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Abstract 54 

Cognitive impairment is an increasingly recognized major cause of chronic disability, and is 55 

commonly found in patients with chronic kidney disease (CKD). A better understanding of 56 

the relationship between kidney function and cognition may help us to understand better 57 

other forms of cognitive dysfunction. Patients with CKD have an increased risk (compared 58 

with the general population) of both dementia and its earlier stage of mild cognitive 59 
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impairment (MCI), with deficits in executive functions, memory and attention. Brain imaging 60 

in CKD patients has detected damage to white matter in the prefrontal cortex and, in animal 61 

models, in the subcortical monoaminergic and cholinergic systems, accompanied by 62 

widespread macro- and micro-vascular damage. Unfortunately, current interventions that 63 

target cardiovascular (CV) risk factors (anti-hypertensives, anti-platelet agents and statins) 64 

seem to have little or no effect on MCI-CKD, suggesting that the accumulation of uremic 65 

(neuro)toxins may be more important in this disorder than disturbed hemodynamic factors or 66 

lipid metabolism. Experimental models show that the brain monoaminergic system is 67 

susceptible to uremic neurotoxins and that this system is responsible for the altered sleep 68 

pattern commonly observed in CKD patients. Neuronal stem cells and the brain glymphatic 69 

system, shown to be important in Alzheimer’s disease (AD), may also be involved. MCI-70 

CKD needs to be studied in more detail to understand fully its clinical relevance, underlying 71 

pathophysiology, and possible means of early diagnosis and prevention; and whether there 72 

may be novel approaches and potential therapies with wider application to this and other 73 

forms of cognitive decline.  74 

 75 

Key points 76 

Cognitive impairment is more common in patients with chronic kidney disease (CKD) and 77 

reduced renal function than in the general population.  78 

Brain dysfunction in CKD patients likely results from uremic (neuro)toxins interacting with 79 

neuronal stem cells, the brain vascular and glymphatic system, and catecholaminergic 80 

neurons.  81 

Targeting these mechanisms could potentially reduce the burden of dementia in CKD and 82 

might help in finding better treatments for other forms of cognitive impairment.  83 

 84 

Introduction 85 

The widely used term ‘cognitive dysfunction’ has been defined in many different ways, but 86 

collectively refers to a combined deficit of brain processes that affect learning, memory, and 87 

sensory processing. It varies from mild cognitive impairment (MCI. See Box 1) to severe 88 

dementia, the latter characterized by a loss of independence in carrying out activities of daily 89 

living 
1
. MCI may be considered as a prodromal state before established dementia with an 90 

annual conversion rate of 1. 9% per year
 2
. Although MCI is inherently unstable (patients may 91 
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progress or revert to normal cognition), some investigators consider it to be a distinct clinical 92 

entity 
3
. Despite the increasing prevalence and incidence of MCI and dementia, there remains 93 

a lack of disease-modifying drugs and a comprehensive biological understanding of MCI, as 94 

well as an understanding of the mechanisms that determine the transition from MCI to 95 

dementia.  96 

A significant number of patients with chronic kidney disease (CKD) suffer from cognitive 97 

dysfunction, and CKD is among the strongest risk factors for MCI and dementia. When 98 

considering the odds ratio, a 6-year longitudinal study in the general population listed CKD 99 

as the third major risk factor for MCI and dementia after stroke and chronic use of anxiolytics, 100 

and ahead of genetic factors 
4
. Cognitive impairment can already be evident at early stages of 101 

CKD
 5
 (Figure 1). However, the relationship between the severity of CKD (based on 102 

estimated Glomerular Filtration Rate, eGFR) and the severity of dementia/MCI is unclear. 103 

When taking into account age, cognitive changes at different CKD stages may be related to 104 

the presence and degree of albuminuria 
6–10

. Indeed, a separate study suggests that the 105 

duration of kidney disease, rather than the degree of renal impairment, correlates with brain 106 

dysfunction. Available long-term follow-up studies in CKD patients also suggest greater 107 

cognitive decline in those with higher levels of albuminuria, but an unclear effect of eGFR 108 

6,11
.  109 

Current techniques of renal replacement therapy have different effects on cognitive 110 

dysfunction: hemodialysis (HD) and peritoneal dialysis (PD) can treat effectively the acute 111 

uremic encephalopathy seen in some non-dialyzed patients with end-stage renal failure 112 

(ESRF), but have little effect on MCI, although there may be a slightly better outcome with 113 

PD 
12,13

 compared with HD. Conversely, kidney transplantation is likely to play a protective 114 

role, although without complete reversal to normal cognition in healthy subjects 
14

 (Figure 1). 115 

Several mechanisms have been proposed to explain the brain dysfunction seen in CKD, 116 

particularly focusing on the vascular damage and altered extracellular milieu that 117 

accompanies CKD.  118 

The CKD-cognitive impairment conundrum has become a major focus of the scientific 119 

community, as evident from the increasing number of published meta-analyses and review 120 

articles (see e.g. 
15–17

 ). However, much of the current literature does not discuss the topic in 121 

the context of recent developments in neuroscience and neurology, such as neural stem cells, 122 

brain glymphatics or subcortical modulatory systems (e.g., dopamine and norepinephrine 123 

systems); furthermore, the pace of new findings is so rapid that an updated perspective can be 124 
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justified. This is an ongoing and active field of research, and new functional tools to study 125 

both the brain and kidney hold the promise of advancing our understanding of MCI-CKD.  126 

This review summarizes our current knowledge of the pathogenesis of brain lesions 127 

associated with CKD and their likely effects on cognition. The changes observed are 128 

discussed in the context of uremic neurotoxicity and vascular damage 
18,19

 . We focus on 129 

brain dysfunction occurring in CKD, rather than in acute kidney injury (AKI), which has 130 

been considered in detail elsewhere 
20

. Finally, our review does not discuss depression, which 131 

is also detailed elsewhere 
21

.  132 

 133 

1. Epidemiology of CKD and cognitive dysfunction 134 

With a prevalence ranging from 27% up to 62% 
18,22–24 

(depending on the age and the study) 135 

MCI is more common among CKD stage 1-4 patients than in a matched non-CKD population 136 

(prevalence 11%-26%) 
22,23,25

. While MCI does not affect activities of daily living, 5-10% of 137 

those affected will eventually progress to clinical dementia 
26

. The prevalence of dementia is 138 

8-37% among HD patients 
10,25,27–29

, 4-33% among those on PD 
25,29

 and around 7-22% in 139 

kidney transplant patients 
14,30

. In contrast, the prevalence of dementia in the general 140 

population is 5% (95% CI 4. 5%–5. 7%) 
31

. Most of the studies comparing the prevalence of 141 

MCI/dementia in CKD with the general population take into account age, gender and 142 

education (which may affect the estimates). In Figure 1 we summarize an estimate of the 143 

MCI trend in CKD, PD and HD patients according to kidney function and the age. 144 

Regarding the age of onset of cognitive decline (in relation to first diagnosis) the data are 145 

scanty. In the general population the incidence rate is negligible (less than 1%) below age 65 146 

years and then increases exponentially as a function of age (7.4% at 70 years) 
32,33

. 147 

Conversely, in kidney transplant patients the 10-year risk of dementia is 5% in those aged 55 148 

years, but also increases linearly with age 
32

. Similarly, the 10-year risk of dementia after HD 149 

initiation is 20% in patients aged 65 years and again increases linearly with age 
30

. In addition, 150 

data by Kurella Tamura et al 
34

 suggest a higher prevalence (about 10%) of cognitive 151 

impairment even in relatively young subjects (21-44 years) with end-stage renal failure 152 

(ESRF).  153 

According to a 2019 study, the incidence rate for dementia per 1000 patients-years is 1.4 in 154 

the non-CKD population and 10.7 in the ESRF population 
35

. In patients with eGFR 155 

levels >60 ml/min, albuminuria, an early marker of endothelial damage and microvascular 156 
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disease, is associated with the presence of MCI 
8
. This has been confirmed repeatedly, with 157 

an unclear relationship to age: some papers report a greater effect of albuminuria in older 158 

patients 
7
, others only in younger patients.  159 

Nephrologists need to be aware that a substantial proportion of their patients may have mild 160 

to severe forms of cognitive impairment, and the neurologist also needs to be cognizant of the 161 

presence and form of cognitive deficits occurring in patients with CKD. Indeed, MCI-CKD 162 

might be qualitatively different from the MCI seen in the general population in respect of its 163 

neuropsychological test patterns (e.g., better performance on Trail Making Test B) and EEG 164 

studies 
36

, MRI findings
3
. Ideally, current guidelines for MCI diagnosis and management 165 

should require an assessment of kidney function as part of the routine neurological work-up 
37

. 166 

 167 

2. Cognitive domains and correlated brain features in CKD 168 

“Cognitive decline” is an umbrella term that encompasses all forms of dementia (such as AD), 169 

delirium or confusional states, and mild cognitive slowing. It should be noted that the terms 170 

“cognitive impairment” and “dementia” are often used as synonymous, the first being 171 

introduced as a non-stigmatizing term 
38

. Cognitive function is tested by various means, 172 

including by recalling memorized lists of numbers or drawing an object on request, or 173 

naming a figure. Cognitive impairment is subdivided into specific cognitive domains, such as 174 

attention, memory, visuospatial, language skills and executive functions (see Box 2).  175 

2. 1. Attention 176 

Patients with CKD show inattention (see Box 2) and impaired inhibitory control 
39

, which is 177 

the inability to suppress ongoing and inappropriate actions. Indeed, a young population with 178 

mild-moderate CKD has poor performance in a test of attention and inhibitory control, which 179 

depends on the duration of disease, rather than the severity of CKD 
39

. Furthermore, CKD 180 

patients have a slower EEG reaction when paying attention to a visual stimulus (termed 181 

“P300 wave event related potential”)
40

, which was shown to be partially dependent on the 182 

presence of anemia 
41

. Transplantation does not modify the attention and inhibitory control 183 

performances compared with non-transplanted CKD patients 
42

. Many brain regions are 184 

required for attention and inhibitory control, such as the prefrontal cortex (PFc) and the 185 

Locus Coeruleus in the dorsal pons, which produces norepinephrine. Compared with normal 186 

controls, patients on HD show a reduced thickness and increased number of connections of 187 

the PFc 
43

. Furthermore, PET studies also show decreased metabolic activity in this region in 188 
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ESRF patients compared with normal subjects
44

. In the non-CKD population, the frontal gray 189 

matter volume is less affected in MCI
45

, but can be reduced in other forms of dementia 190 

(fronto-temporal dementia, Alzheimer’s Disease (AD) and Levy bodies dementia 
46,47

). An 191 

EEG study directly comparing MCI-CKD to MCI in the general population describes a more 192 

pronounced dysfunction in the frontal cortex
36

.  193 

Data from animal models of CKD suggest an altered activation (number of neurons active at 194 

rest, indexed by c-Fos expression) of the PFc and of the norepinephrine neurons of the Locus 195 

Coeruleus
48

 (see also Figure 2), possibly due to neuroinflammation
49

. Another mechanism for 196 

the effect of CKD on norepinephrine neuronal function arises indirectly from the observation 197 

of altered tyrosine metabolism, the precursor for norepinephrine 
50

 . Interestingly, antioxidant 198 

therapies and angiotensin-converting enzyme inhibitors may reverse these changes and 199 

should be explored in future as a possible protection against MCI/dementia in CKD. 200 

Attention deficits in CKD patients may be attributable to altered catecholamine-PFc circuitry.  201 

2. 2. Memory 202 

Memory storage and processing are likely to be served by different brain regions according to 203 

the type of memory (see Box 1). Both the implicit and explicit forms of memory appear to be 204 

altered by CKD 
51

. Indeed, patients on HD compared with healthy controls had poorer scores 205 

when trying to recall a list of words (explicit memory) or images (implicit memory). The 206 

memory performance did not change when comparing before and after dialysis treatment.  207 

The storage/retrieval of explicit memories requires the integrity of the cerebral cortex and the 208 

hippocampus and the activity of cholinergic neurons in the Meynert nucleus. In animal 209 

models, CKD induces neuronal death in the hippocampus 
52

 and reduces the activity of 210 

cholinergic neurons in the Meynert nucleus 
49 

(Figure 2).  211 

At the neuronal scale memories are stored as long-term modifications of their synapses. An 212 

experimental study in mice demonstrated a reduction in synaptic contacts in animals with 213 

reduced kidney function 
49

. Since memory traces are stored in the ordered connectivity of 214 

synaptic contacts among neurons
53,54

, synaptic loss may underlie the reduced memory in 215 

CKD. Overall, data suggest that the interaction between cholinergic neurons and the cortex 216 

may be responsible for memory dysfunction in CKD.  217 

2. 3. Language, visuospatial performance and executive dysfunction 218 

Language skills are also affected in CKD, and this is the only cognitive domain linearly 219 

dependent on eGFR decline <sup>10</sup>. Language ability can be tested by presenting a 220 
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picture and asking the subject to name it (as with the Boston Naming test). Several studies 221 

document poor naming performance in patients with CKD
10,55–57

. MRI studies in CKD 222 

patients support the anatomical integrity of cortical language areas and the origin of language 223 

disturbances in CKD is still unknown.  224 

Visuospatial abilities reflect the identification and localization of visual objects. It can be 225 

tested, e.g., by asking someone to copy a complex figure (as in the Rey-Osterrieth Complex 226 

Figure Test). Visuospatial performance is variably affected in CKD patients, depending on the 227 

study 
56,58

, possibly because its impairment can be observed only in advanced CKD stages 228 

and ESRF
5
. This is also supported by the absence of morphological alterations on MRI in the 229 

occipital cortex of CKD patients, this being the region involved in visuospatial attention 
59

.  230 

Finally, most of the literature supports the presence of “executive dysfunction” in CKD, with 231 

an impairment in the Trail making tests (TMT-A and TMT-B), which addresses visual 232 

attention and executive functions. These tests have been found to be consistently altered in 233 

CKD patients in several studies. In a comparative study, the impairment in this cognitive 234 

domain occurs with greater frequency in CKD compared with language, memory and 235 

visuoconstructive abilities
56

; it worsens over time in HD patients
60

. It is also dependent on the 236 

degree of kidney impairment, with a linear relation between both TMT-A and TMT-B scores 237 

and eGFR
61

. Kidney transplant improves TMT-A scores when compared with patients on 238 

HD
62

. As discussed above, the frontal lobe, which is the brain structure that is mainly 239 

responsible for executive functions, is thinner in patients with CKD, possibly contributing to 240 

this behavioral disorder. Notably, pediatric and adolescent patients with CKD already show 241 

cognitive impairment in several domains 
63

, together with brain damage on MRI
64

, 242 

strengthening the concept that these changes are not solely due to the effect of ageing in 243 

patients with CKD.  244 

In summary, the cognitive impairment in CKD extends to several brain functional domains 245 

and might be the result of damage to multiple cortical regions (particularly the frontal lobe), 246 

and to subcortical modulatory neurons (particularly adrenergic neurons in the mesencephalon 247 

and cholinergic neurons in Meynert's nucleus). In contrast, non-CKD dementia is 248 

accompanied by structural MRI abnormalities of different brain regions: (i) in AD, at early 249 

stage, the entorhinal cortex and cingulate, closely followed by the hippocampus, amygdala, 250 

and parahippocampus; the atrophy then involves the temporal cortex and then other cortical 251 

sites 
47,65

; (ii) in the Fronto-Temporal Dementia the frontal and temporal lobe are mostly 252 

affected at MRI 
46

; (iii) in the Lewy Bodies Dementia the cingulate and superior temporal-253 
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occipital cortex 
47

; (iv) in vascular dementia there is global cortical atrophy with involvement 254 

of white matter (so-called “white matter hyperintensities”); compared to AD the frontal 255 

cortex is more often involved, with lesions to association tracts by MRI
66

. 256 

3. Intermediate phenotypes: Neuroanatomical alterations, sleep disorders and tremor 257 

In this section, we will use the term “intermediate phenotype” to describe a brain feature that 258 

lies between the complex behavioral trait (e.g., dementia) and a putative underlying 259 

molecular cause. Sometimes the terms “intermediate phenotype”, “biomarker” and 260 

“endophenotype” are used loosely and interchangeably
67

. This brain feature, measurable and 261 

quantitative, is linked to simple neuronal networks and may be used as a proxy for the more 262 

complex behavior: such a feature is likely to have a linear relationship to the molecular 263 

changes accompanying CKD. Potential intermediate endophenotypes are the MRI brain 264 

correlates of dementia/MCI (discussed above) and quantitative phenotypes such as altered 265 

sleep pattern and motor control.  266 

3. 1. Sleep 267 

Sleep disorders can be quantified using polysomnography and actigraphy systems. Sleep 268 

disorders in CKD are very common with the majority of patients complaining of some form 269 

of sleep disorder 
68

. They include a reduction in total sleep time, insomnia/sleep 270 

fragmentation, daytime somnolence, altered circadian rhythm, sleep apnea or restless legs 271 

syndrome 
69,70

. Sleep apnea affects 34-56% of adult CKD patients
71,72

 and 56% of ESRF 272 

patients on HD
73,74

. It is usually absent in pediatric patients with CKD 
75

. In 22-27% of adult 273 

CKD patients sleep apnea depends on a dysfunction of the neuronal drive (central sleep apnea, 274 

CSA) 
76,77

. The nocturnal hypoxemia that accompanies sleep apnea in CKD patients is 275 

associated with autonomic dysfunction and left ventricular hypertrophy 
78,79

, and predicts a 276 

high risk for cardiovascular events in ESRF
78

. A meta-analysis concluded that sleep quality 277 

can be improved by renal replacement therapies (transplant, dialysis), even if it does not 278 

return to normal levels, and it does not depend on the intensity of therapy
69

.  279 

Sleep disorders are tightly linked to MCI and dementia
80

. They are indicative of an existing 280 

brain damage. It is unclear if they induce further brain dysfunction, as pharmachological 281 

restoration of sleep does not improve cognitive functions 
81

. In humans inadequate sleep has 282 

been associated with lower gray matter volume
82

. In animal models of CKD, serotoninergic 283 

neurons in the dorsal raphe and histaminergic neurons in the hypothalamus (Figure 2), which 284 

are responsible for the maintenance of sleep patterns, show increased activity (indexed by 285 

cFos expression) 
48

. Serotoninergic neurons influence the sleep-wake pattern and attention
,
 286 



Mechanisms of cognitive dysfunction in CKD. Nature 

9 

memory and locomotor activity
83

 and contribute to the depression and uremic anorexia seen 287 

in advanced CKD
84

.  288 

Overall, the sleep patterns and sleep apnea in CKD could be an easily quantifiable and ideal 289 

parameter linking the behavioral scale phenotype to the molecular scale (Figure 3).  290 

 291 

3. 2 Motor control and tremor 292 

Motor control and hand tremor can be easily quantified using force plates and accelerometers. 293 

CKD is accompanied by changes in balance and gait control 
85

. Specifically, patients with 294 

ESRF and MCI have a slower gait speed
23,61

 and reduced single-leg standing time (indexing 295 

balance function)
23 

that is not due to a reduced muscle strength. The control of hand posture 296 

(resulting in small oscillations or physiological tremor) is also likely to be modified in 297 

advanced CKD: it has been known for a longtime that acute uremic intoxication or “uremic 298 

encephalopathy” is accompanied by hand tremor 
86

. The assumption that hand tremor is a 299 

result of uremic toxins derives from the observation that HD greatly improves tremor in cases 300 

of uremic encephalopathy
87

. The altered motor control in CKD patients is also evident as a 301 

slower reaction time to visual or auditory stimuli
88,89

 and voice tremor
90

.  302 

The motor control modifications (postural instability, hand tremor, gait speed) in CKD are 303 

likely to be collateral features of cognitive impairment. Indeed, non-CKD cognitive 304 

impairment is accompanied (or preceded) by a slower gait speed
91

 and postural instability 
92

. 305 

Furthermore, some forms of AD are accompanied by hand and postural tremor and limb 306 

bradykinesia 
93

.  307 

As discussed above, norepinephrine and serotonin neurons modulate sleep and subcortical 308 

motor circuits (e.g., the basal ganglia and the spinal cord), possibly mediating the gait and 309 

hand instability in CKD. A pictorial review of the hierarchical organization from molecular 310 

abnormalities to a complex behavioral scale is represented in Figure 3.  311 

 312 

4. Mechanisms of cognitive dysfunction in CKD 313 

The link between CKD and cognitive dysfunction or its intermediate phenotype is not well 314 

understood. In pediatric populations, genetic factors may play a role, whereas in adult 315 

populations CKD-related vascular factors and uremic (neuro)toxins may have a greater 316 

impact. Every proposed mechanism should be examined in more detail, because of the 317 

potential for new therapeutic approaches, which are still limited.  318 
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 319 

4. 1 Genetic Factors 320 

There has been little attention paid to the role of genetic factors in the relationship between 321 

CKD and cognitive function. However, a distinction must be made between pediatric and 322 

adult CKD. In the pediatric population kidney diseases may have a clear genetic determinant 323 

94
, for example, in up to 30% of steroid-resistant nephrotic syndrome patients 

95
. In these 324 

cases, neurocognitive impairment may derive from a genomic disorder that causes both CKD 325 

and cognitive impairment
96

. Indeed, some rare genetic syndromes are well known to cause 326 

both cognitive impairment and kidney dysfunction, such as Bardet Biedl syndrome
97

, Fabry 327 

disease 
98

, Schmike immunoosseus dysplasia
99

, Joubert syndrome
100

, tuberous sclerosis
101

 and 328 

oculocerebrorenal syndrome of Lowe
102

. 329 

Conversely, in adult CKD a genetic diagnosis is found in only 10% of cases
103

 and in 330 

pediatric steroid-sensitive CKD, almost no patient has a genetic diagnosis 
95

. In these cases a 331 

genetic predisposition to cognitive impairment has been suggested from the observation that 332 

genetic variants of α-Klotho, a CKD-dependent factor, affect cognition
104

. Furthermore, 333 

circulating α-Klotho has been linked to cognitive decline
105

. The analysis of genetic loci 334 

associated with adult CKD obtained from one million subjects, published in 2019, reports 335 

147 loci relevant for kidney function
106

. Among these, 13 polymorphisms had an Exonic 336 

effect (SLC47A1, EDEM3, SLC22A2, PPM1J, RPL3L, EPB41L5, TSPAN9, KLHDC7A, 337 

CPS1, C9, CACNA1S, SLC25A45, CERS2). Intriguingly, some of these genes are also 338 

expressed in the brain, particularly in the striatum (SLC47A1, KLHDC7A, SLC25A45; Allen 339 

Brain Atlas database), cortex (EDEM3, PPM1J, CERS2; Human Protein Atlas database), 340 

cerebellum and hippocampus (TSPAN9, EPB41L5; Human Protein Atlas database). 341 

Furthermore, some of these are related to diseases of the nervous system such as Infantile 342 

onset spinocerebellar ataxia (TSPAN9, CACNA1S, RPL3L; Rare Diseases AutoRIF 343 

ARCHS4 Predictions database) or AD (CACNA1S, WikiPathways database). 344 

Finally, it is likely that any genetic predisposition to cognitive impairment in the general 345 

population is also operative in CKD. In fact, experimental data in rodent models suggest that 346 

the number of genes influencing memory and cognition is likely to be quite large 
107

. 347 

Unfortunately, the quest for genetic risk factors in dementia and MCI using Genome-Wide 348 

Association Studies (GWAS) has only identified gene variants with a small effect size. The 349 

GA@ACE study comprised 4120 AD cases and 3289 controls, analyzing 7.7 million gene 350 

variants
108

 and found only one already known marker with Genome Wide significance, 351 
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APOE-rs429358. Other genetic variants had very small effects (such as CD33-rs3865444, 352 

with OR=0. 92). An additional genetic predisposition to MCI in CKD patients derives from 353 

the genetic control of autoregulation of both renal and cerebral blood flow, which is discussed 354 

further below. 355 

When summing each small effects of all genetic variants in an individual, the “calculated 356 

total risk score”, results are promising 
109

. For example, a genetic risk score based on eight 357 

gene variants found a two-fold more rapid progression from MCI to AD when six or more 358 

alleles were present
110

. 359 

In summary, genetic risk for MCI/dementia in CKD is more easily recognized and important 360 

in the pediatric population; in the adult population a genetic risk score from multiple variants 361 

needs to be considered. 362 

 363 

4. 2 Non-genetic Factors 364 

Many different mechanisms have been proposed to link CKD and cognitive impairment. It 365 

should be emphasized that the MCI/dementia link with CKD might actually represent one of 366 

the very few established causes of cognitive impairment.  367 

Most proposed mediators of brain damage are retained because of kidney dysfunction and 368 

affect the brain through direct or indirect mechanisms. There are, however, notable 369 

exceptions: (i) iatrogenic factors, namely dialysis, medications
111

 and nutrition/diet; (ii) 370 

comorbid conditions that cannot be easily separated from CKD such as hypertension and 371 

cardiovascular disease; (iii) social factors and functional impairment (such as impairment in 372 

using the telephone, preparing meals or shopping) that affect the psychological state of 373 

patients with CKD. 374 

Complex changes affect the blood composition of patients with CKD, which complicates 375 

attempts to identify a unifying causative mechanism for CKD-MCI. Moreover, evaluation of 376 

the mechanisms by which CKD-related changes in blood constituents might affect cognitive 377 

function requires consideration of the time-scale over which cognitive decline occurs. Some 378 

blood constituents (e.g., oxygen free radicals, volume status, electrolyte and acid-base 379 

disturbances, and some uremic toxins and drugs) have effects within a short time-scale, 380 

whereas others (e.g., amyloid deposits, inflammation, vascular dysfunction, nutrition, anemia) 381 

require months or perhaps years to have an effect on the brain. Furthermore, the blood-brain 382 

barrier (BBB) and blood-cerebrospinal fluid (BCB) barriers do not allow all blood 383 
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constituents to freely enter the brain parenchyma 
112

. The brain is likely to develop 384 

MCI/dementia over a relatively long time-scale (months to years) 
39

 and clearly 385 

MCI/dementia is a phenomenon that occurs at a higher scale of organization of neuronal 386 

networks or above. 387 

In the section that follows, we briefly review the few attempts that have been made so far to 388 

interfere with MCI/dementia-CKD, before considering some possible underlying mechanisms 389 

in more detail.  390 

 391 

4. 2. 1 Vascular dysfunction in CKD and cognitive decline 392 

4. 2. 1. 1 Morphology of the brain vessels in CKD 393 

CKD has a high prevalence of atherosclerosis and endothelial dysfunction is almost 394 

universal
113

. Vascular disease is associated with cognitive decline in non-CKD patients and is 395 

an important factor in CKD morbidity 
114

. Brain capillaries and small vessels are not 396 

accessible in patients with CKD; hence, a useful proxy is the study of retinal capillaries, 397 

which can be quantified in vivo. In the retina, CKD stage 3 (or proteinuria >500mg/g 398 

creatinine) is accompanied by greater arteriolar wall-to-lumen ratio, greater wall thickness 399 

and greater inter-capillary distance
115

. Therefore, anatomical alterations in the brain macro- 400 

and micro-circulation are present in patients with CKD. 401 

The endothelial dysfunction (indexed by sVCAM-1, thrombomodulin, sICAM-1 and sICAM-402 

3) is a feature of CKD, HD and PD
116

, and is accompanied by an increased permeability of 403 

the blood brain barrier 
49,117

. 404 

 405 

4. 2. 1. 2 Hemodynamic changes that occur in CKD 406 

In non-CKD patients the vascular hypothesis of cognitive dysfunction is based on the 407 

hypothesis that anatomical vascular changes are accompanied by reduced cerebral blood flow, 408 

and consequent impairment in neuronal activities. Dysfunction of vascular pericytes in the 409 

brain, mediated by, for example, endothelin, has been shown to participate in the altered 410 

blood flow observed in dementia
118

.  411 

As we shall see, patients with CKD show actually increased cerebral blood flow, which does 412 

not support the more general paradigm of vascular dysfunction.  413 



Mechanisms of cognitive dysfunction in CKD. Nature 

13 

CKD is invariably accompanied by an increase in arterial blood pressure. Hypertension is a 414 

known risk factor for dementia in non-CKD patients
119

.  415 

Unexpectedly, in adult patients with CKD the global cerebral blood flow (measured by MRI 416 

arterial spin labeling) is increased compared with healthy controls. The increase was more 417 

evident in non-dialysis ESRF patients than in HD and PD patients. The changes did not 418 

correlate with neuropsychological tests when anemia was taken into account
120

. These results 419 

were also confirmed in pediatric patients with CKD, who also showed an increase in global 420 

cerebral blood flow (measured by MRI arterial spin labeling) compared with healthy controls, 421 

though possibly due to a reduced hematocrit
121

. These findings lead to the counterintuitive 422 

interpretation that a decrease in cerebral blood flow may improve cognition in CKD
122

. It is 423 

plausible that the increased blood flow represents, in this case, a compensatory effect of 424 

anemia.  425 

These data and the lack of efficacy of anti-hypertensive drugs in MCI/dementia-CKD 426 

strongly suggest that the vascular hypothesis of dementia in the general population may not 427 

be correct or a complete explanation in CKD. However, it should be noted that patients with 428 

ESRF on HD have more complex, acute and variable hemodynamic changes triggered by the 429 

presence of an arterovenous (AV) fistula and the need for intermittent ultrafiltration.  430 

The AV fistula has a remarkable cardio-circulatory effect. Its effect on cognition compared 431 

with central venous catheter is unknown, although overall it is likely to be associated with a 432 

better quality of life for dialysis patients
123

. However, intermittent ultrafiltration, which 433 

acutely reduces the blood volume, is also expected to reduce cardiac output and mean arterial 434 

pressure
124

, which in turn reduces splanchnic and brain perfusion. Indeed, at the end of an HD 435 

session, cerebral blood flow is reduced, as demonstrated by [15O]H2O PET-CT scan
125

. 436 

Similarly, at the end of PD a reduced cerebral blood flow (measured by MRI arterial spin 437 

labeling) has been observed compared with pre-dialysis
120,122

. However, in the interval 438 

between HD sessions (48h after the last dialysis session) a rebound effect has also been 439 

described, with an increase in the mean blood flow velocity (measured by Doppler 440 

ultrasound), partially related to changes in hemoglobin levels
126

.  441 

Therefore, the blood flow changes in HD and PD are of short duration, but whether these 442 

chronic intermittent changes worsen cognition is unclear. However, the similar prevalence of 443 

MCI/dementia in advanced CKD, in HD and in PD suggests that the effect of dialysis 444 

treatment on brain hemodynamics is reversible and not additive in any way.  445 
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 446 

4. 2. 1. 3. A genetic factor that causes impaired autoregulation 447 

Patients with CKD show on MRI focal white matter hyperintensities that are interpreted as 448 

small ischemic regions
127

. This poses the problem of whether cognitive dysfunction in CKD 449 

is a form of “vascular dementia”, which has been studied widely in the general population. 450 

Unfortunately, a formal comparison between vascular dementia and CKD-dementia has never 451 

been carried out. An additional point of confusion is that vascular dementia is often linked to 452 

hypertension, which is a common finding in CKD.  453 

Hypertension has usually been associated with small lacunar infarcts and diffuse areas of 454 

chronic ischemia (leukoaraiosis), chronic hypoperfusion and impaired cerebral autoregulation. 455 

It also has a genetic predisposition, associated with genes governing endothelial function, 456 

such as polymorphisms of angiotensin-converting enzyme, angiotensinogen, endothelin, 457 

eNOS, and methylenetetrahydrofolate reductase (MTHFR)
128

. In rats, a genetic variant of the 458 

Add3 gene and a genetic deficiency of 20-HETE have been associated with impaired 459 

autoregulation of both renal and cerebral blood flow 
129,130

. Specifically, genetically 460 

hypertensive rats (Dahl salt-sensitive) show deficient formation of 20-HETE with an 461 

impaired myogenic response of cerebral arteries and blood-brain-barrier leakage 
130

. 462 

As discussed above, in CKD cerebral blood flow is augmented, rather than decreased, which 463 

is opposite to what has been shown in vascular dementia. Thus, it is possible that a 464 

dysfunction of endothelial cells or glial cells modifies the exchange of substances between 465 

blood and neurons. Cerebral blood flow may be adequate or even increased, but the blood 466 

brain barrier or brain glymphatic system might be dysfunctional. 467 

 468 

4. 2. 1. 4 Brain glymphatic system 469 

The glymphatic or perivascular system is a CNS clearance system formed by astroglial cells - 470 

a cell species covering the whole cerebral vasculature - that efficiently eliminates soluble 471 

proteins and various metabolites from the CNS
112

, and is responsible for ~60% of β-amyloid 472 

clearance 
131

 (Figure 4). Vascular diseases, hypertension, diabetes, and neurodegenerative 473 

diseases may all reduce glymphatic clearance 
132

. Moreover, neuroinflammation and 474 

depression have also been shown to suppress glymphatic clearance, perhaps explaining why 475 

these conditions increase the risk of developing dementia 
132

. Interestingly, glymphatic 476 

clearing of waste products occurs primarily during sleep and in particular in stages 3-4 477 
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NREM sleep 
133

. Although it is not known how CKD affects the glymphatic system, the 478 

existing literature suggests that glymphatic fluid transport may be suppressed in CKD and 479 

that glymphatic dysfunction can lead to an accumulation of potential neurotoxic waste 480 

products. As discussed above, sleep disturbance is common in CKD patients
68

 and 481 

accompanies the cognitive decline in MCI
134

 and dementia 
135

. Furthermore, sleep apnea and 482 

AD are both linked to reduced level of Amyloid-β in cerebrospinal fluid, indicating that 483 

glymphatic clearance is suppressed in these conditions
136,137

. 484 

 485 

4. 2. 2 Uremic (neuro)toxins and kidney neurotrophins 486 

The EUTOX database (http://www. uremic-toxins. org/DataBase. html) provides an updated 487 

list of all known uremic toxins and their characteristics. According to EUTOX, 9% of the 488 

known uremic toxins (7 over a total of 75 solutes) are associated with neurological and CNS 489 

effects. HD efficiently eliminates water-soluble toxins and improves acute uremic 490 

encephalopathy, but it is relatively ineffective when it comes to protein-bound or middle-491 

sized toxins, and does not ameliorate chronic cognitive dysfunction in patients with ESRF 492 

(Table 1). The fact that this extracorporeal treatment does not improve cognitive dysfunction 493 

in ESRF implicates protein-bound and larger molecular weight toxins in MCI/dementia in 494 

these patients.  495 

Many of the uremic bioproducts reported in Table 1 are known to exert a protective effect on 496 

neurons, but most of them do not cross the BBB under basal conditions (as reported in Table 497 

1), and so cannot make contact with neurons in vivo and are unlikely to provide 498 

neuroprotection. Leakage of most of these products in uremia is currently untested, although 499 

it is known that the BBB is less functional in advanced CKD. Conversely, some uremic 500 

toxins easily cross the BBB under basal conditions and have detrimental effects on the 501 

endothelium and vasculature. NPY is of particular interest among uremic toxins. This 36-502 

amino acid peptide has been implicated in neurodegenerative diseases such as AD
138

. It is 503 

produced centrally (within the brain by specific neurons) and peripherally in nerve endings. 504 

Plasma NPY mostly derives from peripheral nerve endings, with an unclear correlation with 505 

the NPY coming from the cerebrospinal fluid
139

. However, it has been reported to readily 506 

enter the brain from blood by diffusion across the BBB 
140

. Independent of BMI, serum NPY 507 

levels are elevated in CKD patients
141

 and in patients with sleep apnea; continuous airway 508 

positive pressure reduces NPY levels in these patients 
142

. NPY levels predict a high risk for 509 

cardiovascular events both in CKD and in ESRF patients 
143

.  510 
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Because cognitive impairment is much more frequent in patients with cardiovascular disease, 511 

particularly in those with heart failure 
144

, NPY may be implicated in the pathogenesis of 512 

these alterations in CKD. In fact, high NPY levels in supratentorial cerebrospinal fluid, at 513 

least in the short term, are associated with cognitive impairment in patients with subarachnoid 514 

hemorrhage 
145

. Finally, NPY is also responsible for endothelial dysfunction 
146

, which makes 515 

this substance a good candidate for brain impairment in CKD. 516 

CKD patients often present with disturbed calcium and phosphate metabolism, high PTH and 517 

FGF23 levels, and low α-klotho (see earlier) and calcitriol levels. PTH is listed among the 518 

uremic toxins, but the evidence that this hormone is directly implicated in cognitive 519 

impairment is uncertain 
147

. PTH is a polypeptide of 84 amino acids, which is unlikely to 520 

cross the BBB under normal conditions. Furthermore, the level of expression of the PTH 521 

receptor in the brain is fairly low according to the Allen Brain Atlas. However, disturbed 522 

mineral metabolism may have an impact on cognitive impairment in CKD patients through 523 

pathways independent of PTH. The liver/bone/kidney isoform of alkaline phosphatase, an 524 

enzyme key to bone metabolism, is also expressed in neurons of the cerebral cortex (data 525 

from The Human Protein Atlas database: https://www. proteinatlas. org/). PTH is elevated in 526 

patients with AD and correlates inversely with cognitive function in these patients 
148

. 527 

Experimental evidence suggests that high alkaline phosphatase, by dephosphorylating the 528 

tau-protein, a protein considered central to the pathogenesis of AD, may promote the binding 529 

of the same protein to muscarinic receptors (M1 and M3) in the hippocampal area, thereby 530 

triggering a marked increase in intracellular calcium levels and triggering cell death 
149

.  531 

The phosphaturic hormone FGF23 increases early during the course of CKD and has been 532 

associated with cardiovascular disease and cardiovascular mortality 
150

. Moreover, in the 533 

Framingham study, higher FGF23 levels are associated with a higher risk for dementia 
151

. α-534 

klotho, the obligatory co-ligand of FGF23 is highly expressed in brain after the kidney and 535 

parathyroid glands 
152

. Circulating α-klotho, as well as kidney and parathyroid α-klotho, are 536 

downregulated in CKD, but whether brain α-klotho is also affected is unknown. A recent 537 

MRI-based study found that reduced circulating α-klotho associated positively with the risk 538 

for dementia and cerebral deep white matter lesions, even after correction for reduced kidney 539 

function and other risk factors 
153

. Several genetic variants altering α-klotho protein levels are 540 

associated with β-amyloid burden and risk for dementia 
104,105,154

. Experimental evidence 541 

links α-klotho with the function of serotonergic neurons, hippocampal function, depression 542 

and dementia-like symptoms in animals 
115

. While low α-klotho or high FGF23 appear to 543 
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exert negative effects on brain function, α-klotho or FGF23 deficiency also impair neuronal 544 

processes, particularly in the hippocampus and possibly also cerebellum, affecting memory, 545 

behavior, and motor functions 
155,156

. A common denominator of α-klotho or FGF23 546 

deficiency is high calcitriol and reducing calcitriol levels to normal reverses or prevents brain 547 

alterations in experimental animal models 
157

. In contrast, patients with CKD often suffer 548 

from low calcitriol levels. This apparent contradiction that both high and low calcitriol levels 549 

are linked to impaired brain functions may indicate an optimal range of calcitriol levels 550 

necessary for neuroprotection, microglial immune function, and vascular integrity 
158,159

. At 551 

present there is no evidence supporting calcitriol supplementation to delay loss of 552 

psychomotor functions in elderly populations with CKD 
160

 (Figure 5).  553 

 554 

4. 4 Role of brain stem cells and neuroinflammation in CKD-dependent cognitive 555 

impairment 556 

CKD is a pro-inflammatory dysmetabolic state with associated brain dysfunction. 557 

Surprisingly little attention has been payed to the role of neural stem cells (or neural 558 

precursor cells, NPCs) in CKD patients, given that NPCs play a key role in several 559 

homeostatic brain functions and are extremely sensitive to their micro-environment. While 560 

NPCs located within the sub-granular (SGZ) zones contribute via neurogenesis to 561 

maintaining memory circuitry, behavior and spatial learning (e.g., endogenous NPCs produce 562 

a constant albeit slow increase in hippocampal volume, which is needed for cognitive 563 

functions and mood)
161,162

, NPCs residing in the subventricular (SVZ) exert little or no 564 

neurogenic functions, but contribute to counteracting metabolic dysfunction and/or 565 

inflammatory processes), the so-called ‘bystander (or paracrine) effect
’ 163

. This is due to the 566 

ability of undifferentiated NPCs to secrete a milieu of homeostatic and/or neuroprotective 567 

molecules (e.g., stem cell regulators, trophic factors and immunomodulators) that are thought 568 

to be important, because, depending on the tissue microenvironment, they may stimulate 569 

endogenous precursors to promote re-myelination or rescue (directly and indirectly) of 570 

damaged axons and neurons 
162–164

. As a consequence, an additional pathogenic mechanism 571 

that might contribute to irreversible glial and/or neuronal loss, and the neuronal functional 572 

impairment underlying cognitive dysfunction in CKD patients, could be the effect of uremic 573 

toxins, inflammatory cytokines (e.g., IL-1β, IL-18, IL-6, TNFα), as well as anti-inflammatory 574 

cytokines (e.g., IL-10) and free-radicals (Figure 4). 575 
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Among the inflammatory cytokines, IL-6 is increased 5-fold in HD patients, and permanently 576 

perturbs NPC proliferation and neurogenesis
165

. IL-10, which is increased in HD, maintains 577 

NPCs in an undifferentiated proliferation state, rather than promoting differentiation
166

. Both 578 

TNFα and IL-1β also increase in HD and can stimulate NPC proliferative capacity
167

. At 579 

present it is not clear if the differential effects of IL-10 and IL-1β on NPCs have also different 580 

cognitive effects. Free radicals, which are increased in HD and CKD patients may strongly 581 

and negatively impact NPC function 
168

. Finally, cell-mediated innate immunity, thought to 582 

be involved in toxic uremia as a potential pathogenic mechanism causing cognitive 583 

impairment in CKD patients, might also be impaired when NPC homeostasis is disturbed
169

. 584 

In kidney transplant patients cyclosporin and mycophenolate have direct inhibitory effects on 585 

NPCs
170

, unlike everolimus
171

.  586 

NPCs also play a role in neurodegenerative diseases such as AD: the deletion of genes 587 

necessary for NPCs and neurogenesis (such as Tet1, 5hmC) lead to learning and memory 588 

deficits in animal models
172,173

.  589 

It is becoming clear that uremic (neuro)toxins in CKD not only exert a detrimental effect on 590 

neural cells, but also on NPCs, although this is still not yet widely appreciated. Given the 591 

pleiotropic actions (homeostatic and reparative) of NPCs, and the accumulating evidence 592 

showing that during CKD circulating uremic toxins (whose CNS trafficking is facilitated by 593 

BBB damage) may impair CNS structure and function, this seems to be a new research 594 

avenue and opportunity in MCI-CKD worth pursuing. 595 

 596 

5. Interventional studies 597 

Interventional studies are essential for the identification of mechanistic links between kidney 598 

disease and brain alterations. At present most of the attempts to improve, prevent or delay 599 

MCI/dementia in CKD have been unsuccessful. We will review some of these attempts to 600 

make the reader aware of what has been already done. However, new drugs are now available 601 

to relieve some of the symptoms of dementia, relatively new dialysis regimens are being used 602 

today, and new anti-inflammatory therapies have been introduced for atherosclerosis and 603 

stroke: we list these approaches, which may yet prove beneficial. 604 

HD is life-saving in patients with ESRF and reverses acute encephalopathy. The acute uremic 605 

encephalopathy or uremic delirium presents with impaired memory and attention, altered 606 

consciousness and disorganized thinking in untreated patients with ESRF. Today it is a rare 607 
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clinical presentation, because patients with ESRF usually undergo planned dialysis before 608 

this neurological syndrome can develop. When it does occur, neurological recovery may take 609 

days after dialysis initiation and in at least one case report a patient remained comatose for 5 610 

days after correction of uremia
174

. This supports the notion that circulating and brain-611 

permeable small molecules, which are removed by dialysis, are likely to be responsible for 612 

acute uremic encephalopathy. In contrast, MCI and dementia develop over longer time-scales 613 

and reversibility is potentially possible only for MCI, rather established dementia.  614 

However, the question is whether the clearance of blood toxins by HD can decrease the risk 615 

of developing MCI-CKD. Unfortunately, the partial correction of blood composition with HD 616 

seems unlikely to prevent or slow down MCI-dementia progression, which is suggested by a 617 

similar prevalence of MCI/dementia among patients on HD compared with those with 618 

advanced CKD who are not yet on dialysis
175

. This inability of HD to attenuate MCI might be 619 

due to a suboptimal and discontinuous treatment regimen (with a rapid increase in toxin 620 

levels between dialysis sessions); however, more intensive dialysis regimens with improved 621 

dialysis adequacy (Kt/V) also do not improve MCI-related outcomes
176

. Therefore, it is 622 

possible that some uremic (neuro)toxins, for example, medium-large size toxins and protein-623 

bound toxins (listed in Table 1) are not adequately removed by HD. Unfortunately, no data 624 

are available on the effect of hemodiafiltration (HDF), which can potentially remove larger 625 

size toxins, on cognitive function. A meta-analysis suggests that PD treatment may be more 626 

advantageous than HD
45,175

. However, there is inconsistency among studies, possibly because 627 

the effect is very small. In a large study enrolling 52’332 HD patients and 3’292 PD patients, 628 

the higher risk for cognitive impairment in HD disappeared after controlling for demographic 629 

characteristics and competing risks of death
177

.  630 

Therefore, the slower dynamics of ultrafiltration/dialysis of the peritoneal system or better 631 

removal of protein-bound toxins do not seem to lead to greater clinical improvement. 632 

Similarly, kidney transplantation attenuates MCI, but does not lead to the recovery of 633 

cognitive function to the levels of a control healthy population (see Figure 1)
178,179

. This 634 

suggests that MCI-CKD is not easily reversible or that the immunosuppressive drugs used to 635 

avoid rejection also impinge on cognitive function.  636 

Neuropsychological approaches are unlikely to improve MCI, because they do not remove 637 

the organic substrates causing the problem, nor are interventions (alone) that aim at better 638 

control of blood pressure or prevent cerebrovascular accidents (stroke and myocardial 639 
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infarction) 
180

. This suggests that the vascular alterations observed in CKD are not the main 640 

cause MCI or that they do not respond to standard preventive strategies.  641 

Few interventional studies are available examining the diet/nutritional changes in CKD-MCI 642 

progression. Vitamin B and folate supplementation to reduce homocysteine did not result in a 643 

reduction in MCI-CKD
181

. L-carnitine improves cognitive function in a rat model of CKD, 644 

but no data are available in humans
182

. Vitamin D 25(OH)2 levels can be low in CKD and 645 

hypo-vitaminosis D is associated with cognitive decline; however, no data are available on its 646 

supplementation to prevent MCI in CKD (see earlier).  647 

Antioxidants such as Vitamin E have been proposed to reduce brain oxidative stress and slow 648 

cognitive impairment in the general population, although with minimal effects in AD
183

. 649 

Tempol, an antioxidant, has been tested in animal models of CKD with some neuroprotective 650 

effect
184

.  651 

Unsaturated fatty acids such as omega-3, Mediterranean diet, and malnutrition are other 652 

dietary factors and nutritional aspects considered relevant in the general population, but with 653 

minimal effects on cognitive protection
185,186

. No information on MCI-CKD is currently 654 

available with these approaches.  655 

Iron deficiency is also common in CKD and anemia is a risk factor for poor scores at 656 

neuropsychological tests. Unfortunately, no information is available on iron supplementation 657 

in CKD to prevent MCI. However, erythropoietin appears beneficial for cognitive 658 

dysfunction in CKD
187,188

, which supports the role of CKD-dependent anemia in poor 659 

cognitive function. The recent introduction of hypoxia inducible factor (HIF) stabilizers as an 660 

oral alternative to injectable erythropoietin for anemia in CKD patients
169

awaits further 661 

assessment for its effect on MCI-CKD. 662 

The hypothesis of altered PTH/phosphate homeostasis in MCI-CKD has not been tested. At 663 

present there is only a single case report of the reversal of cognitive impairment after 664 

cinacalcet treament
189

. 665 

The neuroinflammatory hypothesis might have an additional support after the attempt to 666 

reduce atherosclerosis/endothelial dysfunction by targeting a postulated inflammatory 667 

mechanism. Canakinumab, an anti-interleukin-1β antibody
190

, and cholchicine
191

 both 668 

reduced the effects of atherosclerosis and showed some effect on brain function. Specifically, 669 

Canakinumab reduced infarct size, cerebral oedema and improved neurological performance 670 

in an animal model of stroke 
192

. Conversely, colchicine is neurotoxic when injected into the 671 
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brain
193

 , but if delivered in the bloodstream has anti-neuroinflammatory action potentially 672 

useful for AD
194

 . Consistently, a trial on 4754 patients assigned to receive colchicine or 673 

placebo showed neuroprotective effect of colchicine, with lower risk of stroke
191

. 674 

This may support the hypothesis linking MCI-CKD to wider endothelial dysfunction.  675 

 676 

6. Conclusions 677 

Nephrologists need to be more aware of cognitive impairment in CKD. However, a major 678 

problem is the lack of any mechanistic understanding and the paucity of data, and therefore 679 

for any interventional strategies. More systematic and standardized neurophysiological 680 

testing of CKD patients recruited to the increasing number of large prospective CKD cohorts 681 

will help in defining more reliably the true extent of the problem of MCI-CKD and the 682 

biomarkers linked to it. Hemodiafiltration or other high permeability membranes await 683 

testing of their effect on cognition. Memantine, and acetylcholinesterase inhibitors (e.g., 684 

donepezil) that are used in dementia have an unclear role in CKD patients. Strategies to 685 

improve endothelial and glymphatic function, and neuronal stem cell production in CKD are 686 

still in their infancy. However, if any of these approaches can prove useful in MCI-CKD, this 687 

could also be a significant step forward in treating dementia itself.  688 

 689 

 690 

BOX 1: MCI 691 

Mild cognitive impairment (MCI): a term used to identify subjects at risk to develop 692 

dementia, but whose cognitive deficit is so mild that it does not impinge upon daily activities. 693 

The diagnosis is based on symptoms reported/observed by patients, caregivers, informants 694 

and clinicians. The symptoms include memory impairment, language difficulties, attention 695 

deficit, disorientation and altered visuospatial skills. MCI is only a risk state: 90-95% of 696 

subjects with MCI actually do not progress to dementia. However, while dementia is 697 

irreversible, 14-44% of MCI subjects can recover to normal cognitive function. After the 698 

introduction of the Diagnostic and Statistical Manual of Mental Disorders version 5 (DSM-5), 699 

dementia has been renamed as major Neurocognitive disorder (major NCD) and MCI as mild 700 

NCD. Correspondingly, the criteria for MCI have changed. The Petersen’s criteria for MCI 701 

are: (a) subjective decline in memory (b) memory impairment on neuropsychological test (c) 702 

intact daily functioning (d) no dementia. The DSM-5 criteria for MCI are: (a) concern (of the 703 
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patient or of the clinician) of a mild decline in cognitive function (b) cognitive decline by 704 

standard cognitive assessment (c) independence in everyday activities (d) cognitive deficits 705 

not explainable by delirium, psychosis, severe depression.  706 

 707 

 708 

BOX 2: glossary 709 

 Attention: the cognitive domain involved in the selection of a specific information 710 

within a sensory channel (filtering), ignoring all the other data. It requires the activity of the 711 

prefrontal cortex, with modulation by the dopaminergic system 712 

 Inhibitory control: the ability to suppress ongoing and inappropriate responses to 713 

potentially relevant stimuli. A classical test is the Stroop task, requiring to name the font color 714 

of a printed word, neglecting the meaning of the word itself.  715 

 Memory: the cognitive domain involved in the registration and recall of information. 716 

Different and independent types of memory exist, such as explicit memory (for words, 717 

history etc), implicit memory (for actions, skills), short term and working memory (with 718 

limited number of items that can be recorded and short permanence) and long-term memory. 719 

Although no single brain region can be linked to memory, at the neuronal scale the 720 

phenomenon most likely correlated to memory is called “long term potentiation” and “long 721 

term depression”, which are sustained modifications of the efficiency of the neuronal contacts 722 

or synapses.  723 

Language skills: the cognitive domain dealing with repeating, understanding and 724 

producing words, sentences, language. They require the function of two main areas in the 725 

dominant (left) cortex, that is the motor- and sensitive- language areas (Broca’s and 726 

Wernicke’s areas) 727 

Visuospatial ability: the cognitive domain dealing with the analysis of visual 728 

information, recognition of images and reproducing drawings. It requires the integrity of the 729 

occipital cortex.  730 

Executive functions: a psychological construct indicating mental processes 731 

necessary for goal-directed behavior. The term derives from subjects with damage of the 732 

frontal lobe, who can show normal language, learning, memory and reasoning on specific 733 

tasks; notwithstanding, their everyday tasks are disorganized and poorly planned: their 734 

“cognitive resources” such as learning, memory, reasoning, language are poorly coordinated, 735 
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that is they exhibit an “executive dysfunction”. No direct access to executive functions is 736 

possible, therefore they comprise many different psychological terms such as attention and of 737 

inhibition, working memory, cognitive flexibility, planning, fluid intelligence, reasoning and 738 

problem solving etc. It requires the integrity of the frontal lobe and its modulation by 739 

dopamine and cholinergic neurons from the mesencephalon and basal forebrain respectively.  740 

Catecholamine neurons: a small group of neurons (less than one million) mainly 741 

localized in the encephalic trunk and comprising adrenergic/noradrenergic and dopaminergic 742 

neurons. These neurons innervate large parts of the brain through a massive harborization of 743 

their axons. They can subserve both simple computational task (such as indicating the 744 

presence or absence of a reward) and tonic activity on target regions, such as the striatum and 745 

the cortex, thereby controlling wakefulness and attention.  746 

Polysomnography. An overnight sleep study based on neurophysiologic parameters 747 

(EEG, electrooculography, electro-myography), respiratory patterns, pulse oxymetry, heart 748 

rate. In clinical practice it is used, for example, for the diagnosis of Sleep Apnea and the 749 

characterization of sleep disturbances.  750 

Actigraphy. Usually a portable device (e.g. in the form of a bracelet) equipped with 751 

motion sensors (accelerometers, gyroscopes, GPS), aimed at recording and characterizing the 752 

motor activity and posture of a subject during the day or over several days. Step-meters are a 753 

cheap and simple type of actigraphic recordings. Since sleep is accompanied by specific 754 

postures (usually supine position) and immobility, actigraphic recordings can be used as a 755 

first approach to study 24h sleep patterns in large populations, being inexpensive and 756 

comfortable to wear (as opposed to polysomnography).  757 

Sleep apnea. This is a common respiratory problem characterized by recurrent 758 

episodes of apnea/hypopnea (no or reduced airflow) during sleep. The apneic episodes can 759 

originate from a dysfunction of the brain respiratory centers (central sleep apnea) or from 760 

alteration of the upper airways (e.g., pharynx and larynx) or the tone of their muscles 761 

(peripheral sleep apnea).  762 

Dysautonomia. Altered function of the autonomic nervous system (sympathetic and 763 

parasympathetic) with consequent maladaptive control of orthostatic blood pressure, 764 

digestion, and bladder emptying.  765 

Force plates. A device to study where the body weight is released onto the floor over 766 

time, and its magnitude. The position of the sum of all forces acting between the body and the 767 
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floor can be measured by force plates and is called Center of Pressure. The position of the 768 

Center of Pressure changes over time during movements (such as walking) or even during 769 

simple stance.  770 

Accelerometers. Devices measuring the acceleration of an object over time. These 771 

sensors are usually very small and can be applied onto the hand to measure hand tremor. 772 

Even the widely available smartphones or game controllers may serve for this purpose.  773 

 Blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCB) barrier. The 774 

phenomenon by which many substances (such as India ink) and drugs injected into the blood 775 

remain within the cerebral capillary bed without entering into the parenchyma (BBB) or the 776 

cerebrospinal fluid (BCB). The anatomical substrate for this phenomenon is thought to 777 

involve the peculiar structure of the brain capillary endothelium and the presence of a 778 

pericapillary glial sheet.  779 

  NREM sleep. Using EEG it is possible to appreciate the oscillatory dynamics of 780 

sleep, which is composed of 4-5 cycles of a long period without eye movements (non-rapid-781 

eye movements: NREM) followed by short rapid eye movement stage (REM). The NREM 782 

state is further composed of progressive EEG alterations which can be classified in 4 stages.  783 

  784 
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Table 1. List of uremic neurotoxins uncleared or insufficiently cleared by dialysis and 

current therapeutic regimens. The impact on the brain is analyzed on cellular/tissue 

scale, intermediate phenotype scale and behavioral scale. BBB+: the toxin crosses the 

blood brain barrier; BBB-: the toxin does not cross the BBB (predicted from 

https://www.cbligand.org/BBB/). NA: data not available 

Name Impact on the CNS Solubility- 

protein 

bound; 

BBB 

crossing 

 Microscopic scale 

(Cells/tissue) 

Intermediate 

phenotypes 

Behavioral 

scale 

 

Asymmetric Dimethyl 

Arginine (ADMA) 

Endothelial 

dysfunction
210

 

Vascular 

brain injury 

217
, slower 

gait speed
218

  

Cognitive 

impairment 

Water-

soluble 

BBB- 

beta-2-microglobulin NA NA NA Middle 

BBB- 

3-Carboxy-4-methyl-

5-propyl-2-

furanpropanoic acid 

(CMPF) 

Inhibition of brain-to-

blood transport of 

metabolites
211

  

Sleep 
219

   Protein-

bound 

BBB+ 

 

Cystatin C NA Glymphatic 

solute 

clearance 
220

  

NA Middle 

BBB- 

FGF23 Endothelial NA Memory Middle 
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dysfunction 
212

 deficits
151

  BBB- 

Hippuric acid Endothelial 

dysfunction
213

  

BBB 

dysfunction 

Uremic 

encephalopathy 

Water-

soluble 

BBB+ 

IL-1 beta Neurodegeneration of 

dopamine neurons
195

  

NA Executive 

function, 

memory 

Protein-

bound 

BBB- 

IL-6, TNF-alpha Neuroinflammation
196

 Reduced 

glymphatic 

drainage
214

  

NA Middle 

BBB- 

Indole-3-acetic acid Effect on neuronal 

stem cells
197

  

NA NA Protein-

bound 

BBB+ 

Indoxylsulphate/p-

cresylsulphate 

Neuroinflammation 

and altered glial 

function 
198

  

NA Cognitive 

impairment 
221

  

Protein-

bound 

BBB+ 

Leptin Neuroprotective; 

apoptosis in neural 

stem cells ; adiposity-

dependent 

neurotoxicity
199,200

 

NA NA Protein-

bound 

BBB- 

Methylglyoxal Effects on neural 

stem cells, Amyloid 

deposition
201,202

  

Lower gray 

matter 

Memory, 

executive 

functions
202

  

Protein-

bound 

BBB+ 

Neuropeptide Y Endothelial Sleep NA Middle 
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(NPY) dysfunction
146

  regulation BBB+ 

Parathyroid hormone 

(PTH) 

NA Gait 

instability
215

  

NA Middle 

BBB- 

Spermidine/putrescine NA NA NA Protein-

bound 

BBB- 

Putative kidney neurotrophins 

Erythropoietin Increases brain 

aquaporin 4 

(glymphatic 

pathway)
203

  

Neuronal 

oxygenation 

Improves 

behavioral 

deficit 

Middle 

BBB- 

Hydrogen sulfide 

(H2S) 

Promotes neuronal 

stem cell 

differentiation; 

Neuroprotective 

effects
204,205

  

NA Improves 

behavioral 

deficit 

Water-

soluble 

BBB+ 

Uric acid Protective on 

dopamine system; 

Promotes neuronal 

stem cell 

differentiation
206,207

  

Increases 

brain 

perivascular 

spaces 

(glymphatic 

pathway) 
216

  

NA Water-

soluble 

BBB+ 

Vitamin D-calcitriol Decreases 

neuroinflammation; 

promotes neuro- 

genesis
208,209

  

NA Maintains 

global 

cognitive 

performance
222

  

Protein-

bound 

BBB+ 

 785 
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Figure Legend 1315 

Figure 1. Schematic representation of the evolution of mild cognitive impairment (MCI) as a 1316 

function of CKD stage at fixed age (A) and as a function of age (B). The effect of replacement 1317 

therapies (HD, PD) in the end stage phase (ESRF) are also reported. A: The percent of mild 1318 

cognitive impairment, screened with tests such as the Mini Mental State Examination (MMSE) 1319 

or the Montreal Cognitive Assessment (MoCA), increases as a function of CKD stage/eGFR 1320 

(and possibly as a function of the time spent in that stage). B: the risk for MCI increases as a 1321 

function of time (age) in the general population. In patients with ESRF treated with 1322 

hemodialysis (HD) the risk remains greatly above the general population. Peritoneal dialysis 1323 

(PD) gives some advantage. Patients with mild CKD and kidney transplantation restores the 1324 

slope of the risk curve towards that of the general population; however, the initial gap 1325 

developed before transplantation is not “repaired” and therefore average cognitive 1326 

performances in transplanted patients remain below the non-CKD population. Lines are 1327 

estimates based on selected studies reported in Supplementary data. The confidence intervals 1328 

are derived from the variations among selected studies. 1329 

 1330 

Figure 2. Schematic representation of brain modifications accompanying chronic kidney 1331 

disease (CKD), possibly mediated by uremic neurotoxins or lack of kidney neurotrophins. 1332 

Catecholamine neurons in the encephalic trunk/hypothalamus may be particularly sensitive to 1333 

the uremic milieu, thereby mediating the alterations in sleep patterns, mood, attention. These 1334 

may in turn impinge on memory, thus giving the emergence of Mild cognitive impairment 1335 

(MCI) and then dementia. LC: locus coeruleus. NE: norepinephrine neurons; 5HT: serotonin 1336 

neurons; DA: dopamine neurons; SN/VTA: Substantia Nigra/Ventral Tegmental Area; H: 1337 

histamine neurons; TM: tuberomammillary (hypothalamus), Ach: acetylcholine neurons; PFc: 1338 

prefrontal cortex.  1339 

 1340 

Figure 3. The hierarchical organization connecting CKD to behavior. Cognitive impairment 1341 

is a complex behavioral pattern that can be screened using questionnaires and summarized in 1342 

a single score but is actually a multidimensional phenomenon comprising multiple cognitive 1343 

domains. Therefore, its relation with the direct effects of CKD (e.g. the biochemical changes 1344 

in plasma) is complex and difficult to understand. Intermediate phenotypes are quantitative 1345 

phenotypes connected to the complex behavioral alterations, but with simpler biological 1346 

substrates, which are more easily connected to the molecular derangements of CKD.  1347 

 1348 
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 1349 

Figure 4. Uremic neurotoxins enter the brain via the blood brain barrier (BBB) and blood-1350 

CSF barrier (BCB) and leave the brain via the glymphatic system that is a polarized brain 1351 

fluid transport system that connects with meningeal and peripheral lymphatic vessels for 1352 

export of metabolic waste. CSF in the subarachnoid space is driven into the periarterial space 1353 

by arterial pulsatility and mixes with interstitial fluid thus dragging waste product not only for 1354 

export along the perivenous spaces but also within different areas of the brain including NPC 1355 

niches, located within the sub granular (SGZ) zone and the sub ventricular zone (SVZ). 1356 

Within these NPC niches uremic neurotoxins might interfere with proper functioning of 1357 

endogenous NPCs, such as neurogenesis and homeostatic functions, thus further contributing 1358 

perturb brain tasks during CKD. 1359 

 1360 

Figure 5. Mechanism of action of some of the uremic (neuro)toxins and their interaction with 1361 

genetic predisposing factors.  1362 
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