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While chemotherapeutic agents have yielded relative success in the treatment of cancer,

patients are often plagued with unwanted and even debilitating side-effects from the

treatment which can lead to dose reduction or even cessation of treatment. Common

side effects (symptoms) of chemotherapy include (i) cognitive deficiencies such as

problems with attention, memory and executive functioning; (ii) fatigue and motivational

deficit; and (iii) neuropathy. These symptoms often develop during treatment but can

remain even after cessation of chemotherapy, severely impacting long-term quality of

life. Little is known about the underlying mechanisms responsible for the development

of these behavioral toxicities, however, neuroinflammation is widely considered to be

one of the major mechanisms responsible for chemotherapy-induced symptoms. Here,

we critically assess what is known in regards to the role of neuroinflammation in

chemotherapy-induced symptoms. We also argue that, based on the available evidence,

neuroinflammation is unlikely the only mechanism involved in the pathogenesis of

chemotherapy-induced behavioral toxicities. We evaluate two other putative candidate

mechanisms. To this end we discuss the mediating role of damage-associated molecular

patterns (DAMPs) activated in response to chemotherapy-induced cellular damage. We

also review the literature with respect to possible alternative mechanisms such as a

chemotherapy-induced change in the bioenergetic status of the tissue involving changes

in mitochondrial function in relation to chemotherapy-induced behavioral toxicities.

Understanding the mechanisms that underlie the emergence of fatigue, neuropathy,

and cognitive difficulties is vital to better treatment and long-term survival of cancer

patients.
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Introduction

When someone describes his/her battle with cancer, the discussion inevitably intertwines their
experience of the disease with their experience of the treatment. This is because the toxicities of
cancer treatment are commonly debilitating and can drastically reduce quality of life. Indeed, often
these side effects persist for weeks, months, or years after patients are cancer-free. Furthermore,
symptoms can be so severe that physicians may be forced to deviate from the optimal treatment
strategy for a patient, which can directly influence survival.
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It has also been found that high symptom expression is related
to increase risk of mortality. For example, Innominato et al.
(2013) found fatigue to be a negative predictor of survival of
metastatic cancer which highlights the importance of studying
symptoms to both improve quality of life of cancer patients and
potentially impact survival.

While there are many anti-cancer drugs used with widely
varying mechanisms of action, there appear to be a com-
mon set of symptoms induced by many of these agents which
include fatigue, cognitive dysfunction, and peripheral neuropa-
thy (Cleeland et al., 2003). No FDA-approved treatment is
currently available for treatment or prevention of these symp-
toms. In addition, the underlying mechanisms of chemotherapy-
induced symptoms are poorly understood. The current dogma of
the mechanisms responsible for the symptoms of chemotherapy
largely revolves around neuroinflammation (Cleeland et al., 2003;
Miller et al., 2008; Dantzer et al., 2012). This has primarily been
driven by preclinical and clinical studies in non-cancer contexts
demonstrating that propagation of peripheral inflammatory sig-
nals to the brain results in acute behavioral symptoms of sickness
which can transition into chronic conditions. For instance, it is
clear that there is a temporal dissociation between the symptoms
of sickness and the development of persistent cognitive, neuro-
pathic or mood, and behavioral changes after the illness has dissi-
pated (Capuron et al., 2002). During the acute phase response to a
disease and/or inflammatory response, reduced mood, increased
pain and fatigue are adaptive processes to aid in the recovery
from illness. However, when these symptoms remain after the
disease has cleared then they have transitioned into a chronic and
pathological condition (Walker et al., 2014). Such findings made
neuroinflammation an attractive mechanistic target to explain
the behavioral toxicities in response to cancer and chemotherapy
given that many of the side-effects of chemotherapy remain long
after treatment has ceased.

On the basis of the data on inflammation-induced behav-
ioral phenomena, a great deal of research into the symptoms of
cancer and chemotherapy has focused on peripheral and cen-
tral cytokine signaling as a possible common inducer of these
toxicities as well. However, cancer and its treatment appear to
exist as a particularly unique circumstance. Cancer-related neu-
roinflammation may be a consequence of peripheral inflam-
matory signaling due to the effect of therapy on the tumor
or other peripheral tissues or may be a direct consequence of
chemotherapy agents localizing to cells of the central nervous
system (CNS) (Giurgiovich et al., 1997; Cavaletti et al., 2001).
Now after over a decade of research on the role of neuroin-
flammation in chemotherapy-induced symptoms, it is imperative
to re-evaluate the available evidence for the role of neuroin-
flammation in chemotherapy-induced symptoms. Doing so will
provide a clear account of what we have learned and an under-
standing of where we are heading. In this review we will discuss
the role of neuroinflammation in chemotherapy-induced fatigue,
cognitive dysfunction, and peripheral neuropathy and pain, as
well as highlight potential novel mechanistic candidates for
future investigation. We recognize that the relationship between
chemotherapy-induced symptoms and cancer-related symptoms
is complex. Based on the current literature and minimal data

for pre-diagnosis and treatment naïve patients the two can-
not be fully disentangled. However, much of what is known is
derived from studies carried out in non-tumor bearing rodents
treated with chemotherapy. Although these symptoms are appar-
ent in patients with both CNS and non-CNS cancers, CNS can-
cers hamper the study of the specific effects of chemotherapy
because of the possible confounding effects of the tumor. To
avoid such confusion, we will focus our discussion on the rela-
tionship between neuroinflammation and symptoms in non-CNS
cancer patients. Similarly, additional symptoms such as cachexia/
anorexia induced both by the cancer and chemotherapy are
thought to be regulated by central cytokine signaling (reviewed in
Illman et al., 2005) and probably potentiate neuroinflammation
and chemotherapy-induced fatigue, cognition and neuropathy.
This interplay alone could serve as a topic for review. We have
decided therefore, to limit the scope of this review specifically
to what is known about chemotherapy-induced fatigue, cognitive
dysfunction and neuropathy/pain.

Neuroinflammation in
Chemotherapy-induced Behavioral
Toxicities

Fatigue
Fatigue is one of the most common symptoms experienced by
cancer patients (Cleeland, 2007). In some studies up to 60%
of patients receiving chemotherapy have been found to exhibit
symptoms of fatigue (Bock et al., 2014). While the experience of
fatigue often declines shortly after treatment, for many survivors
their fatigue persists long after treatment cessation. Indeed, it is
estimated that between 19 and 38% of cancer survivors still suffer
from fatigue after treatment has stopped (Cella et al., 2001; Prue
et al., 2006; Berger et al., 2010). Fatigue significantly impairs one’s
quality of life by exerting its effects at the physical, psychological,
and social levels (Curt, 2000). While the term fatigue has become
common parlance, many of us take for granted the complexity of
discrete neurological and biobehavioral components that com-
prise it. At a basic level fatigue can be divided into peripheral
fatigue and central fatigue (Davis, 1995; Chaudhuri and Behan,
2000). Peripheral fatigue refers to physical exhaustion and is often
described in terms of muscle fatigue and lack of physical energy.
Central fatigue refers to the set of discrete central processes that
drive the cognitions associated with fatigue, which include a lack
of motivation to engage in a given behavior. When studies also
assess the motivational components of fatigue, the incidence of
fatigue in cancer patients and survivors rises to 50% or higher
(Curt et al., 2000; Sadler et al., 2002; Van Belle et al., 2005).
Understanding the discrete units of central fatigue is complicated
and only recently, the topic has entered the forefront of scien-
tific pursuit. A consideration of fatigue cannot avoid mentioning
the high degree of convergence between fatigue and depression.
Fatigue is indeed part of the diagnostic criteria for depression,
and approximately 73% of patients with depression report a lack
of energy and fatigue (Lecrubier, 2006). These rates are even
higher in cancer patients experiencing depression, with somatic
depression-related symptoms being reported as more prominent
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than affective symptoms (Wedding et al., 2007). A meta-analysis
by Brown and Kroenke (2009) revealed an overall correlation of
0.56 between fatigue and depression in patients with cancer. This
indicates that while fatigue and depression are related, they still
do have independent components. This is further evidenced by
studies indicating that the progression for fatigue and depression
are different over the course of treatment in patients (Visser and
Smets, 1998; Brown and Kroenke, 2009). At the methodologi-
cal level, the overwhelming majority of studies that have inves-
tigated the link between cancer and its treatment with fatigue
rely on patient self-report of fatigue on an unidimensional scale,
therefore, omitting any consideration of the various components
of fatigue. Below we will describe what has been discovered in
regards to fatigue in preclinical and clinical models for cancer and
chemotherapy in relation to neuroinflammation.

Neuroinflammation has been overwhelmingly proposed as
the mechanism to account for cancer-related fatigue (Dantzer
et al., 2014). This has partly been driven by evidence for a role
of neuroinflammation in fatigue in patients from non-cancer
contexts such as rheumatoid arthritis and multiple sclerosis.
However, understanding the mechanisms underlying fatigue in
cancer patients receiving chemotherapymay require a completely
different mechanism of induction and/or maintenance than
inflammation-induced fatigue. For many studies, particularly
those at the clinical level, dissociation between chemotherapy-
induced fatigue vs. that induced by the disease or by additional
treatment strategies is difficult. In contrast, few preclinical studies
investigate the synergistic effect of the disease and chemotherapy
on fatigue, but choose to most often look at each in isolation. One
murine study, however, did examine fatigue-related behaviors in
mice with non-inflammatory Lewis Lung Carcinoma cell tumors
that received the chemotherapeutic agent Etoposide (Wood et al.,
2006). Etoposide significantly reduced voluntary wheel running
activity used as an index of fatigue despite its intrinsic complex-
ity (Novak et al., 2012) with a concomitant increase in serum IL-6
but causation cannot be inferred.

Human studies allow us to infer exacerbation of symptoms by
chemotherapy on existing fatigue in cancer patients. For exam-
ple, a recent study showed that children with acute lymphoblastic
leukemia had reduced muscle strength, bone density, and fit-
ness at diagnosis prior to treatment (Ness et al., 2014). How-
ever, the severity of these symptoms did not appear as great as
those that were observed in such patients following treatment
with chemotherapy, which is suggestive of a significant role of
chemotherapy in the development of these symptoms. It should
be noted that children receiving chemotherapy for acute lym-
phoblastic leukemia also receive high doses of the synthetic glu-
cocorticoid dexamethasone which is likely to also contribute to
symptoms of fatigue.

Additionally, most clinical studies that included investigation
of chemotherapy-related fatigue relied upon the measurement
of peripheral markers of inflammation as a proxy for cen-
tral inflammatory processes. For example, Wang et al. (2012)
found that fatigue as measured by the fatigue item of the MD
Anderson Symptom Inventory (MDASI) was positively associ-
ated with serum interleukin (IL)-6 and soluble tumor necrosis
factor-receptor 1 (sTNF-R1) concentrations for colorectal and

oesophageal cancer patients treated with combined chemother-
apy and radiotherapy. Importantly, symptoms peaked at the end
of treatment suggestive of the cumulative effects of treatment tox-
icity. More specific to chemotherapy alone, Pertl et al. (2013)
investigated fatigue and depression symptoms in patients with
breast cancer. The acute phase protein C-reactive protein (CRP)
at baseline predicted changes in fatigue as measured by Func-
tional Assessment of Cancer Therapy—Fatigue Scale in patients
receiving chemotherapy and was independent of depression. It
should be noted that other inflammatory markers including the
cytokines interferon (IFN)-γ, IL-6 and TNF-α were assessed and
no such relationship with fatigue emerged. However, circulating
levels of cytokines are often very low and close to undetectable
in many cases making it hard to draw firm conclusions. Nev-
ertheless, the relationship with CRP may indicate the impor-
tance of the baseline level of inflammatory activity to predict
fatigue severity in response to chemotherapy. A recent murine
model was used to investigate the development of fatigue, as
measured by decreased voluntary wheel running in response to
systemic injection of cyclophosphamide, doxorubicin, and flu-
orouracil (Weymann et al., 2014). Reduced wheel running and
elevated pro-inflammatory cytokine expression in the brain were
observed which were attenuated with a central injection of
orexin—a neuropeptide responsible for arousal and wakefulness.
While the data provide compelling evidence of a role for neuroin-
flammation in chemotherapy-induced fatigue, it is important to
note that these effects are not observed across all studies and that
not all chemotherapeutic agents induce inflammation.

Research into fatigue prevalence in survivors has also been
conducted, and gives us some insight into the transition from
acute symptoms of treatment to long-term fatigue. Researchers
recently, followed breast cancer patients from just prior to adju-
vant chemotherapy through to 1 year post-treatment (Moore
et al., 2014), and noted a tendency for patients to report high
levels of fatigue at baseline which worsened during chemother-
apy and had not fully resolved by 1 year post-treatment. Such
a finding is not uncommon and many studies cite evidence of
inflammation as a contributing factor. Alfano et al. (2012) found
that breast cancer survivors had a 1.8 fold greater chance of
suffering from fatigue if they exhibited high serum CRP lev-
els. Moreover, higher CRP levels showed a significant positive
correlation with higher scores for behavioral, sensory, and total
fatigue on the Piper Fatigue Scale. Fatigue in breast cancer sur-
vivors has also been shown to correlate positively with periph-
eral CRP levels and leukocyte counts but not with IL1-receptor
antagonist (RA), IL-6, and soluble TNF-Receptor1 (sTNF-R1),
which again diminishes the role of a cytokine-specific mecha-
nism. Collado-Hidalgo et al. (2006) compared the ex vivomono-
cyte response to lipopolysaccharide (LPS) between breast cancer
survivors with chronic fatigue and those without. The ex vivo
response of peripheral monocytes to LPS was significantly greater
for survivors with fatigue compared to their control counterparts.

The question remains, however, what causes the transition
from acute symptoms to chronic fatigue after chemotherapy—
and where might inflammation fit into this transition? Smith
et al. (2014) attempted to answer this question. They hypoth-
esized that inflammation may persist into survivorship and
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cause chronification of fatigue via changes to the epigenome.
They looked at DNA methylation patterns of peripheral blood
mononuclear cells in response to chemotherapy in breast can-
cer patients. They were able to observe an association between
plasma sTNFR1 and fatigue but no epigenetic mechanism could
be supported by the data. Reinertsen et al. (2011) investigated sin-
gle nucleotide polymorphisms (SNPs) for IL-1β and IL-6R but
found no relationship with fatigue. Hence, while there is com-
pelling evidence to implicate neuroinflammation with fatigue
emergence during and after a variety of chemotherapy agents,
it has not been possible so far to demonstrate causation. Identi-
fying cause-and-effect relationships between chemotherapy and
behavioral toxicities is further complicated by the widely vary-
ing mechanisms of action of different chemotherapeutic agents.
For instance, inflammation is a likely candidate for etoposide-
induced fatigue as it activates p38 MAPK pathway (Wood
et al., 2006), while bortezomib inhibits NF-kB (Ma et al., 2003;
Mitsiades et al., 2006), and therefore, would not be expected
to induce an inflammatory response. Despite the variations in
the degree to which different chemotherapeutic agents induce
inflammation, fatigue appears to remain a constant and common
outcome of chemotherapy. The reason for this may lie in the pos-
sibility that treatment-related fatigue is not primarily or solely
caused by inflammatory mediators, but is induced by treatment-
induced intracellular metabolic changes in the target tissue such
as direct mitochondrial damage (discussed below).

Cognitive Dysfunction
Chemotherapy-induced cognitive impairment (CTCI), also
referred to as “chemobrain” or “chemofog,” is experienced by 15–
80% of cancer patients and survivors (Cleeland et al., 2003). The
variance in incidence rates of CTCI can be attributed to different
treatment modalities as well as methodological variations across
studies such as use of different definitions, objective vs. subjec-
tive tests of CTCI, and times of assessment of CTCI (Hutchin-
son et al., 2012; O’farrell et al., 2013). The most robust effects
of chemotherapy are reported for executive function, memory,
and processing speed (Cleeland et al., 2003; Jones et al., 2013;
Seretny et al., 2014)—all of which involve frontal regions of the
brain. Brain imaging studies indeed show subtle reductions in
white and gray matter volume and density and frontal hypo—
as well as hyperactivity during memory-related cognitive tasks
in chemotherapy treated breast cancer survivors (Wieseler-Frank
et al., 2005; Hutchinson et al., 2012; O’farrell et al., 2013). While
these changes in brain volume and activity improve over time
after cessation of treatment, subtle changes are still apparent
years into survivorship (Jounai et al., 2012). Several mechanisms
underlying cognitive impairment have been proposed includ-
ing direct neurotoxic injury, decreased neurogenesis, hormonal
pathways, and neuroinflammation (Seigers et al., 2013). Neu-
roinflammation as a possible explanatory mechanism for cog-
nitive dysfunction has been studied both in clinical and animal
studies.

Several clinical studies have now been published that focus
on the relation between peripheral inflammatory markers, as a
proxy for neuroinflammation, and cognitive performance (see
Seretny et al., 2014 for a recent review). Overall, results from

these studies tentatively point to a role for inflammation in
CTCI (Seretny et al., 2014). Ganz et al. (2013) reported an
association between soluble TNF receptor type II (sTNF-RII), a
marker for TNF-α activity, and subjective memory complaints in
breast cancer survivors. Higher levels of sTNF-RII were associ-
ated with greater memory complaints approximately 3 months
post treatment and a decrease in sTNF-RII over the 12 months
post treatment was related with improvements in self-reported
memory. Of note, the observed relation between sTNF-RII and
subjective complaints disappeared when controlling for fatigue,
suggesting an intertwining of self-reported fatigue and cogni-
tive symptoms. Reporting on a subset of the same breast can-
cer survivor sample, Pomykala et al. (2013) showed a posi-
tive association between several cytokine markers (among which
sTNF-RII) and subjective memory complaints as well as cerebral
metabolism both at 3 and 12 months post treatment. Janelsins
et al. (2012), reporting on a different cohort, found an associ-
ation between increases in the chemokine MCP-1 during two
cycles of doxorubicin-based chemotherapy and less subjective
cognitive problems at the end of the two cycles in breast can-
cer patients. Although not significant, increases in the cytokines
IL-6 and IL-8 were associated with more subjective cognitive
problems, suggesting that the relation between CTCI and inflam-
mation is intricate and might not readily be captured with the
assessment of single inflammatory markers. In the same study,
no association was found between any of the inflammatorymark-
ers and subjective cognitive difficulties in breast cancer patients
treated with a methotrexate-based chemotherapy cocktail, indi-
cating that the relation between inflammation and CTCI might
be chemotherapy-agent-specific. Kesler et al. (2013) reported an
interaction between IL-6 and TNF-α on performance on a verbal
learning test in chemotherapy-treated breast cancer survivors. IL-
6 and TNF-α were also related to lower left hippocampal volume,
suggesting that inflammation possibly reduced cognitive func-
tion through effects on the hippocampus. On the other hand,
Gan et al. (2011) did not observe any relationship between objec-
tively assessed cognitive function and inflammatory biomarkers
in head and neck cancer survivors. However, considering the
small sample size of this study (n = 10), this null finding needs
to be interpreted with caution.

The above described peripheral markers of inflammation are
considered a proxy for neuroinflammation and indeed seem to
be associated with brain metabolism and volume, implicating
that the peripheral markers are representative of a central mech-
anism. However, the use of more direct measures of neuroin-
flammation, such as inflammatory markers in cerebrospinal fluid
or assessment of microglia activation with positron emission
tomography (Dickens et al., 2014) would significantly increase
our understanding of the role of neuroinflammation in CTCI.
Of course, such measures are not always feasible due to their
invasiveness for the patient and high costs. Clinical studies
also do not allow for an easy disentanglement of the effects of
the tumor and its treatment on subsequent cognitive difficul-
ties. There is evidence of disease-driven cognitive dysfunction,
such that subtle cognitive impairments accompanied by sub-
tle differences in brain volume and activity are already appar-
ent before the start of chemotherapy (Cleeland et al., 2003;
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O’farrell et al., 2013). Furthermore, an association between
inflammatory markers and cognitive impairment has also been
observed prior to chemotherapy (Bernard et al., 2012). These
disease-driven impairments and their possible association with
inflammation can be addressed with longitudinal study designs
that incorporate assessments prior to the onset of chemother-
apy. Such studies have already been undertaken with regard to
CTCI showing the feasibility of these designs but, unfortunately,
measures of inflammation have not yet been included.

Animal studies do allow for the study of the effects of
chemotherapy alone (i.e., without tumor interference) and
also for more direct measures of neuroinflammation through
the assessment of cytokines concentrations in the brain and
microglia activation. Another advantage of the use of animal
models is the relatively easy assessment of both the acute and
long-term neuroinflammatory response to chemotherapy. In
most rodent studies published up to now, measures of inflamma-
tion served as a secondary outcome and more direct, mechanistic
investigations between neuroinflammation and chemotherapy-
induced cognitive dysfunction are required. Nevertheless, results
from rodent studies do suggest that neuroinflammation might be
related to cognitive dysfunction in specific chemotherapy models
(Lecrubier, 2006).

Seigers et al. (2010) reported an increase in the number
of active microglia in the hippocampus 1 and 3 weeks after
methotrexate treatment. However, they did not find an effect
of methotrexate on cytokine levels in the hippocampus or on
microglial activation as assessed by PET ([11C]PK11195). Fur-
thermore, methotrexate appeared to reduce peripheral levels of
cytokines (Topp et al., 2000). The latter finding is not surpris-
ing considering the anti-inflammatory properties of methotrex-
ate (Cutolo et al., 2001) and indicates that the observed increase
in the number of active microglia may represent activation of
anti-inflammatory M2 microglia (Cherry et al., 2014). Briones
and Woods (2014) showed that treatment with a combination
of cyclophosphamide, methotrexate, and fluorouracil led to an
increase in IL1-β and TNF-α in the corpus callosum of rats and a
decrease in the anti-inflammatory cytokine IL-10 approximately
4 weeks after chemotherapy. These changes in cytokine levels
were accompanied by reduced performance on a working mem-
ory task. Administration of a COX-2 inhibitor normalized the
cytokine concentrations and attenuated the deficit seen in cogni-
tive performance, strengthening the assumption of a direct rela-
tionship between the observed neuroinflammation and cognitive
impairment. Findings from this animal study stand in contrast
to Janelsins’ report on patients receiving the same combination
of chemotherapeutic agents in whom no increase in periph-
eral markers of inflammation were observed (Janelsins et al.,
2012), possibly indicating that the neuroinflammation found
in animals cannot be translated to peripheral inflammation.
Impaired performance in a working/spatial memory task was also
observed in rats treated with either cyclophosphamide or dox-
orubicin 3 weeks prior to assessment of cognitive performance.
Cyclophosphamide only led to inflammation in the hippocam-
pus assessed as an increased number of activated microglial
cells (Dina et al., 2001). Finally, microglial activation through-
out the brain was observed in one out of ten mice treated with

fluorouracil (Schaefer, 2014) at 1 day post-treatment. Cognitive
performance was not assessed in this study.

In sum, clinical studies indicate that peripheral inflamma-
tion might be related to cognitive impairments after chemother-
apy, suggesting a role for neuroinflammation in CTCI. This
notion is corroborated by findings from animal models show-
ing that chemotherapy can lead to both neuroinflammation and
impairments in cognitive function. Interestingly, these associ-
ations are observed immediately as well as some weeks after
therapy. Both clinical and animal studies indicate that a neuroin-
flammatory mechanism underlying CTCI is probably restricted
to specific chemotherapeutic agents, stressing the importance of
studying CTCI in different patient populations and models of
chemotherapy.

Neuropathy
Peripheral neuropathy characterized by pain, numbness, and
temperature sensitivity is another common side effect of
chemotherapy known as chemotherapy-induced peripheral neu-
ropathy (CIPN) (Dougherty et al., 2004; Wolf et al., 2008). CIPN
occurs in about 60% of cancer patients (Rowinsky et al., 1993a,b;
Windebank and Grisold, 2008; Wolf et al., 2008; Cavaletti et al.,
2011; Seretny et al., 2014) and can cause dose limitations or early
cessation of treatment making it a challenge for effective cancer
treatment (Cavaletti et al., 1992; Uhm and Yung, 1999; Polomano
and Bennett, 2001; Mielke et al., 2006). As reported for fatigue
and cognitive deficits, CIPN can persist after completion of treat-
ment thereby contributing to the reduction in quality of life of
cancer survivors.

Chemotherapy-treated individuals frequently report an acute
pain phase in the days immediately following treatment (Gamelin
et al., 2002; Grothey et al., 2011; Park et al., 2011). This acute
phase usually subsides. However in some cases acute CIPN symp-
toms transition into a chronic pain phenotype (Seretny et al.,
2014). Both the acute and chronic CIPN symptoms can be prob-
lematic for patients. Intense acute pain symptoms can lead to
the necessity of decreasing the dose of the drug or number of
treatment cycles. Persistent chronic pain states can also adversely
affect quality of life both during and following completion of
chemotherapy treatment (Vichaya et al., 2013). CIPN symptoms
are most frequently reported in a “glove and stocking” distri-
bution in which patients report neuropathy symptoms in their
hands and feet (Kim et al., 2015). These neuropathy symptom
profiles are reported across different classes of chemotherapeutic
agents including taxanes, platinum, proteasome inhibitors, and
vinca-alkaloids. Why many different chemotherapeutic agents
result in similar neuropathy profiles is unclear. More importantly
molecular/cellular cause(s) of CIPN remain unknown.

In this section we shall highlight research on inflamma-
tion as a potential cause of CIPN. Human studies discussed
above measured chemotherapy-induced increases in peripheral
pro-inflammatory cytokine levels corresponding with behavioral
toxicities such as cognitive deficits, fatigue, and neuropathy.
Animal studies have enabled investigators to further elucidate
effects of inflammation on neuronal tissues such as peripheral
sensory neurons as a potential cause of CIPN. Several inves-
tigators have measured increased pro-inflammatory cytokines,
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such as IL-1β, IL-6, and TNF-α, at the site of peripheral sen-
sory neurons (either in the dorsal root ganglia or spinal cord)
of chemotherapy treated rodents (White et al., 2005; Ledeboer
et al., 2007; Xiao et al., 2011; Wang et al., 2012; Zhang et al., 2012,
2013; Pevida et al., 2013; Janes et al., 2014a). Studies in inflamma-
tory pain have shown that endogenous or exogenous increases
in pro-inflammatory cytokines can sensitize peripheral sensory
neurons leading to spontaneous discharge and neuropathic pain
in the absence of chemotherapy treatment (Topp et al., 2000;
Dina et al., 2001; Wieseler-Frank et al., 2005; Schafers and
Sorkin, 2008). Due to the negative effects that pro-inflammatory
cytokines have on peripheral sensory neurons, cytokines were
investigated in the context of CIPN. It quickly became clear
that pro-inflammatory cytokines were actively contributing to
chemotherapy-induced neuropathic symptoms as blockade via
cytokine antagonists such as IL-1 receptor antagonist or anti-
TNF-α attenuated chemotherapy-induced neuropathy (Ledeboer
et al., 2007; Cata et al., 2008; Ale et al., 2014). Furthermore, these
pro-inflammatory cytokine effects could be regulated through
changing the pro-inflammatory vs. anti-inflammatory cytokine
balance at neuronal tissue sites. Ledeboer et al. (2007) demon-
strated that intrathecal administration of the anti-inflammatory
cytokine IL-10 could attenuate paclitaxel-induced neuropathy.
Another group also found that increasing anti-inflammatory
cytokine levels, IL-10 and IL-4, in the spinal dorsal horn via an
S1PR1 antagonist could also prevent CIPN in rodents (Janes et al.,
2014a). Others have shown that thalidomide, a biological agent
shown to inhibit TNF-α, reduced chemotherapy and bone can-
cer induced neuropathy (Cata et al., 2008; Gu et al., 2010) in
rodent models. Conversely, when thalidomide was used in the
treatment of multiple myeloma in patients, thalidomide admin-
istration induced neuropathic symptoms (Mileshkin et al., 2006;
Chowdhury et al., 2013). For the most part studies have demon-
strated that increases in pro-inflammatory cytokines either in the
dorsal root ganglia or spinal cord corresponds with symptoms of
CIPN. Prevention of these pro-inflammatory cytokines can atten-
uate neuropathy symptoms. However, the therapeutic effect of
inhibition of these cytokines in humans has yet to be attained.

These initial discoveries were highly supportive of the hypoth-
esis that CIPN can be driven by an inflammatory mechanism
and drove researchers to investigate which specific cell type(s)
were responsible for chemotherapy-induced production of pro-
inflammatory cytokines. Monocytes/macrophages, a component
of the innate immune system, are major producers of periph-
eral pro-inflammatory cytokines during infection and at injury
sites. Neuronal cells have also been shown to produce pro-
inflammatory cytokines as well as chemokines. Zhang et al.
(2013) found that chemotherapy induced the production of
monocyte-chemoattractant-protein-1 (MCP-1, also known as
CCL2) in murine DRGs, which corresponded with macrophage
infiltration of the DRGs. It was also shown that blockade ofMCP-
1 prevented macrophage infiltration and symptoms of CIPN
(Pevida et al., 2013; Zhang et al., 2013). Furthermore, treatment
with minocycline, an FDA-approved antibiotic also known to
inhibit macrophages as well as pro-inflammatory cytokine pro-
duction, prevented CIPN across a range of chemotherapeutic
agents in murine systems (Boyette-Davis and Dougherty, 2011;

Boyette-Davis et al., 2011; Drouin-Ouellet et al., 2011; Gwak et al.,
2012). The pre-clinical positive results on the use of minocycline
in CIPN prevention has led to current clinical trials investigating
the efficacy of minocycline in the prevention of CIPN in patients.
The success of macrophage/microglia blocking agents in pre-
vention of CIPN was unexpected as chemotherapy administra-
tion has mainly been shown to induce astrocyte activation but
not microglia activation in DRGs and spinal cord (Di Cesare
Mannelli et al., 2013, 2014; Janes et al., 2014b; Robinson et al.,
2014).

Chemotherapy administration has been shown to greatly
reduce the density of intraepidermal nerve fibers (IENFs) cross-
ing the basement membrane into the epidermis (Dougherty
et al., 2004; Boyette-Davis and Dougherty, 2011; Boyette-Davis
et al., 2011; Kosturakis et al., 2014; Mao-Ying et al., 2014).
This reduction, but not total loss of IENFs is hypothesized
to leave remaining neurons highly sensitized and a potential
reason for neuropathic outcomes. It is unclear what leads to
IENF retraction. Some researchers propose it to be the result
of altered mitochondrial function and energy states in the sen-
sory neurons (discussed below). Others have suggested that the
nerve terminals are the most vulnerable part of sensory neurons
and therefore, most easily damaged by chemotherapy adminis-
tration (Miltenburg and Boogerd, 2014). Chemotherapy-induced
increases in cytokine levels or macrophage infiltration at nerve
terminals has yet to be investigated.

Alternative Mechanisms for
Chemotherapy-induced Behavioral
Toxicities

Above we have presented evidence in support of the role of
chemotherapy-induced neuroinflammation in the symptoms of
fatigue, cognitive dysfunction, and neuropathy. There is cer-
tainly evidence to indicate that neuroinflammation is involved in
each of these symptoms. However, there is limited evidence to
support a causal relation between neuroinflammation and these
chemotherapy-induced symptoms, calling for the consideration
of additional pathways.

Damage-associated Molecular Patterns
Damage-associated molecular patterns—also known as danger-
associated molecular patterns, cell death-associated molecules,
or DAMPs—are endogenous intracellular molecules released due
to compromised membrane integrity during cellular death and
injury (Kaczmarek et al., 2013). DAMPs can activate membrane
receptors like the receptor for advance glycation end product
(RAGE) and pattern recognition receptors (PRRs), such as toll-
like receptors (TLRs), NOD-like receptors (NLRs), and puriner-
gic receptors on target cells to initiate inflammatory responses
(Chen and Nunez, 2010). Coincidently, TLRs and NLRs also rec-
ognize pathogens and are a shared pathway for infectious and
non-infectious inflammation (Pradere et al., 2014). Most often
released as the result of decreased plasma membrane integrity
of injured cells, DAMPs can be classified as proteins (Rubartelli
and Lotze, 2007), nucleic acids (Bernard et al., 2012; Jounai
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et al., 2012; Paludan and Bowie, 2013), purines (Schaefer, 2014),
and other non-protein molecules such as reactive oxygen species
(ROS). Interestingly, many of the DAMPS that are released dur-
ing necrosis as well as their receptors are also overexpressed in
tumor cells (Castellani et al., 2014). Here, we examine function of
the high-mobility group box-1 (HMGB1) protein, DNA andRNA
fragments, purines such as adenosine triphosphate (ATP) and
adenosine, and ROS and provide possible links to tumorigenesis
and chemotherapeutic agents.

High-mobility Group Box-1
HMGB1 is perhaps the best characterized DAMP. Synthesized
as a nuclear protein, HMGB1 is normally bound to DNA act-
ing as a transcription factor and is released during cellular dam-
age or injury. It is released less during programmed cell death
or apoptosis where the up-regulation of histone 2B inhibits the
dissociation of HMGB1 from DNA (Lotze et al., 2007). Extracel-
lular HMGB1 can promote angiogenesis, stem cell migration, as
well as neutrophil recruitment and subsequent pro-inflammatory
immune responses via the activation of TLR2, TLR4, and RAGE.
Conversely, activated T-cells or natural killer cells (Lotze and
Tracey, 2005) as well as many chemotherapeutic agents pro-
mote the release of HMGB1 from tumor cells and healthy tissues
(Tang et al., 2010). Hence HMGB1 liberation may be promoted
by chemotherapy-induced cell death. Additionally, HMGB1 can
also activate numerous immune cells including macrophages and
dendritic cells via TLR and RAGE to stimulate the release of
cytokines such as TNF-α, interleukin (IL)-1α, IL-1β, and IL-6
(Lotze and Tracey, 2005). Therefore, HMGB1 likely contributes
to the elevations in inflammatory markers observed in patients
treated with chemotherapy.

HMGB1 has been linked to muscle function and strength and,
therefore, could play a role in peripheral fatigue (Grundtman
et al., 2010). Furthermore, several studies have indicated a role
for HMGB1 release in the development of non-chemotherapy-
induced neuropathies, such as nerve injury (Shibasaki et al.,
2010; Feldman et al., 2012) and cognitive impairment follow-
ing surgery or sepsis (Chavan et al., 2012; Li et al., 2013; Vacas
et al., 2014). While HMGB1 has not yet directly been shown
to mediate these symptoms in the context of chemotherapy,
the known release of HMGB1 in response to many chemother-
apeutic agents indicates that research down this avenue is
warranted.

Reactive Oxygen Species
Primarily generated in the mitochondria, ROS are produced
as a part of normal respiration and energy metabolism. In
the physiological state, ROS are rapidly converted to hydrogen
peroxide and ultimately to water and oxygen in the cytoso-
lic space which is rich in oxidoreductases and non-protein thi-
ols, such as thioredoxin and glutathione. The accumulation of
ROS in the cytosol signals the activation of caspases, mainly
caspase-1, via the NLRP3 inflammasome, and subsequently pro-
motes inflammation. Additionally, ROS can also activate the
executioner molecule of apoptosis, caspase-3, via the release of
cytochrome c and caspase-9 leading to apoptosis (Circu and Aw,
2010).

The intracellular space promotes a reducing environment in
healthy cells. During pathological states, the reducing capacity
of the cytosol can drastically decrease and thus promote oxida-
tion of many proteins, including HMGB1, and indirectly stimu-
late the production of secondary DAMP signaling (Lotze et al.,
2007). Interestingly, approximately 40% of all FDA-approved
anticancer drugs have been shown to induce ROS (Chen et al.,
2007). Oxidative stress can produce behavioral toxicities, such
as chronic fatigue syndrome (Logan and Wong, 2001; Kennedy
et al., 2005), mild cognitive impairment (Fukui et al., 2002;
Pratico et al., 2002), and diabetic neuropathy (Nagamatsu et al.,
1995; Low et al., 1997; Vincent et al., 2004). Furthermore, there
is evidence to suggest that chemotherapy-induced neuropathy
(Areti et al., 2014) and cognitive impairment (Aluise et al., 2010)
may also be mediated by oxidative stress.

Nucleic Acids
Classically associated with bacterial or viral infections, nucleic
acids such as DNA and RNA can elicit an innate immune
response via TLR activation (mainly TLR-3 for double-stranded
RNA (Alexopoulou et al., 2001), TLR-7 and 8 for single-stranded
RNA (Heil et al., 2004), and TLR-9 for unmethylated DNA
(Hemmi et al., 2000). Typically sequestered within the cell, host
DNA and RNA are normally considered as unrecognizable by
these membrane bound receptors. However, nucleic acids can
be released from host cell due to damage or death and can
signal as DAMPs. During normal apoptosis nucleotides liber-
ated from membrane-bound organelles are rapidly degraded by
nucleases such as DNase and RNase, but during damage or un-
programmed cell death, nucleic acids can also be released into
the extracellular space as immune stimulators. Furthermore, res-
ident macrophages and dendritic cells can engulf circulating
nucleotides to form endosomes (Yasuda et al., 2005) and subse-
quently stimulate innate immune responses (see review by Ishii
and Akira, 2005). Interestingly, mitochondrial DNA (mtDNA)
and bacterial DNA are both rich in CpG motifs which is the
primary ligand of TLR-9, suggesting that mitochondrial dam-
age induced release of mtDNA can be a potent stimulator of
the immune system via TLR-9 activation (Zhang et al., 2010).
Platinum-based chemotherapeutic agents, such as cisplatin, tar-
get the purine bases of DNA to inhibit replication, transcription,
and repair (Jamieson and Lippard, 1999). Thismay be devastating
for the healthy cells of the peripheral and CNS needed to regu-
late cognition, pain sensation, and behavior. While most neurons
are in a post-mitotic state, other cells in the CNS, such as glial
cells, still proliferate and are thus susceptible to chemotherapy-
induced shortening of telomeres. Therefore, it is conceivable that
chemotherapymay accelerate cellular aging leading to senescence
and apoptosis (Flanary and Streit, 2004). Furthermore, when cis-
platin crosslinks DNA it promotes the cleavage to short nucleic
acid fragments and the breakdown of the cell membrane (Barry
et al., 1990). Short DNA fragments can leak into the circulation
and can act as immunostimulatory agents (Zhang et al., 2010).

Interestingly, the DNA fragmentation that occurs following
chemotherapy treatment is also observed in other states of cog-
nitive impairment such as Alzheimer’s disease (Lassmann et al.,
1995; Stadelmann et al., 1998), aging-related early dementia
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(Troncoso et al., 1996), and traumatic brain injury (Mattson,
2000). There is a parallel increase in microglia activation and
subsequent pro-inflammatory responses (Gehrmann and Banati,
1995). Taken together, these studies indicate that chemotherapy-
induced cognitive deficits may be due, in part, to directly increas-
ing DNA damage of neuronal cells, or by promoting accelerated
aging via the shortening of telomere.

Purines
Purine nucleosides, mainly adenosine and ATP, are
physiologically sequestered in the intracellular space and
are involved in a multitude of biological functions including
energy balance (Leist et al., 1997) and synthesis of nucleic acids
(Hartman and Buchanan, 1959). However, extracellular purines
are also immunomodulatory and can act as danger signals
(Inoue, 2002). Many chemotherapeutic agents elicit anti-tumor
effects by stimulating ATP release from tumor cells (Martins
et al., 2009), subsequently recruiting dendritic cells (Aymeric
et al., 2010) and lymphocytes via P2X7 (an ATP purinergic
receptor), and promote phagocytosis and autophagy (Michaud
et al., 2011). Furthermore, ATP can also attract monocytes and
microglia while simultaneously promoting the production of
inflammatory cytokines including IL-1β (Aymeric et al., 2010).
Interestingly, increased extracellular ATP concentration has
been associated with pain sensation (Tominaga et al., 2001) by
the depolarization of sensory neurons (Cook et al., 1997) via the
P2X receptors (Rassendren and Ulmann, 2014). Taken together
these data indicate that increased extracellular ATP might play a
role in CIPN.

Degradation of ATP yields adenosine. Extracellular adeno-
sine concentration drastically increases in response to increased
extracellular ATP (Dunwiddie et al., 1997). In many physiolog-
ical states, adenosine serves as a counter-modulator of synap-
tic firing by hyperpolarizing neurons (Dulla and Masino, 2013)
inhibiting neurotransmitter release (Boison, 2007, 2008) and
thus decreasing cerebral activity (Dulla and Masino, 2013).
Adenosine also functions as a regulator of sleep and wakeful-
ness in a way that the extracellular concentration of adeno-
sine increases during the waking hours (Huston et al., 1996;
Porkka-Heiskanen et al., 1997). Taken together an increase
in extracellular adenosine may be an important mediator of
chemotherapy-induced fatigue associated with sleep disorders.
Indeed, central inhibition of adenosine signaling, via caffeine
administration, has been shown to decrease muscle fatigue as
well as to increase motor activity (Davis et al., 2003). Further-
more, cognitive disorders such as Alzheimer’s (Angulo et al.,
2003) and Parkinson’s (Schwarzschild et al., 2006) disease are
associated with elevated circulating adenosine levels. However,
inhibition of adenosine signaling has been associated with cog-
nitive deficits in models of hypoxia (Chiu et al., 2012) and
Alzheimer’s disease (Dall’igna et al., 2007), as well as with
depressive- (Sarges et al., 1990) and anxiety-like behaviors in
rodents (Florio et al., 1998; Chiu and Freund, 2014; Chiu et al.,
2014).

Finally, it is important to note that extracellular purine is ulti-
mately degraded to uric acid (Becker, 1993). Accumulation and
precipitation of uric acid can form monosodium urate crystals

to stimulate NOD-like receptors in immune cells and subse-
quently produce inflammatory cytokines including IL-1β and
IL-18 (Gasse et al., 2009). The most obvious example of uric
acid-mediated inflammation is gout, where monosodium urate
crystals induce arthritis that is characterized by localized pain
and inflammation (Martinon et al., 2006; Schumacher et al.,
2009). Interestingly, a high plasma uric acid level is also seen
after chemotherapy (Liu et al., 2005) and can lead to a high uric
acid buildup in both the tumor microenvironment (Hu et al.,
2004) and circulation (Liu et al., 2005). Taken together it appears
that elevated plasma uric acid after chemotherapy treatment can
promote a pro-inflammatory response leading to inflammatory
pain. Indeed, studies have shown that acute gout and associated
arthritis and inflammatory pain can develop in patients receiving
chemotherapeutics such as gemcitabine (Bottiglieri et al., 2013),
paclitaxel (Alexandrescu et al., 2009), and capecitabine (Peixoto
et al., 2014).

Cellular Metabolism
Chemotherapy is also capable of inducing symptoms by alter-
ing the brain’s and peripheral nervous system’s bioenergetic
status. Mitochondria are at the center of cellular bioenerget-
ics as they mediate the production and distribution of ATP.
Typically energy production begins with the process of gly-
colysis within the cytoplasm of a cell. During glycolysis, glu-
cose is broken down into pyruvate. The pyruvate molecules
can then either enter the mitochondrial matrix or be converted
to lactate. Within the mitochondria, pyruvate is oxidized into
citric acid and enters the tricarboxylic acid (TCA) cycle and
electron transport chain. Historically it has been thought that
lactate formation only occurs in response to a lack of oxy-
gen (i.e., anaerobic conditions) or when there is a disruption
in oxidative metabolism. However, despite glucose being con-
sidered the primary fuel for normal brain activity (see review
by Dienel, 2012), recent evidence suggests that brain lactate
production may serve as a signaling molecule and an alter-
native source of fuel (Gibbs and Hertz, 2008; Suzuki et al.,
2011; Tang et al., 2014). Furthermore, lactate produced by the
tumor microenvironment serves an important fuel for tumor
cell energy metabolism, which is at the basis of the well-known
Warburg effect (Pavlides et al., 2009). The interaction between
tumor-associated lactate production and brain lactate is still
unknown.

Association between Mitochondrial Dysfunction and

Behavioral Changes
The brain is the most energetically demanding organ in the body.
Therefore, agents that result in even minor changes in mitochon-
drial energy metabolism are capable of impacting brain function
and producing behavioral changes. For example, there is signif-
icant evidence to suggest that mood and psychiatric disorders,
such as bipolar disorder, autism, and schizophrenia, are associ-
ated with impaired brain energy metabolism (Prabakaran et al.,
2004; Young, 2007; Quiroz et al., 2008; Rezin et al., 2009; Rossig-
nol and Frye, 2012). Furthermore, mitochondrial dysfunction
has been implicated in the pathophysiology of chronic fatigue
syndrome (Myhill et al., 2009, 2013; Murrough et al., 2010) as
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well as fatigue in patients with multiple sclerosis (Roelcke et al.,
1997), and fatigue in rodents treated with an inflammatory agent
(Sheng et al., 2011) or exposed to stressors (Tanaka and Watan-
abe, 2008). For example, higher ventricular lactate levels (an indi-
rect indication ofmitochondrial dysfunction) have been observed
in patients with chronic fatigue syndrome compared to healthy
volunteers (Murrough et al., 2010). Mitochondrial impairment
or damage has also been implicated in cognitive impairment
such as that associated with aging (Liu et al., 2002; Wang et al.,
2006; Liu, 2008), traumatic brain injury (Sauerbeck et al., 2011),
HIV-associated dementia (Valcour and Shiramizu, 2004), and
Alzheimer’s disease (Corona et al., 2010; Dragicevic et al., 2010).
HIV/AIDS-related neuropathy (Dalakas et al., 2001) and diabetic
peripheral neuropathy (Srinivasan et al., 2000; Chowdhury et al.,
2013) have also been associated with mitochondrial damage. Fur-
ther, there is evidence to suggest that protecting mitochondrial
integrity is able to protect against ischemic brain damage as well
as the resulting cognitive and motor impairment (Nijboer et al.,
2011, 2013).

There is growing evidence that chemotherapy-associated
behavioral toxicities are also associated with mitochondrial dys-
function. For example, cisplatin is capable of significantly inhibit-
ing electron chain transport complexes I–IV resulting in a 70%
reduction in ATP production (Kruidering et al., 1997). Further-
more, animal models of CIPN show mitochondrial dysfunction
within the peripheral nerves and the dorsal root ganglion, axonal
mitotoxicity (swollen, vacuolated mitochondria), and poorer
antioxidant defense in response to a wide array of chemotherapy
agents, including taxanes, vinca alkaloids, platinum agents, and
bortezomib (Jin et al., 2008; Melli et al., 2008; Podratz et al., 2011;
Xiao et al., 2011; Zheng et al., 2011, 2012). Given that periph-
eral nerves do not have the protection of the blood brain barrier,
it is not unexpected that evidence for mitochondrial dysfunc-
tion was first noted here. However, brain mitochondrial func-
tion is also affected by chemotherapy. For example, a recent
study in patients showed that chemotherapy can induce tran-
sient changes in glucose metabolism within the brain (Baudino
et al., 2012). Peripheral cisplatin administration was shown to
enhance mitochondrial lipid peroxidation levels and protein car-
bonyl content within the brain of rats (Waseem and Parvez,
2013). Moreover, in a mouse model it has been shown that dox-
orubicin administration results in an acute reduction in brain
complex I function and an increase in pro-apoptotic proteins
such as p53 and Bax in brain mitochondria (Tangpong et al.,
2006). Finally, it has been shown that doxorubicin treatment
increases the susceptibility of rat brain mitochondria to dam-
age from excessive calcium and oxidative stress (Cardoso et al.,
2008).

It is important to note that the mitochondrial effects
of chemotherapy are often observed in the presence of a
tumor. Tumor cells are metabolically demanding and, therefore,
have altered metabolic profiles. Furthermore, they can induce
metabolic changes that extend to the tumor microenvironment
to provide for their metabolic needs (Pavlides et al., 2009; Bonuc-
celli et al., 2010). Therefore, it is important for future studies to
explore how chemotherapy agents affect energy metabolism in
the presence of a tumor.

Potential Mechanisms of Chemotherapy-induced

Mitochondrial Dysfunction
While there is growing evidence that chemotherapy is capable of
altering mitochondrial function, the mechanism by which this
occurs is still unclear. The effect could be an indirect result of
increased inflammation and/or oxidative stress or a direct effect
of chemotherapy on mitochondria. These potential mechanisms
are briefly discussed below.

Mitochondria and inflammation
There is both in vitro and in vivo evidence that mitochondria are
sensitive to inflammation. This has been most directly shown by
treating cells or mice with the cytokine stimulant, LPS. In both
cases significant evidence of mitochondrial metabolic changes
were observed (Xie et al., 2004; Hunter et al., 2007). More-
over, decreased brain oxidative phosphorylation has also been
observed in a mouse model of sepsis (D’avila et al., 2008). These
models induce high levels of inflammation, severe mitochondrial
dysfunction, and cellular death (Welty-Wolf et al., 1996; Crouser
et al., 2002; Hunter et al., 2007). While this situation is partic-
ularly relevant to the symptoms associated with the neurode-
generation observed in Parkinson’s disease, the inflammation
induced by chemotherapy treatment would likely be markedly
milder. Therefore, further investigation is needed to determine
if a similar phenomenon is observed in the brain.

Mitochondria and oxidative stress
Oxidative stress is an inherent aspect of mitochondrial func-
tion. At baseline levels, approximately 1–5% of oxygen used by
the cells is converted to ROS (Chance et al., 1979). However,
when there is insult to the mitochondria these levels dramat-
ically increase. As mentioned previously, a high proportion
of chemotherapeutic agents result in production of ROS. This
imbalance in ROS production can lead to cellular damage and
mitochondrial damage in particular (reviewed by Adam-Vizi
and Chinopoulos, 2006; Areti et al., 2014). Mitochondrial com-
plex I and II of the electron transport chain and mitochondrial
DNA (Wallace, 2005) are particularly vulnerable. In addition to
expressing genes encoded by the nuclear genome, mitochondria
have their own functional genome (mtDNA). The mtDNA has
a higher mutation rate than nuclear DNA and a more limited
repair capacity than nuclear DNA (Tuppen et al., 2010). This
mechanism likely contributes to chemotherapy-induced mito-
chondrial dysfunction. However, blocking ROS has been shown
to be insufficient to prevent cisplatin-inducedmitochondrial dys-
function within the kidney (Kruidering et al., 1997) suggesting
that chemotherapy may be capable of inducing mitochondrial
damage via multiple pathways.

Mitochondrial p53
In response to cellular stress there is a rapid accumulation of
p53 to the mitochondrial membrane which increases mitochon-
drial membrane potential, cytochrome c release, and caspase-
3 activation (Marchenko et al., 2000). The phosphorylation
of p53 by c-Jun N-terminal kinase (JNK) protects p53 from
ubiquitination and degradation, thereby enhancing its activity
(Fuchs et al., 1998). Using a model of ischemic brain damage,
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it has been demonstrated that interfering with the mitochon-
drial JNK/p53 pathway, by inhibiting p53 accumulation [such as
with the small molecule inhibitor pifitrin-µ (PFT-µ); (Nijboer
et al., 2011)] or by inhibiting the activity of JNK (with the use
of TAT-JBD, D-JNKi, and Sabkim1; Nijboer et al., 2010, 2013),
is neuroprotective and can attenuate damage-associated behav-
ioral deficits. Given that the activity of p53 is a critically involved
in chemotherapy-induced tumor cell apoptosis for a wide vari-
ety of agents (Pritchard et al., 1997; Hwang et al., 2001; Tan
et al., 2002; Bragado et al., 2007), it follows that it is a candidate
therapeutic target for the neurotoxic effects of these agents. Fur-
ther, we have preliminary evidence that that PFT-µ can also
inhibit chemotherapy-induced neuropathy (Krukowski et al.,
2014, under review).

Mitochondrial DNA adducts
Another possible mechanism by which chemotherapy may dis-
rupt mitochondrial function is through the formation of DNA
adducts. For example, platinum-based antineoplastic agents act
by crosslinking DNA and, consequently, interfering with cellu-
lar division and repair, which causes mitochondria to release
apoptotic proteins. This effect does not require the formation
of adducts between nuclear DNA and cisplatin, but can occur
as a direct effect of cisplatin on mtDNA (Yang et al., 2006). Not
only can cisplatin-mtDNA adducts form in cancer cells, but these
adducts have been noted to develop in other cells throughout

the body including the brain (Johnsson et al., 1995; Giurgiovich
et al., 1996, 1997). Furthermore, cisplatin has also been noted
to accumulate in high levels within the dorsal root ganglion
(Mcdonald et al., 2005). This data along with the p53 data would
suggest that chemotherapy can induce mitochondrial damage
and, consequently behavioral toxicities, via non-inflammation
based mechanisms.

Conclusion
In this review we have evaluated the available evidence for the
role of neuroinflammation in chemotherapy-induced behavioral
toxicities. Despite neuroinflammation being the clear “mech-
anism of choice” for many researchers, close examination of
the literature forces one to be open to the possibility that
other mechanisms also play a critical role, either in conjunc-
tion with neuroinflammation or independently. As we point
out, clinical studies are rarely designed to allow delineation
between inflammatory markers that arise from the cancer vs.
those that emerge and dissipate with the start and finish of
chemotherapy regimens. This makes it difficult to understand
what chemotherapy is precisely doing to the body and brain
outside of their effects on tumor progression. On the other
hand many preclinical models in the field fail to focus on the
causal role of neuroinflammation in many of the symptoms
of chemotherapy which leaves us with having to interpret the
meaning of associations between central and peripheral markers

FIGURE 1 | Proposed mechanisms by which chemotherapy can

induce behavioral toxicities. Chemotherapy has been shown to induce

peripheral inflammation, DAMP, mitochondrial p53, and mitochondrial

adducts. We propose that chemotherapy also induces these processes

within the brain, which leads to mitochondrial dysfunction. This, in turn, leads

to neural deficits and increased brain lactate. Depending upon the

localization of these neuronal deficits in the brain, behavioral toxicities—such

as fatigue, cognitive impairment, and neuropathy—are likely to emerge.

Whether lactate production is a byproduct or inducer of symptoms is as yet

unclear. Further, it is possible that chemotherapy-induced inflammation may

also act to induce behavioral toxicities via non-mitochondrial related

pathways. Up and down arrows represent the direction of the effect
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of inflammation with chemotherapy-induced behaviors. Never-
theless, remarkable progress has been made in the field which
places us in an opportune position to assess what we have learned
and where we should aim toward.

It is clear that the evidence for neuroinflammation contribut-
ing to some symptoms and for particular agents is more con-
vincing than for others. Much more work has been conducted
in the field of chemotherapy-induced neuropathy and there is
a strong foundation of support for peripheral inflammation as
a mediator of pain sensation. More still needs to be done on
the central components of pain assessment and experience and
inflammation, and many other mechanisms have also been put
forward in lieu of neuroinflammation. Much less work has been
conducted in the fields of fatigue and cognitive dysfunction fol-
lowing chemotherapy but there remains evidence in favor of
the neuroinflammation hypothesis. Unfortunately many stud-
ies looking at inflammation and chemotherapy-induced fatigue
and cognitive decline report mixed findings and even negative
results suggesting that alternative mechanisms need to be consid-
ered while also investigating the role of neuroinflammation with
greater rigor.

Promising alternativemechanisms for chemotherapy-induced
behavioral toxicities are DAMPs and the bioenergetics status
of cells of the CNS (Figure 1). These avenues of investigation

are growing rapidly and need to be integrated into the field
more widely. In regards to DAMPs, most work has been con-
ducted in relation to HMGB1 but a range of other DAMPs
are known to be activated in response to chemotherapies,
and the activation of specific DAMPs may be chemother-
apy agent-specific. The prospect that DAMPs may be a major
player in chemotherapy-induced behavioral symptoms is par-
ticularly convincing given that they often cause downstream
production of pro-inflammatory cytokines which may sug-
gest that the focus of many of us in the field on neuroin-
flammation per se has been a matter of “putting the cart
before the horse.” The same may also be said for the field
of bioenergetics and symptoms of chemotherapy given the
relationship between mitochondrial dysfunction and inflam-
mation. However, the evidence that is emerging also indi-
cates that alterations in mitochondrial energy metabolism and
production of metabolites such as lactate are likely to con-
tribute to cancer-related symptoms in an independent fash-
ion also. Clearly, the literature is currently somewhat scarce
for DAMPs and mitochondrial dysfunction in the field of
chemotherapy-induced behavioral toxicities but they represent
exciting new avenues of research that should complement our
understanding of the mechanisms at the origin of cancer-related
symptoms.
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