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repair and failure to apoptose as a result of mutated cell 
cycle proteins such as p53. Attempts to overcome resis-
tance mainly involve the use of combination drug ther-
apy using different classes of drugs with minimally over-
lapping toxicities to allow maximal dosages and with 
narrowest cycle intervals, necessary for bone marrow 
recovery. Adjuvant therapy with P-glycoprotein inhibi-
tors and, in specifi c instances, the use of growth factor 
and protein kinase C inhibitors are newer experimental 
approaches that may also prove effective in abrogating 
or delaying onset of resistance. Gene knockout using an-
tisense molecules may be another effective way of block-
ing drug resistance genes. Conversely, drug resistance 
may also be used to good purpose by transplanting ret-
rovirally transformed CD34 cells expressing the MDR 
gene to protect the bone marrow during high-dose che-
motherapy. 

 Copyright © 2005 S. Karger AG, Basel 

 Types of Cancer Treatments 

 Therapeutic procedures for cancer patients still re-
main largely empirical and vary between centres. Treat-
ment depends upon a variety of individual factors, which 
may include the specifi c pathological and molecular char-
acteristics of the cancer, its location, extent of disease and 
the health status of the patient. 

 The ultimate objective is to destroy all the cancer cells 
whilst infl icting minimal damage on the normal tissue. 
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  Abstract 
 The management of cancer involves procedures, which 
include surgery, radiotherapy and chemotherapy. Devel-
opment of chemoresistance is a persistent problem dur-
ing the treatment of local and disseminated disease. A 
plethora of cytotoxic drugs that selectively, but not ex-
clusively, target actively proliferating cells include such 
diverse groups as DNA alkylating agents, antimetabo-
lites, intercalating agents and mitotic inhibitors. Resis-
tance constitutes a lack of response to drug-induced tu-
mour growth inhibition; it may be inherent in a 
subpopulation of heterogeneous cancer cells or be ac-
quired as a cellular response to drug exposure. Resis-
tance varies. Although regulatory approval may require 
effi cacy in as few as 20% of trial cohorts, a drug may 
subsequently be used in unselected patients displaying 
resistance to the treatment. Principal mechanisms may 
include altered membrane transport involving the P-gly-
coprotein product of the multidrug resistance (MDR) 
gene as well as other associated proteins, altered target 
enzyme (e.g. mutated topoisomerase II), decreased drug 
activation, increased drug degradation due to altered ex-
pression of drug-metabolising enzymes, drug inactiva-
tion due to conjugation with increased glutathione, sub-
cellular redistribution, drug interaction, enhanced DNA 
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This can be achieved in a number of ways, either directly 
or indirectly by depriving the cancer cells of signals need-
ed for cellular proliferation or by stimulating an immune 
response. 

 There are several different types of treatment, which 
may be used alone or in combination, either simultane-
ously or sequentially: surgery, radiotherapy and drugs. 
 Surgery  is most frequently the fi rst line of therapy, and 
for ‘early’ cancers,   it may be curative.  Radiotherapy  is 
most often used in a localised setting and in conjunction 
with surgical procedures. The use of drugs involves  che-
motherapy  (CTX), which employs a wide group of drugs 
that have cytotoxic effects which preferentially, but not 
exclusively, target the rapidly dividing cancer cells.  En-
docrine therapy  is a more specifi c form of treatment, used 
for example for breast cancer. It is aimed at preventing 
cancer cell proliferation by antagonising the oestrogen-
stimulated intracellular signals which control growth in 
cells overexpressing the oestrogen receptor. This may be 
effective in 60–70% of breast cancer patients.  Antibodies  
against specifi c proteins that are overexpressed in cancer 
cells may be used to preferentially target those cells. Tox-
in molecules linked to the antibodies would be endocy-
tosed into the cells and destroy them, such as Herceptin, 
which targets the erbB2/HER2/neu receptor  [1–4] .  Tar-
geted therapies  have been employed exploiting the over-
expression in many cancer cells of proteins such as the 
folate receptor  [5, 6] .  Metabolic inhibitors  are being in-

vestigated, which target specifi c proteins and pathways 
involved in cell growth that operate preferentially in can-
cer cells. Many of these are associated with cell cycle reg-
ulation.  Biological response modifi ers  are a class of com-
pounds, which may be modulated to elicit an immune 
response against cancer cells.  Vaccines  may offer an ideal 
solution, but so far the lack of tumour-specifi c proteins 
has hampered this approach. Of these, chemotherapy and 
endocrine therapy are currently in use. Others are exper-
imental or hopeful approaches for the future. This review 
describes the mechanisms of drug resistance in cancer 
chemotherapy. 

   Chemotherapy 

 Although adjuvant CTX is frequently used for prima-
ry tumours, its main use is to control overt disseminated 
disease. The excessively active growth-signaling path-
ways in cancer cells makes them susceptible to a wide 
range of drugs which target growth-signaling molecules 
and/or processes involved in cellular replication and ex-
pression ( fi g. 1 ). However, as these processes also drive 
normal cells, the effect is preferential and not exclusive, 
which results in the unwanted side-effects seen with these 
agents. Cells which are normally actively dividing, in par-
ticular the bone marrow constituents and those of the 
intestinal lining, are particularly susceptible. Disregulat-
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  Fig. 1.  Sites of action of cytotoxic agents. 
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ed cell cycle events, due to mutations in cancer cells, do 
sometimes offer opportunities to target those cells with-
out affecting normal cells. 

 The relatively wide spectrum of activity of cytotoxic 
drugs makes them a rather harsh and non-specifi c form 
of treatment that can only be tolerated for short periods. 
Indeed the effects of the treatment may sometimes cause 
more distress than the disease. These side-effects include 
dry fl aky skin, loss of hair, nausea and vomiting, changes 
in taste and appetite, blood clotting problems, fatigue, 
depressed immune system and possible sterility. Most 
side-effects subside after the treatment is over, but some-
times there is permanent damage to the kidneys, heart, 
lungs or reproductive system. In general, however, ben-
efi ts outweigh the disadvantages, and CTX is the com-
monest form of cancer therapy. This is less a refl ection of 
its effectiveness than the lack of a better alternative. The 
other chemical therapies in the list above constitute some 
of these alternatives, but at present they play a subsidiary 
role in the armory of the oncologist. 

 Many of the CTX drugs that are employed are natu-
rally occurring compounds extracted from plants, while 
others are synthetic. They can be divided into three major 
groups on the basis of their mode and site of action: an-
timetabolites, genotoxic agents and mitotic spindle in-
hibitors  [7] . 

   Antimetabolites 
 Examples of such drugs include folate, pyrimidine and 

purine antagonists. 
  Folate Antagonists or Antifolates.  These are inhibitors 

of dihydrofolate reductase (DHFR), an enzyme involved 
in nucleotide metabolism. Folates are co-enzymes re-
quired for methylation and necessary for the formation 
of purines and thymidylate. Methotrexate reversibly 
binds DHFR after entering the cell via the low pH folate 
transporter, or by reduced folate carriers, reducing the 
available DHFR for reduction of the tetrahydrofolate 
precursors, i.e. folic acid and dihydrofolic acid. Metho-
trexate is used to treat a variety of malignancies including 
acute lymphocytic leukaemia, large cell lymphoma, high-
grade lymphoma, choriocarcinoma and cancer of the 
breast, bladder, head and neck and bone as well as many 
infl ammatory diseases. 

  Pyrimidine Antagonists.  Three such compounds that 
are commonly used in cancer therapy are 5-fl uorouracil 
(5-FU; Adrucil ® , Fluorouracil, Efudex ® , Fluoroplex ® ), 
gemcitabine (Gemzar ® ) and arabinosylcytosine. These 
may block pyrimidine nucleotide formation or cause pre-
mature termination by themselves being incorporated 

into newly synthesized DNA. 5-FU also affects the pro-
cessing of ribosomal, transfer and small nuclear RNAs. It 
may inhibit cell growth by preventing synthesis of thy-
mine nucleotides from uracil nucleotides. It is used ex-
tensively in treatment of cancers of the breast, colon, 
stomach, rectum and pancreas. 

  Purine Antagonists.  These inhibit synthesis of adenine 
and guanine, and the main examples are acyclovir, 6-mer-
captopurine (Purinethol ® , Puri-Nethol ® ) and 6-thiogua-
nine. They are used to treat particularly acute lympho-
cytic or myelocytic leukaemia, lymphoblastic leukaemia 
and acute myelogenous and myelomonocytic leukae-
mias. 

   Genotoxic Agents 
 These either bind to DNA or indirectly damage it by 

affecting enzymes involved in replication, which leads to 
induced apoptosis. Hence, proliferating cancer cells are 
more sensitive than most normal cells, which undergo 
division less frequently. This class of drugs may be sub-
divided into several groups. 

  Alkylating Agents.  These modify the bases of DNA, 
interfering with replication and transcription and leading 
to mutations. Cross-linking atoms in the DNA, prevent-
ing strand separation for synthesis or transcription, also 
cause damage. Base mispairing between strands is also 
induced by alkylation. Examples include cisplatin, cyclo-
phosphamide, melphalan, mitomycin C and temozolo-
mide. 

  Intercalating Agents.  These bind in the grooves in the 
DNA helix, interfering with polymerase activity during 
replication/transcription. Examples are epirubicin and 
doxorubicin. 

  Enzyme Inhibitors.  These block replication by inhibit-
ing enzymes, such as topoisomerases. The mutagenic 
properties of these drugs make them carcinogenic and 
therefore their use entails additional risk of secondary 
cancers, such as leukaemia. Examples of these are etopo-
side, topotecan and irinotecan. 

   Mitotic Spindle Inhibitors 
 These disrupt mitosis by affecting the formation/func-

tion of spindle microtubule fi bres required for chromo-
some alignment. They prevent the polymerisation of tu-
bulin monomers and act in a cell cycle-dependent man-
ner. They also affect normal cells but to a much lesser 
extent due to the lower frequency of cell division. The 
commonly used drugs in this category are the plant-de-
rived vinca alkaloids and paclitaxel (Taxol ® ) and the syn-
thetic docetaxel (Taxotere ® ). 
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   Failure of Chemotherapy 

 In some cases, tumours may be refractory to treatment 
with some types of cytotoxic drugs. In many, if not most 
instances, patients who initially respond to CTX invari-
ably show a loss of response later on, resulting in tumour 
regrowth. There are two probable causes for this: (a) the 
tumour cells may be inherently resistant possibly due to 
some genetic characteristic or (b) they may acquire resis-
tance following exposure to the drug. In a typical scenar-
io, 1 in 10 6 –10 7  cancer cells in a tumour is likely to have 
inherent resistance against a particular drug. A clinically 
detectable tumour has in the region of 10 9  cells and it 
might therefore be expected to contain 10–1,000 drug-
resistant cells, which have the potential to repopulate the 
tumour despite destruction of the sensitive cells. Consid-
ering this, the probability of cure or containment is di-
rectly related to tumour size at onset of treatment. Ag-
gressive CTX may often cure certain cancers, particu-
larly childhood leukaemias, Hodgkin’s disease or 
testicular cancers, because the few surviving drug-resis-
tant cells may become susceptible to the immune system. 
Irrespective of how resistance to CTX arises, it poses a 
serious impediment to the successful elimination of the 
entire tumour mass. Drug resistance has been described 
as the single most common reason for discontinuation of 
a drug  [8] . 

 So why does drug resistance vary between individuals 
and for different drugs? The answer to this is probably 
quite simple. In order to obtain approval for use in cancer 
therapy, a drug may, in the original clinical trials, have 
been shown to be effective in anything from just 20% up-
wards of a relatively small and possibly selected patient 
group. Afterwards it is likely that it is used on patients 
without any preselection. Attempts to overcome the re-
sistance by the use of a different drug is the most obvious 
approach, but this offers only temporary respite and even-
tually results in the phenomenon of multidrug resistance 
(MDR), which is defi ned as the insensitivity of various 
tumours to a variety of chemically related or unrelated 
anticancer drugs, mediated by a process of inactivating 
the drug or removing it from the target tumour cells .  

   Potential Mechanisms of Resistance 

 Various hypotheses, some with more supporting ex-
perimental evidence than others, have been proposed to 
account for the phenomenon of drug resistance. Ironi-
cally, some of the mechanisms that could be utilised by 

cancer cells to resist cytotoxic drugs are probably evolved 
in normal cells as a defence mechanism against environ-
mental carcinogens. The hypothesis include altered trans-
port of the drug across the plasma membrane, genetic 
responses, enhanced DNA repair, alteration in target 
molecules, access to target cells, metabolic effects and 
growth factors. 

   Altered Membrane Transport 
 Probably one of the most signifi cant forms of resis-

tance against the variety of currently used antineoplastic 
agents is by the action of a group of membrane proteins 
which extrude cytotoxic molecules, keeping intracellular 
drug concentration below a cell-killing threshold. These 
ATP-dependent multidrug transporters belong to the 
ubiquitous superfamily of ATP-binding cassette (ABC) 
proteins, which have also been implicated in the resis-
tance to infectious diseases such as AIDS and malaria. 
These proteins modulate absorption, distribution and ex-
cretion of many pharmacological compounds. There may 
be as many as 48 genes encoding ABC transporters. The 
ABC proteins have been grouped into 7 subclasses rang-
ing from ABCA to ABCG  [9–11]  based upon genomic 
organization, order of domains and sequence homology. 

 The MDR1 gene, which encodes P-glycoprotein (P-gp; 
MDR1, ABCB1)  [12–15] , a phosphorylated and glycosyl-
ated 170-kDa protein of 1,280 amino acids, is the most 
widely observed mechanism in clinical transport-associ-
ated MDR  [16–19] . Several other ABC transporters have 
been described: the MDR-associated protein 1 (MRP1, 
ABCC1), the mitoxantrone resistance protein (MXR1/
BCRP, ABCG2)  [19–23]  and the ABCB4 (MDR3) and 
ABCB11 (sister P-gp or BSEP) proteins involved in the 
secretion of hepatic phosphatidyl choline and bile acids, 
respectively  [24] , as well as transport of certain drugs  [25] . 
In addition to MRP1, fi ve homologues (MRP2–MRP6) 
have been cloned and overexpression of MRP2 was 
shown to confer MDR  [21, 26] . MRP3 and MRP5, which 
are transporters of organic conjugates and nucleosides, 
respectively, are also implicated in drug resistance  [21] . 
The MRPs ubiquitously expressed in normal tissues and 
to varying degrees in human cancers  [27]  belong to the 
ABCC subfamily comprising 11 genomic regions. Many 
of these proteins have been identifi ed as ATP-dependent 
membrane transporters for various drugs and anions, 
with some such as MRP1 also utilising glutathione  [28, 
29] . 

 The most intriguing characteristic distinguishing 
MDR proteins from other mammalian transporters is 
their highly promiscuous substrate specifi city  [30] . In 
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contrast with selective (classical) transport proteins, mul-
tidrug transporters, as well as handling unique com-
pounds, translocate a large number of structurally diverse 
mainly hydrophobic compounds, which explains the 
cross-resistance to several chemically unrelated com-
pounds, the hallmark of the MDR phenotype  [16–19] . 
Tumours with MDR protein overexpression, such as hep-
atomas, lung or colon carcinomas, frequently show intrin-
sic resistance. P-gp transports large hydrophobic, un-
charged or slightly positively charged compounds, while 
the MRP family is the main transport vehicle for hydro-
phobic anionic conjugates and extrudes uncharged hy-
drophobic drugs.  Table 1  is a list of commonly used drugs, 
including important anticancer agents, which are extrud-
ed by P-gp. 

 The precise physiological function of P-gp in the ab-
sence of therapeutics or toxins is probably a protective 
role. Results of gene knockout experiments in mice sup-
port the idea that MDR proteins play a part in protecting 
the cell from xenobiotics  [31] . Tissue distribution of 
MDR-ABC proteins is quite varied. P-gp is often diffi cult 
to detect because of its low level of expression, but it is 
ubiquitous in those tissues involved in absorption and 
secretion  [16–19]  (e.g. epithelial cells of the kidney prox-
imal tubules, superfi cial columnar epithelial cells of the 
colon and jejunum, hepatocytes, epithelial cells of pan-
creatic small ductules, adrenal medulla and cortex)  [32]  
and in a variety of immune cells  [33–36]  where it prob-
ably contributes signifi cantly to the removal of drugs and 
toxins from the bone marrow. Its expression varies be-
tween individuals and is a function of both genotypic 
characteristics and of general metabolic/environmental 
conditions, which may include exposure to heat shock, 
irradiation, genotoxic stress and infl ammatory stimuli as 
well as cytokines and growth factors. It has been shown 
that P-gp-mediated drug transport can be stimulated by 
the antihypertensive prazosin and by progesterone  [37] . 

 The promise of preclinical data on the role of P-gp has 
been somewhat disappointing in terms of the clinical ex-
perience with P-gp modulators to overcome drug resis-
tance  [38] . Although P-gp appears to play a very impor-
tant role in the CNS penetration of drugs, its effect on 
drug absorption may not be as important as generally be-
lieved  [39] . In some studies, P-gp has been reported to 
have prognostic signifi cance in certain types of neoplasms 
 [40–42] , but very often it has generally failed to show a 
correlation with clinical response  [43–45] . This has led to 
much controversy regarding the precise role of P-gp in 
clinically relevant tumour drug resistance. Its precise 
mode of action also remains a perplexing problem. There 

have been suggestions that the MDR proteins do not 
transport drugs per se but alter ion transport or signal 
transduction, which then affects drug distribution  [46] . 

 Anticancer drugs and cytotoxic cytokines such as 
members of the TNF/Fas ligand family play a predomi-
nant role in apoptosis induction in tumour cells and are 
critical in cancer therapy. Given the wide-ranging actions 
of P-gp, one group has extensively examined its associa-
tion with cell death  [47] . Pathways leading to apoptosis 
appear to involve   a family of cysteine aspases known as 
caspases  [48] . Using drug-resistant tumour cell lines, their 
results suggest that P-gp confers resistance to Fas-induced 
caspase-3 activation and apoptosis. P-gp-expressing cells 
are resistant to a wide range of stimuli that activate the 
caspase apoptotic cascade, but are not resistant to cas-
pase-independent cell death mediated by pore-forming 
proteins and GzB. Inhibition of P-gp with antibody in-
hibitors completely reverses the resistance to caspase-de-
pendent cell death  [49, 50] . They also demonstrated ATP-
dependent inhibition of Fas-induced caspase-8 activa-
tion but not formation of the death-inducing signal 
complex  [51] . Cullen et al.  [52] , however, found that an 
MRP-overexpressing MDR leukaemia subline had the 
same level of Fas expression as the parental cells and sim-

Table 1. Selected list of drugs that are extruded by P-gp

Cancer drugs HIV protease inhibitors
Doxorubicin Amprenavir
Daunorubicin Indinavir
Vinblastine Nelfi navir
Vincristine Ritonavir
Actinomycin D Saquinavir
Paclitaxel Cardiac drugs
Teniposide Digoxin
Etoposide Quinidine

Immunosuppressive drugs Anti-emetic
Cyclosporin A Ondansetron
FK506 Antidiarrhoeal agent

Lipid-lowering agent Loperamide
Lovastatin Antigout agent

Antihistamine Colchicine
Terfenadine Antibiotic

Steroids Erythromycin
Aldosterone Antihelminthic agent
Hydrocortisone Ivermectin
Cortisol Antituberculous agent
Corticosterone Rifampin
Dexamethasone Fluorescent dye

Dopamine antagonist Rhodamine-123
Domperidone
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ilar apoptotic responses to anti-Fas antibody, questioning 
the hypothesis that selection of drug resistance results in 
resistance to Fas-mediated apoptosis. 

   Genetic Responses 
 Drugs such as methotrexate inhibit key enzymes in 

pathways controlling proliferation. Thus, increased tran-
scription of the gene that encodes the enzyme can lead to 
increased levels of the target. As the drug concentration 
will be limited, it will be unable to block the additional 
enzyme that is being synthesised, and therefore the cell 
will effectively overcome the inhibitory effect. One man-
ner in which expression can be elevated is through the 
process of gene amplifi cation, which involves selective 
replication of a region of the chromosome, resulting in 
multiple copies of the same gene, with each one being 
transcribed to produce a high level of mRNA. 

 P-gp activity is also related to the status and level of 
activity of the MDR1 gene. Rifampicin can induce MDR1 
expression. Induction of intestinal P-gp by rifampicin has 
been shown to be the major mechanism responsible for 
reduced digoxin levels during concomitant rifampicin 
therapy; in healthy male volunteers, the oral bio-avail-
ability of digoxin decreased by 30% and intestinal P-gp 
levels were induced 3.5-fold during rifampicin therapy 
 [53, 54] . 

 Mickley et al.  [55]  found that in several drug-resistant 
cancer cell lines as well as in DNA from two leukaemic 
patients who had developed drug resistance, gene rear-
rangements had occurred resulting in initial activation or 
increased expression of MDR1. Polymorphism in exon 
26 (C3435T) of MDR1 is signifi cantly correlated with 
levels of expression and function of MDR1  [56] . Thus, 
gene amplifi cations/rearrangements, rifampicin induc-
tion and probably other factors can cause MDR1 overex-
pression. 

 Defects in the apoptotic pathway might constitute an 
alternative mode of therapy resistance  [57] . The p53 pro-
tein is an important regulator of the cell cycle and is sen-
sitive to any DNA damage (genotoxic stress) caused dur-
ing replication, in which case it will normally induce G1 
arrest and/or apoptosis to prevent the production of de-
fective cells. Drugs, which increase DNA damage, will 
therefore lead to p53-mediated cell death. Mutations in 
this gene are frequently observed in human cancers; loss 
of p53 function will allow cells with damaged DNA to 
continue replicating, which means resistance to DNA-
damaging drugs. From a trial of ovarian carcinoma, Pet-
ty et al.  [58]  concluded that enhanced genomic instability 
due to p53 inactivation might increase the likelihood of 

development of resistance to CTX over time. In a variety 
of tumours, p53 deletion was reported to be associated 
with MDR  [59] . Inactivated p53 almost completely sup-
pressed the induction of apoptosis or severely delayed it. 
Johnson and Fan  [60]  found that reduced expression of 
p53 in human breast cancer cells modifi ed response to 
paclitaxel and 5-FU. It has been suggested that reactiva-
tion of mutant p53 may be an effective way of inducing 
tumour cell death  [61] . Susceptibility of tumour cells to 
programmed cell death is infl uenced by a series of proto-
oncogenes and tumour suppressor genes. Other genes, 
such as h-ras and bcl-2/bax, involved in the apoptotic 
pathway, have also been implicated in resistance  [62] . 
This type of resistance will affect a wider range (possibly 
all) of anticancer drugs. It also potentially increases the 
proportion of surviving mutant cells, which leads to great-
er tumour heterogeneity. 

   Enhanced DNA Repair 
 Another way that cells can become resistant, for ex-

ample to cisplatin, is by developing an enhanced ability 
to remove cisplatin-DNA adducts and to repair cisplatin-
induced lesions, through the action of DNA repair pro-
teins. Levels of a nuclear protein called XPE-BF (xero-
derma pigmentosum group E binding factor) were found 
to increase early in the development of cisplatin resis-
tance. Excision repair cross-complementing protein 
(ERCC1)  [63] , most likely a DNA-binding protein, is an-
other example of a DNA repair protein that may be in-
volved in recognition of cisplatin damage; its expression 
is elevated in cisplatin-resistant cells compared with that 
in cells sensitive to cisplatin. The level of ERCC1 has 
been reported to increase as tumours become resistant to 
carboplatin  [64] . Cross-resistance to carboplatin but not 
so much to either oxaliplatin or tetraplatin has been ob-
served in cisplatin-resistant cells  [65] , so there are oppor-
tunities for second-line therapy. Resistance in non-semi-
nomatous germ cell cancer cell lines was 1.7- to 2.2-fold 
with oxaliplatin compared to 3.9- to 6.1-fold with cispla-
tin  [66] . 

   Alterations in Target Molecules 
 It is possible that during the course of therapy, the tar-

get of that therapy could be modifi ed in some way or even 
decrease to a level where it ceases to have any signifi cant 
cellular infl uence and is therefore no longer a useful target 
to block. A fairly common example of this is encountered 
with anti-oestrogen (e.g. tamoxifen) therapy of breast can-
cer. Patients often undergo transition to an endocrine-re-
sistant, from an initially responsive state, in which there 
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is an apparent loss of oestrogen receptors in the resistant 
tumour cells. These patients no longer respond to tamox-
ifen treatment; however, their tumours can still, tempo-
rarily at least, be growth inhibited by inhibitors of oestro-
gen synthesis such as aromatase inhibitors  [67, 68] . This 
is followed by a state of complete unresponsiveness to any 
endocrine manipulation. Presumably, the surviving can-
cer cells are no longer dependent on oestrogen for growth 
and continued attempts to block the now diminished 
original target, i.e. the oestrogen receptor, are fruitless. 

 Gene mutations are common in cancer cells; indeed it 
is this phenomenon, which gives that cell its remarkable 
properties. Cytotoxic drugs are aimed at disabling a com-
ponent whose continued function is necessary for cell sur-
vival; cells that survive the treatment may do so by car-
rying a gene, for that target, which has mutated in such a 
way that it produces a protein that retains its activity but 
no longer binds to the drug, for stereochemical reasons, 
and is therefore not inhibited by it. The result is a func-
tioning cell resistant to the drug. Resistance to the herbi-
cide, glyphosate, can be induced in plants by transfection 
with a mutated aroA gene which encodes an enzyme nec-
essary for synthesis of aromatic amino acids. The modi-
fi ed enzyme retains its essential catalytic activity but no 
longer binds glyphosate. Imatinib (Gleevac; STI571) is a 
tyrosine kinase inhibitor that induces apoptosis by pre-
venting cell growth in cancerous cells by disabling the 
damaged bcr-abl receptors, preventing ATP binding. In 
clinical trials treating chronic myeloid leukaemia with 
STI571, Gorre et al.  [69]  found that patients in remission 
had reactivated bcr-abl activity; 3 of the 11 patients had 
amplifi ed copies of the oncogenic bcr-abl gene. Two thirds 
of patients tested harboured a single-point mutation with-
in the ATP-binding site of bcr-abl. Thus, the bcr-abl gene 
appears important in both the initiation and the mainte-
nance of tumourigenicity. Identifying mutated alleles 
may help to detect drug-resistant clones prior to clinical 
relapse. 

 Topoisomerase, because of its vital role in DNA rep-
lication, is a favourite target for CTX. Mutations in this 
protein, which alter its nuclear localisation, render those 
cells insensitive to drugs such as etoposide designed to 
block the activity of topoisomerase II. 

 Target molecules may also disappear from cancer cells 
as a result of the loss of the corresponding gene. Chromo-
somal losses are a common feature of cancer. Duesberg 
et al.  [70, 71]  have suggested that it is the aneuploid na-
ture of cancer cells that best explains the development of 
MDR. They conclude that the cause of this resistance is 
not simply the loss of drug-sensitive genes when a chro-

mosome is lost, which can happen frequently given the 
large number of cells undergoing division in a tumour. 
Chromosome reassortment during mitosis is also capable 
of activating/inactivating numerous biochemical path-
ways that could disarm a variety of drugs. By contrast, 
the chances for a normal cell to lose or gain a chromosome 
during mitosis are undetectably low under most condi-
tions and hence,  it is not usual to see resistance to CTX 
in normal cells.  

 Penetration of drugs to their intended site of action is 
also a problem that is encountered and must be regarded 
as a form of resistance. The central portion of large tu-
mours tends to have a poor blood supply and drugs will 
have limited access to this area. Therefore, CTX is more 
effective for smaller tumours and becomes less so as the 
tumour becomes larger. Treatment of brain tumours also 
faces the problems posed by the blood-brain barrier. This 
is a dynamic network of vessels, which restrict movement 
of molecules into the CNS. Many drugs are ineffective 
because they cannot pass through this barrier. Others, 
which may initially have been able to penetrate inside, 
may later be blocked due to the dynamic nature of this 
resistance. P-gp is an important component of this bar-
rier and is present in high concentration on the apical 
surface of the endothelial cells  [72–74] . While it restricts 
access of various potentially harmful pharmacologic 
agents to the brain, it also poses a problem in the treat-
ment of brain diseases. Increasing the concentration of 
the drug to achieve entry into the brain to circumvent the 
action of P-gp presents problems of systemic toxicity. 
Begley  [75]  has reviewed the role of ABC transporters. 

 Genetic variations in transporter and metabolic en-
zymes are associated with differences in drug absorption, 
distribution, metabolism and excretion and are consid-
ered to be the major determinants of interindividual vari-
ability. Cytochrome p450s (cyp450) are a group of en-
zymes that alter the chemical structure of drugs, for elim-
ination. Most drugs that are P-gp substrates are also 
Cyp3A4 substrates. These enzymes are located in the cells 
of the intestinal wall, endothelium, liver and other tissues. 
Genetic differences in cyp450 structure and expression 
lead to functional differences in drug and nutrient ab-
sorption and clearance. Over 50 cyp450 genes are ex-
pressed in different tissues of the human body, with more 
than a thousand identifi ed in all species  [76] . CYP3A4 is 
the most abundantly expressed P450 in human liver and 
small intestine  [77]  and is known to metabolise more than 
120 different drugs. Hepatic expression of CYP3A4 is 
known to vary by more than 50-fold among individuals 
and in vivo CYP3A4 enzymatic function (drug clearance) 
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varies by at least 20-fold. The genetic basis for this was 
reviewed by Lamba et al.  [78] . The combination of P-gp 
and cyp450 largely determines drug absorption and bio-
distribution to tissues, limiting intestinal transcellular 
permeability, biliary disposition in hepatocytes, urinary 
elimination through the renal epithelium and placental 
transport. In 2003, Roche Diagnostics launched the Am-
plichip CYP450, the fi rst pharmacogenomic micro-array 
for clinical applications. This tests for variants of cyp2D6, 
as this is missing in 7% of Caucasians and 2% of non-
Caucasians. CYP2D6 is also hyperactive in 30% of East 
Africans. Therefore, CYP2D6 testing is considered more 
important than CYP3A as its expression varies more 
from one person to the next. 

   Metabolic Effects 
 Xenobiotics often modify high-density apolipopro-

tein. The result of this is to enhance hepatic drug elimina-
tion, reducing its effective plasma concentration. Anoth-
er physiological response to the presence of drugs is the 
overexpression of drug-metabolising enzymes or carrier 
molecules; e.g. the increased production of glutathione 
 [79]  or ubiquitin contributes to inactivation of the drug 
by forming conjugates that are excreted. Resistance to 
cisplatin in ovarian carcinoma cells is associated with in-
creased expression of dihydrodiol dehydrogenase  [80] . In 
other cases,  underexpression  of drug-metabolising en-
zymes can reduce drug effi cacy in situations where an 
administered inactive prodrug has to undergo catalytic 
conversion to an active form. Thus, arabinoside is re-
quired to be activated by the action of deoxycytidine ki-
nase; loss or mutation of this enzyme will render this drug 
less effective  [81] . 

 Protein kinase C also plays an important role in both 
drug exclusion and apoptosis  [82] . There are 12 or more 
different isoforms of this enzyme, which may regulate 
different cellular phosphorylation events. Drug-resistant 
breast cancer cells can have elevated activity, but the role 
of particular isoforms is undetermined. 

 Studies on breast cancer cells have also suggested in-
volvement of the extracellular matrix in drug resistance 
 [83] . It is known that apoptosis can be mediated by acti-
vation of the Fas/Fas-L pathway. These authors showed 
that ligation of b1 integrins by their extracellular matrix 
ligands inhibits apoptosis mediated by paclitaxel and vin-
cristine, which activate this pathway. These agents act by 
causing release of mitochondrial cytochrome c. Integrin-
mediated protection from the drug-induced apoptosis 
and inhibition of cytochrome c release were dependent 
on the activation of the PI 3 kinase/Akt pathway. 

   Growth Factors 
 Serum levels of interleukin (IL)-6 have been found to 

be elevated in patients with various types of cancer. 
Conze et al.  [84]  demonstrated that autocrine production 
of IL-6 by breast cancer cells could promote resistance to 
CTX. Cells sensitive to the CTX did not express appre-
ciable IL-6, whereas high levels were detectable in mul-
tidrug-resistant cells. The mechanism of this resistance 
was attributed to the activation of the CCAAT enhancer-
binding protein family of transcription factors and in-
duction of MDR1 gene expression. They suggested that 
as some breast tumours contain IL-6-producing cells, this 
might have potential as a factor for predicting CTX re-
sistance. 

 Song et al.  [85]  have shown that chemoresistance may 
be induced by extracellular factors in tumour-bearing or-
gans. Comparing chemosensitivity and proteins in differ-
ent tumours and different culture systems, they found 
elevated levels of acidic and basic fi broblast growth fac-
tors in the media of solid and metastatic tumours. These 
conditioned media induced broad-spectrum resistance to 
drugs (paclitaxel, doxorubicin and 5-FU) with diverse 
structures and mechanisms of action. Application in 
combination, of these two growth factors, could produce 
a 10-fold increase in drug resistance, whereas suramin, a 
known inhibitor of fi broblast growth factors, was able to 
reverse this resistance. 

   Drug Resistance Testing 

 Not all patients are necessarily resistant to CTX. Some 
tumours may be highly resistant to most cytotoxic drugs, 
while others may be quite sensitive. Therefore, it would 
be useful to have some tests, which could predict resis-
tance and subsequent clinical failure. This would spare 
patients from the trauma of ineffective CTX. A company 
called IMPATH (Los Angeles, Calif., USA) has devel-
oped a cell culture drug resistance assay, which they claim 
can help in the selection of chemotherapeutic agents that 
have the greatest likelihood of being clinically effective. 
Their method essentially measures  3 H-thymidine uptake 
into cultured tumour cells, taken from fresh biopsy spec-
imens, in the presence of various drugs; an algorithm ap-
plied to the data is used to determine the probability that 
a patient will respond to the various therapies tested in 
the assay. Kern and Weisenthal  [86]  reported that this 
assay used in clinical trials was highly accurate in dem-
onstrating that cells extremely resistant in vitro were also 
resistant in vivo .  The usefulness of such in vitro testing 
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however remains a controversial matter and oncologists 
still prefer to rely on experience and the results of clinical 
trials with the drug. There has been much discussion on 
the subject  [87] . 

   Approaches to Overcoming Drug Resistance 

 As the mechanisms responsible for drug resistance be-
come clearer, several strategies for countering this phe-
nomenon are beginning to emerge. The most obvious re-
sponse, and the one most widely employed, is to use com-
bination drug therapy. The general rationale for choosing 
which drugs to combine is to use drugs which are active 
against the tumour when used individually; to combine 
drugs that have different modes and sites of action to 
produce complementary/synergistic rather than just ad-
ditive effect; to combine drugs with minimally overlap-
ping toxicities, allowing administration of maximally ef-
fective doses of each active agent to optimally schedule 
each drug, and to use drugs with narrowest possible cycle 
intervals necessary for bone marrow recovery. Drugs that 
are typically used in combination therapy for breast can-
cer are listed in  table 2 . 

 High-dose CTX can destroy the tumour cells before 
they have the opportunity to form resistant colonies, but 
this often comes at too great a cost to the patient. Less 
severe strategies are needed. As the action of the ABC 
transporters is thought the most signifi cant reason for 
resistance, they have received the most attention. A 
large number of drugs have been identifi ed that are phar-
macological antagonists of particularly the P-gp. These 
include a variety of quite distinct groups of compounds, 
some of which are listed in  table 3 . Used in conjunction 
with the cytotoxic drugs already mentioned, these can 
potentiate their effects by allowing those drugs to remain 
in the target cells longer. These agents may be more 
properly regarded as modulators or reversing agents as 
even those that appear to be inhibitors of drug effl ux 
may themselves be substrates, in so far as they can stim-
ulate ATPase activity. The use of these in combination 
can subvert the cell’s defence. For example, P-gp blocks 
absorption in the gut and may be considered part of the 
‘fi rst pass effect’; it can act as a ‘gatekeeper’ for subse-
quent P450 cytochrome action. If one drug is a substrate 
of both P-gp and the cytochrome P450 subfamily IIIA 
(nifedipine oxidase) polypeptide 4 (CYP3A4; found in 
close proximity in the intestinal mucosa), and a second 
drug is added that is a modulator (e.g. erythromycin, 
mibefradil, ketoconazole), then the fi rst drug will be al-

lowed to increase its intracellular accumulation as a re-
sult of inhibition of the P-gp blockade. Since CYP3A4 
is also inhibited, unmetabolised drug will enter the cir-
culation. Another example is the entry of the antidiar-
rhoeal, loperamide, into the CNS (from which it is nor-
mally excluded) by the simultaneous administration of 
the P-gp modulator, quinidine  [88] . The use of P-gp in-
hibitors may lead to undesirable consequences. Thus, 
the simultaneous use of cytotoxic drugs and agents that 
block P-gp function has raised questions of safety. In 
knockout mice with a genetic disruption of the mdr1a 
P-gp, much higher levels of substrate drugs accumulated 
in the brain, with markedly slower elimination from the 
circulation, resulting in dramatically increased toxicity 
to normal tissue  [89] . 

 Another mode of MDR reversal utilises monoclonal 
antibodies, several of which inhibit P-gp-mediated drug 
effl ux in vitro  [90, 91] . For in vivo applications, compa-

Table 2. Selected adjuvant CTX drug combinations used for breast 
cancer treatment

CMF Cyclophosphamide, methotrexate, 5-FU
AC Doxorubicin, cyclophosphamide
CAF Cyclophosphamide, doxorubicin, 5-FU
AC]T Doxorubicin, cyclophosphamide, paclitaxel
CEF Cyclophosphamide, epirubicin, 5-FU
CMFVP Cyclophosphamide, methotrexate, 5-FU,

vincristine, prednisone
AT Doxorubicin, docetaxel (Taxotere)
AC]Taxoter Doxorubicin, cyclophosphamide, docetaxel

Table 3. Selected list of drugs that modulate P-gp

Immunosuppressant Anti-arrhythmic agent
Cyclosporin A Quinidine
Valspodar (PSC833) Antifungal agent

HIV protease inhibitors Ketoconazole
Ritonavir Sedative
Saquinavir Midazolam
Nelfi navir Acridone carboxamide

Calcium channel blocker GG918 (GF120918)
Verapamil Peptide chemosensitiser

Progesterone antagonist Reversin 121
Mifepristone (RU486) Reversin 205

Anti-oestrogen
Tamoxifen
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nies such as Immunomedics Inc. are developing polyspe-
cifi c antibodies targeting both MDR protein and cancer 
epitopes. These antibodies may also be conjugated to cy-
totoxins, which can be internalised.  

 Various other means of circumventing resistance that 
are being explored are based on experimental observa-
tions described above: these include adjuvant treatment 
with suramin to reverse fi broblast growth factor-mediat-
ed resistance  [85] ; inhibition of p13 kinase/Akt to prevent 
resistance mediated through integrin involvement, and 
re-expression of wild-type tumour suppressor genes. 

 There have also been considerable technological ad-
vances that have allowed the identifi cation of genes, 
which are potentially responsible for drug resistance, 
which had not been recognised previously using tradi-
tional approaches. Differential or subtractive analyses of 
gene expression in drug-sensitive and drug-resistant cell 
lines or tumours can now be performed with cDNA chip 
micro-arrays. This may facilitate identifi cation of drug 
response genes whose expression is altered by the drug, 
and of signaling and metabolic pathways involved in drug 
activity. 

 More recent innovations to inhibit MDR proteins in-
clude transcriptional/translational inhibition through the 
introduction of antisense oligonucleotides or ribozymes 
 [92, 93] . Interference  [94]  is another approach to knock 
out specifi c mRNAs and is rapidly gaining popularity; 
MDR genes would represent a good target. However, as 
many of these methods require gene targeting and trans-
fer, they are unlikely to produce any really signifi cant in 
vivo applications anytime soon, despite considerable 
progress in the general approach using animal models. 

 A more immediate strategy, termed ‘metronomic dos-
ing’, is to simultaneously target the associated endothe-
lial cells  [95] , which support tumour cell growth. This 
involves combining anti-angiogenic drugs with a more 
frequent regimen of cytotoxic agents; endothelial cells are 
more susceptible to CTX and a lower dose of CTX agents 
can be used, resulting in reduced side-effects  [96] . Ex-
periments in tumour-bearing mice have shown that ad-
ministration of DC101, a blocker of vascular endothelial 
growth factor, and a submaximal tolerated dose of vin-
blastine induced effective tumour regression. Given in-
dividually, both agents were ineffective  [97] . 

 Targeting of growth factor receptors, which are over-
expressed in breast cancer, with antibodies has been suc-
cessfully employed for reducing tumour burden. The 
prime example of this is the use of trastuzumab aimed 
against the HER2 protein  [98] . Cetuximab is another an-
tibody that specifi cally blocks the epidermal growth fac-

tor receptor (EGFR), which is overexpressed in several 
cancers, particularly of the GI tract  [99–101] . It has been 
successfully used in patients who were refractory to treat-
ment with fl uorouracil and irinotecan  [102, 103] . The ef-
fectiveness of the combination of irinotecan and cetux-
imab in patients with irinotecan-refractory tumours  [104]  
suggests that cetuximab may circumvent irinotecan resis-
tance. These authors suggested that EGFR inhibition by 
cetuximab may overcome this resistance by abrogating 
drug effl ux  [105–109] , restoring apoptosis  [110]  or im-
pairing DNA repair activity  [111, 112] . However, the ef-
fi cacy of cetuximab may not be related just to the overall 
level of EGFR in the tumour, but perhaps to its phos-
phorylation state  [113] . 

 Anti-angiogenic agents such as bevacizumab, a hu-
manized monoclonal antibody against VEGF, are also 
effective for metastatic colorectal cancer given in combi-
nation with irinotecan, fl uorouracil and leucovorin  [114] . 
It is suggested that in this case bevacizumab may improve 
delivery of CTX by altering tumour vasculature and de-
creasing the elevated interstitial pressure in tumours 
 [115, 116] . 

   Putting Resistance to Good Use 

 One of the major problems with CTX is its unwanted 
toxicity on bone marrow. Although this tissue recovers 
after cessation of treatment, the patient is severely im-
mune compromised and has to be given additional pro-
tective treatment. The phenomenon of drug resistance 
could be turned to advantage for the patient’s benefi t. 
Stem cells taken from the patient could be transduced 
with a retroviral construct containing an MDR gene and 
used to repopulate the bone marrow, conferring resis-
tance against subsequent exposure to CTX  [93, 117] . 
Knockout experiments in mice have demonstrated tar-
geted disruption of the MDR1b gene  [118] . Several clin-
ical trials are examining the possibility of delivering 
MDR1 gene-expressing vectors into cancer patients to 
induce chemoprotection or for in vivo selection of regen-
erating stem cells. Preliminary results seem to indicate 
that only modest levels of protection can be achieved in 
vivo, due to the very low percentages of patients’ cells 
expressing MDR1 following hematopoietic reconstitu-
tion  [119] . 

 The old adage that prevention is better than cure ap-
plies as much to this situation. A concerted effort should 
be made to identify factors that can predict the onset of 
resistance before its clinical manifestation. This could al-
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low the physician valuable lead time to alter either the 
combination of cytotoxic drugs or the form of the therapy. 
Attempts to devise methods of early detection of meta-
static relapse have concentrated mainly on the develop-
ment of very sensitive molecular assays for the detection 
of tumour-associated genes/proteins in circulating cells in 
the blood or micrometastases in the bone marrow  [120–
122] . The continual monitoring of cancer patients on 
therapy, for the traditional tumour markers such as car-
cino-embryonic antigen, has proved of limited use except 
in a few cancers; e.g. bHCG is a good indicator of early 
relapse in choriocarcinomas. The absence of a clearly de-
fi ned molecule that is produced or is present only in can-

cer cells has greatly hindered these efforts. For the com-
mon adenocarcinomas, epithelial cell markers have been 
investigated on the premise that such cells are normally 
absent from blood, and if they appear in cancer patients, 
they must originate from a growing tumour. Without this 
early warning system, the problem of overcoming devel-
opment of chemoresistance is quite considerable. In an 
ideal situation, therapy would be tailored to suit the in-
dividual at the outset; this is unlikely at least for the very 
near future, despite rapid progress in pharmacogenomics. 
In the meantime, a better understanding of the mecha-
nisms of resistance will at least allow the physician to 
modulate the therapy on a need to do basis. 
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