

∂ Open access • Journal Article • DOI:10.1038/S41581-020-0266-9

Mechanisms of cognitive dysfunction in CKD. — Source link []

Davide Viggiano, Carsten A. Wagner, Gianvito Martino, Carmine Zoccali ...+3 more authors

Institutions: Seconda Università degli Studi di Napoli, University of Zurich, Vita-Salute San Raffaele University, National Research Council ...+2 more institutions

Published on: 31 Mar 2020 - Nature Reviews Nephrology (Nature Publishing Group)

Topics: Cognitive decline, Alzheimer's disease, Dementia, Population and Kidney disease

Related papers:

- · Mild cognitive impairment and kidney disease: clinical aspects
- · Cognitive Impairment in CKD: Pathophysiology, Management, and Prevention.
- · Association between chronic kidney disease and Alzheimer's disease: an update
- Chronic Kidney Disease and Cognitive Impairment in the Elderly: The Health, Aging, and Body Composition Study
- · Cognitive Disorders and Dementia in CKD: The Neglected Kidney-Brain Axis

Zurich Open Repository and Archive University of Zurich University Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch

Year: 2020

Mechanisms of cognitive dysfunction in CKD

Viggiano, Davide ; Wagner, Carsten A ; Martino, Gianvito ; Nedergaard, Maiken ; Zoccali, Carmine ; Unwin, Robert ; Capasso, Giovambattista

Abstract: Cognitive impairment is an increasingly recognized major cause of chronic disability and is commonly found in patients with chronic kidney disease (CKD). Knowledge of the relationship between kidney dysfunction and impaired cognition may improve our understanding of other forms of cognitive dysfunction. Patients with CKD are at an increased risk (compared with the general population) of both dementia and its prodrome, mild cognitive impairment (MCI), which are characterized by deficits in executive functions, memory and attention. Brain imaging in patients with CKD has revealed damage to white matter in the prefrontal cortex and, in animal models, in the subcortical monoaminergic and cholinergic systems, accompanied by widespread macrovascular and microvascular damage. Unfortunately, current interventions that target cardiovascular risk factors (such as anti-hypertensive drugs, anti-platelet agents and statins) seem to have little or no effect on CKD-associated MCI, suggesting that the accumulation of uraemic neurotoxins may be more important than disturbed haemodynamic factors or lipid metabolism in MCI pathogenesis. Experimental models show that the brain monoaminergic system is susceptible to uraemic neurotoxins and that this system is responsible for the altered sleep pattern commonly observed in patients with CKD. Neural progenitor cells and the glymphatic system, which are important in Alzheimer disease pathogenesis, may also be involved in CKD-associated MCI. More detailed study of CKD-associated MCI is needed to fully understand its clinical relevance, underlying pathophysiology, possible means of early diagnosis and prevention, and whether there may be novel approaches and potential therapies with wider application to this and other forms of cognitive decline.

DOI: https://doi.org/10.1038/s41581-020-0266-9

Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-187879 Journal Article Accepted Version

Originally published at: Viggiano, Davide; Wagner, Carsten A; Martino, Gianvito; Nedergaard, Maiken; Zoccali, Carmine; Unwin, Robert; Capasso, Giovambattista (2020). Mechanisms of cognitive dysfunction in CKD. Nature Reviews. Nephrology, 16(8):452-469. DOI: https://doi.org/10.1038/s41581-020-0266-9

nature REVIEWS

Nature Reviews referee guidelines

4Review articles

1

2

5Nature Reviews publishes timely, authoritative articles that are of broad interest and exceptional quality. Thank 6you for taking the time to help us to ensure that our articles meet these high standards.

7Review articles in *Nature Reviews* journals provide accessible, authoritative and balanced overviews of a field 8or topic. These articles are targeted towards readers from advanced undergraduate level and upwards, 9including researchers, academics and clinicians, and should be accessible to readers working in any discipline.

10Please submit your report in narrative form and provide detailed justifications for all statements. Confidential 11comments to the editor are welcome, but it is helpful if the main points are stated in the comments for 12transmission to the authors.

¹³Please note that all *Nature Reviews* articles will be thoroughly edited before publication and all figures will be ¹⁴redrawn by our in-house art editors. We therefore request that you concentrate on the scientific content of the ¹⁵article, rather than any minor errors in language or grammar that might be present in the draft version.

16Please consider and comment on the following points when reviewing this manuscript:

- 17. Is the article timely and does it provide a useful addition to the existing literature?
- 18• Are the scope and aims of the article clear?
- 19• Are the ideas logically presented and discussed?
- 20• Is the article accessible to a wide audience, including readers who are not specialists in your own field?
- 21• Does the article provide a balanced overview of the literature? Please bear in mind that it may not be
- 22 possible to cover all aspects of a field within such a concise article.
- 23• Does the article provide new insight into recent advances?
- 24• Is the discussion fair and accurate? Although our authors are encouraged to be opinionated, they should not
- 25 ignore alternative points of view.
- Do the figures, boxes and tables provide clear and accurate information? Are there any additional or
 alternative display items that you think that the authors should include?
- 28• Are the references appropriate and up-to-date? Do they reflect the scope of the article?
- 29• Are you aware of any undeclared conflicts of interest that might affect the balance, or perceived balance, of
- 30 the article

Mechanisms of cognitive dysfunction in CKD

³²Davide Viggiano^{1,2}, [#]Carsten A. Wagner ³, Gianvito Martino⁴, Maiken Nedergaard⁵, Carmine ³³Zoccali⁶, *Robert Unwin^{7,8}, Giovambattista Capasso^{1,2}

34

35# Equally contributed

36*Equally contributed

37

38

39Author affiliations:

^{40¹} Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", ⁴¹Naples, Italy

42² Biogem Scarl, Ariano Irpino, Italy

^{43³}Institute of Physiology, University of Zurich, Zurich, Switzerland, and National Center of ⁴⁴Competence in Research NCCR Kidney.CH, Switzerland

⁴⁵⁴IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

⁴⁶⁵ University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY

⁴⁷⁶Institute of Clinical Physiology, National Research Council (CNR), Reggio Calabria Unit, ⁴⁸Italy

⁴⁹⁷Department of Renal Medicine, University College London (UCL), Royal Free Campus, ⁵⁰London, UK

⁵¹⁸Early Clinical Development, Research and Early Development, Cardiovascular, Renal and ⁵²Metabolism (CVRM), BioPharmaceuticals R& D, AstraZeneca, Cambridge, UK

53

54Abstract

⁵⁵Cognitive impairment is an increasingly recognized major cause of chronic disability, and is ⁵⁶commonly found in patients with chronic kidney disease (CKD). A better understanding of ⁵⁷the relationship between kidney function and cognition may help us to understand better ⁵⁸other forms of cognitive dysfunction. Patients with CKD have an increased risk (compared ⁵⁹with the general population) of both dementia and its earlier stage of mild cognitive ⁶⁰impairment (MCI), with deficits in executive functions, memory and attention. Brain imaging ⁶¹in CKD patients has detected damage to white matter in the prefrontal cortex and, in animal ⁶²models, in the subcortical monoaminergic and cholinergic systems, accompanied by ⁶³widespread macro- and micro-vascular damage. Unfortunately, current interventions that ⁶⁴target cardiovascular (CV) risk factors (anti-hypertensives, anti-platelet agents and statins) ⁶⁵seem to have little or no effect on MCI-CKD, suggesting that the accumulation of uremic ⁶⁶(neuro)toxins may be more important in this disorder than disturbed hemodynamic factors or ⁶⁷lipid metabolism. Experimental models show that the brain monoaminergic system is ⁶⁸susceptible to uremic neurotoxins and that this system is responsible for the altered sleep ⁶⁹pattern commonly observed in CKD patients. Neuronal stem cells and the brain glymphatic ⁷⁰system, shown to be important in Alzheimer's disease (AD), may also be involved. MCI-⁷¹CKD needs to be studied in more detail to understand fully its clinical relevance, underlying ⁷²pathophysiology, and possible means of early diagnosis and prevention; and whether there ⁷³may be novel approaches and potential therapies with wider application to this and other ⁷⁴forms of cognitive decline.

75

76Key points

⁷⁷Cognitive impairment is more common in patients with chronic kidney disease (CKD) and ⁷⁸reduced renal function than in the general population.

⁷⁹Brain dysfunction in CKD patients likely results from uremic (neuro)toxins interacting with ⁸⁰neuronal stem cells, the brain vascular and glymphatic system, and catecholaminergic ⁸¹neurons.

⁸²Targeting these mechanisms could potentially reduce the burden of dementia in CKD and ⁸³might help in finding better treatments for other forms of cognitive impairment.

84

85Introduction

⁸⁶The widely used term 'cognitive dysfunction' has been defined in many different ways, but ⁸⁷collectively refers to a combined deficit of brain processes that affect learning, memory, and ⁸⁸sensory processing. It varies from mild cognitive impairment (MCI. See Box 1) to severe ⁸⁹dementia, the latter characterized by a loss of independence in carrying out activities of daily ⁹⁰living ¹. MCI may be considered as a prodromal state before established dementia with an ⁹¹annual conversion rate of 1. 9% per year². Although MCI is inherently unstable (patients may ⁹²progress or revert to normal cognition), some investigators consider it to be a distinct clinical ⁹³entity ³. Despite the increasing prevalence and incidence of MCI and dementia, there remains ⁹⁴a lack of disease-modifying drugs and a comprehensive biological understanding of MCI, as ⁹⁵well as an understanding of the mechanisms that determine the transition from MCI to ⁹⁶dementia.

⁹⁷A significant number of patients with chronic kidney disease (CKD) suffer from cognitive ⁹⁸dysfunction, and CKD is among the strongest risk factors for MCI and dementia. When ⁹⁹considering the odds ratio, a 6-year longitudinal study in the general population listed CKD ¹⁰⁰as the third major risk factor for MCI and dementia after stroke and chronic use of anxiolytics, ¹⁰¹and ahead of genetic factors ⁴. Cognitive impairment can already be evident at early stages of ¹⁰²CKD ⁵ (Figure 1). However, the relationship between the severity of CKD (based on ¹⁰³estimated Glomerular Filtration Rate, eGFR) and the severity of dementia/MCI is unclear. ¹⁰⁴When taking into account age, cognitive changes at different CKD stages may be related to ¹⁰⁵the presence and degree of albuminuria ^{6–10}. Indeed, a separate study suggests that the ¹⁰⁶duration of kidney disease, rather than the degree of renal impairment, correlates with brain ¹⁰⁷dysfunction. Available long-term follow-up studies in CKD patients also suggest greater ¹⁰⁸cognitive decline in those with higher levels of albuminuria, but an unclear effect of eGFR ¹⁰⁹^{6,11}.

¹¹⁰Current techniques of renal replacement therapy have different effects on cognitive ¹¹¹dysfunction: hemodialysis (HD) and peritoneal dialysis (PD) can treat effectively the acute ¹¹²uremic encephalopathy seen in some non-dialyzed patients with end-stage renal failure ¹¹³(ESRF), but have little effect on MCI, although there may be a slightly better outcome with ¹¹⁴PD ^{12,13} compared with HD. Conversely, kidney transplantation is likely to play a protective ¹¹⁵role, although without complete reversal to normal cognition in healthy subjects ¹⁴ (Figure 1). ¹¹⁶Several mechanisms have been proposed to explain the brain dysfunction seen in CKD, ¹¹⁷particularly focusing on the vascular damage and altered extracellular *milieu* that ¹¹⁸accompanies CKD.

¹¹⁹The CKD-cognitive impairment conundrum has become a major focus of the scientific ¹²⁰community, as evident from the increasing number of published meta-analyses and review ¹²¹articles (see e.g. ^{15–17}). However, much of the current literature does not discuss the topic in ¹²²the context of recent developments in neuroscience and neurology, such as neural stem cells, ¹²³brain glymphatics or subcortical modulatory systems (e.g., dopamine and norepinephrine ¹²⁴systems); furthermore, the pace of new findings is so rapid that an updated perspective can be ¹²⁵justified. This is an ongoing and active field of research, and new functional tools to study
¹²⁶both the brain and kidney hold the promise of advancing our understanding of MCI-CKD.
¹²⁷This review summarizes our current knowledge of the pathogenesis of brain lesions
¹²⁸associated with CKD and their likely effects on cognition. The changes observed are
¹²⁹discussed in the context of uremic neurotoxicity and vascular damage ^{18,19}. We focus on
¹³⁰brain dysfunction occurring in CKD, rather than in acute kidney injury (AKI), which has
¹³¹been considered in detail elsewhere ²⁰. Finally, our review does not discuss depression, which
¹³²is also detailed elsewhere ²¹.

133

1341. Epidemiology of CKD and cognitive dysfunction

¹³⁵With a prevalence ranging from 27% up to 62% ^{18,22–24} (depending on the age and the study) ¹³⁶MCI is more common among CKD stage 1-4 patients than in a matched non-CKD population ¹³⁷(prevalence 11%-26%) ^{22,23,25}. While MCI does not affect activities of daily living, 5-10% of ¹³⁸those affected will eventually progress to clinical dementia ²⁶. The prevalence of dementia is ¹³⁹8-37% among HD patients ^{10,25,27–29}, 4-33% among those on PD ^{25,29} and around 7-22% in ¹⁴⁰kidney transplant patients ^{14,30}. In contrast, the prevalence of dementia in the general ¹⁴¹population is 5% (95% CI 4. 5%–5. 7%) ³¹. Most of the studies comparing the prevalence of ¹⁴²MCI/dementia in CKD with the general population take into account age, gender and ¹⁴³education (which may affect the estimates). In Figure 1 we summarize an estimate of the ¹⁴⁴MCI trend in CKD, PD and HD patients according to kidney function and the age.

¹⁴⁵Regarding the age of onset of cognitive decline (in relation to first diagnosis) the data are ¹⁴⁶scanty. In the general population the incidence rate is negligible (less than 1%) below age 65 ¹⁴⁷years and then increases exponentially as a function of age (7.4% at 70 years) ^{32,33}. ¹⁴⁸Conversely, in kidney transplant patients the 10-year risk of dementia is 5% in those aged 55 ¹⁴⁹years, but also increases linearly with age ³². Similarly, the 10-year risk of dementia after HD ¹⁵⁰initiation is 20% in patients aged 65 years and again increases linearly with age ³⁰. In addition, ¹⁵¹data by Kurella Tamura et al ³⁴ suggest a higher prevalence (about 10%) of cognitive ¹⁵²impairment even in relatively young subjects (21-44 years) with end-stage renal failure ¹⁵³(ESRF).

¹⁵⁴According to a 2019 study, the incidence rate for dementia per 1000 patients-years is 1.4 in ¹⁵⁵the non-CKD population and 10.7 in the ESRF population ³⁵. In patients with eGFR ¹⁵⁶levels >60 ml/min, albuminuria, an early marker of endothelial damage and microvascular ¹⁵⁷disease, is associated with the presence of MCI ⁸. This has been confirmed repeatedly, with ¹⁵⁸an unclear relationship to age: some papers report a greater effect of albuminuria in older ¹⁵⁹patients ⁷, others only in younger patients.

¹⁶⁰Nephrologists need to be aware that a substantial proportion of their patients may have mild
¹⁶¹to severe forms of cognitive impairment, and the neurologist also needs to be cognizant of the
¹⁶²presence and form of cognitive deficits occurring in patients with CKD. Indeed, MCI-CKD
¹⁶³might be qualitatively different from the MCI seen in the general population in respect of its
¹⁶⁴neuropsychological test patterns (e.g., better performance on Trail Making Test B) and EEG
¹⁶⁵studies ³⁶, MRI findings³. Ideally, current guidelines for MCI diagnosis and management
¹⁶⁶should require an assessment of kidney function as part of the routine neurological work-up ³⁷.

1682. Cognitive domains and correlated brain features in CKD

¹⁶⁹ "Cognitive decline" is an umbrella term that encompasses all forms of dementia (such as AD),
¹⁷⁰ delirium or confusional states, and mild cognitive slowing. It should be noted that the terms
¹⁷¹ "cognitive impairment" and "dementia" are often used as synonymous, the first being
¹⁷² introduced as a non-stigmatizing term ³⁸. Cognitive function is tested by various means,
¹⁷³ including by recalling memorized lists of numbers or drawing an object on request, or
¹⁷⁴ naming a figure. Cognitive impairment is subdivided into specific cognitive domains, such as
¹⁷⁵ attention, memory, visuospatial, language skills and executive functions (see Box 2).

1762. 1. Attention

¹⁷⁷Patients with CKD show inattention (see Box 2) and impaired inhibitory control ³⁹, which is ¹⁷⁸the inability to suppress ongoing and inappropriate actions. Indeed, a young population with ¹⁷⁹mild-moderate CKD has poor performance in a test of attention and inhibitory control, which ¹⁸⁰depends on the duration of disease, rather than the severity of CKD ³⁹. Furthermore, CKD ¹⁸¹patients have a slower EEG reaction when paying attention to a visual stimulus (termed ¹⁸²°P300 wave event related potential")⁴⁰, which was shown to be partially dependent on the ¹⁸³presence of anemia ⁴¹. Transplantation does not modify the attention and inhibitory control ¹⁸⁴performances compared with non-transplanted CKD patients ⁴². Many brain regions are ¹⁸⁵required for attention and inhibitory control, such as the prefrontal cortex (PFc) and the ¹⁸⁶Locus Coeruleus in the dorsal pons, which produces norepinephrine. Compared with normal ¹⁸⁷controls, patients on HD show a reduced thickness and increased number of connections of ¹⁸⁸the PFc ⁴³. Furthermore, PET studies also show decreased metabolic activity in this region in 189ESRF patients compared with normal subjects⁴⁴. In the non-CKD population, the frontal gray
190matter volume is less affected in MCI⁴⁵, but can be reduced in other forms of dementia
191(fronto-temporal dementia, Alzheimer's Disease (AD) and Levy bodies dementia ^{46,47}). An
192EEG study directly comparing MCI-CKD to MCI in the general population describes a more
193pronounced dysfunction in the frontal cortex³⁶.

¹⁹⁴Data from animal models of CKD suggest an altered activation (number of neurons active at ¹⁹⁵rest, indexed by c-Fos expression) of the PFc and of the norepinephrine neurons of the Locus ¹⁹⁶Coeruleus⁴⁸ (see also Figure 2), possibly due to neuroinflammation⁴⁹. Another mechanism for ¹⁹⁷the effect of CKD on norepinephrine neuronal function arises indirectly from the observation ¹⁹⁸of altered tyrosine metabolism, the precursor for norepinephrine ⁵⁰. Interestingly, antioxidant ¹⁹⁹therapies and angiotensin-converting enzyme inhibitors may reverse these changes and ²⁰⁰should be explored in future as a possible protection against MCI/dementia in CKD. ²⁰¹Attention deficits in CKD patients may be attributable to altered catecholamine-PFc circuitry.

202**2. 2. Memory**

²⁰³Memory storage and processing are likely to be served by different brain regions according to ²⁰⁴the type of memory (see Box 1). Both the implicit and explicit forms of memory appear to be ²⁰⁵altered by CKD ⁵¹. Indeed, patients on HD compared with healthy controls had poorer scores ²⁰⁶when trying to recall a list of words (explicit memory) or images (implicit memory). The ²⁰⁷memory performance did not change when comparing before and after dialysis treatment. ²⁰⁸The storage/retrieval of explicit memories requires the integrity of the cerebral cortex and the ²⁰⁹hippocampus and the activity of cholinergic neurons in the Meynert nucleus. In animal ²¹⁰models, CKD induces neuronal death in the hippocampus ⁵² and reduces the activity of ²¹¹cholinergic neurons in the Meynert nucleus ⁴⁹ (Figure 2).

²¹²At the neuronal scale memories are stored as long-term modifications of their synapses. An ²¹³experimental study in mice demonstrated a reduction in synaptic contacts in animals with ²¹⁴reduced kidney function ⁴⁹. Since memory traces are stored in the ordered connectivity of ²¹⁵synaptic contacts among neurons^{53,54}, synaptic loss may underlie the reduced memory in ²¹⁶CKD. Overall, data suggest that the interaction between cholinergic neurons and the cortex ²¹⁷may be responsible for memory dysfunction in CKD.

2182. 3. Language, visuospatial performance and executive dysfunction

²¹⁹Language skills are also affected in CKD, and this is the only cognitive domain linearly ²²⁰dependent on eGFR decline ¹⁰. Language ability can be tested by presenting a ²²¹picture and asking the subject to name it (as with the Boston Naming test). Several studies ²²²document poor naming performance in patients with CKD^{10,55–57}. MRI studies in CKD ²²³patients support the anatomical integrity of cortical language areas and the origin of language ²²⁴disturbances in CKD is still unknown.

²²⁵Visuospatial abilities reflect the identification and localization of visual objects. It can be 226 tested, e.g., by asking someone to copy a complex figure (as in the Rey-Osterrieth Complex 227Figure Test). Visuospatial performance is variably affected in CKD patients, depending on the ²²⁸study ^{56,58}, possibly because its impairment can be observed only in advanced CKD stages 229and ESRF⁵. This is also supported by the absence of morphological alterations on MRI in the ²³⁰occipital cortex of CKD patients, this being the region involved in visuospatial attention ⁵⁹. ²³¹Finally, most of the literature supports the presence of "executive dysfunction" in CKD, with 232an impairment in the Trail making tests (TMT-A and TMT-B), which addresses visual 233 attention and executive functions. These tests have been found to be consistently altered in ²³⁴CKD patients in several studies. In a comparative study, the impairment in this cognitive 235domain occurs with greater frequency in CKD compared with language, memory and 236 visuoconstructive abilities⁵⁶; it worsens over time in HD patients⁶⁰. It is also dependent on the 237degree of kidney impairment, with a linear relation between both TMT-A and TMT-B scores ²³⁸and eGFR⁶¹. Kidney transplant improves TMT-A scores when compared with patients on ²³⁹HD⁶². As discussed above, the frontal lobe, which is the brain structure that is mainly 240 responsible for executive functions, is thinner in patients with CKD, possibly contributing to 241 this behavioral disorder. Notably, pediatric and adolescent patients with CKD already show ²⁴²cognitive impairment in several domains ⁶³, together with brain damage on MRI⁶⁴, 243strengthening the concept that these changes are not solely due to the effect of ageing in 244patients with CKD.

²⁴⁵In summary, the cognitive impairment in CKD extends to several brain functional domains ²⁴⁶and might be the result of damage to multiple cortical regions (particularly the frontal lobe), ²⁴⁷and to subcortical modulatory neurons (particularly adrenergic neurons in the mesencephalon ²⁴⁸and cholinergic neurons in Meynert's nucleus). In contrast, non-CKD dementia is ²⁴⁹accompanied by structural MRI abnormalities of different brain regions: (i) in AD, at early ²⁵⁰stage, the entorhinal cortex and cingulate, closely followed by the hippocampus, amygdala, ²⁵¹and parahippocampus; the atrophy then involves the temporal cortex and then other cortical ²⁵²sites ^{47,65}; (ii) in the Fronto-Temporal Dementia the frontal and temporal lobe are mostly ²⁵³affected at MRI ⁴⁶; (iii) in the Lewy Bodies Dementia the cingulate and superior temporal²⁵⁴occipital cortex ⁴⁷; (iv) in vascular dementia there is global cortical atrophy with involvement ²⁵⁵of white matter (so-called "white matter hyperintensities"); compared to AD the frontal ²⁵⁶cortex is more often involved, with lesions to association tracts by MRI⁶⁶.

2573. Intermediate phenotypes: Neuroanatomical alterations, sleep disorders and tremor

²⁵⁸In this section, we will use the term "intermediate phenotype" to describe a brain feature that ²⁵⁹lies between the complex behavioral trait (e.g., dementia) and a putative underlying ²⁶⁰molecular cause. Sometimes the terms "intermediate phenotype", "biomarker" and ²⁶¹"endophenotype" are used loosely and interchangeably⁶⁷. This brain feature, measurable and ²⁶²quantitative, is linked to simple neuronal networks and may be used as a proxy for the more ²⁶³complex behavior: such a feature is likely to have a linear relationship to the molecular ²⁶⁴changes accompanying CKD. Potential intermediate endophenotypes are the MRI brain ²⁶⁵correlates of dementia/MCI (discussed above) and quantitative phenotypes such as altered ²⁶⁶sleep pattern and motor control.

2673. 1. Sleep

268Sleep disorders can be quantified using polysomnography and actigraphy systems. Sleep
269disorders in CKD are very common with the majority of patients complaining of some form
270of sleep disorder ⁶⁸. They include a reduction in total sleep time, insomnia/sleep
271fragmentation, daytime somnolence, altered circadian rhythm, sleep apnea or restless legs
272syndrome ^{69,70}. Sleep apnea affects 34-56% of adult CKD patients^{71,72} and 56% of ESRF
273patients on HD^{73,74}. It is usually absent in pediatric patients with CKD ⁷⁵. In 22-27% of adult
274CKD patients sleep apnea depends on a dysfunction of the neuronal drive (central sleep apnea,
275CSA) ^{76,77}. The nocturnal hypoxemia that accompanies sleep apnea in CKD patients is
276associated with autonomic dysfunction and left ventricular hypertrophy ^{78,79}, and predicts a
277high risk for cardiovascular events in ESRF⁷⁸. A meta-analysis concluded that sleep quality
278can be improved by renal replacement therapies (transplant, dialysis), even if it does not
279return to normal levels, and it does not depend on the intensity of therapy⁶⁹.

²⁸⁰Sleep disorders are tightly linked to MCI and dementia⁸⁰. They are indicative of an existing ²⁸¹brain damage. It is unclear if they induce further brain dysfunction, as pharmachological ²⁸²restoration of sleep does not improve cognitive functions ⁸¹. In humans inadequate sleep has ²⁸³been associated with lower gray matter volume⁸². In animal models of CKD, serotoninergic ²⁸⁴neurons in the dorsal raphe and histaminergic neurons in the hypothalamus (Figure 2), which ²⁸⁵are responsible for the maintenance of sleep patterns, show increased activity (indexed by ²⁸⁶cFos expression) ⁴⁸. Serotoninergic neurons influence the sleep-wake pattern and attention⁴⁸. ²⁸⁷memory and locomotor activity⁸³ and contribute to the depression and uremic anorexia seen ²⁸⁸in advanced CKD⁸⁴.

²⁸⁹Overall, the sleep patterns and sleep apnea in CKD could be an easily quantifiable and ideal ²⁹⁰parameter linking the behavioral scale phenotype to the molecular scale (Figure 3).

291

2923. 2 Motor control and tremor

²⁹³Motor control and hand tremor can be easily quantified using force plates and accelerometers. ²⁹⁴CKD is accompanied by changes in balance and gait control ⁸⁵. Specifically, patients with ²⁹⁵ESRF and MCI have a slower gait speed^{23,61} and reduced single-leg standing time (indexing ²⁹⁶balance function)²³ that is not due to a reduced muscle strength. The control of hand posture ²⁹⁷(resulting in small oscillations or physiological tremor) is also likely to be modified in ²⁹⁸advanced CKD: it has been known for a longtime that acute uremic intoxication or "uremic ²⁹⁹encephalopathy" is accompanied by hand tremor ⁸⁶. The assumption that hand tremor is a ³⁰⁰result of uremic toxins derives from the observation that HD greatly improves tremor in cases ³⁰¹of uremic encephalopathy⁸⁷. The altered motor control in CKD patients is also evident as a ³⁰²slower reaction time to visual or auditory stimuli^{88,89} and voice tremor⁹⁰.

³⁰³The motor control modifications (postural instability, hand tremor, gait speed) in CKD are
³⁰⁴likely to be collateral features of cognitive impairment. Indeed, non-CKD cognitive
³⁰⁵impairment is accompanied (or preceded) by a slower gait speed⁹¹ and postural instability ⁹².
³⁰⁶Furthermore, some forms of AD are accompanied by hand and postural tremor and limb
³⁰⁷bradykinesia ⁹³.

³⁰⁸As discussed above, norepinephrine and serotonin neurons modulate sleep and subcortical ³⁰⁹motor circuits (e.g., the basal ganglia and the spinal cord), possibly mediating the gait and ³¹⁰hand instability in CKD. A pictorial review of the hierarchical organization from molecular ³¹¹abnormalities to a complex behavioral scale is represented in Figure 3.

312

3134. Mechanisms of cognitive dysfunction in CKD

314The link between CKD and cognitive dysfunction or its intermediate phenotype is not well 315understood. In pediatric populations, genetic factors may play a role, whereas in adult 316populations CKD-related vascular factors and uremic (neuro)toxins may have a greater 317impact. Every proposed mechanism should be examined in more detail, because of the 318potential for new therapeutic approaches, which are still limited.

319

3204. 1 Genetic Factors

³²¹There has been little attention paid to the role of genetic factors in the relationship between ³²²CKD and cognitive function. However, a distinction must be made between pediatric and ³²³adult CKD. In the pediatric population kidney diseases may have a clear genetic determinant ³²⁴⁹⁴, for example, in up to 30% of steroid-resistant nephrotic syndrome patients ⁹⁵. In these ³²⁵cases, neurocognitive impairment may derive from a genomic disorder that causes both CKD ³²⁶and cognitive impairment⁹⁶. Indeed, some rare genetic syndromes are well known to cause ³²⁷both cognitive impairment and kidney dysfunction, such as Bardet Biedl syndrome⁹⁷, Fabry ³²⁸disease ⁹⁸, Schmike immunoosseus dysplasia⁹⁹, Joubert syndrome¹⁰⁰, tuberous sclerosis¹⁰¹ and ³²⁹oculocerebrorenal syndrome of Lowe¹⁰².

³³⁰Conversely, in adult CKD a genetic diagnosis is found in only 10% of cases¹⁰³ and in ³³¹pediatric steroid-sensitive CKD, almost no patient has a genetic diagnosis ⁹⁵. In these cases a 332genetic predisposition to cognitive impairment has been suggested from the observation that ³³³genetic variants of α -*Klotho*, a CKD-dependent factor, affect cognition¹⁰⁴. Furthermore, ³³⁴circulating α -*Klotho* has been linked to cognitive decline¹⁰⁵. The analysis of genetic loci 335 associated with adult CKD obtained from one million subjects, published in 2019, reports ³³⁶147 loci relevant for kidney function¹⁰⁶. Among these, 13 polymorphisms had an Exonic 337effect (SLC47A1, EDEM3, SLC22A2, PPM1J, RPL3L, EPB41L5, TSPAN9, KLHDC7A, ³³⁸CPS1, C9, CACNA1S, SLC25A45, CERS2). Intriguingly, some of these genes are also ³³⁹expressed in the brain, particularly in the striatum (SLC47A1, KLHDC7A, SLC25A45; Allen ³⁴⁰Brain Atlas database), cortex (EDEM3, PPM1J, CERS2; Human Protein Atlas database), 341cerebellum and hippocampus (TSPAN9, EPB41L5; Human Protein Atlas database). 342Furthermore, some of these are related to diseases of the nervous system such as Infantile 343onset spinocerebellar ataxia (TSPAN9, CACNA1S, RPL3L; Rare Diseases AutoRIF 344ARCHS4 Predictions database) or AD (CACNA1S, WikiPathways database). ³⁴⁵Finally, it is likely that any genetic predisposition to cognitive impairment in the general 346population is also operative in CKD. In fact, experimental data in rodent models suggest that ³⁴⁷the number of genes influencing memory and cognition is likely to be quite large ¹⁰⁷. ³⁴⁸Unfortunately, the quest for genetic risk factors in dementia and MCI using Genome-Wide 349Association Studies (GWAS) has only identified gene variants with a small effect size. The 350GA@ACE study comprised 4120 AD cases and 3289 controls, analyzing 7.7 million gene ³⁵¹variants¹⁰⁸ and found only one already known marker with Genome Wide significance,

³⁵²APOE-rs429358. Other genetic variants had very small effects (such as CD33-rs3865444,
³⁵³with OR=0. 92). An additional genetic predisposition to MCI in CKD patients derives from
³⁵⁴the genetic control of autoregulation of both renal and cerebral blood flow, which is discussed
³⁵⁵further below.

³⁵⁶When summing each small effects of all genetic variants in an individual, the "calculated ³⁵⁷total risk score", results are promising ¹⁰⁹. For example, a genetic risk score based on eight ³⁵⁸gene variants found a two-fold more rapid progression from MCI to AD when six or more ³⁵⁹alleles were present¹¹⁰.

³⁶⁰In summary, genetic risk for MCI/dementia in CKD is more easily recognized and important ³⁶¹in the pediatric population; in the adult population a genetic risk score from multiple variants ³⁶²needs to be considered.

363

3644. 2 Non-genetic Factors

³⁶⁵Many different mechanisms have been proposed to link CKD and cognitive impairment. It ³⁶⁶should be emphasized that the MCI/dementia link with CKD might actually represent one of ³⁶⁷the very few established causes of cognitive impairment.

³⁶⁶Most proposed mediators of brain damage are retained because of kidney dysfunction and ³⁶⁹affect the brain through direct or indirect mechanisms. There are, however, notable ³⁷⁰exceptions: (i) iatrogenic factors, namely dialysis, medications¹¹¹ and nutrition/diet; (ii) ³⁷¹comorbid conditions that cannot be easily separated from CKD such as hypertension and ³⁷²cardiovascular disease; (iii) social factors and functional impairment (such as impairment in ³⁷³using the telephone, preparing meals or shopping) that affect the psychological state of ³⁷⁴patients with CKD.

375Complex changes affect the blood composition of patients with CKD, which complicates 376attempts to identify a unifying causative mechanism for CKD-MCI. Moreover, evaluation of 377the mechanisms by which CKD-related changes in blood constituents might affect cognitive 378function requires consideration of the time-scale over which cognitive decline occurs. Some 379blood constituents (e.g., oxygen free radicals, volume status, electrolyte and acid-base 380disturbances, and some uremic toxins and drugs) have effects within a short time-scale, 381whereas others (e.g., amyloid deposits, inflammation, vascular dysfunction, nutrition, anemia) 382require months or perhaps years to have an effect on the brain. Furthermore, the blood-brain 383barrier (BBB) and blood-cerebrospinal fluid (BCB) barriers do not allow all blood ³⁸⁴constituents to freely enter the brain parenchyma ¹¹². The brain is likely to develop ³⁸⁵MCI/dementia over a relatively long time-scale (months to years) ³⁹ and clearly ³⁸⁶MCI/dementia is a phenomenon that occurs at a higher scale of organization of neuronal ³⁸⁷networks or above.

³⁸⁸In the section that follows, we briefly review the few attempts that have been made so far to ³⁸⁹interfere with MCI/dementia-CKD, before considering some possible underlying mechanisms ³⁹⁰in more detail.

391

3924. 2. 1 Vascular dysfunction in CKD and cognitive decline

3934. 2. 1. 1 Morphology of the brain vessels in CKD

³⁹⁴CKD has a high prevalence of atherosclerosis and endothelial dysfunction is almost ³⁹⁵universal¹¹³. Vascular disease is associated with cognitive decline in non-CKD patients and is ³⁹⁶an important factor in CKD morbidity ¹¹⁴. Brain capillaries and small vessels are not ³⁹⁷accessible in patients with CKD; hence, a useful proxy is the study of retinal capillaries, ³⁹⁸which can be quantified *in vivo*. In the retina, CKD stage 3 (or proteinuria >500mg/g ³⁹⁹creatinine) is accompanied by greater arteriolar wall-to-lumen ratio, greater wall thickness ⁴⁰⁰and greater inter-capillary distance¹¹⁵. Therefore, anatomical alterations in the brain macro-⁴⁰¹and micro-circulation are present in patients with CKD.

⁴⁰²The endothelial dysfunction (indexed by sVCAM-1, thrombomodulin, sICAM-1 and sICAM-⁴⁰³3) is a feature of CKD, HD and PD¹¹⁶, and is accompanied by an increased permeability of ⁴⁰⁴the blood brain barrier ^{49,117}.

405

4064. 2. 1. 2 Hemodynamic changes that occur in CKD

⁴⁰⁷In non-CKD patients the vascular hypothesis of cognitive dysfunction is based on the ⁴⁰⁸hypothesis that anatomical vascular changes are accompanied by reduced cerebral blood flow, ⁴⁰⁹and consequent impairment in neuronal activities. Dysfunction of vascular pericytes in the ⁴¹⁰brain, mediated by, for example, endothelin, has been shown to participate in the altered ⁴¹¹blood flow observed in dementia¹¹⁸.

⁴¹²As we shall see, patients with CKD show actually increased cerebral blood flow, which does ⁴¹³not support the more general paradigm of vascular dysfunction. ⁴¹⁴CKD is invariably accompanied by an increase in arterial blood pressure. Hypertension is a ⁴¹⁵known risk factor for dementia in non-CKD patients¹¹⁹.

⁴¹⁶Unexpectedly, in adult patients with CKD the global cerebral blood flow (measured by MRI ⁴¹⁷arterial spin labeling) is increased compared with healthy controls. The increase was more ⁴¹⁸evident in non-dialysis ESRF patients than in HD and PD patients. The changes did not ⁴¹⁹correlate with neuropsychological tests when anemia was taken into account¹²⁰. These results ⁴²⁰were also confirmed in pediatric patients with CKD, who also showed an increase in global ⁴²¹cerebral blood flow (measured by MRI arterial spin labeling) compared with healthy controls, ⁴²²though possibly due to a reduced hematocrit¹²¹. These findings lead to the counterintuitive ⁴²³interpretation that a decrease in cerebral blood flow may improve cognition in CKD¹²². It is ⁴²⁴plausible that the increased blood flow represents, in this case, a compensatory effect of ⁴²⁵anemia.

⁴²⁶These data and the lack of efficacy of anti-hypertensive drugs in MCI/dementia-CKD ⁴²⁷strongly suggest that the vascular hypothesis of dementia in the general population may not ⁴²⁸be correct or a complete explanation in CKD. However, it should be noted that patients with ⁴²⁹ESRF on HD have more complex, acute and variable hemodynamic changes triggered by the ⁴³⁰presence of an arterovenous (AV) fistula and the need for intermittent ultrafiltration.

⁴³¹The AV fistula has a remarkable cardio-circulatory effect. Its effect on cognition compared ⁴³²with central venous catheter is unknown, although overall it is likely to be associated with a ⁴³³better quality of life for dialysis patients¹²³. However, intermittent ultrafiltration, which ⁴³⁴acutely reduces the blood volume, is also expected to reduce cardiac output and mean arterial ⁴³⁵pressure¹²⁴, which in turn reduces splanchnic and brain perfusion. Indeed, at the end of an HD ⁴³⁶session, cerebral blood flow is reduced, as demonstrated by [150]H₂O PET-CT scan¹²⁵. ⁴³⁷Similarly, at the end of PD a reduced cerebral blood flow (measured by MRI arterial spin ⁴³⁸labeling) has been observed compared with pre-dialysis^{120,122}. However, in the interval

⁴³⁹between HD sessions (48h after the last dialysis session) a rebound effect has also been ⁴⁴⁰described, with an increase in the mean blood flow velocity (measured by Doppler ⁴⁴¹ultrasound), partially related to changes in hemoglobin levels¹²⁶.

⁴⁴²Therefore, the blood flow changes in HD and PD are of short duration, but whether these ⁴⁴³chronic intermittent changes worsen cognition is unclear. However, the similar prevalence of ⁴⁴⁴MCI/dementia in advanced CKD, in HD and in PD suggests that the effect of dialysis ⁴⁴⁵treatment on brain hemodynamics is reversible and not additive in any way. 446

4474. 2. 1. 3. A genetic factor that causes impaired autoregulation

⁴⁴⁸Patients with CKD show on MRI focal white matter hyperintensities that are interpreted as ⁴⁴⁹small ischemic regions¹²⁷. This poses the problem of whether cognitive dysfunction in CKD ⁴⁵⁰is a form of "vascular dementia", which has been studied widely in the general population. ⁴⁵¹Unfortunately, a formal comparison between vascular dementia and CKD-dementia has never ⁴⁵²been carried out. An additional point of confusion is that vascular dementia is often linked to ⁴⁵³hypertension, which is a common finding in CKD.

454Hypertension has usually been associated with small lacunar infarcts and diffuse areas of 455chronic ischemia (leukoaraiosis), chronic hypoperfusion and impaired cerebral autoregulation. 456It also has a genetic predisposition, associated with genes governing endothelial function, 457such as polymorphisms of angiotensin-converting enzyme, angiotensinogen, endothelin, 458eNOS, and methylenetetrahydrofolate reductase (MTHFR)¹²⁸. In rats, a genetic variant of the 459Add3 gene and a genetic deficiency of 20-HETE have been associated with impaired 460autoregulation of both renal and cerebral blood flow ^{129,130}. Specifically, genetically 461hypertensive rats (Dahl salt-sensitive) show deficient formation of 20-HETE with an 462impaired myogenic response of cerebral arteries and blood-brain-barrier leakage ¹³⁰.

⁴⁶³As discussed above, in CKD cerebral blood flow is augmented, rather than decreased, which ⁴⁶⁴is opposite to what has been shown in vascular dementia. Thus, it is possible that a ⁴⁶⁵dysfunction of endothelial cells or glial cells modifies the exchange of substances between ⁴⁶⁶blood and neurons. Cerebral blood flow may be adequate or even increased, but the blood ⁴⁶⁷brain barrier or brain glymphatic system might be dysfunctional.

468

4694. 2. 1. 4 Brain glymphatic system

470The glymphatic or perivascular system is a CNS clearance system formed by astroglial cells -471a cell species covering the whole cerebral vasculature - that efficiently eliminates soluble 472proteins and various metabolites from the CNS¹¹², and is responsible for ~60% of β-amyloid 473clearance ¹³¹ (Figure 4). Vascular diseases, hypertension, diabetes, and neurodegenerative 474diseases may all reduce glymphatic clearance ¹³². Moreover, neuroinflammation and 475depression have also been shown to suppress glymphatic clearance, perhaps explaining why 476these conditions increase the risk of developing dementia ¹³². Interestingly, glymphatic 477clearing of waste products occurs primarily during sleep and in particular in stages 3-4 ⁴⁷⁸NREM sleep ¹³³. Although it is not known how CKD affects the glymphatic system, the ⁴⁷⁹existing literature suggests that glymphatic fluid transport may be suppressed in CKD and ⁴⁸⁰that glymphatic dysfunction can lead to an accumulation of potential neurotoxic waste ⁴⁸¹products. As discussed above, sleep disturbance is common in CKD patients⁶⁸ and ⁴⁸²accompanies the cognitive decline in MCI¹³⁴ and dementia ¹³⁵. Furthermore, sleep apnea and ⁴⁸³AD are both linked to reduced level of Amyloid-β in cerebrospinal fluid, indicating that ⁴⁸⁴glymphatic clearance is suppressed in these conditions^{136,137}.

485

4864. 2. 2 Uremic (neuro)toxins and kidney neurotrophins

⁴⁸⁷The EUTOX database (http://www. uremic-toxins. org/DataBase. html) provides an updated ⁴⁸⁸list of all known uremic toxins and their characteristics. According to EUTOX, 9% of the ⁴⁸⁹known uremic toxins (7 over a total of 75 solutes) are associated with neurological and CNS ⁴⁹⁰effects. HD efficiently eliminates water-soluble toxins and improves acute uremic ⁴⁹¹encephalopathy, but it is relatively ineffective when it comes to protein-bound or middle-⁴⁹²sized toxins, and does not ameliorate chronic cognitive dysfunction in patients with ESRF ⁴⁹³(Table 1). The fact that this extracorporeal treatment does not improve cognitive dysfunction ⁴⁹⁴in ESRF implicates protein-bound and larger molecular weight toxins in MCI/dementia in ⁴⁹⁵these patients.

⁴⁹⁶Many of the uremic bioproducts reported in Table 1 are known to exert a protective effect on ⁴⁹⁷neurons, but most of them do not cross the BBB under basal conditions (as reported in Table ⁴⁹⁸1), and so cannot make contact with neurons *in vivo* and are unlikely to provide ⁴⁹⁹neuroprotection. Leakage of most of these products in uremia is currently untested, although ⁵⁰⁰ti is known that the BBB is less functional in advanced CKD. Conversely, some uremic ⁵⁰¹toxins easily cross the BBB under basal conditions and have detrimental effects on the ⁵⁰²endothelium and vasculature. NPY is of particular interest among uremic toxins. This 36-⁵⁰³camino acid peptide has been implicated in neurodegenerative diseases such as AD¹³⁸. It is ⁵⁰⁴Produced centrally (within the brain by specific neurons) and peripherally in nerve endings. ⁵⁰⁵Plasma NPY mostly derives from peripheral nerve endings, with an unclear correlation with ⁵⁰⁶the NPY coming from the cerebrospinal fluid¹³⁹. However, it has been reported to readily ⁵⁰⁷enter the brain from blood by diffusion across the BBB ¹⁴⁰. Independent of BMI, serum NPY ⁵⁰⁸levels are elevated in CKD patients¹⁴¹ and in patients with sleep apnea; continuous airway ⁵⁰⁹positive pressure reduces NPY levels in these patients ¹⁴². NPY levels predict a high risk for ⁵¹⁰cardiovascular events both in CKD and in ESRF patients ¹⁴³. ⁵¹¹Because cognitive impairment is much more frequent in patients with cardiovascular disease, ⁵¹²particularly in those with heart failure ¹⁴⁴, NPY may be implicated in the pathogenesis of ⁵¹³these alterations in CKD. In fact, high NPY levels in supratentorial cerebrospinal fluid, at ⁵¹⁴least in the short term, are associated with cognitive impairment in patients with subarachnoid ⁵¹⁵hemorrhage ¹⁴⁵. Finally, NPY is also responsible for endothelial dysfunction ¹⁴⁶, which makes ⁵¹⁶this substance a good candidate for brain impairment in CKD.

⁵¹⁷CKD patients often present with disturbed calcium and phosphate metabolism, high PTH and ⁵¹⁸FGF23 levels, and low α-klotho (see earlier) and calcitriol levels. PTH is listed among the ⁵¹⁹uremic toxins, but the evidence that this hormone is directly implicated in cognitive ⁵²⁰impairment is uncertain ¹⁴⁷. PTH is a polypeptide of 84 amino acids, which is unlikely to ⁵²¹cross the BBB under normal conditions. Furthermore, the level of expression of the PTH ⁵²²receptor in the brain is fairly low according to the Allen Brain Atlas. However, disturbed ⁵²³mineral metabolism may have an impact on cognitive impairment in CKD patients through ⁵²⁴pathways independent of PTH. The liver/bone/kidney isoform of alkaline phosphatase, an ⁵²⁵enzyme key to bone metabolism, is also expressed in neurons of the cerebral cortex (data ⁵²⁷form The Human Protein Atlas database: https://www. proteinatlas. org/). PTH is elevated in ⁵²⁷patients with AD and correlates inversely with cognitive function in these patients ¹⁴⁸. ⁵²⁸Experimental evidence suggests that high alkaline phosphatase, by dephosphorylating the ⁵²⁹form the same protein considered central to the pathogenesis of AD, may promote the binding ⁵³⁰of the same protein to muscarinic receptors (M1 and M3) in the hippocampal area, thereby ⁵³¹triggering a marked increase in intracellular calcium levels and triggering cell death ¹⁴⁹.

⁵³²The phosphaturic hormone FGF23 increases early during the course of CKD and has been ⁵³³associated with cardiovascular disease and cardiovascular mortality ¹⁵⁰. Moreover, in the ⁵³⁴Framingham study, higher FGF23 levels are associated with a higher risk for dementia ¹⁵¹. α -⁵³⁵klotho, the obligatory co-ligand of FGF23 is highly expressed in brain after the kidney and ⁵³⁶parathyroid glands ¹⁵². Circulating α -klotho, as well as kidney and parathyroid α -klotho, are ⁵³⁷downregulated in CKD, but whether brain α -klotho is also affected is unknown. A recent ⁵³⁸MRI-based study found that reduced circulating α -klotho associated positively with the risk ⁵³⁹for dementia and cerebral deep white matter lesions, even after correction for reduced kidney ⁵⁴⁰function and other risk factors ¹⁵³. Several genetic variants altering α -klotho protein levels are ⁵⁴¹associated with β -amyloid burden and risk for dementia ^{104,105,154}. Experimental evidence ⁵⁴²links α -klotho with the function of serotonergic neurons, hippocampal function, depression ⁵⁴³and dementia-like symptoms in animals ¹¹⁵. While low α -klotho or high FGF23 appear to ⁵⁴⁴exert negative effects on brain function, α-klotho or FGF23 deficiency also impair neuronal ⁵⁴⁵processes, particularly in the hippocampus and possibly also cerebellum, affecting memory, ⁵⁴⁶behavior, and motor functions ^{155,156}. A common denominator of α-klotho or FGF23 ⁵⁴⁷deficiency is high calcitriol and reducing calcitriol levels to normal reverses or prevents brain ⁵⁴⁸alterations in experimental animal models ¹⁵⁷. In contrast, patients with CKD often suffer ⁵⁴⁹from low calcitriol levels. This apparent contradiction that both high and low calcitriol levels ⁵⁵⁰are linked to impaired brain functions may indicate an optimal range of calcitriol levels ⁵⁵¹necessary for neuroprotection, microglial immune function, and vascular integrity ^{158,159}. At ⁵⁵²present there is no evidence supporting calcitriol supplementation to delay loss of ⁵⁵³psychomotor functions in elderly populations with CKD ¹⁶⁰ (Figure 5).

554

5554. 4 Role of brain stem cells and neuroinflammation in CKD-dependent cognitive 556impairment

557CKD is a pro-inflammatory dysmetabolic state with associated brain dysfunction. 558Surprisingly little attention has been payed to the role of neural stem cells (or neural 559precursor cells, NPCs) in CKD patients, given that NPCs play a key role in several 560homeostatic brain functions and are extremely sensitive to their micro-environment. While 561NPCs located within the sub-granular (SGZ) zones contribute via neurogenesis to ⁵⁶²maintaining memory circuitry, behavior and spatial learning (e.g., endogenous NPCs produce 563a constant albeit slow increase in hippocampal volume, which is needed for cognitive ⁵⁶⁴functions and mood)^{161,162}, NPCs residing in the subventricular (SVZ) exert little or no 565 neurogenic functions, but contribute to counteracting metabolic dysfunction and/or ⁵⁶⁶inflammatory processes), the so-called 'bystander (or paracrine) effect^{'163}. This is due to the ⁵⁶⁷ability of undifferentiated NPCs to secrete a milieu of homeostatic and/or neuroprotective ⁵⁶⁸molecules (e.g., stem cell regulators, trophic factors and immunomodulators) that are thought ⁵⁶⁹to be important, because, depending on the tissue microenvironment, they may stimulate 570 endogenous precursors to promote re-myelination or rescue (directly and indirectly) of 571damaged axons and neurons ^{162–164}. As a consequence, an additional pathogenic mechanism 572that might contribute to irreversible glial and/or neuronal loss, and the neuronal functional ⁵⁷³impairment underlying cognitive dysfunction in CKD patients, could be the effect of uremic 574toxins, inflammatory cytokines (e.g., IL-1 β , IL-18, IL-6, TNF α), as well as anti-inflammatory 575 cytokines (e.g., IL-10) and free-radicals (Figure 4).

⁵⁷⁶Among the inflammatory cytokines, IL-6 is increased 5-fold in HD patients, and permanently ⁵⁷⁷perturbs NPC proliferation and neurogenesis¹⁶⁵. IL-10, which is increased in HD, maintains ⁵⁷⁸NPCs in an undifferentiated proliferation state, rather than promoting differentiation¹⁶⁶. Both ⁵⁷⁹TNFα and IL-1β also increase in HD and can stimulate NPC proliferative capacity¹⁶⁷. At ⁵⁸⁰present it is not clear if the differential effects of IL-10 and IL-1β on NPCs have also different ⁵⁸¹cognitive effects. Free radicals, which are increased in HD and CKD patients may strongly ⁵⁸²and negatively impact NPC function ¹⁶⁸. Finally, cell-mediated innate immunity, thought to ⁵⁸³be involved in toxic uremia as a potential pathogenic mechanism causing cognitive ⁵⁸⁴impairment in CKD patients, might also be impaired when NPC homeostasis is disturbed¹⁶⁹. ⁵⁸⁵In kidney transplant patients cyclosporin and mycophenolate have direct inhibitory effects on ⁵⁸⁶NPCs¹⁷⁰, unlike everolimus¹⁷¹.

⁵⁸⁷NPCs also play a role in neurodegenerative diseases such as AD: the deletion of genes ⁵⁸⁸necessary for NPCs and neurogenesis (such as Tet1, 5hmC) lead to learning and memory ⁵⁸⁹deficits in animal models^{172,173}.

⁵⁹⁰It is becoming clear that uremic (neuro)toxins in CKD not only exert a detrimental effect on ⁵⁹¹neural cells, but also on NPCs, although this is still not yet widely appreciated. Given the ⁵⁹²pleiotropic actions (homeostatic and reparative) of NPCs, and the accumulating evidence ⁵⁹³showing that during CKD circulating uremic toxins (whose CNS trafficking is facilitated by ⁵⁹⁴BBB damage) may impair CNS structure and function, this seems to be a new research ⁵⁹⁵avenue and opportunity in MCI-CKD worth pursuing.

596

5975. Interventional studies

⁵⁹⁸Interventional studies are essential for the identification of mechanistic links between kidney ⁵⁹⁹disease and brain alterations. At present most of the attempts to improve, prevent or delay ⁶⁰⁰MCI/dementia in CKD have been unsuccessful. We will review some of these attempts to ⁶⁰¹make the reader aware of what has been already done. However, new drugs are now available ⁶⁰²to relieve some of the symptoms of dementia, relatively new dialysis regimens are being used ⁶⁰³today, and new anti-inflammatory therapies have been introduced for atherosclerosis and ⁶⁰⁴stroke: we list these approaches, which may yet prove beneficial.

605HD is life-saving in patients with ESRF and reverses acute encephalopathy. The acute uremic 606encephalopathy or uremic delirium presents with impaired memory and attention, altered 607consciousness and disorganized thinking in untreated patients with ESRF. Today it is a rare ⁶⁰⁸clinical presentation, because patients with ESRF usually undergo planned dialysis before ⁶⁰⁹this neurological syndrome can develop. When it does occur, neurological recovery may take ⁶¹⁰days after dialysis initiation and in at least one case report a patient remained comatose for 5 ⁶¹¹days after correction of uremia¹⁷⁴. This supports the notion that circulating and brain-⁶¹²permeable small molecules, which are removed by dialysis, are likely to be responsible for ⁶¹³acute uremic encephalopathy. In contrast, MCI and dementia develop over longer time-scales ⁶¹⁴and reversibility is potentially possible only for MCI, rather established dementia.

615However, the question is whether the clearance of blood toxins by HD can decrease the risk 6160f developing MCI-CKD. Unfortunately, the partial correction of blood composition with HD 617seems unlikely to prevent or slow down MCI-dementia progression, which is suggested by a 618 similar prevalence of MCI/dementia among patients on HD compared with those with 619advanced CKD who are not yet on dialysis¹⁷⁵. This inability of HD to attenuate MCI might be 620due to a suboptimal and discontinuous treatment regimen (with a rapid increase in toxin 621 levels between dialysis sessions); however, more intensive dialysis regimens with improved 622dialysis adequacy (Kt/V) also do not improve MCI-related outcomes¹⁷⁶. Therefore, it is 623possible that some uremic (neuro)toxins, for example, medium-large size toxins and protein-624bound toxins (listed in Table 1) are not adequately removed by HD. Unfortunately, no data 625 are available on the effect of hemodiafiltration (HDF), which can potentially remove larger 626 size toxins, on cognitive function. A meta-analysis suggests that PD treatment may be more 627advantageous than HD^{45,175}. However, there is inconsistency among studies, possibly because 628 the effect is very small. In a large study enrolling 52'332 HD patients and 3'292 PD patients, 629 the higher risk for cognitive impairment in HD disappeared after controlling for demographic 630characteristics and competing risks of death¹⁷⁷.

⁶³¹Therefore, the slower dynamics of ultrafiltration/dialysis of the peritoneal system or better
⁶³²removal of protein-bound toxins do not seem to lead to greater clinical improvement.
⁶³³Similarly, kidney transplantation attenuates MCI, but does not lead to the recovery of
⁶³⁴cognitive function to the levels of a control healthy population (see Figure 1)^{178,179}. This
⁶³⁵suggests that MCI-CKD is not easily reversible or that the immunosuppressive drugs used to
⁶³⁶cavoid rejection also impinge on cognitive function.

⁶³⁷Neuropsychological approaches are unlikely to improve MCI, because they do not remove ⁶³⁸the organic substrates causing the problem, nor are interventions (alone) that aim at better ⁶³⁹control of blood pressure or prevent cerebrovascular accidents (stroke and myocardial

⁶⁴⁰infarction) ¹⁸⁰. This suggests that the vascular alterations observed in CKD are not the main ⁶⁴¹cause MCI or that they do not respond to standard preventive strategies.

642Few interventional studies are available examining the diet/nutritional changes in CKD-MCI 643progression. Vitamin B and folate supplementation to reduce homocysteine did not result in a 644reduction in MCI-CKD¹⁸¹. L-carnitine improves cognitive function in a rat model of CKD, 645but no data are available in humans¹⁸². Vitamin D 25(OH)2 levels can be low in CKD and 646hypo-vitaminosis D is associated with cognitive decline; however, no data are available on its 647supplementation to prevent MCI in CKD (see earlier).

⁶⁴⁸Antioxidants such as Vitamin E have been proposed to reduce brain oxidative stress and slow
⁶⁴⁹cognitive impairment in the general population, although with minimal effects in AD¹⁸³.
⁶⁵⁰Tempol, an antioxidant, has been tested in animal models of CKD with some neuroprotective
⁶⁵¹effect¹⁸⁴.

⁶⁵²Unsaturated fatty acids such as omega-3, Mediterranean diet, and malnutrition are other ⁶⁵³dietary factors and nutritional aspects considered relevant in the general population, but with ⁶⁵⁴minimal effects on cognitive protection^{185,186}. No information on MCI-CKD is currently ⁶⁵⁵available with these approaches.

⁶⁵⁶Iron deficiency is also common in CKD and anemia is a risk factor for poor scores at
⁶⁵⁷neuropsychological tests. Unfortunately, no information is available on iron supplementation
⁶⁵⁸in CKD to prevent MCI. However, erythropoietin appears beneficial for cognitive
⁶⁵⁹dysfunction in CKD^{187,188}, which supports the role of CKD-dependent anemia in poor
⁶⁶⁰cognitive function. The recent introduction of hypoxia inducible factor (HIF) stabilizers as an
⁶⁶¹oral alternative to injectable erythropoietin for anemia in CKD patients¹⁶⁹awaits further
⁶⁶²assessment for its effect on MCI-CKD.

⁶⁶³The hypothesis of altered PTH/phosphate homeostasis in MCI-CKD has not been tested. At ⁶⁶⁴present there is only a single case report of the reversal of cognitive impairment after ⁶⁶⁵cinacalcet treament¹⁸⁹.

⁶⁶⁶The neuroinflammatory hypothesis might have an additional support after the attempt to ⁶⁶⁷reduce atherosclerosis/endothelial dysfunction by targeting a postulated inflammatory ⁶⁶⁸mechanism. Canakinumab, an anti-interleukin-1 β antibody¹⁹⁰, and cholchicine¹⁹¹ both ⁶⁶⁹reduced the effects of atherosclerosis and showed some effect on brain function. Specifically, ⁶⁷⁰Canakinumab reduced infarct size, cerebral oedema and improved neurological performance ⁶⁷¹in an animal model of stroke ¹⁹². Conversely, colchicine is neurotoxic when injected into the ⁶⁷²brain¹⁹³, but if delivered in the bloodstream has anti-neuroinflammatory action potentially
⁶⁷³useful for AD¹⁹⁴. Consistently, a trial on 4754 patients assigned to receive colchicine or
⁶⁷⁴placebo showed neuroprotective effect of colchicine, with lower risk of stroke¹⁹¹.
⁶⁷⁵This may support the hypothesis linking MCI-CKD to wider endothelial dysfunction.

6776. Conclusions

678Nephrologists need to be more aware of cognitive impairment in CKD. However, a major 679problem is the lack of any mechanistic understanding and the paucity of data, and therefore 680for any interventional strategies. More systematic and standardized neurophysiological 681testing of CKD patients recruited to the increasing number of large prospective CKD cohorts 682will help in defining more reliably the true extent of the problem of MCI-CKD and the 683biomarkers linked to it. Hemodiafiltration or other high permeability membranes await 684testing of their effect on cognition. Memantine, and acetylcholinesterase inhibitors (e.g., 685donepezil) that are used in dementia have an unclear role in CKD patients. Strategies to 686improve endothelial and glymphatic function, and neuronal stem cell production in CKD are 687still in their infancy. However, if any of these approaches can prove useful in MCI-CKD, this 688could also be a significant step forward in treating dementia itself.

689

690

691BOX 1: MCI

⁶⁹²**Mild cognitive impairment (MCI):** a term used to identify subjects at risk to develop ⁶⁹³dementia, but whose cognitive deficit is so mild that it does not impinge upon daily activities. ⁶⁹⁴The diagnosis is based on symptoms reported/observed by patients, caregivers, informants ⁶⁹⁵and clinicians. The symptoms include memory impairment, language difficulties, attention ⁶⁹⁶deficit, disorientation and altered visuospatial skills. MCI is only a risk state: 90-95% of ⁶⁹⁷subjects with MCI actually do not progress to dementia. However, while dementia is ⁶⁹⁸irreversible, 14-44% of MCI subjects can recover to normal cognitive function. After the ⁶⁹⁹introduction of the Diagnostic and Statistical Manual of Mental Disorders version 5 (DSM-5), ⁷⁰⁰dementia has been renamed as major Neurocognitive disorder (major NCD) and MCI as mild ⁷⁰¹NCD. Correspondingly, the criteria for MCI have changed. The Petersen's criteria for MCI ⁷⁰²are: (a) subjective decline in memory (b) memory impairment on neuropsychological test (c) ⁷⁰³intact daily functioning (d) no dementia. The DSM-5 criteria for MCI are: (a) concern (of the ⁷⁰⁴patient or of the clinician) of a mild decline in cognitive function (b) cognitive decline by
⁷⁰⁵standard cognitive assessment (c) independence in everyday activities (d) cognitive deficits
⁷⁰⁶not explainable by delirium, psychosis, severe depression.

707

708

709BOX 2: glossary

Attention: the cognitive domain involved in the selection of a specific information 711 within a sensory channel (filtering), ignoring all the other data. It requires the activity of the 712 prefrontal cortex, with modulation by the dopaminergic system

Inhibitory control: the ability to suppress ongoing and inappropriate responses to 714potentially relevant stimuli. A classical test is the Stroop task, requiring to name the font color 715of a printed word, neglecting the meaning of the word itself.

Memory: the cognitive domain involved in the registration and recall of information. 717Different and independent types of memory exist, such as explicit memory (for words, 718history etc), implicit memory (for actions, skills), short term and working memory (with 719limited number of items that can be recorded and short permanence) and long-term memory. 720Although no single brain region can be linked to memory, at the neuronal scale the 721phenomenon most likely correlated to memory is called "long term potentiation" and "long 722term depression", which are sustained modifications of the efficiency of the neuronal contacts 723Or synapses.

Language skills: the cognitive domain dealing with repeating, understanding and r25producing words, sentences, language. They require the function of two main areas in the r26dominant (left) cortex, that is the motor- and sensitive- language areas (Broca's and r27Wernicke's areas)

Visuospatial ability: the cognitive domain dealing with the analysis of visual r29information, recognition of images and reproducing drawings. It requires the integrity of the r30occipital cortex.

Executive functions: a psychological construct indicating mental processes
732 Executive functions: a psychological construct indicating mental processes
732 necessary for goal-directed behavior. The term derives from subjects with damage of the
733 frontal lobe, who can show normal language, learning, memory and reasoning on specific
734 tasks; notwithstanding, their everyday tasks are disorganized and poorly planned: their
735 "cognitive resources" such as learning, memory, reasoning, language are poorly coordinated,

⁷³⁶that is they exhibit an "executive dysfunction". No direct access to executive functions is ⁷³⁷possible, therefore they comprise many different psychological terms such as attention and of ⁷³⁸inhibition, working memory, cognitive flexibility, planning, fluid intelligence, reasoning and ⁷³⁹problem solving etc. It requires the integrity of the frontal lobe and its modulation by ⁷⁴⁰dopamine and cholinergic neurons from the mesencephalon and basal forebrain respectively.

741 Catecholamine neurons: a small group of neurons (less than one million) mainly
742 localized in the encephalic trunk and comprising adrenergic/noradrenergic and dopaminergic
743 neurons. These neurons innervate large parts of the brain through a massive harborization of
744 their axons. They can subserve both simple computational task (such as indicating the
745 presence or absence of a reward) and tonic activity on target regions, such as the striatum and
746 the cortex, thereby controlling wakefulness and attention.

Polysomnography. An overnight sleep study based on neurophysiologic parameters 748(EEG, electrooculography, electro-myography), respiratory patterns, pulse oxymetry, heart 749rate. In clinical practice it is used, for example, for the diagnosis of Sleep Apnea and the 750characterization of sleep disturbances.

Actigraphy. Usually a portable device (e.g. in the form of a bracelet) equipped with r52motion sensors (accelerometers, gyroscopes, GPS), aimed at recording and characterizing the r53motor activity and posture of a subject during the day or over several days. Step-meters are a r54cheap and simple type of actigraphic recordings. Since sleep is accompanied by specific r55postures (usually supine position) and immobility, actigraphic recordings can be used as a r56first approach to study 24h sleep patterns in large populations, being inexpensive and r57comfortable to wear (as opposed to polysomnography).

Sleep apnea. This is a common respiratory problem characterized by recurrent 759episodes of apnea/hypopnea (no or reduced airflow) during sleep. The apneic episodes can 760originate from a dysfunction of the brain respiratory centers (central sleep apnea) or from 761alteration of the upper airways (e.g., pharynx and larynx) or the tone of their muscles 762(peripheral sleep apnea).

Dysautonomia. Altered function of the autonomic nervous system (sympathetic and ⁷⁶⁴parasympathetic) with consequent maladaptive control of orthostatic blood pressure, ⁷⁶⁵digestion, and bladder emptying.

Force plates. A device to study where the body weight is released onto the floor over rertime, and its magnitude. The position of the sum of all forces acting between the body and the

⁷⁶⁸floor can be measured by force plates and is called Center of Pressure. The position of the⁷⁶⁹Center of Pressure changes over time during movements (such as walking) or even during⁷⁷⁰simple stance.

Accelerometers. Devices measuring the acceleration of an object over time. These 772sensors are usually very small and can be applied onto the hand to measure hand tremor. 773Even the widely available smartphones or game controllers may serve for this purpose.

Blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCB) barrier. The Blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCB) barrier. The Blood-brain by which many substances (such as India ink) and drugs injected into the blood remain within the cerebral capillary bed without entering into the parenchyma (BBB) or the fracerebrospinal fluid (BCB). The anatomical substrate for this phenomenon is thought to remainvolve the peculiar structure of the brain capillary endothelium and the presence of a repericapillary glial sheet.

NREM sleep. Using EEG it is possible to appreciate the oscillatory dynamics of ⁷⁸¹sleep, which is composed of 4-5 cycles of a long period without eye movements (non-rapid-⁷⁸²eye movements: NREM) followed by short rapid eye movement stage (REM). The NREM ⁷⁸³state is further composed of progressive EEG alterations which can be classified in 4 stages.

Table 1. List of uremic neurotoxins uncleared or insufficiently cleared by dialysis and current therapeutic regimens. The impact on the brain is analyzed on cellular/tissue scale, intermediate phenotype scale and behavioral scale. BBB+: the toxin crosses the blood brain barrier; BBB-: the toxin does not cross the BBB (predicted from https://www.cbligand.org/BBB/). NA: data not available

Name	Impact on the CNS			Solubility- protein bound; BBB crossing
	Microscopic scale (Cells/tissue)	Intermediate phenotypes	Behavioral scale	
Asymmetric Dimethyl Arginine (ADMA)	Endothelial dysfunction ²¹⁰	Vascular brain injury ²¹⁷ , slower gait speed ²¹⁸	Cognitive impairment	Water- soluble BBB-
beta-2-microglobulin	NA	NA	NA	Middle BBB-
3-Carboxy-4-methyl- 5-propyl-2- furanpropanoic acid (CMPF)	Inhibition of brain-to- blood transport of metabolites ²¹¹	Sleep ²¹⁹		Protein- bound BBB+
Cystatin C	NA	Glymphatic solute clearance ²²⁰	NA	Middle BBB-
FGF23	Endothelial	NA	Memory	Middle

	dysfunction ²¹²		deficits ¹⁵¹	BBB-
Hippuric acid	Endothelial dysfunction ²¹³	BBB dysfunction	Uremic encephalopathy	Water- soluble BBB+
IL-1 beta	Neurodegeneration of dopamine neurons ¹⁹⁵	NA	Executive function, memory	Protein- bound BBB-
IL-6, TNF-alpha	Neuroinflammation ¹⁹⁶	Reduced glymphatic drainage ²¹⁴	NA	Middle BBB-
Indole-3-acetic acid	Effect on neuronal stem cells ¹⁹⁷	NA	NA	Protein- bound BBB+
Indoxylsulphate/p- cresylsulphate	Neuroinflammation and altered glial function ¹⁹⁸	NA	Cognitive impairment ²²¹	Protein- bound BBB+
Leptin	Neuroprotective; apoptosis in neural stem cells ; adiposity- dependent neurotoxicity ^{199,200}	NA	NA	Protein- bound BBB-
Methylglyoxal	Effects on neural stem cells, Amyloid deposition ^{201,202}	Lower gray matter	Memory, executive functions ²⁰²	Protein- bound BBB+
Neuropeptide Y	Endothelial	Sleep	NA	Middle

(NPY)	dysfunction ¹⁴⁶	regulation		BBB+
Parathyroid hormone (PTH)	NA	Gait instability ²¹⁵	NA	Middle BBB-
Spermidine/putrescine	NA	NA	NA	Protein- bound BBB-
Putative kidney neuro	trophins			
Erythropoietin	Increases brain aquaporin 4 (glymphatic pathway) ²⁰³	Neuronal oxygenation	Improves behavioral deficit	Middle BBB-
Hydrogen sulfide (H2S)	Promotes neuronal stem cell differentiation; Neuroprotective effects ^{204,205}	NA	Improves behavioral deficit	Water- soluble BBB+
Uric acid	Protective on dopamine system; Promotes neuronal stem cell differentiation ^{206,207}	Increases brain perivascular spaces (glymphatic pathway) ²¹⁶	NA	Water- soluble BBB+
Vitamin D-calcitriol	Decreases neuroinflammation; promotes neuro- genesis ^{208,209}	NA	Maintains global cognitive performance ²²²	Protein- bound BBB+

786

787Acknowledgements

788 Work of the authors has been supported by the Swiss National Science Foundation (CAW).

789

790Conflicts of interest

791All authors report no conflict of interest

792

References

796 1. 797	American Psychiatric Association. <i>DSM-5: diagnostic and statistical manual of mental disorders</i> . (American Psychiatric Publishing, 2013).
798 2 . 799	Marcos, G. <i>et al.</i> Conversion to dementia in mild cognitive impairment diagnosed with DSM-5 criteria and with Petersen's criteria. <i>Acta Psychiatr. Scand.</i> 133 , 378–385 (2016).
800 3 . 801	Viggiano, D. <i>et al.</i> Mild cognitive impairment and kidney disease: clinical aspects. <i>Nephrol. Dial. Transplant</i> (2019). doi:10.1093/ndt/gfz051
802 4. 803	Lipnicki, D. M. <i>et al.</i> Risk Factors for Mild Cognitive Impairment, Dementia and Mortality: The Sydney Memory and Ageing Study. <i>J. Am. Med. Dir. Assoc.</i> 18 , 388–395 (2017).
804 5 . 805 806	Brodski, J., Rossell, S. L., Castle, D. J. & Tan, E. J. A Systematic Review of Cognitive Impairments Associated With Kidney Failure in Adults Before Natural Age-Related Changes. <i>J.</i> <i>Int. Neuropsychol. Soc.</i> 25 , 101–114 (2019).
807 6. 808 809	Ekblad, L. L. <i>et al.</i> Albuminuria and Microalbuminuria as Predictors of Cognitive Performance in a General Population: An 11-Year Follow-Up Study. <i>J. Alzheimers. Dis.</i> 65 , 1053–1054 (2018).
810 7. 811	Martens, R. J. H. <i>et al.</i> Estimated GFR, Albuminuria, and Cognitive Performance: The Maastricht Study. <i>Am. J. Kidney Dis.</i> 69 , 179–191 (2017).
812 8. 813	Joosten, H. <i>et al.</i> Association of cognitive function with albuminuria and eGFR in the general population. <i>Clin. J. Am. Soc. Nephrol.</i> 6 , 1400–9 (2011).
814 9. 815	Weiner, D. E. <i>et al.</i> Cognitive Function and Kidney Disease: Baseline Data From the Systolic Blood Pressure Intervention Trial (SPRINT). <i>Am. J. Kidney Dis.</i> 70 , 357–367 (2017).
816 10. 817	Berger, I. <i>et al.</i> Cognition in chronic kidney disease: A systematic review and meta-analysis. <i>BMC Med.</i> 14 , 1–10 (2016).
818 11. 819	Sacre, J. W. <i>et al.</i> Associations of Chronic Kidney Disease Markers with Cognitive Function: A 12-Year Follow-Up Study. <i>J. Alzheimer's Dis.</i> 70 , 1–12 (2018).
820 12 . 821	O'Lone, E. <i>et al.</i> Cognition in people with end-stage kidney disease treated with hemodialysis: A systematic review and meta-analysis. <i>Am. J. Kidney Dis.</i> 67 , 925–935 (2016).
822 13. 823 824	Harhay, M. N. <i>et al.</i> Cognitive Impairment in Non–Dialysis-Dependent CKD and the Transition to Dialysis: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. <i>Am. J. Kidney Dis.</i> 72 , 499–508 (2018).
825 14. 826	Chu, N. M. <i>et al.</i> Frailty and Changes in Cognitive Function after Kidney Transplantation. <i>J. Am. Soc. Nephrol.</i> ASN.2018070726 (2019). doi:10.1681/ASN.2018070726
827 15 . 828	Drew, D. A., Weiner, D. E. & Sarnak, M. J. Cognitive Impairment in CKD: Pathophysiology, Management, and Prevention. <i>Am. J. Kidney Dis.</i> 74 , 782–790 (2019).

829 16. 830 831	Zammit, A. R., Katz, M. J., Bitzer, M. & Lipton, R. B. Cognitive Impairment and Dementia in Older Adults With Chronic Kidney Disease: A Review. <i>Alzheimer Dis. Assoc. Disord.</i> 30 , 357– 366
832 17. 833	Chillon, JM., Massy, Z. A. & Stengel, B. Neurological complications in chronic kidney disease patients. <i>Nephrol. Dial. Transplant</i> 31 , 1606–14 (2016).
834 18. 835 836	Kurella Tamura, M. <i>et al.</i> Vascular risk factors and cognitive impairment in chronic kidney disease: the Chronic Renal Insufficiency Cohort (CRIC) study. <i>Clin. J. Am. Soc. Nephrol.</i> 6 , 248–56 (2011).
837 19. 838 839	Kelly, D. & Rothwell, P. M. Disentangling the multiple links between renal dysfunction and cerebrovascular disease. <i>J. Neurol. Neurosurg. Psychiatry</i> 1–10 (2019). doi:10.1136/jnnp-2019-320526
840 20 . 841	Lu, R., Kiernan, M. C., Murray, A., Rosner, M. H. & Ronco, C. Kidney-brain crosstalk in the acute and chronic setting. <i>Nature Reviews Nephrology</i> 11 , 707–719 (2015).
842 21. 843	Simões E Silva, A. C., Miranda, A. S., Rocha, N. P. & Teixeira, A. L. Neuropsychiatric Disorders in Chronic Kidney Disease. <i>Front. Pharmacol.</i> 10 , 932 (2019).
844 22. 845	Burns, C. M. <i>et al.</i> Prevalence and Risk of Severe Cognitive Impairment in Advanced Chronic Kidney Disease. <i>Journals Gerontol Ser. A Biol. Sci. Med. Sci.</i> 73 , 393–399 (2018).
846 23 . 847 848	Otobe, Y. <i>et al.</i> Mild cognitive impairment in older adults with pre-dialysis patients with chronic kidney disease: Prevalence and association with physical function. <i>Nephrology</i> (<i>Carlton</i>). 24 , 50–55 (2019).
849 24. 850 851	Hobson, P., Lewis, A., Nair, H., Wong, S. & Kumwenda, M. How common are neurocognitive disorders in patients with chronic kidney disease and diabetes? Results from a cross-sectional study in a community cohort of patients in North Wales, UK. <i>BMJ Open</i> 8 , e023520 (2018).
852 25 . 853	Kalirao, P. <i>et al.</i> Cognitive impairment in peritoneal dialysis patients. <i>Am. J. Kidney Dis.</i> 57 , 612–620 (2011).
854 26 . 855	Manly, J. J. <i>et al.</i> Frequency and course of mild cognitive impairment in a multiethnic community. <i>Ann. Neurol.</i> 63 , 494–506 (2008).
856 27. 857	McAdams-Demarco, M. A. <i>et al.</i> Frailty and cognitive function in incident hemodialysis patients. <i>Clin. J. Am. Soc. Nephrol.</i> 10 , 2181–2189 (2015).
858 28 . 859	Fukunishi, I. <i>et al.</i> Psychiatric disorders among patients undergoing hemodialysis therapy. <i>Nephron</i> 91 , 344–347 (2002).
860 29 . 861 862	US Renal Data System, A. USRDS 2005 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. <i>Bethesda, MD Natl. Institutes Heal. Natl. Inst. Diabetes Dig. Kidney Dis.</i> 140–143 (2005).
863 30. 864	McAdams-DeMarco, M. A. <i>et al.</i> Dementia, Alzheimer's Disease, and Mortality after Hemodialysis Initiation. <i>Clin. J. Am. Soc. Nephrol.</i> 13 , 1339–1347 (2018).
865 31 . 866	Ponjoan, A. <i>et al.</i> Epidemiology of dementia: prevalence and incidence estimates using validated electronic health records from primary care. <i>Clin. Epidemiol.</i> 11 , 217–228 (2019).

867 32. 868	McAdams-DeMarco, M. A. <i>et al.</i> Dementia and Alzheimer's Disease among Older Kidney Transplant Recipients. <i>J. Am. Soc. Nephrol.</i> 28 , 1575–1583 (2017).
869 33 . 870	van der Flier, W. M. & Scheltens, P. Epidemiology and risk factors of dementia. <i>J. Neurol. Neurosurg. Psychiatry</i> 76 Suppl 5 , v2-7 (2005).
871 34. 872	Kurella Tamura, M. & Yaffe, K. Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies. <i>Kidney Int.</i> 79 , 14–22 (2011).
873 35 . 874 875	Kuo, YT. <i>et al.</i> Risk of dementia in patients with end-stage renal disease under maintenance dialysis-a nationwide population-based study with consideration of competing risk of mortality. <i>Alzheimers. Res. Ther.</i> 11 , 31 (2019).
876 36 . 877 878	Lizio, R. <i>et al.</i> Different abnormalities of cortical neural synchronization mechanisms in patients with mild cognitive impairment due to Alzheimer's and chronic kidney diseases: An EEG study. <i>J. Alzheimer's Dis.</i> 65 , 897–915 (2018).
879 37 . 880 881	Albert, M. S. <i>et al.</i> The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. <i>Alzheimers. Dement.</i> 7 , 270–9 (2011).
88238.	Jellinger, K. A. Should the word 'dementia' be forgotten? J. Cell. Mol. Med. 14, 2415-6 (2010).
883 39. 884	Mendley, S. R. <i>et al.</i> Duration of chronic kidney disease reduces attention and executive function in pediatric patients. <i>Kidney Int.</i> 87 , 800–6 (2015).
885 40. 886	Madan, P., Kalra, O. P., Agarwal, S. & Tandon, O. P. Cognitive impairment in chronic kidney disease. <i>Nephrol. Dial. Transplant</i> 22 , 440–4 (2007).
887 41. 888	Singh, N. P. <i>et al.</i> Effect of improvement in anemia on electroneurophysiological markers (P300) of cognitive dysfunction in chronic kidney disease. <i>Hemodial. Int.</i> 10 , 267–73 (2006).
889 42. 890	Sharma, A. <i>et al.</i> Impact of Cognitive Function Change on Mortality in Renal Transplant and End-Stage Renal Disease Patients. <i>Am. J. Nephrol.</i> 44 , 462–472 (2016).
891 43 . 892 893	Qiu, Y. <i>et al.</i> Structural and functional brain alterations in end stage renal disease patients on routine hemodialysis: a voxel-based morphometry and resting state functional connectivity study. <i>PLoS One</i> 9 , e98346 (2014).
894 44. 895 896 897	Song, S. H., Kim, I. J., Kim, SJ., Kwak, I. S. & Kim, YK. Cerebral glucose metabolism abnormalities in patients with major depressive symptoms in pre-dialytic chronic kidney disease: statistical parametric mapping analysis of F-18-FDG PET, a preliminary study. <i>Psychiatry Clin. Neurosci.</i> 62 , 554–61 (2008).
89845. 899 900	Tian, X. <i>et al.</i> The comparison of cognitive function and risk of dementia in CKD patients under peritoneal dialysis and hemodialysis: A PRISMA-compliant systematic review and meta-analysis. <i>Medicine (Baltimore).</i> 98 , e14390 (2019).
901 46. 902	Boccardi, M. <i>et al.</i> The MRI pattern of frontal and temporal brain atrophy in fronto-temporal dementia. <i>Neurobiol. Aging</i> 24 , 95–103 (2003).
903 47. 904	Blamire, A. M. MR approaches in neurodegenerative disorders. <i>Prog. Nucl. Magn. Reson. Spectrosc.</i> 108 , 1–16 (2018).

905 48. 906 907	Palkovits, M. <i>et al.</i> Neuronal activation in the central nervous system of rats in the initial stage of chronic kidney disease-modulatory effects of losartan and moxonidine. <i>PLoS One</i> 8 , e66543 (2013).
908 49. 909 910	Mazumder, M. K., Paul, R., Bhattacharya, P. & Borah, A. Neurological sequel of chronic kidney disease: From diminished Acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain. <i>Sci. Rep.</i> 9 , 3097 (2019).
911 50. 912 913	Deng, G., Vaziri, N. D., Jabbari, B., Ni, Z. & Yan, X. X. Increased tyrosine nitration of the brain in chronic renal insufficiency: reversal by antioxidant therapy and angiotensin-converting enzyme inhibition. <i>J. Am. Soc. Nephrol.</i> 12 , 1892–9 (2001).
914 51 . 915	Jones, D. J. W. <i>et al.</i> The nature of impairments of memory in patients with end-stage renal disease (ESRD). <i>Physiol. Behav.</i> 147 , 324–33 (2015).
916 52. 917 918	Kim, J. W., Ha, G. Y. & Jung, Y. W. Chronic renal failure induces cell death in rat hippocampal CA1 via upregulation of α CaMKII/NR2A synaptic complex and phosphorylated GluR1-containing AMPA receptor cascades. <i>Kidney Res. Clin. Pract.</i> 33 , 132–8 (2014).
919 53 . 920	Viggiano, D. <i>et al.</i> Quantifying barcodes of dendritic spines using entropy-based metrics. <i>Sci. Rep.</i> 5 , 14622 (2015).
921 54. 922	Viggiano, D. <i>et al.</i> Information content of dendritic spines after motor learning. <i>Behav. Brain Res.</i> 336 , 256–260 (2018).
923 55. 924	Kurella, M., Yaffe, K., Shlipak, M. G., Wenger, N. K. & Chertow, G. M. Chronic kidney disease and cognitive impairment in menopausal women. <i>Am. J. Kidney Dis.</i> 45 , 66–76 (2005).
925 56. 926	Puy, L. <i>et al.</i> Cognitive Impairments and Dysexecutive Behavioral Disorders in Chronic Kidney Disease. <i>J. Neuropsychiatry Clin. Neurosci.</i> 30 , 310–317 (2018).
927 57. 928	Yaffe, K. <i>et al.</i> Chronic Kidney Disease and Cognitive Function in Older Adults: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Cognitive Study. 58 , 338–345 (2011).
929 58 . 930 931	Troen, A. M. <i>et al.</i> Cognitive dysfunction and depression in adult kidney transplant recipients: baseline findings from the FAVORIT Ancillary Cognitive Trial (FACT). <i>J. Ren. Nutr.</i> 22 , 268-76.e1–3 (2012).
932 59. 933	Vemuri, P. <i>et al.</i> Association of Kidney Function Biomarkers with Brain MRI Findings: The BRINK Study. <i>J. Alzheimers. Dis.</i> 55 , 1069–1082 (2017).
934 60. 935	Drew, D. A. <i>et al.</i> Cognitive Decline and Its Risk Factors in Prevalent Hemodialysis Patients. <i>Am. J. Kidney Dis.</i> 69 , 780–787 (2017).
936 61. 937 938	Lee, S. C. <i>et al.</i> The Association Between Kidney Function and Cognitive Decline in Community-Dwelling, Elderly Japanese People. <i>J. Am. Med. Dir. Assoc.</i> 16 , 349.e1-349.e5 (2015).
939 62. 940 941	Griva, K. <i>et al.</i> Neuropsychological performance after kidney transplantation: A comparison between transplant types and in relation to dialysis and normative data. <i>Nephrol. Dial. Transplant.</i> 19 , 1866–1874 (2004).
942 63 . 943	Hartung <i>et al.</i> Brain Magnetic Resonance Imaging Findings in Children and Young Adults With CKD. <i>Am. J. Kidney Dis.</i> 72 , 349–359 (2018).

- Matsuda-Abedini, M. *et al.* Brain abnormalities in children and adolescents with chronic
 kidney disease. *Pediatr. Res.* 84, 387–392 (2018).
- Johnson, K. A., Fox, N. C., Sperling, R. A. & Klunk, W. E. Brain imaging in Alzheimer
 disease. *Cold Spring Harb. Perspect. Med.* 2, a006213 (2012).
- Giorgio, A. *et al.* Relevance of brain lesion location for cognition in vascular mild cognitive
 impairment. *NeuroImage. Clin.* 22, 101789 (2019).
- Lenzenweger, M. F. Thinking clearly about the endophenotype-intermediate phenotypebiomarker distinctions in developmental psychopathology research. *Dev. Psychopathol.* 25, 1347–57 (2013).
- Maung, S. C., El Sara, A., Chapman, C., Cohen, D. & Cukor, D. Sleep disorders and chronic
 kidney disease. *World J. Nephrol.* 5, 224–32 (2016).
- Kennedy, C., Ryan, S. A., Kane, T., Costello, R. W. & Conlon, P. J. The impact of change of
 renal replacement therapy modality on sleep quality in patients with end-stage renal disease: a
 systematic review and meta-analysis. *Journal of Nephrology* **31**, 61–70 (2018).
- Elias, R. M., Chan, C. T. & Bradley, T. D. Altered sleep structure in patients with end-stage
 renal disease. *Sleep Med.* 20, 67–71 (2016).
- 26071. Zoccali, C., Mallamaci, F. & Tripepi, G. Sleep apnea in renal patients. J. Am. Soc. Nephrol. 12, 2854–9 (2001).
- Marrone, O. *et al.* Chronic kidney disease in European patients with obstructive sleep apnea:
 the ESADA cohort study. *J. Sleep Res.* 25, 739–745 (2016).
- Forni Ogna, V. *et al.* Prevalence and Diagnostic Approach to Sleep Apnea in Hemodialysis
 Patients: A Population Study. *Biomed Res. Int.* 2015, 103686 (2015).
- ⁹⁶⁶74. Huang, S.-T. *et al.* Risk, Severity, and Predictors of Obstructive Sleep Apnea in Hemodialysis
 ⁹⁶⁷ and Peritoneal Dialysis Patients. *Int. J. Environ. Res. Public Health* 15, (2018).
- Tsampalieros, A. *et al.* Obstructive sleep apnea and hypertension in pediatric chronic kidney
 disease. *Pediatr. Nephrol.* (2019). doi:10.1007/s00467-019-04295-7
- Nigam, G., Pathak, C. & Riaz, M. A systematic review of central sleep apnea in adult patients
 with chronic kidney disease. *Sleep Breath.* 20, 957–64 (2016).
- Tada, T. *et al.* The predictors of central and obstructive sleep apnoea in haemodialysis patients.
 Nephrol. Dial. Transplant 22, 1190–7 (2007).
- Zoccali, C., Mallamaci, F. & Tripepi, G. Nocturnal hypoxemia predicts incident cardiovascular
 complications in dialysis patients. *J. Am. Soc. Nephrol.* 13, 729–33 (2002).
- Zoccali, C., Mallamaci, F., Tripepi, G. & Benedetto, F. A. Autonomic neuropathy is linked to
 nocturnal hypoxaemia and to concentric hypertrophy and remodelling in dialysis patients.
 Nephrol. Dial. Transplant 16, 70–7 (2001).
- Wennberg, A. M. V, Wu, M. N., Rosenberg, P. B. & Spira, A. P. Sleep Disturbance, Cognitive
 Decline, and Dementia: A Review. *Semin. Neurol.* 37, 395–406 (2017).

Matsunaga, Y. et al. Effects of zolpidem/triazolam on cognitive performance 12 hours after 98181. acute administration. Sleep Med. 52, 213-218 (2018). 982 98382. Suzuki, H. et al. Associations of Regional Brain Structural Differences With Aging, Modifiable Risk Factors for Dementia, and Cognitive Performance. JAMA Netw. open 2, 984 e1917257 (2019). 985 98683. Viggiano, D. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity. Behav. Brain Res. 194, 1-14 987 (2008).988 Aguilera, A., Sánchez-Tomero, J. A. & Selgas, R. Brain activation in uremic anorexia. J. Ren. 98984. Nutr. 17, 57-61 (2007). 990 Tran, J., Ayers, E., Verghese, J. & Abramowitz, M. Gait abnormalities and the risk of falls in 99185. CKD. Clin J Am Soc Nephrol 14, 983-993 (2019). 992 99386. Arnold, R., Issar, T., Krishnan, A. V. A. A. V & Pussell, B. A. B. Neurological complications in chronic kidney disease. JRSM Cardiovasc. Dis. 5, 2048004016677687 (2016). 994 Hamed, S. A. Neurologic conditions and disorders of uremic syndrome of chronic kidney 99587. disease: presentations, causes, and treatment strategies. Expert Rev. Clin. Pharmacol. 12, 61-996 90 (2019). 997 Owolabi, L. F. et al. Related Factors and Predictors of Cognitive Dysfunction in Chronic 99888. Kidney Disease on Maintenance Hemodialysis in Nigeria. J. Neurosci. Rural Pract. 7, S62-999 S67 (2016). 1000 Hailpern, S. M., Melamed, M. L., Cohen, H. W. & Hostetter, T. H. Moderate chronic kidney 100189. disease and cognitive function in adults 20 to 59 years of age: Third National Health and 1002 Nutrition Examination Survey (NHANES III). J. Am. Soc. Nephrol. 18, 2205-13 (2007). 1003 Kumar, R. B. & Bhat, J. S. Voice in chronic renal failure. J. Voice 24, 690-3 (2010). 100490. 100591. Marquis, S. et al. Independent predictors of cognitive decline in healthy elderly persons. Arch. Neurol. 59, 601-6 (2002). 1006 100792. Szczepańska-Gieracha, J., Cieślik, B., Chamela-Bilińska, D. & Kuczyński, M. Postural Stability of Elderly People With Cognitive Impairments. Am. J. Alzheimers. Dis. Other Demen. 1008 31, 241-6 (2016). 1009 101093. Tosto, G., Monsell, S. E., Hawes, S. E. & Mayeux, R. Pattern of extrapyramidal signs in Alzheimer's disease. J. Neurol. 262, 2548-56 (2015). 1011 101294. Hildebrandt, F. Genetic kidney diseases. Lancet (London, England) 375, 1287-95 (2010). Landini, S. et al. Reverse Phenotyping after Whole-Exome Sequencing in Steroid-Resistant 101395. 1014 Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. (2019). doi:10.2215/CJN.06060519 Verbitsky, M. et al. Genomic Disorders and Neurocognitive Impairment in Pediatric CKD. J. 101596. Am. Soc. Nephrol. 28, 2303–2309 (2017). 1016

1017 97. 1018 1019	Caterino, M. <i>et al.</i> Urine Proteomics Revealed a Significant Correlation Between Urine- Fibronectin Abundance and Estimated-GFR Decline in Patients with Bardet-Biedl Syndrome. <i>Kidney Blood Press. Res.</i> 43 , 389–405 (2018).
1020 98. 1021	Körver, S. <i>et al.</i> Predictors of objective cognitive impairment and subjective cognitive complaints in patients with Fabry disease. <i>Sci. Rep.</i> 9 , 188 (2019).
1022 99. 1023	Sigurdardottir, S., Myers, S. M., Woodworth, J. M. & Raymond, G. V. Mental retardation and seizure disorder in Schimke immunoosseous dysplasia. <i>Am. J. Med. Genet.</i> 90 , 294–8 (2000).
1024 100. 1025	Brancati, F., Dallapiccola, B. & Valente, E. M. Joubert Syndrome and related disorders. <i>Orphanet J. Rare Dis.</i> 5 , 20 (2010).
1026 101. 1027 1028	Liu, A. J. <i>et al.</i> Association of Cognitive and Behavioral Features Between Adults With Tuberous Sclerosis and Frontotemporal Dementia. <i>JAMA Neurol.</i> (2019). doi:10.1001/jamaneurol.2019.4284
1029 102. 1030	Bökenkamp, A. & Ludwig, M. The oculocerebrorenal syndrome of Lowe: an update. <i>Pediatr: Nephrol.</i> 31 , 2201–2212 (2016).
1031 103 . 1032	Groopman, E. E. <i>et al.</i> Diagnostic Utility of Exome Sequencing for Kidney Disease. <i>N. Engl. J. Med.</i> 380 , 142–151 (2019).
1033 104. 1034	Mengel-From, J. <i>et al.</i> Genetic Variants in KLOTHO Associate With Cognitive Function in the Oldest Old Group. <i>J. Gerontol. A. Biol. Sci. Med. Sci.</i> 71 , 1151–9 (2016).
1035 105 . 1036	Shardell, M. <i>et al.</i> Plasma Klotho and Cognitive Decline in Older Adults: Findings From the InCHIANTI Study. <i>J. Gerontol. A. Biol. Sci. Med. Sci.</i> 71 , 677–82 (2016).
1037 106. 1038	Wuttke, M. <i>et al.</i> A catalog of genetic loci associated with kidney function from analyses of a million individuals. <i>Nat. Genet.</i> 51 , 957–972 (2019).
1039 107. 1040 1041	De Sanctis, C., Bellenchi, G. C. & Viggiano, D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. <i>Psychiatry Res.</i> 261 , 508–516 (2018).
1042 108. 1043 1044 1045	Moreno-Grau, S. <i>et al.</i> Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks: The GR@ACE project. <i>Alzheimers. Dement.</i> (2019). doi:10.1016/j.jalz.2019.06.4950
1046 109. 1047	Hunter, D. J. & Drazen, J. M. Has the Genome Granted Our Wish Yet? <i>N. Engl. J. Med.</i> 380 , 2391–2393 (2019).
1048 110. 1049	Rodríguez-Rodríguez, E. <i>et al.</i> Genetic risk score predicting accelerated progression from mild cognitive impairment to Alzheimer's disease. <i>J. Neural Transm.</i> 120 , 807–12 (2013).
1050 111. 1051 1052	Noguchi, Y., Nagasawa, H., Tachi, T., Tsuchiya, T. & Teramachi, H. Signal detection of oral drug-induced dementia in chronic kidney disease patients using association rule mining and Bayesian confidence propagation neural network. <i>Pharmazie</i> 74 , 570–574 (2019).
1053 112 . 1054	Jessen, N. A., Munk, A. S. F., Lundgaard, I. & Nedergaard, M. The Glymphatic System: A Beginner's Guide. <i>Neurochem. Res.</i> 40, 2583–2599 (2015).

1055 113 . 1056 1057	Shah, S. V, Shukla, A. M., Bose, C., Basnakian, A. G. & Rajapurkar, M. Recent advances in understanding the pathogenesis of atherosclerosis in CKD patients. <i>J. Ren. Nutr.</i> 25 , 205–8 (2015).
1058 114. 1059 1060	Ali, S., Dave, N., Virani, S. S. & Navaneethan, S. D. Primary and Secondary Prevention of Cardiovascular Disease in Patients with Chronic Kidney Disease. <i>Curr. Atheroscler. Rep.</i> 21 , 32 (2019).
1061115. 1062	Bosch, A. <i>et al.</i> Retinal capillary and arteriolar changes in patients with chronic kidney disease. <i>Microvasc. Res.</i> 118 , 121–127 (2018).
1063 116. 1064	Gennip, A. C. E. van <i>et al.</i> Endothelial dysfunction and low-grade inflammation in the transition to renal replacement therapy. <i>PLoS One</i> 14 , e0222547 (2019).
1065 117. 1066	Lau, W. L. <i>et al.</i> Chronic Kidney Disease Increases Cerebral Microbleeds in Mouse and Man. <i>Transl. Stroke Res.</i> (2019). doi:10.1007/s12975-019-00698-8
1067 118. 1068	Nortley, R. <i>et al.</i> Amyloid beta oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. <i>Science (80).</i> 365 , eaav9518 (2019).
1069 119. 1070	Walker, K. <i>et al.</i> Association of midlife to late-life blood pressure patterns with incident dementia. <i>JAMA</i> 322 , 535–545 (2019).
1071 120. 1072	Jiang, X. L. <i>et al.</i> Cerebral blood flow changes in hemodialysis and peritoneal dialysis patients: an arterial-spin labeling MR imaging. <i>Metab. Brain Dis.</i> 31 , 929–36 (2016).
1073 121. 1074	Liu, HS. <i>et al.</i> Regional Cerebral Blood Flow in Children and Young Adults with Chronic Kidney Disease. <i>Radiology</i> 288 , 849–858 (2018).
1075 122. 1076 1077	Cheng, BC. <i>et al.</i> Decreased cerebral blood flow and improved cognitive function in patients with end-stage renal disease after peritoneal dialysis: An arterial spin-labelling study. <i>Eur. Radiol.</i> 29 , 1415–1424 (2019).
1078 123 . 1079 1080	Moura, A. <i>et al.</i> Type of vascular access and location in online hemodiafiltration and its association with patient's perception of health-related quality of life. <i>J. Vasc. Access</i> 15 , 175–82 (2014).
1081124. 1082	McGuire, S. <i>et al.</i> Hemodynamic Instability during Dialysis: The Potential Role of Intradialytic Exercise. <i>Biomed Res. Int.</i> 2018 , 8276912 (2018).
1083 125. 1084	Polinder-Bos, H. A. <i>et al.</i> Hemodialysis Induces an Acute Decline in Cerebral Blood Flow in Elderly Patients. <i>J. Am. Soc. Nephrol.</i> 29 , 1317–1325 (2018).
1085 126. 1086	Farhoudi, M., Abedi Azar, S. & Abdi, R. Brain hemodynamics in patients with end-stage renal disease between hemodialysis sessions. <i>Iran. J. Kidney Dis.</i> 6 , 110–3 (2012).
1087 127. 1088	Tamura, M. K. <i>et al.</i> Chronic kidney disease, cerebral blood flow, and white matter volume in hypertensive adults. <i>Neurology</i> 86 , 1208–16 (2016).
1089 128. 1090	Markus, H. S. Genes, endothelial function and cerebral small vessel disease in man. <i>Exp. Physiol.</i> 93 , 121–7 (2008).

1091 129. 1092 1093	Pabbidi, M. R. <i>et al.</i> Identification of a region of rat chromosome 1 that impairs the myogenic response and autoregulation of cerebral blood flow in fawn-hooded hypertensive rats. <i>Am. J. Physiol. Heart Circ. Physiol.</i> 304 , H311-7 (2013).
1094 130. 1095 1096	 Fan, F. <i>et al.</i> Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. <i>Am. J. Physiol. Regul. Integr. Comp. Physiol.</i> 308, R379-90 (2015).
1097 131 . 1098	Iliff, J. J. <i>et al.</i> A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β . <i>Sci. Transl. Med.</i> 4 , 147ra111 (2012).
1099132. 1100	Rasmussen, M. K., Mestre, H. & Nedergaard, M. The glymphatic pathway in neurological disorders. <i>Lancet. Neurol.</i> 17 , 1016–1024 (2018).
1101133. 1102	Plog, B. A. & Nedergaard, M. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future. <i>Annu. Rev. Pathol.</i> 13 , 379–394 (2018).
1103 134 . 1104 1105	Palmer, K., Mitolo, M., Burgio, F., Meneghello, F. & Venneri, A. Sleep Disturbance in Mild Cognitive Impairment and Association With Cognitive Functioning. A Case-Control Study. <i>Front. Aging Neurosci.</i> 10 , 360 (2018).
1106135. 1107	Menon, R. N. <i>et al.</i> Do quantified sleep architecture abnormalities underlie cognitive disturbances in amnestic mild cognitive impairment? <i>J. Clin. Neurosci.</i> 67 , 85–92 (2019).
1108 136 . 1109	Ju, YE. S., Zangrilli, M. A., Finn, M. B., Fagan, A. M. & Holtzman, D. M. Obstructive sleep apnea treatment, slow wave activity, and amyloid-β. <i>Ann. Neurol.</i> 85 , 291–295 (2019).
1110137. 1111	Mawuenyega, K. G. <i>et al.</i> Decreased clearance of CNS beta-amyloid in Alzheimer's disease. <i>Science</i> 330 , 1774 (2010).
1112 138 . 1113	Li, C. <i>et al.</i> Roles of Neuropeptide Y in Neurodegenerative and Neuroimmune Diseases. <i>Front. Neurosci.</i> 13 , 869 (2019).
1114 139 . 1115	Baker, D. G. <i>et al.</i> Characterization of cerebrospinal fluid (CSF) and plasma NPY levels in normal volunteers over a 24-h timeframe. <i>Psychoneuroendocrinology</i> 38 , 2378–82 (2013).
1116140. 1117	Kastin, A. J. & Akerstrom, V. Nonsaturable entry of neuropeptide Y into brain. <i>Am. J. Physiol.</i> 276 , E479-82 (1999).
1118 141. 1119	Zoccali, C. <i>et al.</i> Neuropeptide Y predicts cardiovascular events in chronic kidney disease patients: a cohort study. <i>J. Hypertens.</i> 37 , 1359–1365 (2019).
1120142. 1121	Barceló, A. <i>et al.</i> Neuropeptide Y and leptin in patients with obstructive sleep apnea syndrome: role of obesity. <i>Am. J. Respir. Crit. Care Med.</i> 171 , 183–7 (2005).
1122 143 . 1123	Zoccali, C. <i>et al.</i> Prospective study of neuropeptide y as an adverse cardiovascular risk factor in end-stage renal disease. <i>J. Am. Soc. Nephrol.</i> 14 , 2611–7 (2003).
1124 144. 1125	Cannon, J. A. <i>et al.</i> Cognitive Impairment and Heart Failure: Systematic Review and Meta-Analysis. <i>J. Card. Fail.</i> 23 , 464–475 (2017).
1126 145 . 1127	Bründl, E. <i>et al.</i> Excessive release of endogenous neuropeptide Y into cerebrospinal fluid after treatment of spontaneous subarachnoid haemorrhage and its possible impact on self-reported

1128 1129	neuropsychological performance - results of a prospective clinical pilot study on good. <i>Neurol. Res.</i> 40 , 1001–1013 (2018).
1130 146. 1131	Choi, B. <i>et al.</i> Elevated Neuropeptide Y in Endothelial Dysfunction Promotes Macrophage Infiltration and Smooth Muscle Foam Cell Formation. <i>Front. Immunol.</i> 10 , 1701 (2019).
1132 147. 1133	Lourida, I. <i>et al.</i> Parathyroid hormone, cognitive function and dementia: a systematic review. <i>PLoS One</i> 10 , e0127574 (2015).
1134 148. 1135 1136	Kellett, K. A., Williams, J., Vardy, E. R., Smith, A. D. & Hooper, N. M. Plasma alkaline phosphatase is elevated in Alzheimer's disease and inversely correlates with cognitive function. <i>Int. J. Mol. Epidemiol. Genet.</i> 2 , 114–21 (2011).
1137 149. 1138	Díaz-Hernández, M. <i>et al.</i> Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. <i>J. Biol. Chem.</i> 285 , 32539–48 (2010).
1139 150 . 1140	Vervloet, M. Renal and extrarenal effects of fibroblast growth factor 23. <i>Nat. Rev. Nephrol.</i> 15 , 109–120 (2019).
1141 151. 1142	McGrath, E. R. <i>et al.</i> Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study. <i>PLoS One</i> 14 , e0213321 (2019).
1143152.	Kuro-O, M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 15, 27-44 (2019).
1144 153 . 1145	Kuriyama, N. <i>et al.</i> Association between α-Klotho and Deep White Matter Lesions in the Brain: A Pilot Case Control Study Using Brain MRI. <i>J. Alzheimers. Dis.</i> 61 , 145–155 (2018).
1146 154. 1147	Erickson, C. M. <i>et al.</i> KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD. <i>Neurology</i> 92 , e1878–e1889 (2019).
1148 155 . 1149	Nagai, T. <i>et al.</i> Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. <i>FASEB J.</i> 17 , 50–2 (2003).
1150 156 . 1151	Laszczyk, A. M. et al. FGF-23 Deficiency Impairs Hippocampal-Dependent Cognitive Function. eNeuro 6,
1152 157. 1153	Kosakai, A. <i>et al.</i> Degeneration of mesencephalic dopaminergic neurons in klotho mouse related to vitamin D exposure. <i>Brain Res.</i> 1382 , 109–17 (2011).
1154 158. 1155	Cui, X., Gooch, H., Petty, A., McGrath, J. J. & Eyles, D. Vitamin D and the brain: Genomic and non-genomic actions. <i>Mol. Cell. Endocrinol.</i> 453 , 131–143 (2017).
1156 159 . 1157	Mayne, P. E. & Burne, T. H. J. Vitamin D in Synaptic Plasticity, Cognitive Function, and Neuropsychiatric Illness. <i>Trends Neurosci.</i> 42 , 293–306 (2019).
1158 160. 1159	Goodwill, A. M. & Szoeke, C. A Systematic Review and Meta-Analysis of The Effect of Low Vitamin D on Cognition. <i>J. Am. Geriatr. Soc.</i> 65 , 2161–2168 (2017).
1160 161 . 1161	Sorrells, S. F. <i>et al.</i> Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. <i>Nature</i> 555 , 377–381 (2018).
1162 162. 1163	Ma, D. K., Bonaguidi, M. A., Ming, GL. & Song, H. Adult neural stem cells in the mammalian central nervous system. <i>Cell Res.</i> 19 , 672–82 (2009).

1164 163. 1165	Martino, G. & Pluchino, S. The therapeutic potential of neural stem cells. <i>Nat. Rev. Neurosci.</i> 7 , 395–406 (2006).
1166 164. 1167 1168	De Feo, D., Merlini, A., Laterza, C. & Martino, G. Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. <i>Curr. Opin. Neurol.</i> 25 , 322–33 (2012).
1169 165. 1170 1171	Meng, C., Zhang, JC., Shi, RL., Zhang, SH. & Yuan, SY. Inhibition of interleukin-6 abolishes the promoting effects of pair housing on post-stroke neurogenesis. <i>Neuroscience</i> 307 , 160–70 (2015).
1172 166. 1173 1174	Wang, J. <i>et al.</i> Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. <i>Front. Cell. Neurosci.</i> 9 , 361 (2015).
1175 167. 1176 1177	Widera, D., Mikenberg, I., Elvers, M., Kaltschmidt, C. & Kaltschmidt, B. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. <i>BMC Neurosci.</i> 7 , 64 (2006).
1178 168. 1179	Kokaia, Z., Martino, G., Schwartz, M. & Lindvall, O. Cross-talk between neural stem cells and immune cells: the key to better brain repair? <i>Nat. Neurosci.</i> 15 , 1078–87 (2012).
1180 169 . 1181	Liu, Q. <i>et al.</i> Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. <i>Nat. Neurosci.</i> 19 , 243–52 (2016).
1182 170. 1183	Mohammad, M. G. <i>et al.</i> Immune cell trafficking from the brain maintains CNS immune tolerance. <i>J. Clin. Invest.</i> 124 , 1228–41 (2014).
1184 171. 1185	Skardelly, M. <i>et al.</i> The influence of immunosuppressive drugs on neural stem/progenitor cell fate in vitro. <i>Exp. Cell Res.</i> 319 , 3170–81 (2013).
1186 172. 1187	Rudenko, A. <i>et al.</i> Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. <i>Neuron</i> 79 , 1109–1122 (2013).
1188 173. 1189	Zhou, H., Wang, B., Sun, H., Xu, X. & Wang, Y. Epigenetic Regulations in Neural Stem Cells and Neurological Diseases. <i>Stem Cells Int.</i> 2018 , 6087143 (2018).
1190 174. 1191	Posner, J. B., Plum, F., Saper, C. B. & Schiff, N. <i>Plum and Posner's Diagnosis of Stupor and Coma</i> . (Oxford University Press, 2007).
1192 175. 1193	Kelly, D. M. The role of dialysis in the pathogenesis and treatment of dementia. <i>Nephrol. Dial. Transplant</i> 34 , 1080–1083 (2019).
1194 176. 1195	Giang, L. M. <i>et al.</i> Cognitive function and dialysis adequacy: no clear relationship. <i>Am. J. Nephrol.</i> 33 , 33–8 (2011).
1196 177. 1197	Lin, YT. <i>et al.</i> Comparison of dementia risk between end stage renal disease patients with hemodialysis and peritoneal dialysisa population based study. <i>Sci. Rep.</i> 5 , 8224 (2015).
1198 178. 1199	Joshee, P., Wood, A. G., Wood, E. R. & Grunfeld, E. A. Meta-analysis of cognitive functioning in patients following kidney transplantation. <i>Nephrol. Dial. Transplant.</i> 33 , 1268–1277 (2018).
1200 179. 1201	Gupta, A. <i>et al.</i> Cognitive Function and White Matter Changes Associated with Renal Transplantation. <i>Am. J. Nephrol.</i> 43 , 50–7 (2016).

1202 180. 1203 1204	SPRINT MIND Investigators for the SPRINT Research Group <i>et al.</i> Association of Intensive vs Standard Blood Pressure Control With Cerebral White Matter Lesions. <i>JAMA</i> 322 , 524–534 (2019).
1205 181. 1206	Brady, C. B. <i>et al.</i> Homocysteine lowering and cognition in CKD: the Veterans Affairs homocysteine study. <i>Am. J. Kidney Dis.</i> 54 , 440–9 (2009).
1207 182 . 1208	Abu Ahmad, N. <i>et al.</i> l-Carnitine improves cognitive and renal functions in a rat model of chronic kidney disease. <i>Physiol. Behav.</i> 164 , 182–8 (2016).
1209 183. 1210 1211	Farina, N., Isaac, M. G. E. K. N., Clark, A. R., Rusted, J. & Tabet, N. Vitamin E for Alzheimer's dementia and mild cognitive impairment. <i>Cochrane database Syst. Rev.</i> 11 , CD002854 (2012).
1212 184 . 1213	Fujisaki, K. <i>et al.</i> Cerebral oxidative stress induces spatial working memory dysfunction in uremic mice: neuroprotective effect of tempol. <i>Nephrol. Dial. Transplant</i> 29 , 529–38 (2014).
1214 185 . 1215	Smith, P. J. & Blumenthal, J. A. Dietary factors and cognitive decline. <i>J. Prev. Alzheimer's Dis.</i> 3 , 53–64 (2016).
1216 186 . 1217	Dearborn-Tomazos, J. L. <i>et al.</i> Association of Dietary Patterns in Midlife and Cognitive Function in Later Life in US Adults Without Dementia. <i>JAMA Netw. open</i> 2 , e1916641 (2019).
1218 187. 1219 1220 1221	Vinothkumar, G., Krishnakumar, S., Riya & Venkataraman, P. Correlation between abnormal GSK3 β , β Amyloid, total Tau, p-Tau 181 levels and neuropsychological assessment total scores in CKD patients with cognitive dysfunction: Impact of rHuEPO therapy. <i>J. Clin. Neurosci.</i> 69 , 38–42 (2019).
1222 188. 1223 1224 1225	Vinothkumar, G. <i>et al.</i> Therapeutic impact of rHuEPO on abnormal platelet APP, BACE 1, presenilin 1, ADAM 10 and A β expressions in chronic kidney disease patients with cognitive dysfunction like Alzheimer's disease: A pilot study. <i>Biomed. Pharmacother.</i> 104 , 211–222 (2018).
1226 189 . 1227	Wallace, H. J., Wallace, I. R. & McCaffrey, P. Cognitive decline reversed by cinacalcet. <i>Qjm</i> 108 , 59–61 (2015).
1228 190. 1229	Ridker, P. M. <i>et al.</i> Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. <i>N. Engl. J. Med.</i> 377 , 1119–1131 (2017).
1230 191. 1231	Tardif, JC. <i>et al.</i> Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. <i>N. Engl. J. Med.</i> 381 , 2497–2505 (2019).
1232 192. 1233	Liberale, L. <i>et al.</i> Post-ischaemic administration of the murine Canakinumab-surrogate antibody improves outcome in experimental stroke. <i>Eur. Heart J.</i> 39 , 3511–3517 (2018).
1234 193. 1235 1236	Sil, S., Ghosh, R., Sanyal, M., Guha, D. & Ghosh, T. A comparison of neurodegeneration linked with neuroinflammation in different brain areas of rats after intracerebroventricular colchicine injection. <i>J. Immunotoxicol.</i> 13 , 181–90 (2016).
1237 194. 1238 1239	Rahman, M. R. <i>et al.</i> Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer's disease: Insights from a systems biomedicine perspective. <i>Genomics</i> (2019). doi:10.1016/j.ygeno.2019.07.018

1240 195 . 1241	Ferrari, C. C. <i>et al.</i> Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. <i>Neurobiol. Dis.</i> 24 , 183–93 (2006).
1242 196. 1243 1244	Matsumoto, J. <i>et al.</i> TNF- α -sensitive brain pericytes activate microglia by releasing IL-6 through cooperation between IkB-NFkB and JAK-STAT3 pathways. <i>Brain Res.</i> 1692 , 34–44 (2018).
1245 197. 1246	Furukawa, S., Usuda, K., Abe, M., Hayashi, S. & Ogawa, I. Indole-3-acetic acid induces microencephaly in mouse fetuses. <i>Exp. Toxicol. Pathol.</i> 59 , 43–52 (2007).
1247 198. 1248 1249	Adesso, S. <i>et al.</i> Indoxyl Sulfate Affects Glial Function Increasing Oxidative Stress and Neuroinflammation in Chronic Kidney Disease: Interaction between Astrocytes and Microglia. <i>Front. Pharmacol.</i> 8 , 370 (2017).
1250 199. 1251	Fujita, Y. & Yamashita, T. The Effects of Leptin on Glial Cells in Neurological Diseases. <i>Front. Neurosci.</i> 13 , 828 (2019).
1252 200. 1253	Segura, S. <i>et al.</i> Leptin-dependent neurotoxicity via induction of apoptosis in adult rat neurogenic cells. <i>Front. Cell. Neurosci.</i> 9 , 350 (2015).
1254 201. 1255 1256	Chun, H. J., Lee, Y., Kim, A. H. & Lee, J. Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis. <i>Neurotox. Res.</i> 29 , 419–31 (2016).
1257 202. 1258 1259 1260	Haddad, M. <i>et al.</i> Methylglyoxal and Glyoxal as Potential Peripheral Markers for MCI Diagnosis and Their Effects on the Expression of Neurotrophic, Inflammatory and Neurodegenerative Factors in Neurons and in Neuronal Derived-Extracellular Vesicles. <i>Int. J.</i> <i>Mol. Sci.</i> 20 , (2019).
1261203. 1262	Rizwan Siddiqui, M. <i>et al.</i> Erythropoietin-mediated activation of aquaporin-4 channel for the treatment of experimental hydrocephalus. <i>Childs. Nerv. Syst.</i> 34 , 2195–2202 (2018).
1263 204. 1264 1265	Liu, D. <i>et al.</i> Hydrogen sulfide promotes proliferation and neuronal differentiation of neural stem cells and protects hypoxia-induced decrease in hippocampal neurogenesis. <i>Pharmacol. Biochem. Behav.</i> 116 , 55–63 (2014).
1266 205. 1267 1268	Nath, N., Prasad, H. K. & Kumar, M. Cerebroprotective effects of hydrogen sulfide in homocysteine-induced neurovascular permeability: Involvement of oxidative stress, arginase, and matrix metalloproteinase-9. <i>J. Cell. Physiol.</i> 234 , 3007–3019 (2019).
1269 206. 1270 1271	Huang, TT., Hao, DL., Wu, BN., Mao, LL. & Zhang, J. Uric acid demonstrates neuroprotective effect on Parkinson's disease mice through Nrf2-ARE signaling pathway. <i>Biochem. Biophys. Res. Commun.</i> 493 , 1443–1449 (2017).
1272 207. 1273 1274	Yang, N., Xu, L., Lin, P. & Cui, J. Uric acid promotes neuronal differentiation of human placenta-derived mesenchymal stem cells in a time- and concentration-dependent manner. <i>Neural Regen. Res.</i> 7 , 756–60 (2012).
1275 208. 1276	Moretti, R., Morelli, M. E. & Caruso, P. Vitamin D in Neurological Diseases: A Rationale for a Pathogenic Impact. <i>Int. J. Mol. Sci.</i> 19 , (2018).
1277 209. 1278	Morello, M. <i>et al.</i> Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer's Disease. <i>Mol. Neurobiol.</i> 55 , 6463–6479 (2018).

1279 210. 1280 1281	Watson, C. P. <i>et al.</i> The transporter and permeability interactions of asymmetric dimethylarginine (ADMA) and L-arginine with the human blood-brain barrier in vitro. <i>Brain Res.</i> 1648 , 232–242 (2016).
1282 211. 1283	Luce, M. <i>et al.</i> Is 3-Carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) a Clinically Relevant Uremic Toxin in Haemodialysis Patients? <i>Toxins (Basel).</i> 10 , (2018).
1284 212 . 1285	Leifheit-Nestler, M. & Haffner, D. Paracrine Effects of FGF23 on the Heart. <i>Front. Endocrinol.</i> (<i>Lausanne</i>). 9 , 278 (2018).
1286 213 . 1287	Huang, M. <i>et al.</i> The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. <i>Redox Biol.</i> 16 , 303–313 (2018).
1288 214. 1289	Pu, T. <i>et al.</i> Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage. <i>Exp. Neurobiol.</i> 28 , 104–118 (2019).
1290 215 . 1291 1292	Bird, ML., El Haber, N., Batchelor, F., Hill, K. & Wark, J. D. Vitamin D and parathyroid hormone are associated with gait instability and poor balance performance in mid-age to older aged women. <i>Gait Posture</i> 59 , 71–75 (2018).
1293 216 . 1294	Yang, S., Zhang, X., Yuan, J., Yin, J. & Hu, W. Serum Uric Acid is Independently Associated with Enlarged Perivascular Spaces. <i>Sci. Rep.</i> 7 , 16435 (2017).
1295 217. 1296 1297	Badran, M., Golbidi, S., Ayas, N. & Laher, I. Nitric Oxide Bioavailability in Obstructive Sleep Apnea: Interplay of Asymmetric Dimethylarginine and Free Radicals. <i>Sleep Disord.</i> 2015 , 387801 (2015).
1298 218. 1299 1300	Obayashi, K. <i>et al.</i> Association of Serum Asymmetric Dimethylarginine With Muscle Strength and Gait Speed: A Cross-Sectional Study of the HEIJO-KYO Cohort. <i>J. Bone Miner. Res.</i> 31 , 1107–13 (2016).
1301 219. 1302 1303	Gordon-Dseagu, V. L. Z. <i>et al.</i> The association of sleep with metabolic pathways and metabolites: evidence from the Dietary Approaches to Stop Hypertension (DASH)-sodium feeding study. <i>Metabolomics</i> 15 , 48 (2019).
1304 220. 1305	Lee, WJ. <i>et al.</i> Cystatin C, a potential marker for cerebral microvascular compliance, is associated with white-matter hyperintensities progression. <i>PLoS One</i> 12 , e0184999 (2017).
1306 221 . 1307	Yeh, YC. <i>et al.</i> Indoxyl sulfate, not p-cresyl sulfate, is associated with cognitive impairment in early-stage chronic kidney disease. <i>Neurotoxicology</i> 53 , 148–152 (2016).

Beauchet, O. *et al.* Effects of Vitamin D and Calcium Fortified Yogurts on Gait, Cognitive
Performances, and Serum 25-Hydroxyvitamin D Concentrations in Older Community-Dwelling
Females: Results from the GAit, MEmory, Dietary and Vitamin D (GAME-D2) Randomized
Controlled Tria. *Nutrients* 11, (2019).

1312

1313

1314

1315 Figure Legend

1316 Figure 1. Schematic representation of the evolution of mild cognitive impairment (MCI) as a function of CKD stage at fixed age (A) and as a function of age (B). The effect of replacement 1317 therapies (HD, PD) in the end stage phase (ESRF) are also reported. A: The percent of mild 1318 cognitive impairment, screened with tests such as the Mini Mental State Examination (MMSE) 1319 or the Montreal Cognitive Assessment (MoCA), increases as a function of CKD stage/eGFR (and possibly as a function of the time spent in that stage). B: the risk for MCI increases as a 1321 function of time (age) in the general population. In patients with ESRF treated with hemodialysis (HD) the risk remains greatly above the general population. Peritoneal dialysis 1323 (PD) gives some advantage. Patients with mild CKD and kidney transplantation restores the 1324 slope of the risk curve towards that of the general population; however, the initial gap developed before transplantation is not "repaired" and therefore average cognitive 1326 performances in transplanted patients remain below the non-CKD population. Lines are 1327 estimates based on selected studies reported in Supplementary data. The confidence intervals 1328 are derived from the variations among selected studies. 1329

1330

Figure 2. Schematic representation of brain modifications accompanying chronic kidney disease (CKD), possibly mediated by uremic neurotoxins or lack of kidney neurotrophins. 1332 Catecholamine neurons in the encephalic trunk/hypothalamus may be particularly sensitive to the uremic milieu, thereby mediating the alterations in sleep patterns, mood, attention. These 1334 may in turn impinge on memory, thus giving the emergence of Mild cognitive impairment 1335 (MCI) and then dementia. LC: locus coeruleus. NE: norepinephrine neurons; 5HT: serotonin 1336 1337 neurons; DA: dopamine neurons; SN/VTA: Substantia Nigra/Ventral Tegmental Area; H: histamine neurons; TM: tuberomammillary (hypothalamus), Ach: acetylcholine neurons; PFc: 1338 prefrontal cortex. 1339

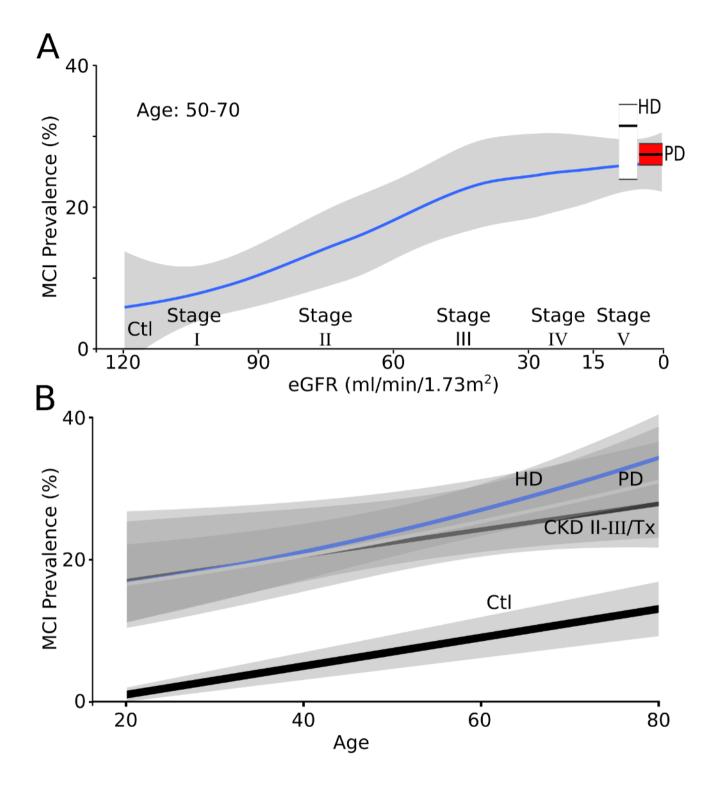
1340

Figure 3. The hierarchical organization connecting CKD to behavior. Cognitive impairment is a complex behavioral pattern that can be screened using questionnaires and summarized in a single score but is actually a multidimensional phenomenon comprising multiple cognitive domains. Therefore, its relation with the direct effects of CKD (e.g. the biochemical changes in plasma) is complex and difficult to understand. Intermediate phenotypes are quantitative phenotypes connected to the complex behavioral alterations, but with simpler biological substrates, which are more easily connected to the molecular derangements of CKD.

1348

genetic predisposing factors.

1349


1361

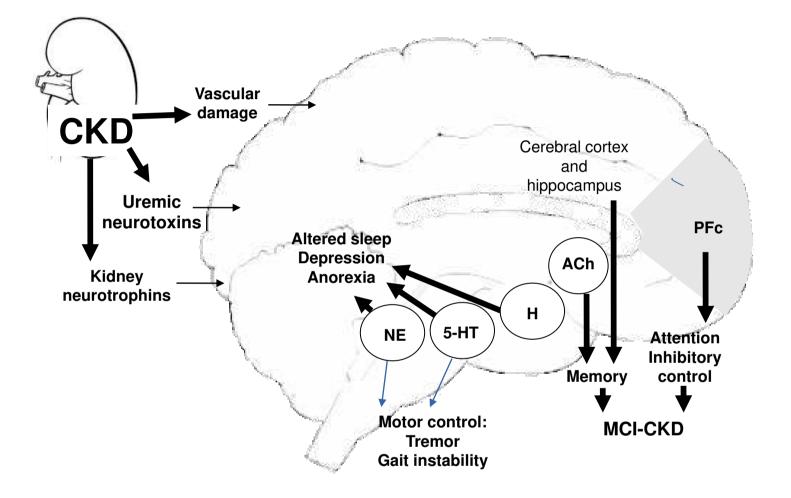

1362

Figure 4. Uremic neurotoxins enter the brain via the blood brain barrier (BBB) and blood-1351 CSF barrier (BCB) and leave the brain via the glymphatic system that is a polarized brain fluid transport system that connects with meningeal and peripheral lymphatic vessels for 1352 export of metabolic waste. CSF in the subarachnoid space is driven into the periarterial space 1353 by arterial pulsatility and mixes with interstitial fluid thus dragging waste product not only for 1354 export along the perivenous spaces but also within different areas of the brain including NPC 1355 niches, located within the sub granular (SGZ) zone and the sub ventricular zone (SVZ). 1356 Within these NPC niches uremic neurotoxins might interfere with proper functioning of 1357 endogenous NPCs, such as neurogenesis and homeostatic functions, thus further contributing 1358 perturb brain tasks during CKD. 1359 1360 Figure 5. Mechanism of action of some of the uremic (neuro)toxins and their interaction with

44

Figure 1

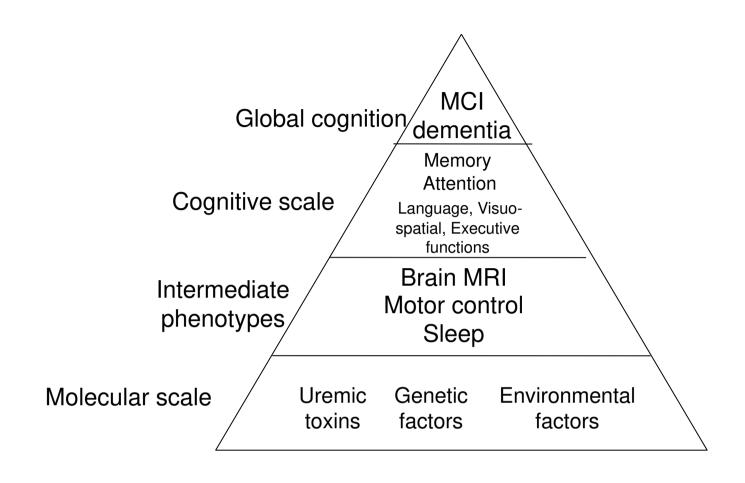
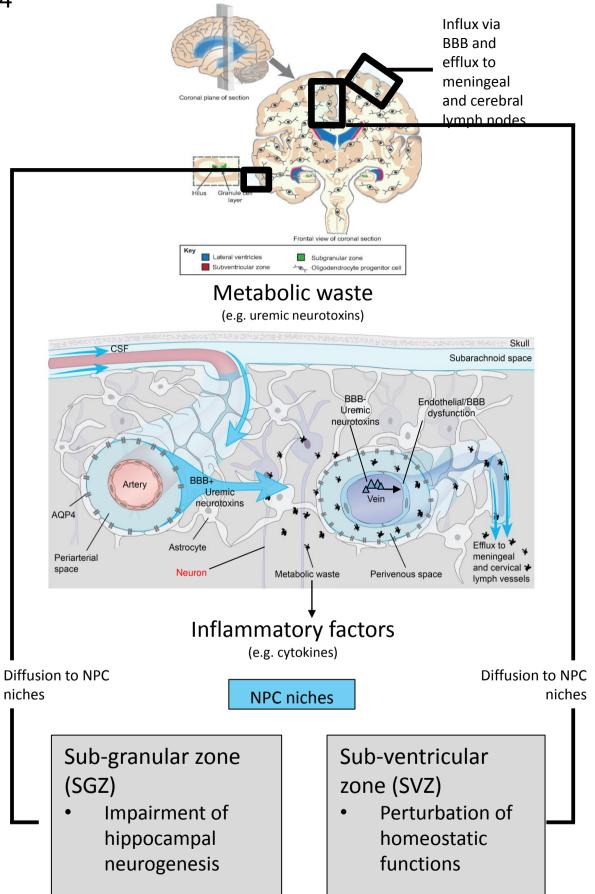
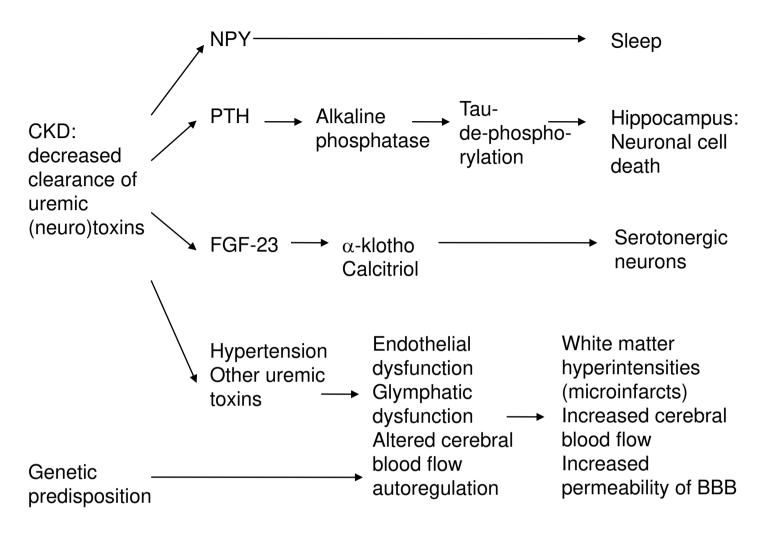




Figure 4

Figure 5

