter values and: Panel A. The virus survival was 
increased from 4 to 7 days); Panel B. The particle settling velocity was  reduced from 
0.01 m/s to 0.005 m/s); Panel C. The within-flock basic reproduction ratio was 
increased from 22.7 to 100. 
 
 The difference in pattern between the different values of the decay rate observed in 
panel A of Figure S6 illustrates the importance of including this parameter in modelling 
wind-borne transmission (as has been discussed before in the context of FMDV by Hess 
et al.[86]). We observe in panel B that the model prediction is slightly sensitive to the 
particle settling velocity at shorter distance ranges and in panel C, it is only very weakly 
sensitive to the within-flock basic reproduction ratio at all distance ranges. At long 
distances, the model prediction is very weakly sensitive to all the three parameters. The 
long distance behaviour is consistently lower than observed pattern during the outbreak 
in all the three cases. This implies that the possible inaccuracies in estimating the 

decay rate, settling velocity and 0R  have do not affect the main conclusion of this 

study. 
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Abstract 

Estimates of the per-contact probability of transmission between farms of Highly 

Pathogenic Avian Influenza virus of H7N7 subtype during the 2003 epidemic in the 

Netherlands are important for the design of better control and biosecurity strategies. We 

used standardized data collected during the epidemic and a model to extract data for 

untraced contacts based on the daily number of infectious farms within a given distance 

of a susceptible farm. With these data, we used a maximum likelihood estimation 

approach to estimate the transmission probabilities by the individual contact types, both 

traced and untraced. The estimated conditional probabilities, conditional on the contact 

originating from an infectious farm, of virus transmission were: 0.000057 per infectious 

farm within 1 km per day, 0.000413 per infectious farm between 1 and 3 km per day, 

0.0000895 per infectious farm between 3 and 10 km per day, 0.0011 per crisis 

organisation contact, 0.0414 per feed delivery contact, 0.308 per egg transport contact, 

0.133 per other-professional contact and, 0.246 per rendering contact. We validate 

these outcomes against literature data on virus genetic sequences for outbreak farms. 

These estimates can be used to inform further studies on the role that improved 

biosecurity between contacts and/or contact frequency reduction can play in eliminating 

between-farm spread of the virus during future epidemics. The findings also highlight the 

need to; 1) understand the routes underlying the infections without traced contacts and, 2) 

to review whether the contact-tracing protocol is exhaustive in relation to all the farm’s 

day-to-day activities and practices. 

 

Keywords: highly pathogenic avian influenza virus, H7N7, probability of virus 

transmission, between-farm contacts, modelling, maximum likelihood 

 

Introduction 

 

Highly Pathogenic Avian Influenza (HPAI) is one of the OIE listed poultry diseases. 

Several epidemics involving these viruses have occurred world-wide since its first 

description in northern Italy in 1878 [9,87]. Examples of epidemics with devastating socio-

economic consequences are the 1999 H7N1 epidemic in Italy [6] and the 2003 H7N7 

epidemic in the Netherlands [8,88]. Consequences of these epidemics include economic 

losses incurred in implementing control strategies and reduction in exports as well as a 

risk of spread to humans [7,89]. The HPAI (H7N7) 2003 epidemic in the Netherlands 

involved 255 flocks; the virus was isolated in 241 of these flocks while the other 14 

flocks were serologically positive [8,88]. The majority of affected flocks were located in 

either of two areas with high poultry farm densities: one comparatively large area 

situated in the centre of the country, and one smaller area in the south; for more details 

we refer to Boender et al. [10]. 

Following the detection of the first outbreak, a control programme, as stipulated by 

the European Union, was implemented. This programme consisted of stamping out of 

infected flocks, movement restrictions and establishment of protection and surveillance 
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zones. Despite additional control measures such as pre-emptive culling of flocks within 

a radius of 1 km of an outbreak and establishment of buffer zones between defined 

areas by complete depopulation of poultry flocks in these zones,  there was a continued 

spread of the virus by mechanisms which are not clearly understood [8,10,22]. This 

spread only came to an end after the control measures had led to the culling of a large 

proportion of farms in the affected regions [8]. For the farmers, this meant incurring 

economic losses through and emotional burden of lost stock. Moreover, after a debate 

accruing from the 2001 Foot-and-Mouth Disease epidemic in the UK and the 

Netherlands, public opinion turned against the (large-scale) preventive killing of healthy 

animals; deeming it unethical [90,91]. Hence the Dutch government is seeking 

alternative control measures to (large-scale) preventive culling, with emergency 

vaccination being the preferred strategy. However, in comparison with preventive 

culling, emergency vaccination would have the important disadvantage that its effect 

suffers from a 7 to 14 days protection delay [92]. This delay would prolong the time until 

epidemic control is obtained especially in the high density poultry areas (de Jong and 

Hagenaars [40] and the references therein). Thus the identification, testing and 

implementation of supplementary control strategies such as improved biosecurity are 

required. Identification of such strategies requires us to better understand the 

neighbourhood transmission (i.e., the indirect spread of the virus to farms neighbouring 

an infectious farm) of the virus. 

Plausible mechanisms include movements of humans (professional and non-

professional visitors, employees and farmers themselves), vehicular traffic (for 

example, delivery trucks), other fomites (such as tools, cell phones and shared farm 

equipment) and other vectors such as wind, rodents and insects [22,25,49,93,94]. 

These transmission events involve transportation of the virus either in contaminated 

litter, faeces or skin and feathers that can colloid on the fomites or the vectors’ body. 

Therefore, in order to better control neighbourhood transmission, we need to 

understand deeper the steps involved in the whole virus dissemination process; a quite 

complex task.  

Following potentially infectious contacts i.e. exposures, the probability of HPAI virus 

transmission may be contact-specific but will also depend on the contact patterns: i.e., 

the frequency of contacts and the contact network [46,95,96]. This interplay illustrates 

the need to determine the probability of virus transmission by a given type of contact 

during an epidemic. A combination of the estimated probabilities and the information on 

contact patterns can then be used to rank the individual contact risks and to assess 

risks of spread between different densely populated poultry areas. The resulting 

ranking is also important to guide further research and biosecurity implementation. 

During the Dutch HPAI epidemic in 2003, the National Inspection Service for 

Livestock and Meat (RVV), responsible for the implementation of animal disease 

legislation and eradication of outbreaks of OIE listed diseases, was tasked with 

collecting epidemiological data and tracing of upward and downward contacts to and 

from infected farms. Using this data, Thomas and co-workers [22] performed a risk 

factor analysis to establish the factors that may have been responsible for the 
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introduction of the virus on each of the farms involved. They found an increased risk of 

HPAI virus introduction in layer-finisher type poultry compared to other poultry types. 

Their analysis gave some clues on the risk factors for HPAI virus introduction such as 

poultry type and flock size. However, it is also important to gain insight into the 

transmission routes of the virus including the absolute risk of infection for given types of 

indirect contact between farms, an aspect addressed by the type of analysis we 

perform in this study. Since contact frequency and the per-contact probability of virus 

transmission partly determine the risk that a given category of contacts poses, the 

results of this analysis may facilitate a risk classification of these contacts. Such a 

classification is vital in the design of improved biosecurity and possibly other control 

strategies. 

Our analysis aims to give quantitative insight into the role of the different between-

farm contacts in the spread of the virus during an epidemic. We focus on the specific 

contacts that occurred during the HPAI (H7N7) epidemic in the Netherlands and 

estimate the probability of HPAI virus transmission attributable to each type of contact. 

Using published genetic data obtained by sequencing most of the samples collected 

during the epidemic [97], we assessed the consistency of our estimates with the 

genetic data. With these results, we provide scientific support to improve biosecurity 

measures to prevent transmission.  

Materials and methods 

 
Data 
 

We used two sets of data collected during the Dutch 2003 HPAI epidemic. One of 
the datasets was collected via a standardized field epidemiology investigation form of 
the RVV [98]. It included detailed information about day-to-day visits to all farms 
(infected and non-infected) such as visits for deliveries of farm inputs and for off-
transport of outputs as well as professional and non-professional visits. In compiling 
this particular data, a follow-up to the visits mentioned by the farmers was made where 
possible. The preliminary data were cross-checked in detail and completed by the 
tracing unit of the crisis centre using the files obtained from the poultry-related 
businesses involved. This dataset captured information on a total of 614 visits 
originating from 203 infectious farms. Out of these visits, 381 were to infected farms. 
The total number of receiving farms was 325 of which 149 were ultimately infected. The 
other dataset was entirely about the visits that occurred in relation to measures aimed 
at controlling the epidemic (crisis organisation contacts). These included visits for: 
screening (i.e., the clinical inspection of poultry in the surveillance zone), tracing (i.e., 
the follow-up of visits from infected farms), indexing (i.e., the valuation of the flocks to 
be culled), and culling activities by the RVV [93]. From this dataset we selected visits to 
a farm that occurred up to seven days prior to and excluding its day of suspicion. For 
these contacts, we only considered same-day visits i.e., those that occurred on the 
same day that the person had visited an infectious farm. 

In both datasets we could also find HPAI-related details such as the status and 

dates of clinical suspicion and stamping out for both the infected source farm and 
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receiving farms. Since we could not identify a potentially infectious traced visit for all the 

ultimately infected farms, we introduced a category of ‘unknown’ contacts over different 

distance ranges. A farm was assigned one unknown contact per day when it was in the 

vicinity of an infectious farm. We chose three distance ranges (and hence three 

different unknown contact types) namely, 0-1 km, 1-3 km and 3-10 km of an infectious 

farm and assigned the unknown contacts accordingly. Details of these and all the other 

visits are given in Table 1. 

 

Table 1. The description of the contacts extracted from the three datasets based on the 
assumed infectious and potential virus-introduction periods of this study 

Type of contact Description 
Feed delivery contact A truck delivers feed to an infectious farm and proceeds to a 

susceptible farm. 
Egg transport contact 
 

A truck picks eggs or trays from an infectious farm and proceeds 
to a susceptible farm. 

Rendering contact 
 

A routine pick up of dead animals (not related to culling) 
occurred on an infectious farm and proceeds to a susceptible 
farm.  

Other-professional contact* 
 

A person (for example; veterinarian, dealer, advisor, technicians, 
and ‘unspecified-others’) visits an infectious farm and proceeds 
to a susceptible farm. 

Crisis organisation contact Person-contact for epidemic control activities such as screening, 
tracing, indexing, and culling that visited an infectious farm and 
proceeded to a susceptible farm. 

Unknown contact:0-1 km** Contact assigned to farm for every day that it is within 1 km of an 
infectious farm. 

Unknown contact:1-3 km** Contact assigned to farm for every day that it is between 1 and 3 
km of an infectious farm. 

Unknown contact:3-10 km** Contact assigned to farm for every day that it is between 3 and 
10 km of an infectious farm. 

*The variable is a combination of related traced variables. 
**A farm was assigned one unknown contact per day that it was in the vicinity of an 
infectious farm within the indicated distance range. 
 

For each farm (infected or not) in the dataset, we extracted (and tabulated) all its 

exposures. In the summary table for the analysis, we indicated, for each contacted 

farm, the type and number of exposures as well as its ultimate status. A farm was 

deemed exposed if the visit occurred during the period when the virus was likely to 

have been introduced onto the receiving farm, here referred to as the potential virus-

introduction period. Due to the uncertainty about the actual day of virus introduction, 

both the potential virus-introduction and infectious periods were assumed to begin 

seven days prior to the day of clinical suspicion, corresponding to the estimated farm 

infectious periods  during the epidemic (i.e., 7.3 and 6.9 days for the two regions 

affected) for the period after epidemic detection [8]. The potential virus-introduction 

period lasted until the day before clinical suspicion while the infectious period lasted up 

to seven days after stamping out. This extended infectiousness was based on the 

hypothesis that the stamping out did not immediately rid the entire farm and its 

surroundings of all infectious material.  
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Data analysis 

If ip is the probability of infection per type  i exposure, then the cumulative 

probability of a farm escaping infection  escapeP  following a series of exposures is 

 
all i

 1 iC

i
p where iC is the total number of type  i exposures and the compliment 

escape(1 )P gives the probability of infection. In this case, we consider ip to be the 

conditional probability of virus transmission per contact i.e., the probability that a given 
contact transmitted the virus given that the contact occurred and that it originated from 
an infectious farm.  

To estimate these probabilities, we used a maximum-likelihood approach. The 

likelihood function was given by 
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where i  indexes the exposure-type, d indexes the day-number (days before clinical 

suspicion day) that the contact occurred, 
inf
,i d

C  is the number of type  i exposures to a 

case farm occurring d days before clinical suspicion, 
esc
i

C is the total number of type

 i exposures to a non-case farm, dw is the ‘weighting factor’ representing the 

probability that infection occurred through exposures occurring on day d (see below), 

 
Inf
,

all i

1 1 d i d

d

w C

ip
   
 

 is the probability of a farm being infected, 

    inf
,1

1 d i d

d

w C

i
p

  is the probability of a farm escaping infection by type  i  

exposures, and  
esc

all i

1 iC

ip
 

 
 
  is the probability of a farm escaping infection 

throughout the epidemic.  

In this analysis, we assumed that: 1) the ‘exposure’ period started seven days prior 

to and lasted until the eve of clinical suspicion, 2) the infectious period began seven 

days prior to the day of clinical suspicion and lasted up to seven days after stamping 

out, 3) the conditional probability of infection was fully dependent on the contacts 

indicated in Table 1, and 4) the per-contact probability of infection by the traced 

contacts is independent of the distance between the source and receiving farms. 
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We used Mathematica 8 (Wolfram Research, Inc.) to perform the maximisation 

procedure. The 95% Confidence Intervals (CI) for the maximum likelihood estimates 

were computed using the likelihood ratio test. We quantified the contribution of the 

different contacts to the epidemic in terms of the number of new infections that they 

may have caused. This was obtained by multiplying their estimated per-contact 

probability with their frequency.  

As an introduction can only occur on one day, we can only allow for the uncertainty 

about when this day was by giving weights to each of the possible introduction days 

with these weights adding up to one. For the base model, we used a uniform 

distribution to obtain 
1

7
d

w  . In other words, we assumed that each of the seven days 

of the probable period of virus introduction was equally likely to be the actual day of 

virus introduction. However, we also checked the outcomes based on different 

distributions in the sensitivity analysis.  

Sensitivity and bias analyses 
 

Sensitivity analysis: We performed a sensitivity analysis to ascertain the effect, on the 
probability estimates, of the possible uncertainty in defining the distribution underlying 
the actual day of virus introduction over the assumed period. We performed this 
analysis by re-running the calculation with different distributions underlying the 

estimation of the weighting factor dw . We assessed two other distributions in which the 

estimated weighting factors dw were adjusted to sum to one over the 7-day period, 

namely; 1) a distribution in which the probability is decreasing exponentially over the 7-
day period at a rate determined by the survival of HPAI virus in manure (in this case 14 
days [99]) and, 2) a unimodal distribution with the most likely day being 4 days prior to 
the day of clinical suspicion. In the second case, we used a discretized normal 

distribution with a truncated domain and 1  day. In both cases the assumed 
distributions were normalised to sum to one. 
  
Potential difference in tracing efforts on case and non-case farms: We hypothesized 

that, during the epidemic, the tracing process may have been more rigorous on case 

farms compared to the non-case farms. We explored the effect of this possibility by 

considering a scenario where an under-representation of the contacts to the escaping 

farms for example due to a more lax attitude of the tracing teams when on non-case 

farmscould have occurred. We estimated the maximum effect that this would have on 

the estimated probabilities in the following 3 steps: 1) if we let trP be the tracing 

probability of a contact, this would be the exact probability of tracing a contact to a non-

case farm if no back-tracing at all was made at the non-case farm, 2) with back-tracing 

in place for the case farms, the probability of tracing their contact would be 
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 2
1 1

tr
P   and finally, 3) the maximum bias due to under-representation occurs at 

the worst tracing level and would be given by 
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Validation against genetic data 

In order to validate the estimated per-contact probabilities, we used the genetic data 

obtained by sequencing the majority of the samples collected for outbreak farms during 

the epidemic [97]. In this way, we used the genetic data to validate the estimated 

probabilities per contact: too few or too many genetic matches would cast doubt on the 

estimated probabilities. The approach developed for this validation is described below 

and in the Supporting Information file Text S1.  

With the contact inclusion criteria described under Data section, we extracted traced 

contact pairs, i.e. farm pairs (A, B) in which at least one contact originating from a then 

deemed infectious farm A to a hitherto susceptible (but ultimately infected) farm B, and 

occurring within the exposure period of farm B, was traced. We then used the genetic 

information generated from the majority of the samples taken from the affected farms 

during the epidemic as reported by Bataille et al. [97] in Figure S2 of their Supporting 

Information to identify which pairs had virus sequences for both farms. For those pairs 

(i.e., with complete genetic information), we compared their genetic sequences to 

ascertain which ones were sufficiently “matching” for transmission between A and B not 

to be unlikely. The number of genetically matching pairs, minus an estimate of the 

expected number of “by-chance” genetic matches, was then compared to the predicted 

number of pairs (amongst those with complete genetic information) in which virus 

transmission occurred (“transmission pairs”)  predictedN . This number was estimated 

from the overall expected number by scaling it according to the expected contribution of 

the 28 contacts, relative to that of the 56, based on the estimated probabilities.  

We considered four different (sets of) criteria for determining whether a contact farm 
pair (A, B) represents a genetic match. These (sets of) criteria differ in the level of 
genetic overlap required between the sequences from farm A and farm B to qualify as a 
genetic match.  The most liberal criterion we considered was that all mutations in the 
virus of farm A compared to farm 1 (i.e., the first outbreak) were also found on farm B, 
i.e. when going from A to B no mutations are lost. This criterion is necessary because it 
is highly unlikely for the virus to lose mutations (i.e. undergo backward mutation) 
between source and receiving farms. In the other three, in addition to having no lost 
mutations, we permitted only a specific number/range of additional mutations: allowing 

no additional mutations at all, allowing 3 and, 6 additional mutations. For each 
criterion, we calculated an expected number of transmission pairs by subtracting an 
estimate of the number of ‘chance matches’ from the total number of genetic matches 
(for details see Supporting Information file Text S1).  
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Results 
 

With our selection criteria applied to the first dataset i.e., the data from the 
epidemiological investigation by the RVV, we were able to extract at least one traced 
exposure for 36 (i.e. 15%) ultimately infected farms and the number increased to 44 
(i.e. 18%) upon including the crisis organisation contacts. With the complete dataset 
(i.e., the latter two together with the extracted unknown contacts), 227 (i.e. 94%) 
ultimately infected farms had been exposed. Thus with all the available and modelled 
data, all but 14 infected farms had either a traced exposure or it was in the 
neighbourhood of an infectious farm (unknown contacts).  

In Table 1, we present a description of both the potentially infectious contacts 

recorded during the HPAI (H7N7) epidemic in the Netherlands in 2003 and the 

unknown contacts extracted for purposes of this study. In Table 2, we present the 

extracted number of contacts that met our inclusion criteria and their mean estimates of 

the per-contact probability of virus transmission (and their accompanying 95% CI). We 

also present in the same table the percentage (and 95% CI) of infections potentially 

caused by these contacts and the results of the sensitivity analysis.  

 
Table 2. The number of contacts, the estimated per-contact transmission probabilities (95% CI), and the 
percentage of infections caused for the potentially infectious contacts during the HPAI (H7N7) epidemic 
in the Netherlands in 2003 
Contact type Total number of 

contacts (to a 
case farm)  

Per-contact 
probability of 
infection (95% CI) 

Percentage 
of infections 
caused (% 
of 227 
cases) 

Sensitivity 
analysis: ݓௗ~exponential 
decay function 

Sensitivity 
analysis: ݓௗ~  modal݅݊ݑ
distribution 

Unknown 
contact:0-1 km 

27700 (3048) 0.0000570 (0.00 - 
0.00044) 

0.70 (0.00 – 
5.37) 

0.0000449 0.0000586 

Unknown 
contact: 1-3 km 

190846 (25035) 0.000413 (0.00031 
– 0.00052)  

34.72 (26.06 
– 43.72) 

0.000414 0.000430 

Unknown 
contact: 3-10 km 

1466564 
(171021) 

0.0000895 
(0.000076 – 
0.00010) 

57.82 (49.10 
– 64.61) 

0.0000906 0.0000913 

Crisis 
organisation 
contact 

272 (16) 0.00110 (0.00 – 
0.012) 

0.13 (0.00 – 
1.44) 

0.000 0.000 

Feed delivery 
contact 

144 (23) 0.0414 (0.0043 – 
0.085) 

2.63 (0.27 – 
5.39) 

0.0342 0.0261 

Egg transport 
contact 

15 (8) 0.308 (0.16 – 0.48) 2.04 (1.06 – 
3.17) 

0.305 0.303 

Other-
professional 
contact 

16 (5) 0.133 (0.023 – 
0.29) 

0.94 (0.16 – 
2.04) 

0.130 0.000 

Rendering 
contact 

12 (4) 0.246 (0.10 – 0.43)   1.30 (0.53 – 
2.27) 

0.239 0.179 

 

Apart from the unknown and crisis organisation contacts, feed deliveries had the 

lowest per-contact probability of virus transmission of 0.0414 and potentially caused 

2.63% of the new case farms while the egg transports had the highest per-contact 

probability of 0.308 and may have potentially caused 2.04% of the new case farms. The 

probability of virus transmission per crisis organisation contact was estimated to be 
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0.0011 and these visits may have caused 0.13% of the new case farms. The majority 

(92.54%) of the new cases were caused by the unknown contacts within the distance 

bands of 1-3 km and 3-10 km. 

Analysing the sensitivity of the estimated probabilities to the assumed distribution 

underlying the actual day of virus introduction over the 7-day period, the outcomes from 

using the two alternative distributions (i.e., one with an exponentially decreasing 

probability and the other with unimodal distribution) were compared with those of the 

default distribution (i.e., uniform distribution). The estimates were very similar for most 

of the exposure types. The only differences found, but these were small, were in the 

per-contact probabilities for the crisis organisation contacts for both alternative 

distributions and the other-professional contacts for only the unimodal distribution (see 

Table 2). For both alternative distributions, the probabilities per crisis organisation 

contact were within the 95% CI of the default distribution whereas for the unimodal 

distribution, the per other-professional contact probability reduced from 13.3% to 0.0%. 

This reduction is a consequence of the very low weights dw  assigned by the unimodal 

distribution to the days on which these contacts occurred. Three of the five contacts to 

ultimately infected farms occurred seven days prior to the day of clinical suspicion while 

the remaining two occurred four days and one day prior to the day of clinical suspicion. 

With respect to the effect of the potential difference in tracing efforts on case and 

non-case farms  hence a possibility of under-representation of the contacts to non-

case farms, we found that, with the worst tracing efforts, the contacts to case farms 

would be twice as likely to be traced as those to non-case farms. This implies that, at 

worst, the estimated probabilities could be double their ‘unbiased’ counterparts. 

There were 56 traced contact pairs in which virus transmission may have occurred 

i.e. contacts from an infected farm to a newly infected farm.  From the genetic data of 

the same outbreak [97], complete genetic information was available for 28 of these 

pairs (see Table S1 in the Supporting Information). Using the estimated per-contact 

transmission probabilities and the numbers of each contact-type, we estimated that 

15.96 outbreaks were explained by the traced contacts (Table 2). After rescaling, we 

obtained the predicted number of transmission pairs with matching genetic information 

predictedN as 8.96. The lower and upper 95% confidence bounds of predictedN were 

estimated to be zero and 19 pairs respectively. 

In Supporting Information Table S2, we present results of the pairwise genetic 

comparison of the 28 pairs for our different criteria of defining a genetic match. We 

observe (Table S2) that using the most strict criterion of requiring a ‘perfect’ genetic 

match between contact pairs (A, B) i.e., having no lost and no additional mutations 

when going from A to B, we estimated that virus transmission may have occurred in two 

pairs, reducing to 1.85 pairs upon subtracting the expected number of chance matches. 

If we defined a contact pair (A, B) to be a genetic match if there were no lost mutations 

when going from A to B and permitting any number of additional mutations, the number 

of transmission pairs was estimated to be nine, reducing to 7.23 pairs when adjusted 
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for chance matching. Restricting the number of allowed additional mutations to 6  or 

to 3 yields five matching pairs in both cases, reducing to 3.98 and 4.26 pairs 

respectively after subtracting the expected number of chance matches. All these results 

are within the 95% confidence bounds of the predicted number of transmission pairs 

with matching genetic information and hence the observed and predicted numbers are 

consistent. 

Discussion 

 

The mechanisms of HPAI virus spread between farms are poorly understood; it has 

been hypothesized that the indirect between-farm contacts play a role [22,25,49,93,94]. 

The frequency and the transmission effectiveness of these contacts determine their 

virus transmission rates. Here we perform a quantitative assessment of the contribution 

of indirect contacts to the spread of the virus between farms during the 2003 HPAI 

epidemic in the Netherlands. During this epidemic, potentially infectious contacts to 

both infected and escaping farms were traced. We use the collected data to quantify 

the per-contact probability of virus transmission between farms.  

The estimated conditional probabilities of virus transmission are presented in Table 

2. In terms of per-contact risk, the estimates reveal that egg transports have the highest 

risk with approximately 31% chance of transmission followed by the rendering visits 

with a chance of transmission of 25%. The unknown contacts in the distance band of 0-

1 km have the lowest risk per contact although, as is clear from the 95% confidence 

bounds, its estimated per-contact probability is not significantly different from those of 

the other unknown contact categories. We expect that the implementation of preventive 

culling within 1 km of an infectious farm during the epidemic [8] has had a (strong) 

censoring effect on the detection of infected farms with 1 km of an infectious farm, thus 

producing a downward bias on the transmission probability per unknown contact within 

1 km. We note that the estimated per-contact probability for the unknown contacts 

within the distance band of 1-3 km being higher than that of the 3-10 km distance band 

contacts reveals a distance-dependent transmission risk similar to the one found by 

Boender et al. [10].  

Generally, most exposure-types (all except the crisis organisation contacts) made a 

substantial contribution to virus transmission during the epidemic. We note that the 

estimated per-contact probability of virus transmission by the crisis organisation 

contacts is 0.0011 and may have caused 0.13% of the infections. We note that when 

ignoring all other exposure types, i.e. considering the crisis organisation contacts alone 

in a separate analysis, we estimated a probability of 0.0327 per contact corresponding 

to 3.92% of the infections. This probability estimate is in agreement with the estimated 

maximum probability of virus transmission by a ‘control-person’ per visit of 0.037 

reported by te Beest et al. [93] based also on a separate analysis of crisis organisation 

contacts only.  
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We hypothesize that the lower probability of infection per crisis organisation contact 

compared to that of the other-professional contacts which are almost of the same 

nature indicates that the epidemic control teams have better biosecurity than other 

visitors. The lower per-contact probability of infection per feed delivery compared to egg 

transport may be due to the difference in degree of contact and the re-use of egg trays. 

Unlike egg pick-up where the eggs have to be picked from the egg room, feed delivery 

may not involve accessing storage rooms or poultry houses. In most cases, the feed 

truck’s delivery tube is directly connected to the feed storage from the outside thereby 

reducing the risk of farm contamination. 

In the sensitivity analysis, we find that the majority of the estimates are robust to the 

assumed distribution of the most likely day (among the seven days) of virus 

introduction. For the few sensitive (but less contributing) contact types, we concentrate 

on the results obtained using the uniform distribution as this assumes the least prior 

knowledge on the actual moment of disease introduction on the farm. Regarding the 

effect of a possible difference in tracing efforts on case and non-case farms, we have 

argued that an under-representation of the contacts to non-case farms may have at 

most doubled our probability estimates i.e., compared to the ‘ideal’ situation where the 

tracing efforts are the same for the case and non-case farms.  

The pairwise comparison of the genetic information of the contact pairs (Tables S1 

and S2 in the Supporting Information) shows that the very low numbers of new 

infections explained by the traced contacts in our analysis is consistent with the genetic 

data. This genetic data has been used to construct transmission trees in reference [97] 

and in more detail in reference [100]. Our present analysis focused on estimating per 

contact transmission probabilities for the different between farm contact types using the 

contact tracing data. Note that there is no straight forward way to directly include 

genetic data in an estimation of the per contact transmission probabilities as the 

sequencing data only gives information on the case farms and not on the contact farms 

that escaped infection. However, both data types (i.e., genetic and epidemiological) can 

be combined within the same analysis to, for example, determine transmission 

pathways. This approach was proposed by Cottam et al. [101] in their analysis of part 

of the 2001 FMD epidemic in UK.  

Stegeman and co-workers [46] performed a similar analysis on the 1997/1998 

Classical Swine Fever (CSF) epidemic in the Netherlands. The common contact types 

in both studies are the ‘person’ (similar to ‘other-professional’) and rendering contacts. 

Perhaps remarkably, the estimated transmission probabilities for these contacts in our 

HPAI study are respectively two and four orders of magnitude higher than those 

estimated in the CSF study. These differences are mainly due to a difference in total 

numbers of between-farm contacts, with 16 and 12 for the HPAI epidemic (affecting 

255 flocks) compared to 2468 and 10102 for the CSF epidemic (affecting 429 farms), 

respectively.  The much higher numbers of contacts in the CSF epidemic are explained 

in part by the much longer duration of the epidemic: 15 months in comparison to the 3 

months that the HPAI epidemic lasted. The difference in number of contacts is likely to 

be also related in part to the fact that the CSF epidemic was more spatially extended 
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compared to the HPAI epidemic. As a result, there were more new outbreaks occurring 

outside existing stand-still areas (in which onward contacts are more restricted) for the 

CSF epidemic as compared to the HPAI epidemic.  

With our contact inclusion criteria, 44 infected farms have at least one traced 

exposure i.e., excluding the ‘unknown’ contacts. The outbreaks that could not be linked 

to any known potentially infectious contact may not only be attributed to the inability to 

trace all targeted contacts. Rather, they may serve as a hint about the presence of 

other (un-targeted and hence untraced or even untraceable) mechanisms. This 

highlights the need to better understand the possible mechanisms of untraced 

transmission.  

It is important to realize that the probabilities estimated are conditional on the 

contact originating from an infectious farm and do not represent the actual risk of HPAI 

virus transmission by these contacts during the epidemic. We also emphasize that care 

should be taken when interpreting the per-contact probability estimate for the rendering 

contacts due to the possible correlation between this contact-type and the increased 

mortality which could have occurred during the silent spread period of the virus on the 

farm i.e., the virus could have already been circulating undetected on the receiving 

farms. Nevertheless, the probability estimates together with the risk-based ranking for 

the different contacts obtained in this study can help design better control strategies 

against HPAI virus transmission between-farms by these contacts. 

All in all, after estimating the per-contact probability of virus transmission for the 

different contacts, we conclude that all the identified contacts made a substantial 

contribution to the risk of virus transmission between farms. Therefore, any measures 

to reduce on their frequency and to improve biosecurity during all these contacts are 

potentially worthwhile. The fact that the ‘unknown’ contacts contributed the most 

(causing 93.24% of the infections among themselves) emphasizes the need for a better 

understanding of the mechanisms underlying virus transmission.  

The findings of this study contribute to the greatly desired understanding of the 

mechanisms of indirect transmission of HPAI virus between farms. Our results suggest 

that, apart from the unknown contacts, egg delivery contacts are interesting targets for 

improvements in biosecurity due to their high per-contact probability (31%) in infecting 

the receiving farms. They further suggest that the biosecurity applied to the crisis 

organisation contacts seems to be adequate at least for preventing the persons 

themselves from becoming important fomites between registered visits. Overall, these 

findings provide a scientific basis to conduct further studies, epidemiological or 

otherwise, to evaluate the impact of improved biosecurity and minimized contact-

frequency in controlling the between-farm spread of HPAI virus during epidemics. The 

knowledge gained in this study can further be supplemented by research aimed at 

disentangling the ambiguous category of ‘unknown’ contacts defined in this study.  
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Further details on the validation against genetic data 

Number of chance matches 

The number of chance matches was estimated as follows: from Figure S2 of Bataille 

et al.[97], we counted the total number of possible outbreak farm pairs that met a 

specific criterion for defining a genetic match. We then divided the outcome by the total 

number of possible outbreak farm pairs to obtain the probability of having a matching 

pair just by chance. By multiplying this probability with the number of contact pairs with 

complete genetic information, we obtained the expected number of chance-matches.  

 

Confidence bounds for the predicted number of genetic matches 

The 95% confidence bounds of predicted N  were calculated based on a ‘mean’ per-

contact probability  combinedP  and its lower  combined
L

P  and upper  combined
U

P   95% 

confidence bounds by grouping all the traced contacts into one category and re-running 

the analysis described under Data analysis section in main text. Then the estimated 

combined
LP  and combined

UP , after multiplication by the probability of having a pair with 

complete genetic information, were each used as probabilities of a binomial distribution 

for the number of observed genetic matches, with the total number of traced contact as 

the binomial total. The 2.5 percentile of the binomial distribution corresponding to 

combined
LP  and 97.5 percentile of that corresponding to combined

UP  gave the 95% 

confidence bounds of predicted N . 

 

Table S1. Summary of genetic differences between isolates from the 

source and receiving farms for the traced contact pairs  
Contact pairs (source, 
receiver) 

Exposure  type Additional 

mutations$ 

Lost mutations $  

(001,007) Rendering visit  ** 
(001,010) Rendering visit 3 0 
(001,022) Rendering visit 3 0 
(013,079) Rendering visit  * 
(003,098) Egg transport  *** 
(010,080) Egg transport 4 3 
(018,098) Egg transport  ** 
(046,052) Egg transport 2 1 
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(046,061) Egg transport 0 0 
(027,036) Egg transport 7 1 
(034,033) Egg transport  * 
(027,082) Egg transport 8 1 
(022,034) Feed delivery  ** 
(091,129) Feed delivery 9 0 
(117,081) Feed delivery  ** 
(076,114) Feed delivery  ** 
(090,161) Feed delivery 1 2 
(091,140) Feed delivery 11 0 
(106,127) Feed delivery  *** 
(113,166) Feed delivery 1 0 
(030,061) Feed delivery 2 5 
(091,145) Feed delivery 10 0 
(113,180) Feed delivery 12 5 
(013,125) Feed delivery  * 
(016,053) Feed delivery  ** 
(214,234) Feed delivery  Deletion 
(093,177) Feed delivery  * 
(221,232) Feed delivery  Deletion 
(090,122) Feed delivery  ** 
(043,106) Feed delivery  ** 
(124,156) Feed delivery  * 
(094,090) Feed delivery 8 4 
(124,189) Feed delivery  *** 
(106,149) Feed delivery  *** 
(106,149) Feed delivery  *** 
(003,030) Other-professional visit  * 
(016,030) Other-professional visit 5 2 
(005,043) Other-professional visit 0 0 
(155,154) Other-professional visit 2 1 
(133,200) Other-professional visit  *** 
(051,073) Crisis organisation 

contact 
 ** 

(108,073) Crisis organisation 
contact 

 ** 

(023,033) Crisis organisation 
contact 

8 1 

(001,033) Crisis organisation 
contact 

10 0 

(131, 171) Crisis organisation 
contact 

6 11 

(128, 171) Crisis organisation 
contact 

 * 

(097, 083) Crisis organisation 
contact 

 *** 

(117, 097) Crisis organisation 
contact 

 ** 

(117, 097) Crisis organisation 
contact 

 ** 

(051, 108) Crisis organisation 
contact 

5 3 

(053,108) Crisis organisation 
contact 

 * 
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(054,108) Crisis organisation 
contact 

10 5 

(149,169) Crisis organisation 
contact 

 * 

(107,110) Crisis organisation 
contact 

4 3 

(105,123) Crisis organisation 
contact 

11 6 

(102,123) Crisis organisation 
contact 

3 2 

* sample from source farm was not yet sequenced 
** sample from receiving farm was not yet sequenced 
*** samples from both receiving and source farms were not yet sequenced 
$ 
Comparison is between the virus on recipient farm and that on the sender farm using virus on farm 001 

as the root, i.e. additional mutations are the number of mutations that the sender farm’s virus is closer to 
the root than the recipient farm’s virus. In addition the recipient farm’s virus may differ from the sender 
farm’s virus because of mutations that the sender farm’s virus had and the recipient farm’s virus has 
lost. If the number of mutations lost is equal to zero, the sender farm and the recipient farm are on the 
same branch with the sender being closer to the root. We assume that when the virus on the sender 
farm has a deletion the virus on the recipient farm cannot be without that deletion so this combination 
cannot be a transmission event. The mutations are counted based on Figure S2 of Bataille et al. (2011). 
 

Table S2. The observed number of genetically matching pairs (A, B), within 28 pairs of 

outbreak farms linked by traced contacts, for different criteria of defining a genetic 

match. Our analysis of transmission probabilities of contact types predicts transmission 

to occur from A to B for an expected number predictedN of 8.961 pairs within the 28 (due 

to the traced contacts). This number is obtained by multiplying the expected number of 

transmission pairs (which is 15.96) by a scaling factor of 0.5615. This scaling factor is 

the expected contribution of 28 contacts relative to that of the 56 based on a weighted 

count of the contacts of each type (given in Table S1), using the per-contact 

transmission probabilities as weights. 

 

 
 

No lost mutations in B 
compared to A 

 
No lost mutations AND 
≤6 additional mutations 
in B compared to A

 

No lost mutations AND 
≤3 addition mutations in 
B compared to A

 

No lost mutations 
AND no additional 
mutations in B 
compared to A

 

#matching pairs (out 
of the 28 pairs); M 

9 5 5 2 

Counts of pairs 
meeting criterion; 
n_c 

2125 1231 886 182 

‘probability of 
chance agreement’;

 

p_c=n_c/(184x183)
$
 

0.06311 0.0366 0.0263 0.00541 

Expected number of 
chance matches; 
R=p_c*28 

1.77 1.02 
 

0.74 0.15 

Matching pairs 
corrected for 
chance (M-R) 

7.23 3.98 4.26 1.85 
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$ The total number of pairs possible is 184×183 as there are 184 outbreak farms for 

which sequencing information is available and for any two farms A and B, the pair (A, 

B) is different from (B, A).  
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Abstract 

 

In the 2003 epidemic of highly pathogenic avian influenza in Dutch poultry, 
between-farm virus transmission continued for considerable time despite control 
measures. Gaining more insight into the mechanisms of this spread is necessary for 
the possible development of better control strategies. We carried out an in-depth 
interview study aiming to systematically explore all the poultry production activities to 
identify the activities that could potentially be related to virus introduction and 
transmission. One of the between-farm contact risks that were identified is the 
movement of birds between farms during thinning with violations of on-farm biosecurity 
protocols. In addition, several other risky management practices, risky visitor 
behaviours and biosecurity breaches were identified. They include human and fomite 
contacts that occurred without observing biosecurity protocols, poor waste 
management practices, presence of other animal species on poultry farms, and poor 
biosecurity against risks from farm neighbourhood activities. Among the detailed 
practices identified, taking cell phones and jewellery into poultry houses, not observing 
shower-in protocols and the exchange of unclean farm equipment were common. Also, 
sometimes certain protocols or biosecurity facilities were lacking. We also asked the 
interviewed farmers about their perception of transmission risks and found that they 
had divergent opinions about the visitor- and neighbourhood- associated risks. We 
performed a qualitative assessment of contact risks (as transmission pathways) based 
on contact type, corresponding biosecurity practices, and contact frequency. This 
assessment suggests that the most risky contact types are bird movements during 
thinning and restocking, most human movements accessing poultry houses and 
proximity to other poultry farms. The overall risk posed by persons and equipment 
accessing storage rooms and the premises-only contacts was considered to be 
medium. Most of the exposure risks are considered to be similar for layer and broiler 
farms. Our results, including those on farmer opinions, are relevant for the 
communication with farmers and poultry-related businesses about practices and risks. 
We conclude by providing recommendations for improvement of control strategies. 

 

Keywords: biosecurity; contact and neighbourhood structure; avian influenza; 
transmission pathways; risk assessment; poultry 

Introduction 

 

The poultry industry makes a significant contribution to the Dutch national economy. 
For example, in 2011, the average broiler population was more than 45 million birds, 
the laying hen population was close to 33 million birds and close to 900,000 tonnes of 
poultry meat and close to 10 billion eggs and egg products were exported [102]. The 
profitability of this industry was severely affected by the occurrence in 2003 of an H7N7 
Highly Pathogenic Avian Influenza (HPAI) virus epidemic. In addition, this epidemic 
presented a risk to human health, both through transmission of the circulating virus to 
humans and through its assumed potential to seed the development of a new pandemic 
influenza strain [7].  The epidemic comprised 255 outbreak farms, 30 million birds were 
culled [8] and 89 people were infected, one of whom died [7]. The direct costs as a 
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result of bird deaths and depopulation amounted to €250 million, while indirect costs 
due to the epidemic were much higher [11,12].  

Although, after diagnosis of the first cases of the epidemic, movement bans and 
other control measures were put in place, a continued spread of the virus was observed. 
In spite of the culling of contiguous flocks i.e., flocks that were in the neighbourhood of 
the outbreaks or that had had contact with an infected farm, this spread continued for 
weeks in particular in the high poultry density areas [8]. The transmission pattern during 
the epidemic indicates the presence of (untraced) indirect transmission routes or 
mechanisms that are not controlled by the European Commission’s strategies. Hence in 
order to possibly improve control strategies, a better understanding of indirect 
transmission mechanisms is needed.  

AI viruses may be introduced into poultry from reservoirs such as aquatic wild birds 
[2,4,5,26] but the mechanisms of their subsequent spread are partially unclear. 
Transmission of the virus through movements of humans (visitors, servicemen and farm 
personnel), vectors (wild birds, rodents, insects), air- (and dust-) related routes  and 
other fomites (e.g., delivery trucks, visitors’ clothes and farm equipment) have all been 
hypothesized [5,24,94,103-105].  

It is therefore hypothesized that the risk of introducing the virus to a farm is 
determined by the farm’s neighbourhood characteristics, contact structure and its 
biosecurity practices. On the one hand, neighbourhood characteristics include factors 
such as the presence of water bodies (accessed by wild birds), the density of poultry 
farms (together with the number and type of birds on these farms) and poultry-related 
businesses and the road network. The use of manure in the farm’s vicinity is also 
deemed to be risky [2,22,25,26]. On the other hand, contact structure risk factors include 
the nature and frequency of farm visits. Therefore, a detailed analysis of the contact 
structure, including neighbourhood risks, and biosecurity practices across different types 
of poultry farms and poultry-related businesses could help the improvement of 
intervention strategies, biosecurity protocols and adherence to these, as well as contact 
tracing protocols.  Farmers’ perception of visitor- and neighbourhood- associated risks 
of virus spread is also important due to its relevance to adherence with biosecurity 
protocols, to contact tracing and to communicating advice to them.  

The between-farm virus transmission risks may be split into two categories namely, 
introduction and onward-spread risks. The former entail the target farm’s exposure 
through incoming contacts (human and fomite), through inputs such as feed and egg 
trays and through neighbourhood-related risks such as air-borne contamination. The 
latter can be through farm outputs (waste and non-waste), outgoing contacts (human 
and fomite) and contamination of the neighbourhood (e.g., through emissions from the 
farm). Therefore, we systematically analysed all day-to-day farm activities involving 
people and/or materials and/or equipment going in or out of the farm.  

Through questionnaire-guided in-depth interviews, we sought information directly from 
the farmers and the poultry-related businesses. These interviews were aimed at 
gathering first-hand information about all the visits and processes involved and the 
accompanying biosecurity practices throughout the production round and across all 
poultry husbandry types. Other aspects of interest were the details about the farm’s 
neighbourhood which are important in relation to indirect transmission risks. In the 
interviews, we aimed to learn more about possible risks in practice corresponding to the 
indirect contact types that are commonly hypothesized and/or that can be found in the 
tracing reports of the H7N7 epidemic in 2003 and any further possible indirect contact 
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types, in particular those that could provide a pathway for the untraced outbreaks (or 
‘neighbourhood infections’). 

Based on the gathered information, we generated a list of contact types that could 
serve as Avian Influenza (AI) transmission pathways. For these contact types, we then 
performed a qualitative risk assessment based on contact type, their corresponding 
biosecurity practices and contact frequency to ascertain which mechanisms are the 
most important to target during prevention and control.  

 
Materials and methods 
 
Study population 
  

A cross-sectional study was performed with the aim of obtaining information on the 
types and frequency of the various day-to-day farm contacts and activities that can 
guide the determination of potential pathways of AI spread between poultry farms. The 
study involved 42 farmers and 18 poultry-related business representatives distributed 
all over the Netherlands. The stratum-specific sample sizes for the farms/firms to be 
interviewed were determined based on the underlying goal of making sure that all 
relevant types in the poultry chains were included. By sampling more farms from those 
strata representing a higher population proportion an attempt was being made to 
capture any between-farm variation in biosecurity practices present. 

In 2009, there were approximately 687 broiler, 1097 layer, 248 breeder, 54 turkey 
and 66 duck farms and the layer farms comprised of approximately10% organic, 17% 
free range, 53 % deep litter and 20% cage farms [102].  From the national list available 
in the poultry production chain information (KIP) database, a random selection of 13 
layer, nine broiler, four turkey, two duck, four broiler-breeder, eight pullet, one vaccine-
egg producing and one organic/biological layer was made. For the poultry-related 
businesses, four hatcheries, two slaughterhouses, two egg grading companies, two 
feed mills, two manure plants/traders, two catching companies, two repair companies 
and two poultry veterinarians were included in the study. 

 
Questionnaire design and data collection 
 

Two questionnaires (one posed to the poultry farmers and the other to 
representatives of poultry-related businesses, both available upon request) were 
developed together with two (retired) experts who had worked in the Dutch poultry 
industry. They contained 125 and 296 closed, semi-closed and open type questions for 
the first and second round of interviews respectively. Participation in the survey was 
voluntary and for those that agreed to take part, appointments for the interviews to be 
held on the firm premises were made. All the selected farms and poultry-related 
businesses were visited and personal interviews conducted (in Dutch) between May 
and December 2009. In the first round of interviews, the questionnaire for the poultry 
farms was pre-tested on two farms, adjusted, and administered to the 42 farms. In the 
second round, the second questionnaire specifically designed for poultry-related 
businesses was administered to the 18 company representatives and professionals.  

In addition to this data, we also needed a detailed list of locations of the various 
poultry-related businesses in the Netherlands for the assessment of the interviewed 
farms’ neighbourhoods. Such a list could not be obtained from a single source; we 
generated it by extracting company information using ‘Google’ and combining the 
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results with information available on a Dutch website, the ‘Pluimvee Gids’ (Poultry 
Directory). Numbers of farms in the neighbourhoods were obtained from poultry farm 
location data.  

 
Data management and descriptive analysis  
 

Data gathered from the interviews were entered into a database file. Both data (from 
the interviews and the ‘Google’ extracted) were descriptively analysed to check the 
presence or absence of and/or determine the frequency of occurrence of events and 
practices that can promote virus transmission. In order to eliminate biased conclusions 
resulting from inaccurate reporting, farmer responses were compared with those of the 
poultry-related business representatives or were cross-checked with the poultry 
production chain information (KIP) database, maintained by the Product board for 
Poultry and Eggs (PPE), which contains the location of all commercial poultry farms in 
the Netherlands. Estimates of the number of farms and poultry-related businesses 
within a 5 km radius around each of the interviewed farms as provided by the farmer 
were compared to actual numbers obtained using farm location data and Geographic 
Information System (GIS). These findings were necessary for assessing 
neighbourhood-related contamination risks whereby we used the extracted numbers to 
infer qualitatively about the risk of farm contamination. It is also important in assessing 
the farmers’ knowledge of their neighbourhood in terms of poultry density and its 
potentially associated risks.  

 
Categorizing contacts and generating transmission pathways 
 

The outcomes of the descriptive analysis were used to inform the generation of 
transmission pathways. We hypothesized potential pathways of virus transmission 
comprising of one or combinations of several of the reported activities. A pathway is 
here defined as a combination of activities and behaviours that can promote virus 
dissemination. Examples of pathways are: a person moving between farms without 
adhering to the farms’ biosecurity protocols or a scenario in which poultry manure is 
used in the neighbourhood of a non-protected poultry farm.  

We grouped the pathways into the following five categories: 1) between-farm 
movement of poultry, 2) between-farm movement of persons and equipment that 
access poultry houses, 3) between-farm movement of persons and equipment that 
access storage rooms only, 4) between-farm movement of persons and equipment that 
were only on the premises and, 5) neighbourhood-related contamination risks. The 
distinction of the four different between-farm movement categories was based on 
decreasing proximity of approach to the poultry by the persons or equipment when on 
the farm.  

 
Qualitative risk assessment 
 

This analysis used a risk ranking scheme based on the five pathways (Section 2.4) 
and the annual frequencies of contacts. Here (in contrast to other analyses), we 
concentrated on the end-of-chain broiler (hereafter referred to as broiler) and layer 
husbandry types since these two together present the majority of farms in the Dutch 
poultry industry. Our risk ranking scheme (Table 1) ranks the identified contacts in 
terms of the overall risk they pose, based on the combination of the per-contact risk 
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and the annual contact frequency. The highest per-contact risk level was assigned to 
category I pathways with the other categories being assigned systematically decreasing 
levels, based on decreasing proximity of approach to the poultry by the persons or 
equipment when on the farm. The frequency-related risk levels were assigned on an 
interval basis with more than ten contacts per year having the highest risk and the 
lowest risk interval being that of no contacts at all. The framework was applied to all the 
different contact types identified in layer and broiler farms to rank these contact types 
according to the risks posed, with the risk level in principle being dependent on the 
husbandry type.  
 
Table 1. Proposed exposure risk classification scheme based on contact frequency, 
biosecurity practices and risk category 

 

 Average number of contacts per year ≥10 < 10 and ≥3 
< 3 and	≥ 1 < 1 and >0 ≈0 

Category I: 
movement of 
poultry 
between 
farms 

n.o.* Very high n.o.* Medium Negligible 

Category II: 
contacts 
accessing 
poultry 
houses 

Very high Very high High  Medium Negligible 

Category III: 
contacts 
accessing 
storage rooms 

Very high High Medium Low  Negligible 

Category IV: 
premises-only 
contacts 

Very high High Medium Low n.o.* 

Category V: 
neighbourhoo
d risks ** 

Very high n.o.* Medium n.o.* n.o.* 

**no contacts per year estimated, the risk is derived based on the number of farms or 
poultry-related businesses in the 5x5 km square neighbourhood. 
*n.o. stands for ‘not observed’. 
 

Results 

 
General interview findings 
 

Only about 10% of the contacted farmers and firm representatives declined to take 
part and were replaced by other farmers or firm representatives within the same 
stratum. Both the study population and the geographical coverage of the selected 
enterprises was representative of the majority of the poultry husbandry types and the 
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regions in the Netherlands. From the farm neighbourhood analysis, most farmers 
somewhat underestimated numbers of poultry farms present within a 5 km radius 
around their farm. The average percentage by which their estimate underscored the 
GIS-extracted number was 51%.   

Hired labourers are known to play a big role in inter-connecting farms. Here we 
found that 32 farms hired external labour of which seven accessed other poultry on the 
same day. However, they were not the only ‘connectors’ as some (twelve) farmers also 
reported themselves helping on other poultry farms. Furthermore, 27 farms had family 
members visiting poultry or poultry-related businesses of which nine entered poultry 
houses during those visits. The other enhancing factor of farm interconnections was the 
reported ownership of multiple locations for ten of the interviewed farms and the 
reported on-premises sale of farm products on one pullet and eight layer farms. Also 
worth mentioning is the practice of a multiple age system reported on eight of the 
interviewed farms as this may increase the risk of infecting remaining birds when off-
premises poultry movements occur.  

On 32 of the interviewed farms, the presence of other animal (non-poultry) species 
on the premises was reported. Manure use on agricultural fields in the neighbourhood 
of the farm was reported on ten of the interviewed farms. In terms of risk perception in 
relation to AI introduction, only 17 of the interviewed farmers perceived the presence of 
water bodies in their neighbourhood as posing a high risk and the farmers had 
divergent opinions about visitor-related risks (Figure 1). Farm visits were frequent - for 
example, feed mill technicians and veterinarians each accessed poultry houses and 
storage rooms on broiler farms for an average of 24.1 and 27 times per year 
respectively.  More general results are presented in Table 2. 

 

 
Figure 1. Number of farmers with a similar perception of the risk of Avian Influenza virus 
transmission associated with individual farm visitors. 
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Category I pathways: movements of poultry between farms 
 

The already known movements in this category are during restocking and spiking 
(i.e., adding males in a flock) a destination farm. We also found that, on some of the 
farms, thinning by moving birds to other farms, to slaughterhouses, and to other poultry 
houses (on the same farm) is practiced. Thus this is an additional scenario of birds 
being moved from one farm to another.   

The scenario of movement of infected day-old chicks means that these chicks are 
infected either at the hatchery or during transport. The risks for hatcheries to become 
contaminated with the virus are associated with a number of practices reported. These 
include the inconsistently applied biosecurity and/or the non-existent biosecurity 
facilities at some of the hatcheries as well as their non-adherence to farm biosecurity 
protocols.  

Bringing personal items into hatchery production rooms may also be risky, as is the 
reported interchange of chick and hatch-egg delivery trucks coupled with the reported 
non-thorough cleaning and disinfection between trips. Re-use of setter trays on three of 
the interviewed hatcheries poses a threat of infection propagation inside the hatchery in 
case of non-thorough cleaning and disinfection. Also, between-hatchery business 
connections may be important determinants of the contamination risk. These 
connections occur through the sale of hatching eggs and chicks, and the associated 
contamination risk may also be enhanced by the reported sourcing of eggs from mixed 
sources.  

  
Category II pathways: movements of persons and/or equipment between farms 
that access poultry houses 
 

The already known (and confirmed by this study) contacts accessing poultry houses 
include professionals (and professional equipment, for example bird-catching and 
vaccination equipment) and non-professional visits (and equipment) by farm staff 
(temporal and permanent) or non-staff visitors. Some farmers themselves, their family 
members and the hired personnel accessed poultry on other farms and, on pullet 
farms, future flock-owner (purchaser) visits were also mentioned.  

Among the reported, we identified biosecurity practices that contribute to these 
risks. These include the non-adherence to protocols and absence of farm biosecurity 
facilities and incomplete protocols (Table 3). There was inconsistent adherence to farm 
biosecurity protocols during restocking with six of the interviewed farms mentioning 
violations. In addition, most farms had showers that were never used and visitors did 
not always go through biosecurity transit rooms. Also, most of the interviewed farms 
lacked designated clean/dirty routes and only one interviewed farm had a marked 
walking route. Furthermore, all farms allowed personal belongings such as cell phones 
and jewellery into poultry houses and some farms shared equipment that was not 
always cleaned.  

Violation of on-farm biosecurity protocols by the poultry-related company personnel 
renders their visits risky. There are several other visitor-type specific risky factors. 
These include veterinarians visiting up to 100 farms of different types per year and 
owning all the equipment they use. As reported, this equipment is not always 
thoroughly cleaned and disinfected. For the repairmen, visiting families with poultry on 
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non-official duties and working on farms with all types of poultry may increase their 
chances of contaminating the farms they visit.  

The catching companies catch on all types of farms including day-old chicks at the 
hatcheries and hence pose a risk to the farms they visit. The crews of both catching 
companies used their own clothing and boots and the crew from one of them took 
catching cages, compressor, fork truck and dust covers on their work visits. Catching 
company representatives concurred with the farmers on the poor hygiene level of these 
items; both catching companies mentioned the visually unclean bird crates that they 
used on different farms.  

 
Category III pathways: movements of persons and/or equipment between farms 
that only access storage rooms 
 

The already known human and fomite contacts (and confirmed by this study) include 
feed mill and egg company staff contacts as well as repairmen and the equipment they 
use. Also, the between-farm use of trays, pallets, interfaces, and bird crates increases 
the risk of farm contamination. Most of the biosecurity practices that may contribute to 
these risks are the same as those of the category II pathways listed under Section 3.3.  

The other notable factors found include the lack of or non-adherence to biosecurity 
protocols at egg packing stations and feed mills, the non-thorough cleaning and 
disinfection of the equipment, and multiple farm contacts through the multiple deliveries 
per day and/or trip. These companies expand the farm’s network i.e., the number of 
farms that are connected or linked to each other. An example (from this study) of such 
a network expansion is the scenario in which egg packing companies obtained eggs 
from 100 and 150 farms with trays being exchanged between these farms and their 
clients getting eggs from other companies on the same day.  
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Category IV pathways: movements of persons and equipment that only access 
the premises 
 

These contacts include human contacts through input and output deliveries (e.g., 
feed and bedding) as well as manure pick-ups and having social gatherings of farmers 
on farm premises. The premises-only human contacts may also occur through the 
mentioned sale of eggs on the premises (or even in the poultry houses) and/or through 
delivery services of dead birds to the Central Veterinary Institute (CVI) for further 
investigation. We also found that only a few of the farms had biosecurity protocols for 
truck drivers with many arguing that there was no need since the drivers remained in 
the truck during most visits.  

Premises-only contacts also include fomite contacts through shared farm 
equipment. These fomites may include the filling tube and the dust bags used during 
feed delivery, egg trays, pallets and manure containers. Also, the practice of allowing 
visitors to park on the premises without separate parking increases the chances of 
premises contamination as does the reported presence of other non-poultry species on 
the premises.  

 The poultry-related company practices that render these contacts risky are the 
delivery trucks lacking or not using the wheel disinfection systems that make multiple 
deliveries. Another risky practice is the random distributions of empty manure 
containers and egg trays. In addition, the practice of allowing trucks from different farms 
on the same company parking area at a given time may increase the risk of truck 
contamination before their subsequent visits. The already mentioned risk of expanding 
the farm’s network (Section 3.4) also occurs through the extended sourcing of manure 
from up to 850 farms by the manure companies.  

 
Category V pathways: neighbourhood risks 
 

This category entails risks of indirect transmission attributable to the nature and 
frequency of poultry-related activities in the farm’s neighbourhood. Factors such as the 
farm’s proximity to other poultry farms and water bodies accessed by wild birds have 
been suggested to facilitate virus transmission. We add to this list the farm’s proximity 
to poultry-related businesses and roads leading to these businesses due to exposure 
through windborne dispersal.  

More to that, the presence of uncovered manure storages and the use of manure on 
agricultural fields in the neighbourhood of some of the interviewed farms further 
increase their contamination chances. These factors are facilitated by the lack of 
protection against contamination by manure on all except four farms, one of which used 
a six-meter wide strip with trees around the premises as a barrier. The resulting 
‘neighbourhood risks’ may be facilitated by movements between the field and the farm 
by other animals, rodents, insects, wild birds, humans (in cases where contaminated 
dust colloids on their clothing and/or equipment), vehicular traffic as well as wind 
dispersal.  

We identified on-farm biosecurity and other practices that may enhance these risks. 
These include poor farm waste management (for example, disposing of untreated 
waste water on the farm grassland or into the sewer system). This together with the 
reported use of community and well water (especially for cleaning the empty poultry 
houses and equipment) may constitute a risk. Neighbourhood contamination risks may 
also arise from the practices of the poultry-related businesses. For example, we found 
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that, at manure companies, manure was dried naturally and stayed unprocessed on the 
premises for up to four weeks.  Furthermore, the waste management of some 
businesses also contributes to neighbourhood risks. Transmission risks may also arise 
from transport of materials and products to and from the poultry-related businesses in 
the farm’s neighbourhood.  For example, the slaughterhouses that took waste to a 
rendering plant up to 80 km away and picked birds from as far as 300 km. 
Neighbourhood-related risks may also be facilitated by the reported pet access to 
poultry houses and storage rooms on some farms. 

 
On the qualitative risk assessment 
 

In Table 4 we present the outcomes of applying the ranking scheme (Table 1) to the 
different contact types identified in broiler and layer farms. We found that the contact 
types deemed most risky comprise the thinning and restocking contacts under category 
I, almost all human contacts under category II, and the proximity to other poultry farms 
under category V. Thinning and restocking contacts ranked highly for two reasons 
namely, their proximity to the birds being close and their frequencies being quite high. 
On the other hand, the high rank for the human contacts in category II was largely a 
consequence of their enormous frequency. Generally, category III and IV contacts, due 
to their combination of category and frequency, are hypothesized to pose a relatively 
medium overall risk with no clear difference in exposure-risk between layer and broiler 
farms.  
 
Table 4. Proposed exposure-risk classification for the different contact types for broiler and 
layer farms based on contact frequency, biosecurity practices and risk category 

Risk category Contact type Broiler: 
average 
number of 
contacts per 
year 

Layer: average 
number of 
contacts per 
year 

Proposed overall exposure-
risk classification based on 
contact category and 
frequency: broiler (layers) 

Category I: 
movement of 
poultry 
between farms 

Restocking
a
 8 0.61 High (High)

a
 

Thinning 4.8 0 High (Negligible) 

Category II: 
contacts 
accessing 
poultry houses 

Veterinarian 24.1 1.2 High (High) 
Feed mill 
technician 

24.1 7.8 High (High) 

Hatchery/bre
eder 
company 
technician 

2.9 4.1 High (High) 

Repair 
technician 

9.6 1 High (High)  

Inspectors 1.9 1 High (High) 
Vaccination 
crews

a
 

0 0.1 Not applicable (High)
a
 

Catchers
a
 7.7 0.7 High (High) 

Category III: 
contacts 
accessing 

Veterinarian 27 1.3 Medium (Medium)  
Feed mill 
technician 

27.0 8.9 Medium (Medium)   
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storage rooms Hatchery/bre
eder 
company 
technician 

7.7 4.2 Medium (Medium)  

Repair 
technician 

11.6 1 High (Medium)  

Category IV: 
premises-only 
contacts  

Feed 
delivery 

108.9 64.1 Medium (Medium)   

Fuel delivery 3.2 1 Medium (Medium)   
Bedding 
supply 

4.4 1.7 Medium (Medium) 

Farmer 
meeting 

33.7 0.9 Medium (Low) 

Presence of 
other 
animals

b
 

6 farms
b
 10 farms

b
 Medium (Medium)   

Category V: 
neighbourhood 
risks 

Proximity to 
poultry 
farms

c
 

20
c
 37

c
 High (High) 

Proximity to 
poultry-
related 
businesses

c
 

1
c
 2

c
 Medium (Medium) 

 

a 
the risk was adjusted to also cater for the number of people involved during the process, 

for example, a broiler farm is restocked by only the truck driver and farmer whereas on layer 
farms, up to 25 people are involved in catching the pullets and delivering them.  
b
 Number of contacts per year estimated, the risk is derived based on the number of farms 

reporting the contact. 
c
 Number of contacts per year estimated, the risk is derived based on the number of farms 

or poultry-related businesses in the 5x5 km square neighbourhood. 
 
 
Discussion 
 

We conducted an in-depth interview study on the day-to-day activities in the Dutch 
poultry industry with the aim of identifying all exposure-risks resulting from between-
farm contacts (whether proximity related or due to visitors) that are of potentially 
relevant to AI virus transmission in the industry. Although some detailed results may be 
specific to the Dutch situation, we expect that many of our findings may be applicable to 
other countries with a similarly structured poultry industry. On the one hand, the 
interviewees were selected across all different poultry husbandry types as well as 
poultry related businesses, in order to collect responses about the full range of day-to-
day activities throughout the Dutch poultry industry. On the other hand, the practices 
identified on the basis of a set of sixty interviewed enterprises might obviously still not 
be exhaustive. 

A similar approach (of interviewing farmers about their farm contacts and the 
accompanying biosecurity) has been adopted in other recent studies. Examples include 
Dent et al. [106], Fiebig et al. [107], Vieira et al. [108], Dorea et al. [109], Leibler et 
al.[110], Burns et al. [111] and van Steenwinkel et al. [112] among others. Our 



Avian influenza transmission risks 

 

73 

 

approach of conducting questionnaire-guided personal interviews had the advantages 
of obtaining a 100% response rate as well as providing the opportunity for a dialogue 
between the interviewer and the respondent through which additional information was 
obtained.  

Perhaps surprisingly, the farmers perceived the risk of AI virus introduction by the 
wild birds accessing water bodies in farm neighbourhoods as being low. Furthermore, 
they (farmers) had divergent visitor-risk opinions for all visitors (Figure 1). In particular, 
the result that many farmers attach a low risk to the veterinarians may reflect a 
relationship of trust. In line with this, most farmers do not force veterinarians to comply 
with biosecurity protocols (Table 3). One observation relating to the possible actual risk 
posed by veterinarians is that they were found to make more frequent visits that 
involved accessing poultry houses and storage rooms than, for example, the catchers 
(Table 4). A high discrepancy between the reported and GIS extracted numbers of 
poultry was also found. This information is vital since the attitudes and knowledge 
expressed may influence the pattern of adherence to biosecurity protocols on the farm. 

We identified and categorized several human and non-human between-farm 
contacts that can promote AI spread. Given that biosecurity is among the main 
preventive measures against farm contamination through these contacts, it is striking 
that our findings reveal inconsistency in adhering to biosecurity protocols even against 
the already ‘known’ risks (Table 3). The identified obstacles to proper biosecurity 
practices include absence of facilities, the non-exhaustive protocols and non-adherence 
or inconsistent application. On adherence, a similar inconsistency was found in other 
recent studies on biosecurity implementation, for example Racicot et al. [113] and 
Burns et al. [111] .  

The different transmission pathways we hypothesized are deemed relevant for 
various reasons. Category I pathways (movement of poultry between farms) are 
important due to the possibility of introducing infected birds on the receiving farms. The 
infection in transported birds (day-old chicks, pullets or older birds) may go unnoticed 
for less virulent HPAI strains- for example the H7N7 A/Chicken/Netherlands/2003 [92] 
that is less virulent compared to, for example, the H5N1 A/Chicken/Legok/2003 [114] - 
or in case of an LPAI strain. In pullets, LPAI infections can be present without any 
clinical signs and virus transfer to another farm or geographical area is possible during 
that time. We note that, although vertical transmission has been reported for turkeys 
[115], the risk that infected hatching eggs may produce infected day old chicks is 
considered low because the infected embryo is not likely to survive the incubation 
process.  

The other categories are deemed risky due to the possible direct introduction of 
infectious material into the poultry house for category II, into the storage rooms for 
category III and onto the premises for category IV related contacts. The category III 
related contacts (both human and fomite) may contaminate farm inputs (e.g., feed) if 
they accessed contaminated material prior to the visit whereas the category IV related 
contacts may require secondary mechanisms to aid the transfer of infectious material 
from the compound into the poultry houses. Pets, humans and equipment may provide 
this link.  

The frequency of all the contacts that constitute the category II and III pathways 
reported is enhanced by the reported multi-site ownership which often comes with 
increased sharing of labour and equipment as well as the reported exchanges of 
personnel between farms through visits by the farmers themselves, their family 
members and the hired personnel. We also note that the reported practice (on some 
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farms) of not having biosecurity protocols for the delivery-truck drivers and only rely on 
the fact that they always remain inside their trucks may expose these farms to 
contamination on (emergency) occasions that may require the driver to get out of the 
truck while on the premises.  

The presence of other animal species (both commercial and pets) might also be 
relevant to AI introduction. This is because of its associated activities such as the 
increased number of farm visits through for example, feed delivery and on-site 
veterinary care. Other than that, there is also the possibility of these animals acting as 
vectors by transporting contaminated material between locations as well as the 
possibility of cross-species transmission. AI viruses are known to affect hobby birds 
and other animal species such as pigs, horses and cats [116-118] and are often less 
virulent in other species of birds for example Pekin ducks [119]. If infected, some of 
these species (e.g., pets) have a chance of directly infecting poultry or contaminate 
feed since they were reported to access poultry houses and storage rooms on some 
farms.  

The several identified neighbourhood-transport related risks may be additionally 
relevant when long distances are covered thereby extending the geographical range of 
neighbourhood contamination risks. Examples of long distance transports reported 
include transports to slaughterhouses and rendering plant. We note that such distances 
are to be expected for the transports to the rendering plant as there is only one 
rendering company in the Netherlands that has only two destinations for carcasses. 

The risk posed by neighbourhood-related contacts may be controlled by, for 
example, reducing scavengers through covering the manure storages that were 
reportedly left open on some of the interviewed farms and/or ensuring that manure 
does not stay long on the premises as well as ensuring that dead birds are disposed of 
safely. In addition, since dust acts as a vector on which the infectious material colloids 
for dispersal, airborne contamination risks could be reduced through installation of dust 
extraction systems like air scrubbers. Such systems would help in reducing 
contaminated dust emissions from poultry houses. Moreover, sprinkling oil in the 
poultry house may reduce the amount of dust emitted, although this method is not very 
user friendly. Additionally, measures to reduce the dispersal range of the emitted dust 
such as lowering the vent height as well as measures that reduce the risk of a farm 
letting in contaminated dust may lower the risks.  

In the qualitative risk assessment, we focused on pathways identified in broiler and 
layer farms. Since the other husbandry types had almost similar contact frequencies, 
the risk ranking found (for layers and broilers) might not differ significantly in the other 
types. Layer and broiler husbandry types are the dominant poultry husbandry types in 
the Netherlands and consequently were the most represented in the interviews. Due to 
data limitations, we cannot draw firm quantitative conclusions about the actual risks; the 
rankings made in this study have an indicative, qualitative character. We used the five 
categories of pathways as a basis for this assessment. Note that, whereas the 
categorization helps to distinguish different levels of risk that a single contact may pose, 
the overall risk for a given contact type is a combination of the per-contact risk and the 
contact frequency. Thinning and restocking both pose a high risk although, unlike 
thinning, restocking on a broiler farm is done by a small team (mostly the truck driver 
and the farmer), requires less time and equipment and does not involve intensive 
handling of animals.  

Even though our results reveal that most exposure-risks are almost similar for 
broiler and layer farms, during epidemics, for example the 2003 H7N7 HPAI epidemic 
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in the Netherlands [120] and the 2005 H5N2 LPAI in Japan [39], layer farms were more 
likely to be affected. For the Dutch epidemic, the difference in risk may be explained by 
the relatively higher density of layer farms compared to broiler farms in the affected 
regions. We also emphasize that some of the rankings may be altered during 
epidemics due to movement restrictions. 

Since poultry movement between farms poses the highest risk, we sought 
information about other relevant known contacts to supplement the reported ones. We 
found that, other than the reported movements during thinning and restocking, poultry 
movements also occur a few days after restocking when replacing the dead (early 
mortality) or the small-size birds. They also occur when farms are getting rid of the 
spent or old hens and/or when there are not enough pullets on the farm. Some farmers 
also buy spent hens from traders on rare occasions to increase their flock size.  

All in all, our in-depth interviews facilitated the identification of several hitherto 
under- appreciated avenues for AI virus transmission between farms that need to be 
considered when designing or implementing prevention strategies. The results of this 
study provide clues on the possible mechanisms of virus transmission relating to the 
various farm activities and neighbourhood characteristics. The additional mechanisms 
hypothesized here can be put into consideration when updating the manuals that guide 
contact tracing during future epidemics.  

We have found that there is currently widespread non-adherence to existing 
biosecurity protocols.  Our qualitative risk assessment results should help to prioritize 
improvements in biosecurity. Our results, including those on farmer opinions, are also 
relevant for the communication with farmers and poultry-related businesses about 
practices and risks. We recommend that authorities and sector organizations review the 
biosecurity protocols and develop (intensified) communication strategies to encourage 
adherence to these. On-farm facilities designed to help everyday adherence, such as 
walkways, barriers/fences and warning signs, are currently often missing. Finally, the 
frequency of risky visitor types should be reduced where possible.   
 
Acknowledgements 
 

We are indebted to the farmers, company managers and professionals who 
participated in this study, Phill te Winkel, Albert Truin and Gerrie Hardeman for 
conducting the interviews and their contribution in developing the questionnaires. We 
also thank Henriette Brouwer-Middelesch (AHS) for entering the data in the database, 
Jan Workamp (AHS) and other AHS officials who provided details on farm locations, 
Annemarie Bouma (ELI) and Peter van der Velden (IvP) for their comments on the 
interview questions, Gert Jan Boender (CVI) for the help with the generation of maps, 
Linda McPhee for her comments on the manuscript. This work was supported by the 
Foundation for Economic Structure Strengthening (FES) in the Netherlands: FES 
Program on Avian Influenza. 
 
  



Chapter 4 

 

 

76 
 



 

77 

Chapter 5 

 
Small distances can keep bacteria at bay for days 

 

 

B.A.D. van Bunnik
1,2*

, A. Ssematimba
1,2,*

, T.J. Hagenaars
1
, G. Nodelijk

1
, 

M.R. Haverkate
3
, M.J.M. Bonten

3,4
, M.K. Hayden

6
, R.A. Weinstein

6,7
, 

M.C.J. Bootsma
3,5

, M.C.M. de Jong
2 

 
1)

 Department of Epidemiology, Crisis organisation and Diagnostics, Central 
Veterinary Institute of Wageningen UR, Lelystad, The Netherlands. 

2)
 Department of Quantitative Veterinary Epidemiology, Wageningen University, 

Wageningen, The Netherlands. 
3)

 Julius Center for Health Research and Primary Care, University Medical Center 
Utrecht, Utrecht, The Netherlands 

4)
 Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 

The Netherlands 
5) 

Faculty of Science, Department of Mathematics, Utrecht University, Utrecht, The 
Netherlands

 

6) 
Infectious Disease Medicine, Rush University Medical Center, Chicago, Illinois, 

United States of America 
7)

 Division of Infectious Diseases, John Stroger Hospital of Cook County, Chicago, 
Illinois, United States of America 

 

 

 

 

 

 

 

 

 

 

*Authors contributed equally 

 

 

 

In preparation 

 



Chapter 5  

 

78 
 

Abstract: Transmission of pathogens between spatially separated hosts, i.e., indirect 

transmission, is a commonly encountered problem when fighting epidemics of infectious 

diseases. In order to improve control strategies against indirect transmission, a better 

understanding is needed of its underlying routes, which most often remain untraced. We 

used a novel design to study indirect transmission experimentally and developed a 

diffusion model to describe the indirect transmission observed. We show that the 

interplay of diffusion of infectious material and its decay in the environment can explain 

the large differences in indirect transmission patterns between two different zoonotic 

bacteria. An immediate consequence is the apparent need to include a distance-

dependent delay in transmission; this delay can be predicted by diffusion models. Indeed, 

a delayed transmission component exists also for the spread of Vancomycin-Resistant 

Enterococcus in an intensive care unit, and this component disappeared when the 

environment was thoroughly cleaned. Furthermore, the model allows analysis of the 

impact of specific bio-security measures against untraced indirect transmission by 

considering their effects on the diffusion coefficient and the pathogen decay rate. 

Indirect transmission, i.e. transmission without direct contact between hosts,  is an 
important mechanism of disease spread in epidemics as has been demonstrated in 
plants(e.g. [121-123]), in livestock (e.g. [10,42,124-126]) and in humans (e.g. [127-
129]). Indirect transmission is very important because control measures can prevent 
direct contact but it is unclear how indirect contacts can best be avoided. Thus, for 
example transmission in health care facilities occurs frequently by indirect transmission, 
in spite of the hygiene measures that are taken. 

Better understanding of the mechanisms that underlie indirect transmission is 
needed to improve effectiveness of bio-security methods to control disease spread. 
Here we obtain mechanistic insight by studying indirect transmission in controlled 
experiments and by using mathematical modelling to understand the experimental 
observations. In our experiments, we concurrently inoculate groups of broilers with two 
different pathogens and study the indirect transmission of these pathogens to spatially 
separated susceptible recipients. The two pathogens used have very different decay 
rates in the environment. The rationale of this approach is that through investigating the 
influence of the decay rate on indirect transmission, we may improve our understanding 
of how pathogen-containing particles travel through the environment from sender to 
receiver. The experimental setup consisted of, in each replicate, inoculated infectious 
broilers in a centre cage surrounded by ten recipient broilers placed individually in 
cages at a distance of approximately 75 cm both from the central cage and from each 
other (Figure S1). All broilers in the centre cage were inoculated with either 
Campylobacter jejuni (C. jejuni) or both C. jejuni and Escherichia coli (E. coli). The 
occurrence of indirect transmission events was monitored by a daily collection of cloaca 
swab samples from all recipient broilers. The experiment ended 35 days post 
inoculation (p.i.) (see Supporting Online Material (SOM) for full description of 
experiment [130]). In mathematical models, direct pathogen transmission is usually 
assumed to occur instantaneously when susceptible and infectious individuals are at 
the same location at the same time [131-133]. Modelling indirect transmission 
necessitates inclusion of the transport of infectious material in the environment between 
hosts, thereby allowing for time delays between pathogen shedding by an infectious 
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host and subsequent exposure of a recipient host [134,135]. In order to quantify the 
indirect infection pressure experienced by a susceptible recipient at a specific location 
at a specific time, the full history of how many infectious individuals were present at 
particular locations up until the time of interest needs to be taken into account. Here we 
developed a model in which the transport process was assumed to be diffusion of 
particles, i.e., infectious material was assumed to move with small random steps 
[136,137]. One appealing consequence of this simplification is that we do not have to 
parameterize unobserved individual displacements of infectious material through the 
environment. Instead, we fit a single parameter (the diffusion coefficient) to the 
observed pattern, averaging over all transport routes. 

Cages with infectious broilers are modelled as an area source of pathogen-
containing particles from which diffusion at rate D to the recipient cages occurs. For an 
area source emitting with strength Q0 during a time interval [0,߬], the concentration of 
viable infectious material at a given location (x,y) at time t is obtained by integrating the 
point-source solution of the diffusion equation over both space and time taking into 
account the decay rate (α): 

cܵont(ݐ,ݕ,ݔ) = න න න ܳ଴
ݐ)ܦߨ4 − (ᇱݐ

௫మ
௫భ

௬మ
௬భ

ఛ
଴ exp ቈ−ݐ)ߙ − (ᇱݐ − ݔ) − xᇱ)ଶ + ݕ) − (ᇱݕ ଶ

ݐ)ܦ4 − (ᇱݐ ቉  ᇱݐ݀′ݕ݀′ݔ݀
 

The force of infection (FOI) experienced by a recipient animal is assumed to be 

proportional to the average concentration across its cage floor area. However, this is 

true for as long as the concentration is (much) smaller than an “exposure capacity” K 

[138]. For larger concentrations, the FOI is assumed to be bounded by a maximum 

equal to ܭߚ  which is determined, for instance, by limitations in access to and/or uptake 

of infectious material by recipient animals. This formulation ensures that, even in the 

limit of negligible pathogen decay, the infection rate will remain finite as required 

biologically. See SOM [130] for the resulting equation.  

The model parameters and their dimensions are listed in Table 1. The parameters 

that need to be estimated from experimental observations are the diffusion coefficient 

D, the transmission parameter βcampy for C. jejuni, βcoli for E. coli, the exposure capacity 

K and the decay rates of the pathogens αcampy & αcoli. The two decay rates are estimated 

in separate survival experiments (see SOM for full description of experiments[130]), 

carried out under the same conditions as the transmission experiments. Estimated 

decay rates were 2.25 day-1 for C. jejuni and we used zero for E.coli, as we observed 

100% survival during 100 days. The remaining parameters were estimated using a 

maximum likelihood estimation approach (see SOM [130]) for the derivation of the 

likelihood equation).  

In the transmission experiments, acquisition of pathogens was detected in 24% of 

recipients for C. jejuni and in 100% of recipients for E. coli. The observations are 

summarized in Figure 1.A key observation was the difference in timing of the first 

transmission event for the two pathogens (see Figure 1). For E. coli, there is a delay of 

4 days and 5 days p.i. to the first transmission event for groups with 5 and 20 

inoculated animals, respectively. For C. jejuni first transmission events occurred at day 
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12 p.i. for the groups with 20 and at 23 days p.i. for the groups with 5 inoculated 

animals.  

In Figure 1 is also shown that our diffusion model for indirect transmission (solid 

lines without symbols) can explain the difference in the onset of transmission of the two 

pathogens. The corresponding estimates of the parameters are listed in Table 2. We 

note that the transport of both C. jejuni and E. coli through the environment is assumed 

to be governed by one and the same diffusion coefficient. This is motivated by the fact 

that the broilers inoculated with both C. jejuni and E. coli concurrently excreted both 

bacteria in the faeces, thus, both pathogens are most probably transported together). 

As the two bacteria are excreted in similar amounts, our model fit explains the 

difference in timing of first infection events in terms of the difference in pathogen decay 

during transit from sender to recipient. This difference between C. jejuni and E. coli, in 

the predicted delay until the amount of infectious material available to recipient animals 

becomes sufficient to cause infection, is further illustrated by Figure S2. For any given 

time, the force of infection is higher for the groups with 20 I-animals compared to 5 I-

animals but the difference in delays is maintained. 

 The difference between C. jejuni and E. coli in terms of amount of infectious material 

predicted to reach the recipient animals is caused by differences in their decay rates. 

E.coli survives throughout the experimental period while C. jejuni only survives for on 

average 0.44 days. As a result the accumulation of pathogens in the environment at a 

given location is much slower for C. jejuni compared to E. coli. The time needed to 

reach a location and the decay occurring during that time determine the saturation level 

at that location if the emission of pathogens is continuous at constant rate. Saturation 

levels reached in our experiments are thus predicted to be lower for C. jejuni compared 

to E. coli. Furthermore, the model predicts that there is a limit to the distance that 

pathogens can reach in substantial amounts. Formulated more mathematically, for 

every pathogen quantity level there is a maximum distance at which that quantity level 

can be reached (Figure S3). This distance limit is determined by the decay rate and the 

diffusion parameter D, which depends on the mode of pathogen excretion and manner 

of transportation. Since the different microorganisms are likely to be transported in the 

same way, D can be estimated independent of the pathogen type. 

The combination of animal experiments and modelling carried out here provides new 

insights in the mechanisms underlying disease transmission as well as new possibilities 

to quantify effectiveness of infection control measures. The model developed leads to a 

parameter likelihood that combines the distances travelled and time elapsed since 

emission. In particular, the diffusion coefficient D describes how fast the disease 

spreads and the distance it can cover depending on its transport medium (excreta) and 

external environmental factors (wind, humans, animals and machines). Since the 

diffusion coefficient D can be modified by external factors, it is a promising candidate 

for assessing the role of bio-security measures in limiting disease spread. For instance, 

experiments with safe model micro-organisms (e.g. live vaccines) could be performed 

to compare estimated values of D with and without interventions. Furthermore, the 



Small distances can keep bacteria at bay  

 

81 

model predicts that infections with microorganisms with low decay rates can occur at 

distant locations (long) after the source of infectious material has been removed. This 

would have important consequences in hospital Intensive Care Units (ICU) where this 

would imply that removing (or quarantining) a patient colonized with a certain pathogen 

might not prevent subsequent transmission if that pathogen survives in the 

environment. This prediction was investigated using data from a study of Vancomycin-

Resistant Enterococcus (VRE) in an ICU [139]. In the original study intensified 

environmental cleaning was associated with reduced acquisition of VRE. Given that 

newly admitted patients enter the ICU in a clean (and sterilised) bed, we assume that 

the surfaces immediately surrounding such a patient initially are not contaminated with 

VRE. Without sufficient cleaning, the further inanimate environment of a patient may 

still be contaminated with VRE from patients previously occupying the unit. As VRE has 

comparable survival times [140-143] as E. coli and as the relevant distances are 

comparable to those in our animal experiment, our model predicts a delay in indirect 

transmission of approximately 4 days. During intensified cleaning the contamination 

level of the environment would be reduced whenever cleaning removes VRE from 

surfaces more rapidly than contamination occurs through diffusion. In those situations 

we expect indirect transmission to be absent. In a new analysis of the ICU data of [139] 

we found a delayed transmission component in the acquisition of VRE, with a delay of 4 

days in periods without intensified cleaning (Fisher’s Exact test, p=0.035), in agreement 

with our model prediction (see Supporting Online Material for details of the study and 

analysis [130]). This delayed transmission component is not observed during intensified 

cleaning, indicating that it is most probably due to surface-contamination near the 

patient (Figure S4). Figure 2 shows the cumulative relative number of infected patients 

per day after admission to the ICU for the undelayed and delayed component. A delay 

of 4 days implies that – in this ICU – regular cleaning of the environment (at least once 

a week or more) is enough to counteract diffusive delayed transmission of VRE. This 

emphasizes the importance of evacuation, cleaning and disinfection measures that are 

often taken to avoid such transmission. Our diffusion model provides a means to 

understand and quantify the expected transmission risks and the impact of control 

measures. 

As noted above, indirect transmission is often caused by multiple and difficult to 
quantify mechanisms. Our results demonstrate that two-dimensional diffusion modelling 
is a promising approach to describe indirect transmission in a parsimonious manner; 
with few parameters that can be feasibly estimated. The approach was successful in 
explaining key features of the indirect transmission of the two bacteria studied here and 
of the transmission of VRE in an ICU.   
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Table1. Dimension and description of parameters used in the model. 

Parameter Dimension Description 

Scont #/m
2
 Concentration of pathogen on the time and location of interest 

t` Day Time of release of the particles 

Τ Day Time of interest 

(x`, y`) (m,m) Location of the source cage 

(x,y) (m,m) Location of the recipient cage 

x1, x2, y1, y2 M Coordinates of the source cage 

xa, xb, ya, yb M Coordinates of the recipient cage 

D m
2
/day Diffusion coefficient 

α day
-1

 Decay rate of the pathogen 

K #/m
2 

Exposure capacity 

β day
-1 

Transmission parameter 
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Table 2. Estimated values and 95 % confidence intervals for the model parameters. 

Parameter Point estimate (95% C.I.) 

5 I-animals 20 I-animals 

D 0.003 (0.002-0.004) 0.0025 (0.002-0.005) 

βCampy 0.007 (0.004 - 0.015) 0.015 (0.0053-0.0196) 

βE. coli 0.023 (0.0145 - 0.0345) 0.025 (0.016 - 0.037) 

K 1·10
−15

 1·10
−15

 

 

 

Table 3. Average colonisation rate per period for the baseline situation and the three 

treatments of the ICU transmission data. A p-value < 0.05 indicates a significant 

difference between the colonisation rate in period 1 and period 2. p.a. = post admission. 

Treatment Period 1 (day 1-3 p.a.) Period 2(≥day 4 p.a.) p-value 

Baseline 0.023495 0.050085 0.038 

Treatment 1 0.021336 0.003527 0.210 

Treatment 2 0.014849 0.014844 0.631 

Treatment 3 0.015618 0.010426 0.532 
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Figure 1. Proportion of recipient animals infected with C.jejuni or E. coli as function of 

time since inoculation of the sender animals. In the transmission experiment each 

experimental room contained 5 or 20 sender animals that were inoculated with either C. 

jejuni or with both C. jejuni and E. coli and 10 susceptible animals. Curves with circles 

depict the animals that were infected through indirect transmission with E. coli. Curves 

with triangles depict the animals that were infected through indirect transmission with C. 

jejuni. Solid lines without symbols depict model predictions for that specific treatment. 

For C. jejuni the curves represent the proportion infected of the total number of 

recipient animals. For E. coli the curves represent the proportion infected of those still 

present on that day, because animals are removed when they are infected with C. 

jejuni (see SOM[130]) p.i. = post inoculation. 
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Figure 2. Cumulative proportion of patients infected per day after intensive care 

admission for the undelayed transmission component and the delayed transmission 

component. Day 0 is the day of admission. 
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Supporting Online Material 

Transmission experiment 

Experimental design 

The experiments were carried out on eight groups of broilers. Four groups were 
inoculated with C. jejuni and four groups with both C. jejuni and a labelled E. coli (see 
below in the section Inoculation). Two of the four groups inoculated with C. jejuni 
contained five animals and two groups contained twenty animals. The same applied to 
the four groups inoculated with C. jejuni and E. coli. See also Table S1 for an 
inoculation scheme. The inoculated animals were housed together in one cage in the 
centre of an experimental room (a separate climate controlled room in an experimental 
facility of the Central Veterinary Institute). Ten susceptible recipient animals were 
housed individually in cages surrounding this centre cage placed at a distance of 75 cm 
(see Figure S1).  

To track indirect transmission, all source and recipient animals were sampled by 
means of a cloacae swab (see section on Sampling). These swabs were tested for the 
presence of C. jejuni and E. coli (if applicable). Unlike E. coli positive animals, if a 
tested recipient animal was found C. jejuni positive, it was considered infected and was 
immediately removed from the experiment to avoid having to deal with multiple cages 
contributing to the infection pressure in the analysis. The removed animals were 
euthanized and cecum was removed for further investigation for the presence of C. 
jejuni.  

The experiment ended 35 days post inoculation. All remaining source and recipient 
animals (that had not been found C. jejuni positive until that moment) were euthanized 
and cecum was removed and further investigated for the presence of C. jejuni. 

 

Animals and housing 

 One-day old broilers (type Ross 305) were obtained from a commercial hatchery. At 
day 7 and day 12 after arrival, cloacal swabs taken from each chick were used to confirm 
the absence of C. jejuni and nalidixic acid resistant E. coli. From the day of arrival (day 0) 
until 12 days post-arrival, 180 broiler chicks were housed together in one group. On day 
12, the chicks were equally and randomly distributed to eight experimental rooms for the 
transmission experiment. Four rooms contained five source animals housed together in 
one centre cage and ten recipient animals individually housed in ten cages surrounding 
the centre cage as shown in Figure S1. The other four rooms contained twenty source 
animals housed together in one centre cage and ten recipient animals individually housed 
in ten cages surrounding the centre cage. 

All animals were housed on wood shavings and the drinking water was supplied 
through a nipple drinking system. In each set-up, the drinking nipples in the cages on 
the long sides of the area were supplied from one common water container while the 
centre cage had a separate drinking water supply. This precluded transmission via a 
shared drinking water system. 

Before the start of the experiment, all experimental rooms were cleaned and 
disinfected with formaldehyde. Subsequently, samples were taken from 12 different 
areas inside the room to check for the absence of C. jejuni and E. coli. 
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Inoculation 

For inoculation with C. jejuni, the C. jejuni strain 356 [144] was used. The strain was 
freshly cultured in hearth infusion broth (microaerobically, 37°C, overnight) and diluted 
in buffered peptone water to obtain the intended inoculation dose (± 1*106 Colony 
Forming Units (CFU)/ml). The precise concentration (CFU/ml) of C. jejuni in the 
administered inoculum was determined by plating on modified cephoperazone charcoal 
deoxycholate agar (mCCDA) (Oxoid CM 793) with selective supplement (Oxoid CM 
155) before and after the inoculation of the animals. Source animals were inoculated 14 
days after arrival with 1 ml inoculum. 

For inoculation with E. coli, a wild-type isolate was used with a point mutation in the 
gyrA gene, leading to a resistance to nalidixic acid (minimum inhibitory concentration 
> 64 mg/L). The strain was freshly cultured in normal saline solution (37°C, overnight) 
and diluted in buffered peptone water to obtain the intended inoculation dose (± 1*106 
CFU/ml). The precise concentration (CFU/ml) of E. coli in the administered inoculum 
was determined by plating on MacConkey agar plates with 100ppm naladixic acid 
before and after the inoculation of the animals. Source animals were inoculated 14 
days after arrival with 1 ml inoculum. 
 

Sampling 

To track indirect transmission, all animals were tested by means of a cloacae swab. 
After an inoculated source animal was found positive for C. jejuni and E. coli on three 
consecutive days, swabs for those animals were taken weekly instead of daily. For the 
susceptible recipient animals, swabs were taken once a day throughout the experiment. 
On days when both inoculated and recipient animals were to be sampled in each 
group, the recipient animals were sampled first.  Swabs were tested within two hours 
after sampling in the laboratory 

Samples were collected using sterile swabs (sterile plain dry swabs, Copan 
Diagnostics Inc., USA). For C. jejuni swabs were directly plated on mCCDA, incubated 
microaerobically at 41.5°C for 48 hours and examined for the presence of C. jejuni. The 
swab was then placed in Preston enrichment medium (Nutrient Broth no. 2, Oxoid 
CM0067 with Campylobacter selective supplement (Oxiod SR0204E) and 
Campylobacter growth supplement (Oxoid SR0232E)) and incubated microaerobically 
at 41.5°C for 24 hours. After incubation, it was plated on mCCDA and incubated 
microaerobically at 41.5°C and examined for the presence of C. jejuni after 24 and 48 
hours. For E. coli swabs were directly plated on MacConkey agar, incubated at 37°C for 
24 hours and examined for the presence of E. coli. The swab was then placed in a 
normal saline solution and incubated at 37°C for 24 hours. After incubation, it was 
plated on MacConkey agar plates, which were then incubated again at 37°C and 
examined for the presence of E. coli after 24 and 48 hours. 

Hygienic Measures 

To prevent animal caretakers from acting as a vector of transmission between 
stables, strict hygienic measures were used during the entire experiment. Clean 
overalls were used at every entry into the experimental rooms. A pair of boots was 
dedicated to each room, cleaned on entering and exiting it by means of wading through 
a chlorinated bath (Suma Tab D4, JohnsonDiversity).  



Chapter 5  

 

 

88 

 

To prevent direct transport from one bird to the next bird sterile gloves were 
changed between handling individual animals. Inoculated animals were always 
sampled last. Note that still the animal caretakers are part of the activities in the stable 
that can cause the diffusion within the stable. 

Survival experiment 

Experimental design 

 A separate survival experiment was carried out with four groups of five broilers each. 
The broilers were inoculated at age 14 days with C. jejuni and naladixic acid resistant E. 
coli by gavage. The groups of broilers were placed in cages in which a board was placed 
as a floor with normal bedding material on top. A group of broilers was put in the cage for 
either 24 or 72 hours. After this period the broilers were moved into another clean cage 
with a new board and fresh bedding material. The board floor from the emptied cage was 
moved from the cage including all bedding material and faeces and taken into an identical 
experimental room with the same climate conditions as the transmission experiment 
described above. A wireframe grid with squares of 10 cm x 10 cm was placed over the 
board. Each day, starting from the day the broilers were removed from the board, a 
pooled sample of 10 random squares of the grid was taken. This pooled sample was 
immediately taken to the lab were the number of CFU’s of C. jejuni and E. coli in the 
sample was counted (see section on Sampling for a complete description). In total 22 
boards were obtained, 13 boards on which the broilers were placed for 24 hours and 9 
boards with broilers placed on for 72 hours. The reasoning for 24 and 72 hours was 
uncertainty whether a 24 hour period would yield enough faecal material to analyse; after 
we finished the analysis we found no difference between samples of boards with material 
from 24 or 72 hour. 

Animals and housing 

 One-day old broilers (type Ross 305) were obtained from a commercial hatchery. At 
day 7 and day 12 after arrival, cloacal swabs taken from each chick confirmed the 
absence of C. jejuni and nalidixic acid resistant E. coli. From the day of arrival (day 0) until 
12 days post-arrival, 20 broiler chicks were housed together in one group. On day 12, the 
chicks were equally and randomly distributed into four groups of 5 animals. Each 
experimental room contained eight cages each measuring 1.5 by 1 meter. On the bottom 
of the cage, a board was placed with the same dimensions as the cage floor. Wood 
shavings were put on the boards as bedding material. The drinking water was supplied 
through a nipple drinking system.  

Before the start of the experiment, all experimental rooms were cleaned and 
disinfected with formaldehyde.  Subsequently, samples were taken from 12 different 
areas inside the room to check for the absence of C. jejuni and nalidixic acid resistant 
E. coli. 

Inoculation 

The inoculation procedure was the same as described for the transmission experiment. 

Sampling 
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For C. jejuni for the first seven days each day a sample of the boards was taken by 
pooling the faeces from ten random 10 cm x 10 cm. squares and one sample from each 
board on day 14. The faeces inside one square were collected using tweezers to avoid 
too much bedding material in a sample. The pooled samples were then transported to 
the laboratory for further handling. In the laboratory, the samples were diluted with 500 
ml buffered peptone water and the mixture was homogenized by placing them for 10 
seconds in a Stomacher homogenizer (Seward Colworth Stomacher 400®). From the 
homogenized sample a series dilution was created by diluting 1 ml in 9 ml of normal 
saline solution for each step. From each dilution, 0.1 ml was plated on a mCCDA plate. 
The plates were then incubated microaerobically at 41.5°C for 24 hours and examined 
for the presence of C. jejuni. The number of CFU’s was counted on the plate that had 
between 10 and 100 CFU’s.  

The same procedure was done for nalidixic acid resistant E. coli, except that after 
day 14 every two weeks a sample was taken and each dilution was plated on 
MacConkey agar with 100 ppm nalidixic acid and incubated at 37°C for 24 hours after 
which the number of CFU’s were counted. 

Derivation of the diffusion model 

Consider decaying particles diffusing from source of strength ܷ଴	at ݔ = 0. The 
spatial and temporal distribution of the particles is given by Fick’s second law. The 
partial differential equation governing the diffusion process is డ௨డ௧ = ܦ డమ௨డ௫మ − ,ݑߙ ݐ > ݔ,0 ∈ (0,∞)       (1) 

where ܦ is the diffusion coefficient (m2/day), ߙ is the decay rate (day-1), (ݔ,ݐ)ݑ  is the 
concentration at a distance ݔ (m) from the source after time ݐ (day). The initial and 
boundary conditions are (0,ݐ)ݑ = ܷ଴, 	 l im௫→ஶ (ݔ,ݐ)ݑ = (ݔ,0)ݑ			,0 = 0.  

Equation (1) solves to (ݔ,ݐ)ݑ =
௎బ√ସగ஽௧ exp ቂ−ݐߙ − ௫మସ஽௧ቃ      (2) 

Equation (2) is the solution that describes the diffusive spread along the ݔ-axis i.e., 
one-dimensional diffusion of a substance from a point source of an amount ܷ଴ released 
at ݔ = 0 at time ݐ = 0.  

For diffusion on an infinite plane surface i.e., two-dimensional diffusion, the 
concentration of the diffusing substance at a radial distance	ݎ, where in this case ݎଶ = ଶݔ + (0,0)	from the source located at the point	ଶ,ݕ , is given by ܵ(ݎ,ݐ) =

௎బସగ஽௧ exp ቂ−ݐߙ − ௥మସ஽௧ቃ.      (3) 

The solution cܵont(ݎ,ݐ)  for a continuous source emitting over a time interval [0,߬] is 
obtained by summing up all the contributions of the puffs emitted at the different time 
points taking into account the length of the diffusion period i.e., for particles emitted at ݐ′ ∈ [0,߬] , the diffusion period is equal to (ݐ − (′ݐ .  The overall concentration at a radial 
distance ݎ from the source is given by the convolution of the emitted quantity ܷ଴	at time ݐ′ and the distribution ௥ܵ(ݐ) as  cܵont(ݎ,ݐ) = ∫ ܷ଴ ௥ܵ(ݐ − ఛ଴′ݐ݀(′ݐ . 

For diffusion over a two-dimensional space from a continuous point source, the 
distribution of the particles is given by 

cܵont(ݎ,ݐ) = ∫ ௎బସగ஽(௧ି௧ᇱ) exp ቂ−ݐ)ߙ − (′ݐ − ௥మସ஽(௧ି௧ᇱ)ቃఛ଴  (4)    .′ݐ݀
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Replacing the continuous point source with a continuous area source, for example a 
rectangular cage with as coordinates for the four corners:	(ݔଵ,ݕଵ) (ଶݕ,ଵݔ)	, (ଵݕ,ଶݔ) , 	and 
(ଶݕ,ଶݔ) , the concentration of particles at a given farther away location (ݕ,ݔ)  is given by: 

cܵont(ݐ,ݕ,ݔ) = ∫ ∫ ∫ ொబସగ஽(௧ି௧ᇱ)௫మ௫భ௬మ௬భఛ଴ Exp ቂ−ݐ)ߙ − (′ݐ − (௫ି௫ᇱ)మା(௬ି௬ᇱ)మସ஽(௧ି௧ᇱ) ቃ  (5) ′ݐ݀′ݕ݀′ݔ݀

where ܳ଴	is the source strength per unit time per unit area. This approach of extending 
a point source theory to an area source situation has been described before (for 
examples, see [137,145,146]). If we have an area recipient for example a rectangular 
cage with 	(ݔ௔,ݕ௔) (௕ݕ,௔ݔ)	,  as coordinates of the four corners, we(௕ݕ,௕ݔ) and(௔ݕ,௕ݔ)	,

take ∫ ∫ cܵont(ݐ,ݕ,ݔ)݀ݕ݀ݔ௫್௫ೌ௬್௬ೌ . 

Figure S2 shows a graph of ௖ܵ௢௡௧ in time, i.e. the amount of viable infectious material 
per unit area as a function of time for both C. jejuni and E. coli.  

Based on the independent action hypothesis, the force of infection (FOI) 
experienced by a recipient animal is assumed to be proportional to the average 
concentration across its cage floor area, which, from equation (5), will tend to infinity for 
large t.  However, even for direct transmission the rate is not infinite [147-149] therefore it 
is most probably not infinite for indirect transmission. Here we hypothesize that there is a 
limitation on the concentration to which a recipient animal is exposed. We define that 
limiting value as the “exposure capacity” K of the animal. It may be governed by, 
among others, the mechanism of pathogen uptake as well as the accessibility of 
infectious material in the cage. Consequently, the FOI is taken to be proportional to the 
average concentration for as long as the concentration is (much) smaller than K but for 
larger concentrations, it is bounded by K. The mathematical formulation for the FOI with 
this behaviour is obtained from the logistic growth model theory [138] as 

FOI = ߚ ∫ ∫ ௖ܵ௢௡௧(ݐ,ݕ,ݔ)݀ݕ݀ݔ௫್௫ೌ௬್௬ೌ / ቀ1 + ∫ ∫ ௖ܵ௢௡௧(ݐ,ݕ,ݔ)݀ݕ݀ݔ௫್௫ೌ௬್௬ೌ /  .ቁܭ

 
This formulation ensures that, even in the limit of negligible pathogen decay, the 

infection rate will remain finite as required biologically. These limitations only influence 
the FOI experienced by a receiving animal; it will not influence the total amount of 
pathogen that is accumulated at a given location at a given time. The accumulated 
amount is the quantity which influences the further diffusion in time and space. 

We assume that, for any pathogen amount, there is a non-zero probability of infection 
which increases exponentially fast with increasing pathogen amount. In literature, this is 
referred to as the dose relationship for a single-hit model [150] or the independent action 
hypothesis [63].  

 
Parameter estimation 

We use the Maximum Likelihood Estimation approach to estimate the diffusion 
coefficient ܦ and the transmission parameters ߚ from the data obtained in the 
experiments. Separate likelihood functions for E. coli and C. jejuni data were 
constructed because of the difference in experimental procedure i.e., chickens were 
removed from the experiment upon colonization by C. jejuni unlike the E. coli colonized 
ones which were only removed if they also became colonized by C. jejuni. The 
likelihood function for the C. jejuni data, ܮ

c
	is given by 
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cܮ

= ී ቌExp ቎−ߚc ෍ ܵᇱ
cont[ݎ,ߒ௜଴,ܭ,ܦ,ߙ]

e்xp

ఁୀ଴ ቏ቍௌ೟

௜ୀଵ
ී ቌExp ቎−ߚc ෍ ܵᇱ

contൣݎ,ߒ௝଴,ܭ,ܦ,ߙ൧ୢୣୟୢೕ
ఁୀ଴ ቏ቍே೏

௝ୀଵ
 

ෑ ቀExpൣ−ߚc ∑ ܵ′cont[ܶ,ݎ௞଴,ܭ,ܦ,ߙ]
௧ೖିଵ்ୀ଴ ൧ × ൫1 − Expൣ−ߚcܵ′cont[ݐ௞,ݎ௞଴,ܭ,ܦ,ߙ]൧൯ቁெ௞ୀଵ

 (6) 

The likelihood function for the E. coli data, ܮeis given by 

eܮ = ∏ ቆExp ቂ−ߚe ቀ∑ ܵ′cont[ܶ,ݎ௜଴,ߙ௘ [ܭ,ܦ,
௧೔ିଵ்ୀ଴ + ∑ ∑ ܵ′contൣݐ௜ −Minൣ௧೔ିଵ,culledೕ൧்ୀ௧ೕ௜ିଵ௝ୀଵெ௜ୀଵܶ,ݎ௜௝ ௘ߙ, ൧ቁቃܭ,ܦ, × ൫1 − Expൣ−ߚe൫ܵ′cont[ݐ௜,ݎ௜଴,ߙ௘ [ܭ,ܦ, + ∑ ܵ′contൣݐ௜ − ௝ݐ ௜௝ݎ, ௘ߙ, ൧௜ିଵ௝ୀଵܭ,ܦ, ൯൧൯ቇ

                         (7) 

St is the total number of susceptible chickens that escaped from infection throughout 
the experiment. In the E. coli data there are no animals escaping from infection 
throughout the experiment (St=0), which is why the first factor in Eq. (6) has no 
counterpart in Eq. (7). eܶxp	is the number of days in the experiment. dܰ is the total 

number of animals that died due to other causes than removal (during the complete 
experiment 9 animals died to other causes than removal). dead௝ 	is the day that animal ݆ 
died due to other causes. ܯ is the total number of transmission events that occurred, ݐ௞ 	is the day that the transmission event occurred. ݎ௜௝ 	is the distance between the cage 

of the source chicken(s) ݆ and the receivers cage ݅,  culled௝ 	is the day that  chicken ݆ 
was culled. 

The factors in ܮc	(Equation (6)) are described as follows; ෑ ቀExp ቂ−ߚc ∑ ܵ′cont[ݎ,ߒ௜଴,ܭ,ܦ,ߙ]e்xpఁୀ଴ ቃቁௌ೟௜ୀଵ  is the  probability of escaping infection 

throughout the experiment for all escapees, ෑ ቀExp ቂ−ߚc ෌ ܵ′contൣݎ,ߒ௝଴,ܭ,ܦ,ߙ൧ୢୣୟୢೕఁୀ଴ ቃቁே೏௝ୀଵ  is the probability of escaping until the 

animal died due to other causes, ෑ ቀExpൣ−ߚc ∑ ܵ′cont[ܶ,ݎ௞଴,ܭ,ܦ,ߙ]
௧ೖିଵ்ୀ଴ ൧ ×

ெ௞ୀଵ൫1 − Expൣ−ߚcܵ′cont[ݐ௞,ݎ௞଴,ܭ,ܦ,ߙ]൧൯ቁ is the probability of getting infected on day ݐ after 

escaping ݐ − 1 days. For the factors in ܮe (Equation (7)), 

Exp ቂ−ߚe ቀ∑ ܵ′cont[ܶ,ݎ௜଴,ߙ௘ [ܭ,ܦ,
௧೔ିଵ்ୀ଴ + ∑ ∑ ܵ′contൣݐ௜ − ௜௝ݎ,ܶ ௘ߙ, ൧Minൣ௧೔ିଵ,culledೕ൧்ୀ௧ೕ௜ିଵ௝ୀଵܭ,ܦ, ቁቃ is the 

probability of escaping infection from the inoculated and the contact-infected animals 
and ൫1 − Expൣ−ߚe൫ܵ′cont[ݐ௜,ݎ௜଴,ߙ௘ [ܭ,ܦ, + ∑ ܵ′contൣݐ௜ − ௝ݐ ௜௝ݎ, ௘ߙ, ൧௜ିଵ௝ୀଵܭ,ܦ, ൯൧൯ is the 

probability of being infected by either the inoculated or contact-infected animals. The 
estimates for the parameters ߚ,ܦc	and  ߚe 	are those that maximize the likelihood of 
observing the data from the experiments given the functions ܮc and ܮe.  We obtain the 
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95% 	confidence intervals for the maximum likelihood estimates ܦ,  e using theߚ and	cߚ
likelihood ratio test; for each parameter univariate confidence bounds were calculated. 

Analysis of the ICU data 

The data of Hayden et al. [139], on the spread of Vancomycin-Resistant Enterococci 
(VRE) in an intensive care unit (ICU) was re-analysed in this study to evaluate if the 
observed pattern of transmission provides evidence for a delayed/diffusive transmission 
component. A detailed description of the setup of this study can be found in the original 
paper. 

Briefly, the original study was intended to assess the performance of three different 
intervention schemes on the spread of VRE. It comprised of four study periods, each 
with a different (sets of) interventions: a baseline period (Baseline, period 1), a period 
with intensified environmental cleaning (Treatment 1, period 2), a “washout” period 
without any specific intervention (Treatment 2, period 3) and, a period with multimodal 
hand hygiene (Treatment 3, period 4). During the study period, rectal swab samples 
were taken daily from patients starting on the day of admission throughout the 
admission period. Cultures for VRE where performed of those swabs. 

Improved environmental cleaning (Treatment 1, period 2) involved explaining to 
housekeepers the importance of environmental cleaning and increased monitoring of 
housekeeper performance in addition to the actual environmental cleaning. It also 
involved daily cleaning of ventilator control panels as well as sensitizing nurses and 
other ICU staff about the problem of VRE and the interventions. 

There were a total of 21 ICU beds available for admission of patients throughout the 
study period. In total, 748 admissions to the ICU were studied and the average duration 
of stay was not significantly different for the 4 periods.  

Using this data, the daily infection rate per person after being admitted to the ICU 
was calculated, as a function of day-since-admission. Differences between rates of 
colonisation for two window periods were analysed using a Fisher’s Exact-test with the 
level of significance set at a p-value less than 0.05.  
 
 
 
Table S1. Inoculation scheme of the indirect transmission experiment. 

Group Inoculum Animals inoculated 
1 C. jejuni 5 
2 C. jejuni  & E. coli 5 
3 C. jejuni  5 
4 C. jejuni  & E. coli 5 
5 C. jejuni  20 
6 C. jejuni  & E. coli 20 
7 C. jejuni  20 
8 C. jejuni  & E. coli 20 
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Figure S1. Schematic overview of the housing of the experimental groups of 5 or 20 
infectious sender animals and ten susceptible receiver animals. Alongside the arrows 
distances are given in meters. 
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Figure S2. Amount of infectious material per unit area in the recipient cage as a 
function of time. Note that the curve for E. coli quickly rises beyond the scale of this 
graph because, for E. coli, a decay rate value of 0 was used. Open circles depict the 
amount of viable E. coli. Closed circles depict the amount of viable C. jejuni. For the 
construction of the figure the centre cage was taken as the area source and a cage 
alongside the centre cage as the recipient source. Parameter values used: D=0.0025 
m2/day, αcampy=2.25 day-1,αE.coli=0 day-1. 
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Figure S3. Concentration of viable infectious material as a function of distance from the 
source. Each panel represents a different time of observation. Parameter values used: 
D=0.0025 m2/day, 
αcampy=2.25 day-1, αcoli=0 day-1,K=1*10-15. 
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Figure S4. Colonisation rate per day after intensive care admission for the baseline 
situation and the treatments as defined in Hayden et al [139]. Day 0 is the day of 
admission. Solid lines indicate average colonisation rate for that period. p.a. = post 
admission. 
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Abstract 
In order to improve control strategies for infectious diseases of livestock, one of the 

epidemic characteristics we need to know is the details on the spatiotemporal 
mechanisms of spread. From those mechanisms, more accurate information about the 
distance- and time-dependent transmission risks during epidemics can be generated. 
Elucidating whether the transmission risk is more dependent on the spatial or the 
temporal aspects of the epidemic remains a challenge. It requires gaining better 
knowledge on the transmission process, for example, whether it is direct and 
instantaneous or indirect and hence delayed. Statistical spatial modelling studies often 
assume direct (and thus instantaneous) transmission of pathogens between locations 
and this may lead to an underestimation of the infection hazard at long distances. Here 
we show that a mechanistic model that assumes diffusion-mediated dispersal of 
infectious material between locations provides a more accurate approach to quantify 
the infection hazard. We also demonstrate that incorporating diffusive transport and 
pathogen decay in modelling disease spread significantly improves the accuracy of the 
estimates. Based on the Dutch 2003 highly pathogenic avian influenza epidemic data, 
we parameterised a diffusion-based model using likelihood estimation techniques. The 
outcome of this model is a transmission kernel that includes indirect and delayed 
transmission. By comparing it with a kernel that assumes instantaneous infection, we 
found that assuming diffusion-like transmission improves the model fit and leads to a 
higher infection hazard at longer distances. 

 
Keywords: diffusion; avian influenza; mathematical modelling; risk maps; transmission 
kernel 

1 Introduction 
Livestock disease epidemics caused by Classical Swine Fever virus, Foot and 

Mouth Disease (FMD) virus and Highly Pathogenic Avian Influenza (HPAI) virus have 
severe consequences [12,151,152]. These include high mortality and morbidity rates, 
economic losses accruing from lost stocks and market as well as being a threat to 
human health for HPAI. To prevent these epidemics, we need effective control 
strategies. Yet we lack the knowledge about the most important transmission 
mechanisms such as indirect transmission between farms. In conformity with this, we 
need better information to be able to calculate more accurately what the impact of 
control will be by basing on mechanistic model outcomes to extrapolate to new 
epidemics. Here we seek information for those measures that are based on space: 1) 
where neighbourhood culling or prophylactic procedures (i.e., interventions intended to 
prevent spread) have to be applied (for example, the risk maps of Boender et al. [10]) 
and where not, 2) in what radius around an infected farm vaccination rings can best be 
located. 

We now know general spread patterns such as the distance-dependent probability 
of farm infection (i.e., transmission kernels) for some epidemics. For example, 
transmission kernels for the 2001 FMD epidemic in UK [48], the Dutch 2003 H7N7 
HPAI epidemic [10] and the Italian 1999 H7N1HPAI epidemic [41] have been 
estimated. Results from those studies provided the much wanted first step towards 
understanding the ‘neighbourhood’ transmission (i.e., termed as such because 
geographical proximity was found to be a key determinant of transmission risk [47,153]) 
of the viruses during those epidemics. Their results have since been used to guide 
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further studies that have deepened our understanding of the mechanisms of spread 
between locations (for an example on FMD see[154] and for HPAI examples, see 
[41,106,155,156]). We note however that both studies on HPAI assumed instantaneous 
infection−only the farms that are infectious on a given day contribute to the infection 
hazard experienced by the susceptible farms on that day. This assumption can be 
relaxed by allowing for the possibility of delayed transmission since pathogens may 
take some time to travel between locations. 

In line with the proposed assumption, van Bunnik et al. [157] observed a delayed 
transmission of bacterial colonisations between spatially separated animals in an 
experiment. A diffusion-based model incorporating pathogen decay was successful in 
predicting the observed delay. In a field situation, assuming diffusive transport of 
infectious material implies that the infection hazard experienced at any given location 
on a given day is a consequence of all the previous infectious farms up until that day. 
Since the total infection hazard is conserved whenever different models are fitted to the 
same data, the only differences will be in the hazard distribution over distance and time.  

We introduced a mechanistic description for a multi-stage pathogen dispersal 
process in the spatiotemporal analysis of part of the Dutch 2003 H7N7 HPAI epidemic 
data. The hypothesis about a possibility of a multi-stage dispersal process was partly 
born out of the fact that only 7% of observed transmission during that epidemic was 
explained by the traced contacts [105] and partly out of the findings of van Bunnik et 
al.[157]. The proposed model assumes diffusive transport of infectious material−hence 
implicitly introducing a possible time lag between release of infectious material at the 
source farm and the occurrence of a secondary infection. By this, we explore the effect 
of incorporating multi-step pathogen transport and pathogen decay on the distance- 
and time- dependent transmission pattern during livestock epidemics. Depending on 
the value of the diffusion constant of the model, delayed transmission becomes an 
important feature of the proposed model. The approach proposed here provides a way 
to learn more about the possible mechanisms especially those that may underlie the 
spread of infectious material between farms.  

2 Materials and methods 

2.1 Data 
We used the 2003 Dutch poultry database to determine the spatial location of all 

poultry farms in the region studied. For the epidemic-related data, we used part of the 
data collected during the epidemic which included detailed information about all the 
culled farms such as culling dates and the farms’ ultimate disease status. Each infected 
and culled farm ݅	is associated with a culling date ݐ௜,cull, an infectious date ݐ௜ and a 

location ݎ௜ = (௜ݕ,௜ݔ)  in Cartesian coordinate system. As in [10], we also assumed the 
day of infection to be six days before the first day of mortality increase and assumed 
two days for the latent period i.e., a farm is infectious two days after it is infected. For 
details on how the data was obtained and the formats in which it was prepared for the 
analysis, see[10].  

2.2 Modelling approach and parameter estimation 
We used part of the epidemic and location data of Dutch 2003 H7N7 HPAI epidemic 

and a maximum likelihood estimation technique to estimate the (generic) transmission 
rate ߚ and diffusion coefficient ܦ for the Limburg province. We only used part of the 
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data because of the intensiveness of the computations involved in dealing with the 
complete dataset. In this analysis, we made a simplifying but necessary assumption 
that the geographical borders served as epidemic borders implying that the epidemic in 
Limburg province was independent of the situation in other provinces. This is likely to 
be a good approximation given the evidence that only between one to three outbreaks 
in this province were likely caused by transmission from the other affected areas 
[97,100]. 

Considering HPAI virus transmission from an infected farm ݅ to a susceptible farm ݆, 
the (Euclidean) distance between farm ݅ and farm ݆ is given by  ݎ௜௝ = หݎ௜ −  The	௝ห.ݎ

contacted susceptible farm ݆ may become infected at a later time ݐ௝, or may escape 

infection throughout the epidemic until day	ݐmax or until when it was preventively culled 

on day ݐ௝,cull. Let ܭ൫߬,ݎ௜௝൯ define the spatiotemporal transmission kernel over one time 

unit, where	߬ is the time of interest. The kernel describes the distance- and time- 
dependent scaling of the probability of ‘contact’ between farms ݅ and ݆ by any 
mechanism. We adapt the kernel developed from a 2D-diffusion of infectious material 
from a point source model [136,145,157,158]. The model is based on diffusion of 
infectious material that is emitted from a continuous point source, in this case an 
infectious poultry farm. At time ߬ , the contribution of a continuously emitting source farm ݅ emitting at times ݐᇱ߳ൣݐ௜	,ݐ௜,cull	൧	is given by 

௜௝൯ݎ,൫߬ܭ = න 1

߬)ܦߨ4 − (′ݐ exp ቈ−ߙ(߬ − (′ݐ − ௜௝ݎ ଶ
߬)ܦ4 − ቉minൣ௧೔,೎ೠ೗೗,ఛ൧(′ݐ

௧೔ (1)																												ᇱ,ݐ݀  

 
where	ߙ is the decay rate of the pathogen in the environment per day. Following the 
approach described in [10,159,160], we define the force of infection on a susceptible 
farm ݆	at time ߬	as ߣ௝(߬) = ෍ ߚ × ௜௝൯ݎ,൫߬ܭ × ߬)௜௝ܫ − ௜)௜ஷ௝ݐ ,																																																	(2) 

where ܫ(߬ − (௜ݐ = ൜1,		if ߬ − ௜≥0ݐ
0,	otherwise

 is an indicator function for the infectivity of farm ݅ . 

 
The probability that farm ݆  is infected at time ݐ௝ is obtained from the force of infection as  

௝൯ݐ௝infection൫݌  = 1 − 	expൣ−ߣ௝൫ݐ௝൯൧,																																																						(3)  

and the probability that it escapes infection up to time ݐ௝ − 1 is given by 

௝ݐ௝escape൫݌ − 1൯ = 	exp ൦− ෍ (ݏ)௝ߣ

minൣ௧೔,cull,	௧ೕିଵ൧
௦ୀ௧೔	 ൪.																																																			(4)  

The farm escapes infection throughout the epidemic (i.e., until time	ݐmax) or until it is 
culled (i.e., at time ݐ௝,cull) with probability  

max൯ݐ	௝,cullorݐ௠;௡escape൫݌ = 	exp ൦− ෍ (ݏ)௝ߣ

minൣ௧೔,cull,௧ೕ,cullିଵ	or	௧maxିଵ൧
௦ୀ௧೔	 ൪.																														(5) 

 
The individual probabilities given above are combined to give a likelihood function ܮ	as 
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ܮ = ෑ ௠,cull൯ݐ௠escape൫݌ ෑ ௡escape݌
( (maxݐ	

n∈ escaped_unculled

ෑ ቀ݌௝infection൫ݐ௝൯
j∈ infectedm∈ escaped_culled

×  (6)				௝൯ቁ.ݐ௝escape൫݌

 
Equation (6) is then Log-transformed and used to estimate the parameters D and ߚ 
using the maximum likelihood estimation approach. 

2.3 Estimating the dispersal range  
From the estimated diffusion coefficient D, we determine the Mean Square 

Displacement (MSD). This is obtained from the second moment of the diffusion 
model[161] using   

MSD = න ଶݎ ×
1

ݐܦߨ4 Exp ቈ−ݐߙ − ଶݎ
቉ݐܦ4 ஶݎ݀

ିஶ ,																																														(7) 

where ݎଶ = ଶݔ +  is time in days. The square root ݐ where ݐܦଶ. This simplifies to 4݁ି௧ఈݕ
of the MSD gives the average distance travelled by infectious particles in a given time. 

2.4 Model validation, comparison and generation of risk map  
We investigate the effect of the differences in assumptions made about the 

transmission process by comparing the estimated infection hazard from both models 
and their fit to the epidemic data. Comparing the full spatiotemporal transmission 
kernels of the previous and current models provides a way to see in detail the 
differences in how the two models distribute offsprings to parent infections, i.e. “who-
infected-who”. In addition, one can obtain a less detailed comparison of only the 
distance dependencies after integrating over time.  

The transmission kernel based on the assumption of instantaneous transmission 
proposed by Boender et al. [10] is of the form (ݎ)ܭ =

ℎ଴
1 + ൫ݎ ଴ൗݎ ൯ఈ .																																																																			(8)  

Both models, i.e. the instantaneous transmission in Equation (8) and the diffusion-
based model in Equation (1) are parameterized by fitting each of them to the 2003 
H7N7 HPAI epidemic data and poultry farm location data for Limburg province. Other 
than the realism of its underlying assumption on transmission, the other way of testing 
the added advantage of using a mechanistic model in improving the predictive power of 
spatial models can be attained through a comparison of the new model’s distance- and 
time-dependent predictions with those from a previous model that assumes 
instantaneous transmission.  
 
We note that since both models are parameterized using the same data, they should 
have similar epidemic characteristics most notably the reproduction number. As 
described in Boender et al. [10], this reproduction number ௜ܴ  is given by 

 ௜ܴ = ߨ2 ∫ (9)																																																													ݎ݀ݎ(ݎ)ܲ(ݎ)௜ߩ
ஶ଴   

and by assuming a uniform farm density ߩ, it simplifies to 

 ܴ = ߩߨ2 ∫ ஶ଴ݎ݀ݎ(ݎ)ܲ .																																																										(10)   

Upon integrating over time, we compute the distance-dependent contribution to ܴ for 
both modelling approaches as well as generate risk maps using the threshold 
phenomenon of the reproduction number ௜ܴ  for farm ݅. In generating these maps, each 
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farm ݅ is categorised into any of the two risk categories namely, high risk if ௜ܴ > 1 and 
low risk if ௜ܴ < 1. As was done in Boender et al.[10], ௜ܴ is estimated by taking into 
account the actual farm distribution as 

௜ܴ = ܧ ቎෍ ܲ൫ݎ௜௝൯௝ஷ௜ ቏.																																																						(11)  

 
The risk maps obtained using the two modelling approaches are compared on the basis 
of where they predict the most risky areas of the epidemic to be, in relation to the 
actual/observed epidemic. We also compare the predictions of both kernels based on 
the individual distance-dependent probability of infection ܲ(ݎ) , the predicted number of 
new cases and the distance-dependent contribution to the reproduction number (ݎ)ܲݎ .  

3 Results 
Re-parameterizing Equation (8) based on only the epidemic data from Limburg 

province yielded the following parameter estimates (point estimate (95% CI): ℎ଴ =
0.0019(0.0009 − 0.0075) ଴ݎ , = 4.3(1.0 − 8.0)  and ߙ = 2.8(1.49 − 5.31)  (compared to ℎ଴ = 0.002(0.0012 − 0.0039) ଴ݎ , = 1.9(1.1 − 2.9)  and ߙ = 2.1(1.8 − 2.4)  based on the 
full epidemic data [10]). For the diffusion-based model, taking HPAI virus survival of 14 

days, i.e. a decay rate ߙ =
ଵଵସ day

-1
 [99], we estimated the diffusion coefficient	ܦ =

22.681	km
2
day

-1
 and the corresponding ߚ = 0.0526 day

-1
. The average daily dispersal 

range was calculated to be 10.173	km day
-1

.  

 
Figure 1. Distance distribution of potential transmission events. It is obtained by 
extracting distances between all infected farm pairs (A, B) where A was infectious 
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before B got infected. It gives an approximate scaling of the probability of infection with 
distance.  

  
Figure 1 presents the distance distribution of potential transmission events and it 

reflects the distance-dependent distribution of the number of new cases. The farthest 
distance between any two cases was 31 km while the smallest was 0.5 km. We also 
observe that more than 75% of potential transmission events occurred beyond 5 km. In 
Figure 2, we present the estimated distance-dependent probabilities of infection by the 
two models. We observe that the estimated transmission probabilities from the 
diffusion-based model are lower than the instantaneous- transmission model at all 
distance below 7.3 km, the trend is reversed beyond this distance.  

 
Figure 2. Distance-dependent probability of infection (averaged over all sources) 
obtained using the diffusive transport model and the instantaneous model (with its 95% 
confidence bounds). In order to clearly see the pattern at long distances, the x-axis is 
set to start at 5 km.  
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Figure 3. Predicted number of new cases as a function of inter-farm distance. Obtained 
by multiplying the probability by the total number of farms within a given distance band. 
The number of new cases observed during the epidemic is obtained by re-scaling the 
frequency of potential transmission events (Figure 1) to equal the number of cases 
predicted by each of the two models. 
 



Diffusion modelling of HPAI transmission 

 

105 

 
Figure 4. The distance-dependent contribution to the reproduction number. This is 
obtained by multiplying the probability of infection with distance.  
 

The predicted and observed number of new cases at different distances is 
presented in Figure 3 and the predicted distance-dependent contribution to the 
reproduction number R (i.e., by assuming uniform farm density) is presented in Figure 
4. In relation to the distance-distribution of estimates, Figures 3 and 4 show a similar 
trend as that depict in Figure 2; the instantaneous model predicts more new cases 
(Figure 3) and bigger contribution to R (Figure 4) at short distances and vice-versa at 
long distances. More importantly, Figure 3 reveals that the distance-distribution of new 
cases predicted by the diffusion-based mimics the observed pattern during the 
epidemic.   

Figure 5 presents the risk maps for the study area i.e. Limburg province. These 
maps categorise the province into high and low risk areas of epidemic spread with high 
risk areas being those in which a substantial number of farms have potential of causing 
more than one new infection (i.e., ௜ܴ > 1) and low risk areas being the vice-versa. A 
comparison of Figure 5 with Figure 1 of Boender et al. [10] that shows the distribution of 
infected farms during the epidemic reveals that both modelling approaches are in close 
agreement with the actual epidemic data in terms of the locations of outbreaks. 
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Figure 5. Risk map for HPAI spread during the epidemic. The red dots represent farms 
that have a potential of infecting more than one susceptible farm ( ௜ܴ > 1) 	while the blue 
dots represent farms which cannot infect more than one susceptible farm ( ௜ܴ < 1) . 
Panel a is based on the estimation from the diffusion-based model and panel b is 
based on the Boender et al. (2007) kernel and both kernels predict the same high-risk 
area. 

4 Discussion 
It is a common practice to assume instantaneous transmission when studying 

disease spread between locations. However, we hypothesize that there is likely to be a 
delay in transmission (thereby non-instantaneous) as a consequence of travel-time 
requirement for the pathogen. We develop a mechanistic description of a multi-stage 
pathogen dispersal process between farms as a tool to assess the possible role of 
delayed transmission in pathogen spread. This concept is relevant when analysing 
space- and time- related characteristics of an epidemic. We apply spatiotemporal 
modelling techniques to part of the Dutch 2003 HPAI H7N7 epidemic data and compare 
the estimated infection hazard from an instantaneous transmission-based model with 
that of the mechanistic model.  

We approximated the dispersal process of infectious material by a step-by-step 
diffusion between locations. The modelling approach adopted allowed for a 
parsimonious estimation of a single mechanistic parameter, i.e. the diffusion coefficient 

as 22.681	km
2
day

-1
. Through the estimation of the average dispersal range (here 
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estimated from Equation (7) as 10.173	km day
-1

), the design and implementation of 
control strategies can be guided. Note that the (generic) transmission rate ߚ (estimated 

to be 0.0526 day
-1

) captures quantitative details about the emission, 
inoculation/exposure route, and dose response processes.  

The quantitative distance-dependent patterns obtained reveal striking differences in 
the performance of the instantaneous transmission and diffusion- based models. 
Estimates from instantaneous model are consistently lower than those from the 
diffusion-based model (Figures 2, 3 and 4) at long distances. The risk maps shown in 
Figure 5 reveal that the diffusive transport based model, as does the instantaneous 
model,  conserves the basic characteristics of the epidemic, yielding some confidence 
that it could be reliably used to assess the performance of (and hence facilitate the 
design of new) intervention strategies. For example on how this can be done, see [10]. 

For purposes of extrapolation of modelling study findings to a field situation, we 
argue that the best model is the one that is based on correct assumptions and not 
necessarily the one that fits better to the data. Nonetheless, we found that the predicted 
number of new cases based on the diffusion-based model has an almost similar pattern 
as the adjusted frequency of the potential infection events observed (Figure 3). This 
finding provides evidence to suggest that a diffusion-based model performs better than 
the original instantaneous transmission model. Therefore, we reliably conclude that 
instantaneous models tend to underestimate the infection hazard experienced at long 
distances. This underestimation is a consequence of ignoring the travel-time required 
for infectious material to disperse between distant units, in this case farms. For short 
distance transmissions, assuming instantaneous transmission may still give a good 
approximation because the travel time required for the infectious material may be 
negligibly small. 

We note that analysing the full dataset proved to be prohibitively intensive 
computationally. For that matter, we performed the analysis using data from Limburg 
province although the epidemic affected three other provinces namely, Gelderland, 
noord-Brabant and Utrecht provinces. We acknowledge that a complete analysis would 
probably give better results and more reliable estimates for the assessment of the 
performance of intervention strategies.  

Nevertheless, through a mechanistic description of the dispersal process, we have 
been able to generate more insights into possible mechanisms that may underlie the 
observed between farm spread of HPAI. The additional knowledge gained may help to 
improve predictive modelling to, for example, assess the impact of control measures on 
the severity of infectious disease epidemics. With the new approach, we could assess 
the effect of the ‘post-culling’ contribution of once infectious (but already culled) farms 
to the infectious pressure experienced at the susceptible farms throughout the 
epidemic. More to that, the effect of pathogen decay on the spatial extent of spread 
may also be assessed directly and the outcomes be used to improve control strategies. 

All in all, the proposed diffusive transport model fits better to the epidemic data than 
the original model that assumed instantaneous transmission. The mechanistic 
approach of the diffusion-based model gives an insight into the possible mechanisms of 
pathogen spread. Incorporating delayed transmission redistributes but conserves the 
total infection hazard over distance. We conclude that delayed transmission is an 
important phenomenon that needs to be catered for when studying disease 
transmission between locations/farms. This concept may have a direct influence on 
how to analyse and interpret epidemic data. For example, it highlights the need to 
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incorporate an extended infectiousness beyond the culling day of an infectious farm, 
although the contribution may decrease as a function of time since culling of the 
source. This extended infectiousness should be considered when designing control 
strategies against future infectious disease epidemics, especially those involving 
pathogens that are relatively stable in the environment. 
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Introduction 

 

Epidemics involving some World Organisation for Animal Health (OIE) listed  
diseases such as Highly Pathogen Avian Influenza (HPAI), Classical Swine Fever 
(CSF) and Foot and Mouth Disease (FMD) continue to cause havoc worldwide[162]. 
Their routes/mechanisms of between-farm spread are not clearly understood. However, 
due to the distance-dependence of their transmission risk, they are often referred to as 
‘neighbourhood’ transmission [10,47,153,163]. Some of the currently recommended 
strategies seem ineffective due to difficulties in implementation (e.g., for quarantine and 
‘stand still’), labour intensity (e.g., vaccination) and others are deemed unethical (e.g., 
preventive culling) due to the way the affected animals are treated. Lack of knowledge 
affects the much needed design of new control strategies as well as the improvement 
on the existing ones.  

The main aim of this thesis was to gain more insight into the mechanisms underlying 
neighbourhood transmission of livestock diseases during epidemics. To achieve this, 
mathematical modelling, statistical techniques and field study (or questionnaire survey) 
and laboratory experiments were used. With the insight gained, new approaches that 
specifically target the newly hypothesized mechanisms can be developed. The 
approaches and findings in this thesis can be applied to study the dynamics of livestock 
diseases in which neighbourhood transmission is known to occur. 
 

Summary of thesis findings 

 

With the help of mechanistic models, the contribution of the windborne route was 
quantified in form of distance-dependent probability of HPAI transmission between farms 
by this route. A comparison of the result with the transmission kernel estimated earlier 
for the same epidemic [10] revealed that close to 24% of all new infections within 25 km 
could be explained by the windborne route (Chapter 2). In Chapter 3, the contribution of 
‘active’ contacts traced during the epidemic and the (modelled) unknown contacts was 
quantified by estimating their per-contact probabilities of HPAI virus transmission and the 
plausible number of new cases they caused during the epidemic and all contacts were 
found to have made a substantial contribution during the epidemic. Among the traced 
contacts, egg transports were found to have transmitted the virus for one in every three 
visits, whereas the crisis organisation contacts were only able to transmit the virus for one 
in approximately one thousand visits. Around 93 % of the new infections were attributed 
to the ‘unknown’ contacts (Chapter 3). The dominancy in contribution of the ‘unknown’ 
contacts to the number of new infections highlights the presence of yet-to-be appreciated 
transmission mechanisms that may underlie these routes. In Chapter 4, the information 
about the contact patterns and biosecurity protocols obtained from an interview study 
involving the stakeholders was used to infer about potential transmission pathways. 
Movement of animals during restocking, thinning and spiking were some of the highest-
risk practices on farms and biosecurity breaches were reportedly common (Chapter 4). 
In pursuit of a more parsimonious approach to understanding indirect transmission of 
pathogens between locations, a diffusion model that describes the step-by-step 
dispersal of infectious material was developed (Chapter 5) and applied to the Dutch 
2003 epidemic data (Chapter 6). This model approximates the pathogen transportation 
process by a diffusion process, i.e. a random walk governed mainly by the diffusion 
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coefficient. This model has the advantage that only one parameter (the diffusion 
coefficient) needs to be estimated. In addition to that, it was found to fit better to 
epidemic data than earlier models based on instantaneous transmission. From this 
modelling approach, new insights such as the possibility of delayed transmission are 
gained. 

  
Direct or indirect transmission 
 

The spread of pathogens between locations is often categorized into direct and 
indirect transmission. Direct transmission of livestock diseases entails routes such as 
transportation of animals between farms. During epidemics however, bans on movement 
of live animals may reduce the risk of direct transmission of diseases. This implies that 
contamination of personnel and fomites may remain the known principal way that 
infection spreads during epidemics. The role of indirect transmission in the spread of 
livestock diseases [15,42,125,126,134,164] and human diseases [127,165] has been 
studied although its mechanisms are difficult to control since a good proportion of them 
may go unnoticed. More efforts are needed to identify and gain more insight into the 
factors that promote these routes. To this effect, studies need to be conducted as a 
means to gain more insight   in the contribution of environmental transmission to the 
between-farm spread of pathogens.  

 
The role of the windborne route in avian influenza spread between farms 

 

The windborne route has been implicated in the spread of livestock diseases such 

as FMD [50-53,166,167], Aujeszky’s disease[54] and the role of aerosols in the 

transmission of other pig diseases has been assessed [168]. In the case of HPAI, 

mixed opinions about its significance are evident. For example, it was concluded that 

aerosols and windborne contamination are not important in the spread of infection [25], 

whereas, contrary to that opinion, positive samples were obtained around infected 

poultry farms during an outbreak; signifying a potential of the virus to get airborne and 

to spread by this route [56]. Much as this route is often underrated, a quantitative 

assessment of its possible contribution during the Dutch 2003 HPAI epidemic revealed 

that it could have made a substantial contribution to the between-farm spread of the 

virus (Chapter 2). In order to reduce disease spread by this route, existing control 

measures such as keeping all free range birds indoors during epidemics should be 

supplemented by measures to reduce dust emissions from poultry houses and the 

dispersal range of the emitted dust as well as installing air scrubbers on poultry houses.  

 

Improving on-farm biosecurity practices: lessons from crisis organisation 

contacts  

 

Factors such as absence of facilities, non-compliance with existing protocols and 

non-exhaustiveness of protocols reported in Chapter 4 negatively affect the 

effectiveness of biosecurity in controlling disease introduction and spread. The low per-

contact probability of infection and the small number of secondary infections caused by 
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crisis organisation contacts (Chapter 3) demonstrates the effectiveness of their protocol 

in controlling virus transmission. Much as these contacts are most likely to occur with 

the most dangerous farms, i.e. those that are more likely to be already in their 

infectious stage, it was found (in Chapter 3) that their subsequent visits were less risky 

than those by the other traced contacts. On the basis of this finding, it is recommended 

that if possible, the daily farm biosecurity protocols be adjusted to ‘mimic’ those applied 

by the crisis organisation personnel. In anticipation of the difficulties in daily 

implementation, these improved protocols could be saved for crisis times or during 

dangerous farm visits such as restocking and thinning. 

 

Combining genetic and epidemiological data when studying disease spread 

 

On the one hand, contact-tracing (epidemiological) data obtained during epidemics 

can be used to guide the identification and quantification of individual contributions of 

potential transmission events [46] although some contacts may go unnoticed. On the 

other hand, genetic data obtained from the samples taken from the infected farms can 

be used to identify infection clusters [97] as well as to construct  potential transmission 

trees as demonstrated in [100]. However, the infection clusters and the transmission 

trees identified will not give clues on the actual routes of transmission. In view of this, a 

combination of genetic and epidemiological data from epidemics of livestock diseases 

provides a better alternative to study between-farm transmission dynamics [101] and 

this approach was used in Chapter 3. The findings in Chapter 3 reveal that using 

genetic data alone is not enough to estimate transmission rates as therefore also 

information on contacts that fail to lead to transmission are needed.  Genetic data can 

be used to check estimated transmission rates. In particular, it was found that the 

number of genetically matching farm pairs between which infection was likely to have 

occurred (based on the contact tracing data) would be as low as zero. Because of the 

possible ‘competition’ between potentially infectious contacts to a susceptible farm, 

improving the resolution on potential transmission events requires both genetic and 

epidemiological data to complement each other. Both forms of data are important for 

improved analyses of past epidemics and should be gathered whenever possible. 

 

Instantaneous or delayed transmission: lessons from diffusion-based 

approaches  

 

Spatio-temporal and other analyses of disease spread between locations involve 

making assumptions about the time lag between infectiousness of the source and the 

onset of its secondary infections. Often instantaneous transmission is assumed. 

However, delayed transmission has been shown (Chapter 5 and 6) to play an important 

role during epidemics and pathogen survival characteristics are known to determine 

how long the maximum delay can be. The possibility of delay in transmission makes 

that current recommended control strategies need to be reconsidered because farms 

can contribute to the infection hazard even when they are already stamped out. 
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Implications of the unknown, the overlooked and/or the untargeted pathways 

 

The concept of neighbourhood transmission is a consequence of having infections 

that cannot be attributed to any known transmission route and is common during 

epidemics of livestock diseases [11,23,47]. Majority of the contributing contacts to the 

Dutch 2003 H7N7 HPAI epidemic were the ‘unknown’ contacts (Chapter 3). The 

‘unknown’ transmission routes may constitute contacts or routes that are untargeted, 

untraced or simply untraceable. The list of potentially infectious contacts has been 

extended (Chapter 4) and attempts have been made to quantify the contribution of the 

untraceable contacts such as those due to the windborne route (Chapter 2). Improving 

management and control of livestock epidemics necessitates a better understanding of 

the day-to-day practices in the industry in order to regularly update the recommended 

control strategies during epidemics. This should be supplemented by an improvement 

in tracing efforts during epidemics.  

 

Concluding remarks/recommendations/future perspectives 

 

Quantitative modelling approaches are necessary as they can guide the 

development of the much wanted mechanistic insights into neighbourhood 

transmission. This insight is needed if control strategies are to be improved. The 

current guide on how to manage HPAI epidemics seems in-exhaustive. More HPAI 

transmission pathways have been hypothesized and their contribution quantified. The 

current biosecurity protocols should be updated to capture these. In addition to that, 

there is a laxity in implementing biosecurity on farms; this necessitates intervention by 

regulatory bodies to regularly sensitize stakeholders on the dangers of non-adherence 

to biosecurity as well as to regularly disseminate information about risk factors of 

disease introduction and spread. Control measures against HPAI spread by the 

windborne route should be incorporated in the current biosecurity and epidemic control 

protocols. In relation to data collection during epidemics, genetic and epidemiology data 

should both be gathered and used in studying the between-farm spread of livestock 

diseases. There is also need to revisit some of the existing assumptions about disease 

transmission between locations. Transmission of pathogens may not always be 

instantaneous since infectious material need time to travel between locations. The 

concept of delayed transmission should be incorporated in the analysis of 

neighbourhood transmission which also occurs in other settings like Intensive Care 

Units. This should change the way neighbourhood transmission is viewed. 
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 The poultry industry is a big contributor to various national economies worldwide 
and its productivity is heavily affected by the occurrences of epidemics of infectious 
diseases such as Highly Pathogenic Avian Influenza (HPAI) that are associated with 
big losses. The H7N7 HPAI epidemic that caused devastation in the Dutch poultry 
industry in 2003 is an example of such epidemics. During that epidemic, recommended 
control measures failed to control the epidemic. It is likely to have eventually been 
controlled by the depletion of susceptible farms. This strategy faced a lot of criticism 
from the general public thereby motivating the desire to design more ‘ethically’ 
acceptable intervention strategies such as vaccination. Such a vaccination strategy 
would be adopted as part of a wider set of control measures, with the other being 
biosecurity. However, successful implementation of these measures requires a better 
understanding of the mechanisms of between-farm spread of the virus. Moreover, in 
2003, for about half of the outbreaks no indirect contact to a previous outbreak could be 
traced. For such outbreaks the cause of infection is often named “neighbourhood 
transmission”. 
 In this thesis, an attempt was made to understand better how the between-farm 
transmission of HPAI during the Dutch 2003 epidemic continued despite the 
intervention strategies applied. The ultimate aim was to be able to improve these 
strategies such that their combination with a vaccination strategy could yield a 
sufficiently fast control of the epidemic. New data on possible HPAI transmission routes 
and mechanisms in the Netherlands was collected and modelling was used to analyse 
existing and new quantitative data. Subsequently, model extrapolations could be 
performed. Apart from the movement of animals, humans, vehicles or materials 
between farms, the contribution of other mechanisms (such as wind-borne transmission 
that cannot be controlled by regulations) to between-farm transmission of HPAI was 
quantified. It was hoped that more insight into the contributions of the different 
transmission mechanisms would enable a better formulation and/or prioritization of 
prevention and intervention measures directed against different routes. 
 There are several possible routes and mechanisms that could have facilitated the 
between-farm spread of HPAI that was observed during the Dutch 2003 H7N7 HPAI 
epidemic. One of the routes may be the wind-borne. The existence, in literature, of 
conflicting opinions about the significance of this route motivated the quest for 
quantitative information about its possible contribution. In Chapter 2 of this thesis, a 
mathematical model to determine the deposition pattern of wind-dispersed particles and 
to calculate the associated risk of infection with HPAI virus for a farm downwind of an 
infected farm as a function of the distance between the two farms was developed. This 
model is the first in the literature to mechanistically describe wind-borne transmission of 
HPAI. Findings from the analysis of this model showed that wind-borne transmission is 
a plausible contributor to between-farm transmission even beyond distances of a few 
kilometres. A comparison between the transmission risk pattern predicted by the model 
and the pattern observed during the Dutch 2003 epidemic reveals that the wind-borne 
route alone is insufficient to explain the observations. Rather, it could contribute to the 
spread in a direct wind-borne fashion as described by the model (potentially 
contributing up to 24% of all transmissions within 25 km) and additionally in a multi-
stage process with wind-borne dispersion as one of the stages. The model developed 
can be adapted to other situations in which the spatial deposition pattern of wind-
dispersed particles is an important determinant of risk, e.g. to human health. 
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 Quantitative information such as the estimates of the probabilities of transmission 
via different types of indirect between-farm contacts during an epidemic provides 
insight into risks that need to be controlled as best as possible by prevention and 
intervention measures. In Chapter 3, using digitalized data on the traced and modelled 
contacts that occurred during the Dutch 2003 epidemic, per-contact probabilities of 
infection were estimated as well as the number of new cases attributed to particular 
routes. Findings from this analysis suggest that, among the traced contacts, egg 
transports had the highest probability of infection (i.e., 31%) and the between-farm 
contacts through visits of individuals involved in screening and other crisis-organisation 
activities (referred to as crisis organisation contacts) had the least (i.e., 0.1%). The 
findings further indicate that, compared to the other types of traced contacts, crisis 
organisation contacts contributed very little to transmission. This suggests that the 
biosecurity measures adopted by the teams involved perform well. Overall, the traced 
contacts were responsible for only approximately 7% of the total of outbreaks observed 
during the epidemic. A validation of the predicted number of new cases potentially 
caused by the different traced contact types against the sequencing data obtained from 
the samples collected from farms during the epidemic revealed that the two were 
consistent. 
 The separate analyses of wind-borne transmission and of the traced contacts data 
have shown that between approximately 50% and 80% of the observed transmission 
can neither be explained by traced contacts nor by wind-borne transmission. In order to 
learn more about possible risks in practice corresponding to the indirect contact types 
that are commonly hypothesized (and appearing in the Dutch 2003 epidemic tracing 
reports) as well any further possible indirect contact types (especially those that could 
underlie the untraced outbreaks), an interview study involving 60 stake holders was 
conducted (Chapter 4). The findings of this study guided the generation of better 
hypotheses about the underlying mechanisms. They can also facilitate the use of 
models to explore the hypothesized mechanisms. They provided information on the 
frequencies of different types of indirect contact and on farmer and firm perception of 
risks. In a qualitative risk assessment of the different contact risks identified, restocking, 
thinning, proximity to poultry farms and contacts accessing poultry houses were found 
to be the most important risks in relation to HPAI transmission. Farmers were found to 
have divergent opinions about the visitor- and neighbourhood- associated risks of HPAI 
transmission and there were no major differences found in infection risk between broiler 
and layer farms. Furthermore, the findings confirmed the expectation that not all 
biosecurity protocols are actually always complied with and provided insight into the 
actual violations. For example, the level of visitor adherence to available biosecurity 
protocols is not always good as evidenced by the result that on most of the farms, 
available showers were rarely or never used by visitors entering the animal houses. 
Most of the farms interviewed lacked a designated clean/dirty route. Many farms 
allowed visitors such as veterinarians to take personal belongings such as mobile 
phones into the animal house. These findings are relevant in the sense that, based on 
them, updates on contact tracing protocols to be used in a future epidemic can be 
made. 
 Neighbourhood transmission was further studied in this thesis by analysis of indirect 
transmission patterns observed in an experiment (Chapter 5), after which the findings 
were validated to the field data from the 2003 epidemic (Chapter 6). In the experiment, 
the possibility of delayed transmission, contrary to the common assumption of 
instantaneous transmission, manifested itself and this possibility was therefore also 
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investigated for the transmission in the field in 2003. A diffusion-based model −in which 
the displacement of an infectious agent through space is described by a step-by-step 
diffusion process− for transmission between locations was developed (Chapter 5) and 
applied to part of the Dutch 2003 H7N7 HPAI epidemic data (Chapter 6). Other than the 
realism of its underlying assumption on transmission, the diffusion-based model has the 
advantage that even without distinguishing transmission routes, outbreak data can be 
analyzed to gain insight into the between-farm transmission. This is facilitated by 
estimating an average daily displacement of the material. Findings from this study show 
that two-dimensional diffusion modelling is a promising approach to mechanistically 
describe untraceable indirect transmission in a parsimonious manner; with a small 
number of parameters that each can be feasibly estimated. This model proves 
successful in explaining experimentally observed different time-dependent patterns of 
indirect transmission for Campylobacter compared with E. Coli through the interplay 
between transport and decay of pathogens in the environment between infectious and 
susceptible hosts. In addition, a delayed transmission component, as predicted by the 
model, has been demonstrated in a dataset of antibiotic resistant bacterial infections in 
a hospital intensive care unit. By enhancing the quantitative understanding of the 
transmission events that can neither be explained by wind-borne transmission nor 
traced contacts, this new modelling approach contributes to the improvement sought in 
the overall understanding of between-farm transmission of HPAI.  
 
The main conclusions of this thesis 
 
 This thesis has generated more insights into the mechanisms of between-farm 
transmission of HPAI. Unlike previous spatial analysis of the data of the Dutch 2003 
H7N7 HPAI epidemic which used a statistical description of the total between-farm 
transmission (i.e. not distinguishing transmission routes) to quantify its distance 
dependence, here individual transmission routes were modelled. Generally, new insight 
has been obtained into the quantitative contributions of the different possible 
mechanisms of between-farm spread. This enables a better risk-based formulation 
and/or prioritization of prevention and intervention measures directed against different 
routes. Briefly, the following conclusions can be drawn from this thesis: 
 The wind-borne route, although it may contribute to transmission, cannot (on its 

own) explain the observed pattern of the Dutch 2003 epidemic. The unexplained 
transmission may have been as a result of other mechanisms or a consequence of 
a multi-step process involving the wind-borne and other mechanisms. 

 It was estimated that only 7% of the new cases can be attributed to a traced 
between-farm contacts. This indicates the existence of other possible transmission 
mechanisms that are untraced, untraceable and/or untargeted. Adjustment to the 
current tracing and (consequently) the biosecurity protocols can be recommended.  

 The large share of unexplained transmission reaffirms the need to improve the 
conditions for successful contact tracing during future outbreaks, possibly by using 
virus sequencing to support the contact tracing. 

 The biosecurity measures of the crisis organization teams seem sufficient to 
prevent the between-farm spread of HPAI. Therefore, the relevant authorities 
should adopt (some of) these measures for day-to-day use on poultry farms. 
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 Biosecurity breaches are common in day-to-day farm activities with the identified 
obstacles to proper biosecurity practices including; absence of facilities, non-
adherence or inconsistent application, the non-exhaustive protocols. 

 By applying a diffusion model to part of the Dutch 2003 HPAI epidemic data, it was 
found that this type of modelling is a scientifically promising approach to 
mechanistically describe indirect between-farm transmission in a parsimonious 
manner. 
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De pluimveesector levert een grote bijdrage aan verschillende nationale economieën in 
de wereld en haar productiviteit wordt ernstig geschaad wanneer epidemieën optreden 
van infectieziekten als hoog-pathogene aviaire influenza (HPAI), ook wel bekend als 
vogelpest, die grote verliezen met zich meebrengen. De H7N7 HPAI epidemie die in 
2003 de Nederlandse pluimveesector zwaar trof is een voorbeeld van dergelijke 
epidemieën. Gedurende deze epidemie bleek dat het aanbevolen maatregelenpakket  
onvoldoende was om de epidemie onder controle te brengen. Dat deze uiteindelijk tot 
staan is gebracht is waarschijnlijk vooral vanwege de afname van het aantal 
overblijvende gevoelige bedrijven als gevolg van preventieve ruimingen. Het preventief 
ruimen van gezonde dieren kreeg veel kritiek in de publieke opinie,  met als gevolg dat  
de wens bij beleidsmakers ontstond  om maatschappelijk beter acceptabele 
interventiestrategieën te ontwikkelen zoals noodvaccinatie.  Een dergelijke 
noodvaccinatiestrategie zou deel uitmaken van een breder pakket aan maatregelen, 
met daarin ook diverse bio-veiligheidsmaatregelen. Echter, om bio-
veiligheidsmaatregelen met succes in te kunnen zetten is een beter begrip nodig van 
de  mechanismen van verspreiding van het virus tussen pluimveebedrijven.  Bovendien 
kon in 2003 voor ongeveer de helft van de uitbraakbedrijven geen contact met een 
eerder geïnfecteerd bedrijf worden getraceerd. De onbekende oorzaak van virus-
insleep op deze bedrijven wordt vaak aangeduid met de term “buurttransmissie”.  
 In dit proefschrift werd een poging gedaan om beter te begrijpen hoe de 
verspreiding van HPAI tussen bedrijven in de Nederlandse epidemie van 2003 bleef 
doorgaan ondanks de genomen bestrijdingsmaatregelen. Het uiteindelijke doel was om 
in staat te zijn die maatregelen zodanig te verbeteren dat deze in combinatie met een 
noodvaccinatiestrategie tot een voldoende snelle controle van een toekomstige 
epidemie zouden leiden. Nieuwe gegevens over mogelijke routes en mechanismen van 
HPAI transmissie werden verzameld en wiskundige modellering werd gebruikt om 
bestaande en nieuwe kwantitatieve gegevens te analyseren. Vervolgens konden 
model-extrapolaties worden uitgevoerd. Naast bewegingen van dieren, mensen, 
voertuigen of materialen tussen bedrijven werd de bijdrage van andere mechanismen 
(zoals transmissie via wind die niet kan worden gecontroleerd door regelgeving) aan de 
tussen-bedrijfstransmissie van HPAI gekwantificeerd. Daarbij was de hoop dat meer 
inzicht in de bijdragen van de verschillende transmissiemechanismen een betere 
formulering en/of prioritering van preventie- en interventiemaatregelen gericht tegen de 
verschillende routes mogelijk zou maken.    
 Er zijn verschillende mogelijke onderliggende routes en mechanismen voor de 
tussen-bedrijfstransmissie van HPAI die optrad in de Nederlandse H7N7 epidemie in 
2003. Een van de routes zou de transmissie via wind kunnen zijn. Het gebrek aan 
consensus in de wetenschappelijke literatuur over het belang van deze route vormde 
de aanleiding om naar kwantitatieve informatie daarover te zoeken. In Hoofdstuk 2 van 
dit proefschrift werd een wiskundig model ontwikkeld om het depositiepatroon van door 
wind verspreide deeltjes te bepalen alsmede het daarmee gepaard gaande risico van 
infectie met HPAI van een pluimveebedrijf benedenwinds van een geïnfecteerd bedrijf, 
als functie van de afstand tussen de twee bedrijven. Dit model is het eerste in de 
literatuur waarin transmissie via wind van HPAI mechanistisch wordt beschreven. 
Uitkomsten van de analyse van dit model lieten zien dat de transmissie via wind een 
plausibele contribuant aan tussen-bedrijfstransmissie vormt zelfs voor afstanden groter 
dan enkele kilometers. Een vergelijking tussen het transmissierisico-patroon zoals 
voorspeld door het model en het patroon geobserveerd tijdens de Nederlandse 
epidemie in 2003 toont aan dat de windverspreidingsroute alleen onvoldoende is om de 
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observaties te verklaren. In plaats daarvan zou de wind hebben kunnen bijdragen 
zowel in de vorm van directe windverspreiding zoals beschreven in het model 
(mogelijkerwijs verantwoordelijk voor een percentage van maximaal 24% procent van 
alle transmissie over afstanden tot 25 km) als ook in de vorm van een meerstaps-
proces met dispersie door wind als een van de stappen. Het ontwikkelde model kan 
worden aangepast voor toepassing op andere vraagstellingen waarbij het ruimtelijke 
depositiepatroon van door wind verspreide deeltjes een belangrijke bepalende factor is, 
zoals bij bepaalde volksgezondheidsrisico’s.  
 Kwantitatieve informatie zoals de kwantificering van de transmissiekansen via 
verschillende typen van tussen-bedrijfscontacten tijdens een epidemie geeft inzicht in 
welke contactrisico’s zo goed mogelijk moeten worden beperkt middels preventie- en 
interventiemaatregelen. In Hoofdstuk 3 werden de infectiekansen per contact 
gekwantificeerd, alsmede de aantallen uitbraken toe te schrijven aan verschillende 
typen contact,  gebruik makend van gedigitaliseerde gegevens over tijdens de 
epidemie in 2003 getraceerde  contacten. De bevindingen van deze analyse 
suggereren dat, binnen de getraceerde contacten met bronbedrijven, het ophalen van 
eieren de grootste infectiekans met zich meebrengt (d.w.z. 31%) en de tussen-
bedrijfscontacten door individuen betrokken bij screening en andere crisisorganisatie-
activiteiten (kortweg betiteld als crisisorganisatie-contacten) de laagste kans (d.w.z. 
0.1%). Bovendien geven de bevindingen aan dat, vergeleken met de andere typen 
getraceerde contacten, crisisorganisatie-contacten heel weinig aan transmissie 
bijdroegen. Dit suggereert dat de bio-veiligheidsmaatregelen die door de teams in acht 
werden genomen goed werkten. In totaal waren de getraceerde contacten 
verantwoordelijk voor slechts ongeveer 7% van het totaal aantal uitbraken in de 
epidemie. Een toetsing van het voorspelde aantal uitbraken veroorzaakt door de 
verschillende typen getraceerde contacten aan genetische (sequencing) gegevens voor 
de monsters genomen op die bedrijven tijdens de epidemie liet zien dat deze twee 
consistent waren.  

 De afzonderlijke analyses van de verspreiding via wind en van de gegevens van 
getraceerde contacten hebben laten zien dat tussen ongeveer 50% en 80% van de 
geobserveerde transmissie noch door getraceerde contacten noch door verspreiding 
via wind verklaard kan worden. Om meer te weten te komen over mogelijke risico’s in 
de praktijk, zowel die gerelateerd aan de gewoonlijk veronderstelde typen indirecte 
contacten (die ook voorkomen in de traceringsrapporten tijdens de Nederlandse 
epidemie in 2003) als mogelijke verdere typen indirecte contacten (in het bijzonder die 
welke de oorzaak zouden kunnen zijn van uitbraken zonder getraceerd contact), werd 
een interviewstudie gehouden onder 60 betrokkenen bij de pluimveehouderij. De 
resultaten van deze studie gaven een leidraad voor het formuleren van betere 
hypothesen over onderliggende transmissiemechanismen. Ook maken deze het 
mogelijk om gebruik makend van modellen zulke hypotheses te verkennen. Ze gaven 
informatie over de frequentie waarmee de verschillende typen contacten voorkomen en 
over de risico-perceptie van pluimveehouders en pluimvee-gerelateerde bedrijven. In 
een kwalitatieve risicoanalyse van de verschillende contacten gevonden in de 
interviewstudie werden aanvoer van pluimvee, uitdunnen, nabijheid van andere 
pluimveebedrijven en personen die stallen betreden aangemerkt als de belangrijkste 
risico’s met betrekking tot HPAI transmissie. Pluimveehouders bleken uiteenlopende 
opinies te hebben over de HPAI transmissierisico’s verbonden met bezoekers en de 
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omgeving, en er warden geen grote verschillen gevonden in infectierisico’s  tussen 
vleeskuikenbedrijven en legbedrijven. Daarnaast bevestigden de uitkomsten de indruk 
dat niet alle bio-veiligheidsprotocollen altijd worden aangehouden, en gaven deze 
inzicht in de precieze protocolschendingen. Zo worden bijvoorbeeld de beschikbare 
protocollen voor bezoekers niet altijd goed aangehouden, zoals blijkt uit het feit dat op 
de meeste bedrijven de beschikbare douches zelden of nooit door bezoekers die de 
stallen betreden werden gebruikt. De meeste geïnterviewde bedrijven hadden geen 
gemarkeerde scheiding van “schone en vuile weg”. Veel pluimveehouders stonden 
bezoekers zoals dierenartsen toe om persoonlijke eigendommen zoals mobiele 
telefoons de stal in mee te nemen. De bevindingen van deze studie zijn van belang als 
input voor het updaten van traceringsprotocollen voor gebruik bij toekomstige 
uitbraken. 
 Buurttransmissie werd in dit proefschrift verder bestudeerd door analyse van 
indirecte transmissie in een experiment (Hoofdstuk 5), waarna de bevindingen werden 
getoetst aan de veldgegevens uit 2003 (Hoofdstuk 6). In het experiment kwam de 
mogelijkheid van vertraagde transmissie, in tegenstelling tot de gewoonlijk 
veronderstelde onmiddellijke transmissie, aan het licht en deze mogelijkheid werd 
daarom ook onderzocht voor de transmissie in het veld in 2003. Een model gebaseerd 
op diffusie – waarin de verplaatsing van een infectieuze kiem wordt beschreven door 
de ruimte wordt beschreven door een stap-voor-stap diffusieproces – werd ontwikkeld 
voor de transmissie tussen (pluimvee)locaties (Hoofdstuk 5) en dit werd vervolgens 
toegepast op de gegevens van de Nederlandse H7N7 HPAI epidemie in 2003 
(Hoofdstuk 6). Afgezien van de realistische beschrijving van het veronderstelde 
mechanisme onderliggend aan transmissie,  heeft het diffusie-gebaseerde model het 
voordeel dat zonder verschillende individuele transmissieroutes te onderscheiden 
uitbraakgegevens kunnen worden geanalyseerd om inzicht te krijgen in de tussen-
bedrijfstransmissie. Dit wordt mogelijk gemaakt door een gemiddelde dagelijkse 
verplaatsing van het materiaal te schatten. De bevindingen van deze studie laten zien 
dat tweedimensionale diffusiemodellering een veelbelovende aanpak is om niet-
traceerbare indirecte transmissie op een “spaarzame” wijze te beschrijven: met een 
klein aantal parameters die elk redelijkerwijs gekwantificeerd kunnen worden. Deze 
modellering blijkt succesvol in het verklaren van experimenteel waargenomen 
tijdsafhankelijke patronen van indirecte transmissie voor Campylobacter en E. Coli en 
de verschillen daartussen, in termen van het samenspel tussen transport en verval van 
de kiemen in de omgeving tussen infectieuze en gevoelige gastheer. Daarnaast is een 
vertraagde component van transmissie, zoals voorspeld door het model, aangetoond in 
gegevens voor infecties met een bacterie met antibiotica-resistentie op een intensive-
care afdeling van een ziekenhuis. Door het vergroten van ons kwantitatieve begrip van 
die gevallen van transmissie die noch door windverspreiding noch door getraceerde 
contacten kunnen worden verklaard, draagt deze nieuwe aanpak van modellering bij 
aan de gewenste verbetering van ons algehele begrip van de tussen-
bedrijfstransmissie van HPAI. 
 
De hoofdconclusies van dit proefschrift 
 
Dit proefschrift heeft meer inzicht opgeleverd in de mechanismen van tussen-
bedrijfstransmissie van HPAI. Anders dan eerdere ruimtelijke analyse van de gegevens 
van de Nederlandse H7N7 HPAI epidemie in 2003, die een statistische beschrijving 
gebruikte van de totale tussen-bedrijfstransmissie (d.w.z. geen onderscheid makend 
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tussen verschillende transmissieroutes) om de afstandsafhankelijkheid daarvan  te 
kwantificeren, werden hier wel individuele transmissieroutes gemodelleerd. In het 
algemeen is nieuw inzicht verkregen in de kwantitatieve bijdragen van de verschillende 
mogelijke mechanismen van verspreiding tussen bedrijven. Dit maakt een betere risico-
gebaseerde formulering en/of prioritering van preventie- en interventiemaatregelen 
gericht tegen verschillende verspreidingsroutes mogelijk. In het kort kunnen de 
volgende conclusies worden getrokken uit dit proefschrift:   
 De route via wind, hoewel deze kan bijdragen aan transmissie, kan (alleen) het 

geobserveerde patroon van transmissie in de epidemie van 2003 niet verklaren. De 
onverklaarde transmissie kan het gevolg zijn geweest van andere mechanismen of 
van een meerstaps-proces waarin wind en andere mechanismen een rol spelen.    

 Naar schatting slechts 7% van de uitbraken kan worden toegeschreven aan 
getraceerde tussen-bedrijfscontacten. Dit suggereert het bestaan van andere 
mogelijke transmissieroutes die niet getraceerd, niet-traceerbaar en/of niet 
nagegaan zijn. Daarom zouden de huidige traceringsprotocollen en (dus) de bio-
veiligheidsprotocollen moeten worden bijgesteld om deze mechanismen daarin te 
verdisconteren.  

 Het grote aandeel van onverklaarde transmissie bevestigt opnieuw de noodzaak 
om de voorwaarden te verbeteren voor succesvolle tracering bij toekomstige 
uitbraken, mogelijkerwijs door het gebruik van virus sequencing om de tracering te 
ondersteunen.    

 De bio-veiligheidsmaatregelen genomen door de crisis-organisatieteams lijken 
voldoende om tussen-bedrijfstransmissie van HPAI door deze teams te 
voorkomen. Daarom zouden de relevante autoriteiten (sommige van) deze 
maatregelen moeten invoeren voor dagelijks gebruik op pluimveebedrijven.  

 Schendingen van bio-veiligheid komen vaak voor bij de dagelijkse activiteiten op 
pluimveebedrijven, waarbij de volgende obstakels voor het realiseren van een 
goede bio-veiligheid optreden: afwezigheid van faciliteiten, het zich niet houden 
aan protocollen of inconsistente toepassing daarvan, en onvolledigheid van 
protocollen. 

 Uit het toepassen van een diffusiemodel op een deel van de gegevens van de 
Nederlandse HPAI epidemie in 2003 blijkt dat deze modellering een 
wetenschappelijk veelbelovende aanpak is om indirecte transmissie tussen 
bedrijven op een “spaarzame” manier mechanistisch te beschrijven.   
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Wageningen Institute of Animal Sciences (WIAS)     

Education and Training     Year 

The Basic Package (3 credits)  

WIAS Introduction Course  2009 

WIAS Course on philosophy of science and ethics  2010 

Scientific Exposure (23 credits)  

International conferences   

International Symposium on Veterinary Epidemiology and Economics 

(ISVEE 12), Durban, South Africa, 10th-14th August 

2009 

International Symposium on Veterinary Epidemiology and Economics 

(ISVEE 13), Maastricht, The Netherlands, 20th-24th August 

2012 

Annual meeting of the Society for Veterinary Epidemiology and 

Preventive Medicine (SVEPM), Nantes, France: 24th-26th March 

2010 

Annual meeting of the Society for Veterinary Epidemiology and 

Preventive Medicine (SVEPM), Leipzig, Germany, 23rd -25th March 

2011 

The 5th Epizone Annual meeting, Arnhem, The Netherlands, 11th -

14th April 

2011 

The 6th Epizone Annual meeting, Brighton, United Kingdom, 12th-14th 

June 

2012 

The 4th Oxford avian influenza conference, Oxford, United Kingdom, 

7th-10th September 

2011 

Seminars and workshops  

Workshop on Indirect Transmission, Ambiance Houtrust, Amersfoort, 

The Netherlands, 25th September 

2008 

Workshop on Analysis and Numerics of Population dynamics and 

Epidemics models, Udine, Italy, 15th-17th December 

2008 

Annual meeting of the Dutch Society of Theoretical Biology(NVTB), 

Schoorl, The Netherlands, 7th-8th May 

2009 

WIAS Science Day, Wageningen, The Netherlands, 12th March; 28th 

January; 3rd February 

2009+ 2010 

+2011 

The UCID symposium on infection dynamics, Spoorweg museum, 

Utrecht, The Netherlands, 9th -11th March 

2011 

Presentations   

WIAS Science Day, Wageningen, The Netherlands, 12th March, Poster 2009 

Annual meeting of the SVEPM 2010, Nantes, France, 24-26 March, 

Poster 

2010 

Annual meeting of the SVEPM 2011, Leipzig, Germany, 23rd -25th 

March,Poster 

2011 
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International Symposium on Veterinary Epidemiology and Economics 
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Dutch Society for Veterinary Epidemiology and Economics (VEEC), 
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FES plenary meeting, Auditorium, Edelhertweg 15, Lelystad, The 

Netherlands, October, Oral 

2009 

WIAS Science Day, Wageningen, The Netherlands, 3rd February, Oral 2011 

The 4th Oxford avian influenza conference, Oxford, United Kingdom 

7th-10th September, Oral 

2011 

The 4th Cees Wensing Lecture, Auditorium, Edelhertweg 15, Lelystad, 

The Netherlands, 24th November,Oral 

2011 

The  6th Epizone Annual meeting, Brighton, United Kingdom, 12th-14th 

June, Oral 
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2012 

In-Depth Studies (25 credits)  

Disciplinary and interdisciplinary courses  

Summer School on Mathematical Ecology and Evolution, Turku, 

Finland, 22nd -29th August 
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Utrecht, The Netherlands, January-June 

2009 

Design and Analysis of Transmission Experiments, Wageningen 

University, Wageningen, The Netherlands, 2nd-6th November 
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Advanced statistics courses   

Modern statistics for the life sciences, Wageningen University, 

Wageningen, The Netherlands, 4th January-23rd February 

2010 
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Monthly scientific meeting QVERA/QVE 2008-2012 

Journal club (twice a month)     2009-2010 
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Research Skills Training (2 credits)  

Preparing own PhD research proposal  2009 
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