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Abstract 
 

Epigenetic mechanisms, including histone modification and DNA 

methylation, are fundamental for controlling gene regulation.  Not surprisingly, 

aberrant placement of modifications can cause defects in fundamental cellular 

processes such as proliferation, migration, and differentiation, and may 

contribute to tumorigenesis. Additionally, epigenetic state can be influenced by 

environmental factors that include diet, environmental toxins, and behavior. 

Therefore, it is critical to understand genome wide epigenetic mark placement.  

Today we have a deep understanding of what epigenetic modifications are, and 

where they are placed throughout the genome, but generally, even after 75 years 

of research, we only have a superficial understanding of what mechanisms 

determine which genes are chemically modified, and how these epigenetic 

modifications lead to an altered cell fate.  

Here I will discuss experiments and techniques that have enabled us to 

characterize epigenetic mark regulation in two ways. First, I will present work 

characterizing the establishment of DNA methylation during mouse epigenetic 
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reprogramming using the imprinted Rasgrf1 model locus. Our data indicate that a 

repeat region, located 3-prime the DMR (Differentially Methylated Region) 

functions as a promoter for a pitRNA (piRNA-targeted non-coding RNA), which is 

necessary for deposition of methylation, and functions only in cis. From these 

data I propose a model where deposition of methylation takes place in a co-

transcriptional manner. Second, I will discuss the development of a single 

molecule nanofluidic based technology capable of detecting intact chromatin, 

assaying for epigenetic marks, purifying DNA based on methylation state, 

quantifying relative epigenetic mark abundance, and detecting multiple 

simultaneously occurring epigenetic marks. Single molecule based studies offer 

an attractive means for assaying chromatin molecules, because they allow for 

direct inspection of molecules, without ensemble averaging, and can be 

preformed using very small amounts of input material. This new technique called 

SCAN (Single Chromatin molecule Analysis in Nanochannels) has enable us to 

conclude that normal antagonism of H3K27me3 and DNA methylation breaks 

down during cellular immortalization. The findings presented here have not only 

helped to characterize epigenetic mark regulation, but will ultimately lead to new 

questions and innovative research projects. 
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I. Introduction 

 

I.1. A brief history of epigenetics 

 

I.1.1. The problem of development – part 1 

In the 1930s the field of organismal development and morphogenesis, 

which at the time was referred to as “epigenesis”, struggled with a particularly 

complex problem.  Although basic laws of Mendelian inheritance (Mendel, 1865) 

were widely accepted, few understood how they applied to epigenesis. A 

prominent developmental biologist at the time, Conrad Waddington wondered 

how each cell, which contained identical genetic material, could transition into a 

wide variety of phenotypes during development and cellular differentiation. It 

seemed that genetics alone could not explain this process. Ultimately to resolve 

this dilemma, Waddington proposed an idea that would later unify the fields of 

epigenesis and genetics. Waddington used the term “epigenetics” to describe the 

combined effects and casual interaction of genes with their products as they 

contribute to a developmental phenotype (Waddington, 1939).  Mechanisms 

controlling epigenetic phenomena remained a mystery however, and it wasn’t 

until nearly 15 years later that scientists began using epigenetics to solve the 

problem of development. 
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I.1.2. The heritable subunit 

In the mid 1940s the DNA molecule was determined to be the heritable 

subunit of the nucleus (Avery et al., 1944)  and encode the instructions for 

building an organism. Subsequently, Francis Crick, who helped to discover the 

structure of the DNA double helix (Watson and Crick, 1953), proposed the central 

dogma of molecular biology (Crick, 1956, 1958), which explains how genotype 

leads to phenotype, and describes a two step process where DNA passes 

information to RNA, which then transfers that information to a peptide during 

protein synthesis (Fig I.1). Crick extended this linear model to include the idea 

that proteins NEVER transfer information to DNA or to RNA and histones have 

no genetic information encoded within them.  Although on the surface, this idea 

was accurate, further inspection revealed exceptions, and again developmental 

differentiation presented a problem.   

 

I.1.3. The problem of development – part 2 

If each cell contains identical DNA sequence, and proteins can transfer no 

additional information to DNA, how is it that a zygote can develop along a variety 

of complex lineages, and potentially be converted into any cell necessary to build 

a higher organism? Presumably, something other than DNA must be mitotically 

heritable, and that something must be changing during differentiation in order to 

generate such a broad phenotypic array. Between 1969 and 1975, a number of 

scientists began to realize that an enzyme protein [later defined as DNA  
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Fig I.1 - James Crick’s thoughts on protein synthesis 
James Crick diagrams the passage of information from DNA to RNA, and 
eventually to a protein during peptide synthesis. This is used to describe how 
DNA carries the heritable genetic information for creating an organism. In his 
diagram he specifically illustrates how proteins can never pass information to 
DNA or to RNA. This passage of information was later accounted for using 
epigenetic phenomena, disproving Crick’s model. 
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methyltransferase (Yen et al., 1992) could place methyl groups on specific DNA 

sequences, and provide for a non-genetic means of inheritance (Griffith and 

Mahler, 1969; Riggs, 1975). In this sense, methyl groups can carry information 

from proteins to DNA. The genomic location of these methyl groups is not only 

mitotically heritable (Scarano, 1971), but can potentially change in a cell type 

specific manner during developmental differentiation (Holliday and Pugh, 1975). 

This discovery not only directly contradicted one principle from Crick’s central 

dogma, namely that proteins do not transfer information to DNA, but also 

provided a possible solution to the 30 year old problem first proposed by 

Waddington in the 1930s.  Thus, many scientists studying the molecular 

mechanisms controlling non-genetic inheritance began to adopt Waddington’s 

term use it when referring to these phenomena as “epigenetics.” 

 

I.1.4. The epigenetic landscape 

  With a new found appreciation for Waddington’s ideas, the field of 

epigenetics began to blossom. One idea that gained particular momentum was 

Waddington’s metaphorical “epigenetic landscape.” (Fig I.2) In this metaphor 

Waddington uses a rolling ball to symbolize a genotype and a downward sloping 

hill, upon which the ball rests, to symbolize epigenetics. As the ball travels down 

the hill it encounters a number of paths, each one bringing the ball in a variety of 

different directions and leading to a variety of different outcomes. The idea is that  

a genotype encounters a number of different signals as it progresses through  
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Fig I.2 – Conrad Waddington’s Epigenetic Landscape 
Waddington uses this illustration as a metaphor to describe epigenetics. The ball 
begins at the top of the epigenetic landscape and begins to roll down the hill. As 
it rolls, it encounters a number of hills and valleys that form trails and paths. Each 
path leads the ball in a different direction and will ultimate bring it one of a variety 
of resting places. The round ball at the top is used to represent either a single 
gene or a cell as it changes during differentiation. As it progresses through 
differentiation it moves across the epigenetic landscape and is guided to its 
eventual phenotypic expression pattern. 
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development. The path each gene takes, as it reacts to these signals, will confer 

ultimate phenotypic expression.  In other words, those who study epigenetics are 

not studying genes per se, they are studying paths and trails leading to 

phenotypic outcomes. Instead, if we imagine the ball that rolls down the hill as if it 

were a cell, the epigenetic landscape would then represent all possible paths the 

cell can take leading to differentiation and lineage commitment. Epigenetics is 

therefore the study of mitotically and meiotically heritable mechanisms, 

specifically chemical modifications to DNA and chromatin structure, which control 

gene expression, cellular differentiation, and lineage commitment.  

 

In general those who founded the field of epigenetics were motivated by 

one fundamental question: “What controls where the ball rolls as it moves down 

the hill?” In the same way, many modern day molecular epigeneticists ask the 

following question: “What are the mechanisms that determine which genes are 

chemically modified, and how do those modifications alter cell fate?” 

 

I.2. Chemical modifications to the chromatin fiber 

 

I.2.1. Epigenetic phenomena and mechanisms in humans  

In mice and in humans, females possess two copies of the X-

chromosome, while males possess only a single copy of each the X-

chromosome and the Y-chromosome (Takagi and Sasaki, 1975). Although this 



 
 

7 

imbalance of X-chromosomes is required for proper sex determination (Sinclair et 

al., 1990), if all genes on the X-chromosome were transcribed as autosomes are, 

it would create a significant imbalance of both transcript and protein levels 

between males and females. To account for this, and create a balance between 

males and females, mammals have evolved a mechanism to silence expression 

of one female X-chromosome (Barakat and Gribnau, 2012). During mouse 

embryonic development, shortly after implantation a process referred to as X-

chromosome inactivation (XCI) is initiated, and with respect to the parental origin, 

silencing is random (Lyon, 1961). A number of epigenetic silencing mechanisms, 

including non-protein coding RNAs (ncRNA) (Wutz et al., 1997), post-

translational histone protein modifications (Zhao et al., 2008), and DNA 

methylation (Nesterova et al., 2008), are essential in this process. Failure to 

maintain human X-chromosome expression levels and regulate XCI has been 

linked to a number of disease phenotypes including hemophilia, manic 

depression, and bipolar disorder (Dorus, 1983; Valleix et al., 2002; Dobyns et al., 

2004). 

 

Aside from XCI, ncRNAs, histone modifications, and DNA methylation are 

important for other non-genetic phenomena. For example, at a number of loci 

throughout the genome only a single copy of a given allele is transcribed. At 

these mono-allelically expressed genes the parent of origin pre-determines which 

allele is expressed, and which is silenced (Cattanach and Kirk, 1985; Surani et 
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al., 1987).  This parental allele specific gene expression pattern, referred to as 

genomic imprinting, is not only heritable, but is controlled by allele specific 

epigenetic marks, which will be discussed in the next section. In humans, 

mutations that lead to improper regulation of imprinted gene expression cause a 

number of developmental abnormalities which manifest as diseases in adults, 

including Beckwith-Weideman,  Prader-Willi, and Angelman syndromes 

(Robertson, 2005). Because epigenetic marks control numerous important 

processes, including imprinting and X-chromosome inactivation, research has 

focused on understanding how epigenetic modifications are regulated, and what 

determines where epigenetic marks are placed throughout the genome. Various 

studies have used imprinted loci to study epigenetic mechanisms, including 

ncRNAs, histone modifications, and DNA methylation. 

 

I.2.2. Modification to DNA 

Within the nucleus DNA wraps itself around a protein octamer structure 

called the nucleosome. This higher order structure of DNA and its associated 

proteins is often referred to as the “chromatin fiber”. A variety of different 

chemical modifications can be made to a host of substructures contained within 

the chromatin fiber. These chemical modifications may have both direct and 

indirect effects on the expression of genes residing within the underlying DNA 

sequence. The simplest of these modifications is DNA methylation, and in 

vertebrates occurs almost exclusively in the form of methyl groups on the fifth 
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carbon of the cytosine located 5’ to a guanine nucleotide. The product, 5-methyl-

ctyosine (5mC) is dependent on the universal methyl donor, S-adenosyl 

methionine, and on the catalytic activity of one of three DNA methyltransferases 

(DNMT).  DNMT3a and DNMT3b are the only known de novo 

methyltransferases, and are responsible for placing methylation on previously 

unmodified cytosines. DNMT1 is referred to as the maintenance 

methyltransferase because its role is to place methyl groups on cytosines that 

are the product of recent replication and have become hemi-methylated.   

 

I.2.3. The role of methylation 

The ability of 5mC to directly inhibit gene transcription is well established, 

with both in vitro and in vivo studies having found that gene transcription and 

subsequent protein synthesis is inhibited when 5mC is present in promoter 

regions (Watt and Molloy, 1988; Götz et al., 1990).  Additionally, DNA 

methylation can function indirectly; when present at unique binding sites 5mC 

has been shown to both promote and inhibit transcription factor (TF) binding. For 

example, proteins that contain a methylated DNA binding domain (MBD) require 

the presence of 5mC for effective binding (Boyes and Bird, 1991), while others, 

like the insulator binding protein CTCF can be repelled by 5mC (Bell and 

Felsenfeld, 2000). Early research often characterized the effect of 5mC either on 

individual loci, or by using in vitro systems, making it impossible to address more 

general genome wide concepts. Recently, chromatin immuno-precipitation (ChIP) 
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(Jackson, 1978) has been combined with genome wide analysis platforms, like 

ChIP-chip, where microarray based technologies are taken advantage of (Ren et 

al., 2000), and ChIP-Seq, where whole genome sequencing platforms are utilized 

(Barski et al., 2007; Johnson et al., 2007). These new technologies, which allow 

for genome wide mapping of protein DNA interactions, make it possible to 

analyze wide ranging genomic regulatory principles. Notably, recent whole 

genome studies have confirmed that 5mC regulates binding of TFs and 

demonstrated that this process is fundamental for genome wide transcriptional 

regulation (Hogart et al., 2012; Wang et al., 2012).  Of note however, these 

whole genome studies rely on correlations of 5mC with TF binding to make broad 

and general conclusions. They do not directly observe the presence or absence 

of methylation and TF co-occupancy. Proper placement of 5mC is critical for 

proper genome wide epigenetic/chromatin organization and transcriptional 

regulation.  

 

I.2.4. Histone modifications 

Modifications can also be made to other substructures contained within 

the chromatin fiber. The structure and location of the nucleosome, relative to the 

DNA, can be critical for determining the function of the underlying DNA 

sequence. For example, the repositioning of nucleosomes over gene promoters 

has been shown to actively regulate transcription (Hirschhorn et al., 1992; 

Boeger et al., 2003), and altering nucleosome structure by substituting entire 
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core histone proteins for histone variants, like Histone 2AZ (H2AZ), has been 

shown to regulate establishment of genomic expression domains (Meneghini et 

al., 2003). Interestingly, in Arabidopsis these same complexes responsible for 

remodeling and reorganizing nucleosomes affect genome wide DNA methylation 

levels (Jeddeloh et al., 1999), indicating that there is coordination of various 

epigenetic phenomena.  

 

The amino acids that make up these histone proteins can also be 

modified, ultimately leading to changes in underlying DNA function (Allis et al., 

1985). Although there are numerous important post-translational histone 

modifications (Tan et al., 2011), the majority of research has focused on methyl 

and acetyl group additions to lysine residues placed on the N-terminal tails of 

histone 3 (H3) and histone 4 (H4). Modification to lysines on N-terminal H4 tails 

typically coincides with changes to the overall structure of the chromatin fiber. 

For example, acetylation on lysine 16 of H4 (H4K16ac) controls chromatin 

compaction and formation of higher order structure (Shogren-Knaak et al., 2006), 

while methylation on H4 lysine 20 (H4K20me) controls recruitment of DNA 

damage repair enzymes (Sanders et al., 2004). Modification to lysines on N-

terminal H3 tails typically coincides with changes to gene expression levels. H3 

lysine 9 methylation (H3K9me), for example, is associated with gene repression 

and the formation of dense highly stable compact structures called 

heterochromatin (Lachner et al., 2001). H3 lysine 36 methylation (H3K36me), on 
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the other hand, associates with gene expression, polymerase elongation, and a 

less dense structure called euchromatin (Strahl et al., 2002). At genes important 

for early development, which require precisely regulated temporal expression, 

two epigenetic marks, one repressive (H3 lysine 27 trimethylation - H3K27me3), 

and one activating  (H3 lysine 4 trimethylation - H3K4me3), are found together 

(Bernstein et al., 2006). The co-occupant nature of these marks is thought to 

prepare a gene for dynamic changes in expression patterns. Similar to the “DNA 

code”, the term “histone code” is often used to describe how these chemical 

modifications are functionally “coding” for specific molecular mechanisms (Strahl 

and Allis, 2000; Jenuwein and Allis, 2001).   

 

I.2.5. Epigenetic writers, readers, and erasers 

Earlier I discussed the enzymes responsible for adding methyl groups to 

DNA, however I have not yet addressed the enzymes responsible for modifying 

histones. As mentioned earlier, histones can be modified in a variety of ways; for 

the purposes of this dissertation I will only discuss methylation, and acetylation. 

Often the enzymes responsible for placing a specific epigenetic modification are 

referred to as the “writers” (Arrowsmith et al., 2012). Histone acetyltransferases 

(HATs) and histone methyltransferases (HMTs) are two forms of epigenetic 

writers. HAT enzymes were originally discovered in Tetrahymena and in yeast 

(Brownell et al., 1996; Kuo et al., 1998), and were shown mechanistically to be 

important for gene activation. Since then, 18 different HATs have been 
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discovered, with their function ranging from DNA damage repair to cell cycle 

progression (Arrowsmith et al., 2012).  The first discovered HMTs on the other 

hand were shown to include both repressors, like Suv39h1 (Aagaard et al., 1999; 

Rea et al., 2000), and activators, like Set7 (Wang et al., 2001), depending on 

which lysine was targeted.  To date 60 protein methyltransferase enzymes have 

been identified, and a SET domain is a common feature among them 

(Arrowsmith et al., 2012).  

 

 Factors that bind to specific histone modifications are often referred to as 

epigenetic “readers”. Readers are a large and diverse group of proteins, where 

the function of a given protein is often dictated by the domain structure contained 

with in it. For example, HP1, which contains a Chromo domain, specifically binds 

to H3K9me3, and is required for spreading of repressive heterochromatin and 

DNA compaction (Lachner et al., 2001). Readers can be subdivided based on 

the domain they contain. These domains include Bromo, Tudor, MBT, Chromo, 

PWWP and PHD (Arrowsmith et al., 2012). Others readers, like EED, bind 

different histone marks, like H3K27me3, and facilitate spreading of a more 

flexible and reversible repressive chromatin state (Margueron et al., 2009). 

 

 In order for chromatin state to be reversed, often histone modifications 

need to be removed so that other different modifications can be placed. Enzymes 

responsible for removal of epigenetic marks are often called “erasers”.  Generally 
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proteins responsible for removal of methyl groups are called histone 

demethylases (HDMS) and when acting upon lysine residues, often fall within the 

Jumonji subfamily. For examples, Jumonji protein JMJD3 removes methylation 

on H3K27 (Agger et al., 2007), and relieves repression, while LSD1, not a 

Jumonji protein, removes methylation from H3K4 and promotes gene silencing 

(Shi et al., 2004). Enyzmes responsible for removing acetyl groups are called 

histone deacetylases (HDACs). Typically these enzymes are capable of 

removing acetyl groups from a number of animo acids on the same histone tail, 

and function in gene transcriptional repression (Rundlett et al., 1996; Laherty et 

al., 1997).  

 

 Earlier I discussed DNA methylation writers (DNMTs) and readers (MBD 

containing proteins). Similar to histone mark marks, DNA methylation can also be 

removed, and can occur in different ways. Removal of methylation from DNA was 

first discovered in zebra fish, where 5mC deaminase AID converts 5mC to 

thymine and MBD4 facilitates the incorporation of fully unmethylated cytosine by 

mismatch repair (Rai et al., 2008). Alternatively, during mouse embryonic 

epigenetic reprogramming the Tet proteins are responsible for removal of 5mC 

by converting it first to 5-hydroxymethyl-cytosine (5hmC) (Tahiliani et al., 2009). 

Interestingly, this newly discovered epigenetic modification (5hmC) has been 

shown to be fundamental for maintenance of stem cell plouripotentcy (Ito et al., 

2010) and for proper chromatinization in the nuclei of purkinje neurons 
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(Kriaucionis and Heintz, 2009).  This indicates that 5hmC has function 

significance outside of its role as a 5mC demethylation intermediate.  

 

Although much is known about these epigenetic modifications, including 

where they reside, how they change during developmental differentiation, and 

which enzymatic factors are responsible for their placement, we in the field of 

epigenetics still cannot definitively answer one simple question:  “What 

determines where in the genome chemical modifications are placed?”  

 

I.3. Epigenetics and disease 

 

I.3.1. Environmental effects 

Waddington’s original research focused on epigenetic inheritance as a 

byproduct of environmental manipulation (Waddington, 1952). Furthermore, 

epigenetic disruption can occur as a result of environmental stimuli even with no 

evidence for genetic mutation.  For example, when female rats maintained a high 

level of care for their young, which was characterized behaviorally as increased 

licking, grooming and arched-back nursing (LGABN), there was a significant 

decrease in stress responses of offspring. Molecularly, the altered stress 

response was attributed to decreased levels of 5mC over the glucocorticoid 

receptor gene promoter in the hippocampus of mice that received increased care 

(Weaver et al., 2004). Often these mutations are referred to as “epimutations”, 
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because direct sequence mutation cannot be attributed to the phenotype. 

Maternal diet can also induce epigenetic changes in offspring. For example, 

during pregnancy, female mice who consume a diet high in methyl donors gave 

birth to pups with hypermethylated DNA. At the yellow agouti viable (A(vy)) locus, 

where a transposable element is inserted, the hypermethylation presents itself as 

an epimutation in the form of a coat color change, which persists into adulthood 

and is transiently heritable even when progeny are fed a control diet (low methyl 

donor) (Wolff et al., 1998; Waterland and Jirtle, 2003). A common component of 

household plastics called BisPhenol A (BPA) has been shown to have a similar 

effect on the A(vy) locus (Dolinoy et al., 2007). Mice exposed to moderate BPA 

levels (similar to those found in the environment) while in utero or as neonates 

experienced higher overall body weight, increased breast and prostate cancer, 

and decreased fertility as adults. Not surprisingly, these mice had decreased 

levels of 5mC at the A(vy) locus, suggesting that the more severe phenotypic 

effects are the byproduct of the environmentally altered epigenetic state. These 

and other studies (Weinhouse et al., 2011; Doshi et al., 2012) suggest that a 

chemical compound commonly found in the environment can influence the 

epigenetic state in humans, and potentially lead to heritable increases in cancer 

susceptibility, obesity, and infertility. 
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I.3.2. Epigenetics and cancer 

Epigenetic modifications were first linked to cancer nearly 30 years ago 

(Feinberg and Vogelstein, 1983a) while studying DNA methylation in human 

cancer tissue. In these studies, global hypomethylation, combined with local 

hypermethylation was associated with colorectal carcinogenesis. Supporting this 

claim, the tumor suppressor c-Ha-ras gene was found to be hypomethylated in 

six of eight human carcinomas when compared to normal tissue (Feinberg and 

Vogelstein, 1983b). Emphasis on epigenetic mechanisms relating to cancer has 

grown recently, and a number of epigenetic biomarkers have been identified for 

various cancer types. Depending on genomic location, DNA can either be hyper- 

or hypomethylated relative to normal cells in both a tissue specific and cancer 

specific manner (Doi et al., 2009; Lendvai et al., 2012). Histone modification can 

also play a role in cancer. Notably loss of H4K16ac and H4K20me (both of which 

were mentioned previously to help maintain chromatin integrity) accompanied by 

global DNA hypomethylation, has been found to occur in leukemias (Fraga et al., 

2005). Mutations in an important H3K4 methyltransferase MLL1 have been linked 

to a variety of acute leukemias in humans (Yokoyama et al., 2002; Dou et al., 

2006). Whether modifications are at the root of oncogenesis, or are a byproduct 

of carcinogenic progression remains unknown (Martin et al., 2011). Regardless 

of origin, studying the mechanisms by which epigenetic modifications operate, 

both as a function of environment and as they relate to disease state, will 
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ultimately prove valuable for a variety of related fields, including developmental 

biology, epidemiology, and oncology.   

 

I.4. Regulation of imprinted DNA methylation 

 

I.4.1. A model system 

 Often to gain insight into complex epigenetic mechanisms, direct genetic 

mutations are made, and the epigenetic effects are monitored. Because these 

studies often require a number of manipulation steps, researchers often prefer to 

study model genes where epigenetic patterns are reliable, consistent, and highly 

reproducible. Imprinted loci satisfy all these requirements, and are thus used as 

model systems. As discussed earlier, genomic imprinting occurs when gene 

expression patterns are determined by the parent of origin. For example, at the 

imprinted mouse Igf2 locus (Fig I.3) (Ferguson-Smith et al., 1991) the paternally 

inherited copy of Igf2 is expressed and the H19 gene is repressed (Bartolomei et 

al., 1991). Alternatively, when inherited from the mother, H19 is expressed and 

Igf2 is silenced (Kalscheuer et al., 1993).  Shortly after Igf2 imprinting was 

discovered, imprinted epigenetic modifications, like 5mC, were determined to be 

the cause of these unique expression patterns (Li et al., 1993). A number of other 

genomic regions, including the mouse Rasgrf1 locus (Plass et al., 1996), have 

been discovered to have imprinted expression patterns, and at a number of loci 

epigenetic (Ferguson-Smith et al., 1993; Li et al., 1993; Wutz et al., 1997)  
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Fig I.3 – Model for regulation of imprinting at the mouse H19/Igf2 locus.  
Modified from: Wan and Bartolomei, 2008. 
Shown are the maternally expressed H19 gene, and the paternally expressed 
Igf2 gene. Their shared enhancers are marked by shaded circles. Enhancer to 
promoter interaction is marked by arrows. On the maternal chromosome, the 
unmethylated differentially methylated domain (DMD) and imprinted control 
region (ICR) bind the CTCF protein and forms an insulator that prevents the 
shared enhancers from communicating with Igf2. When CTCF is bound, the 
enhancers instead facilitates activation of the nearby H19. On the paternal 
chromosome, the methylated (CH3) DMD/ICR cannot bind CTCF and Igf2 gene is 
expressed. 
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modifications have proven to be key regulators.  Although every imprinted gene 

has not been studied in an in depth manner, all well characterized imprinted loci 

contain differentially methylated regions (DMRs), where 5mC levels are 

determined by the parental mode of inheritance.   

 

I.4.2. Rasgrf1 imprinting 

 In mouse neonatal brain, the Rasgrf1 gene is expressed exclusively from 

the paternal allele. Allele specific expression patterns are indirectly controlled by 

imprinted 5mC on a 251 base pair (bp) retro-transposon like sequence located 

30,000bp 5’ to the Rasgrf1 promoter and 3’ to an unidentified enhancer.  Using 

gel shift techniques, and the beta-globin enhancer reporter system (Bell et al., 

1999), studies demonstrated that the DMR not only binds the insulator binding 

protein CTCF, but also has enhancer blocker activity (Yoon et al., 2005).  

Although a number of CTCF binding regions were identified, only a single site 

was identified using the recently characterized consensus CTCF binding 

sequence (Essien et al., 2009; Rhee and Pugh, 2011). Because CTCF binding is 

inhibited by the presence of 5mC, CTCF fails to bind the paternal allele and 

enhancer to promoter interaction is maintained. On the silent maternal allele, 

where the DMR is unmethylated, CTCF binds, and prevents the enhancer from 

interacting with the promoter (Fig I.4). Hence only the paternal allele is 

expressed, while the maternally inherited Rasgrf1 allele remains silent (Yoon et 

al., 2005).   
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Fig I.4 - Model depicting the Rasgrf1 DMD and repeat as a binary switch 
that regulates Rasgrf1 imprinting 
(modified from Yoon et al., 2005) 
Shown are the putative neonatal enhancer (Enh), promoter (Pro), repeats 
(rightward-pointing filled triangles) and the DMD methylated (filled circles) and 
unmethylated (open circles) on the paternal and maternal alleles, respectively. 
Curved lines ending in an X indicate blocked interactions or activities, and lines 
ending in an arrowhead indicate those that are permitted. On the maternally 
transmitted allele, there is no DNA methylation and CTCF binding facilitates the 
enhancer-blocking activity of the DMD, which prevents a yet-to-be-identified 
upstream enhancer from activating Rasgrf1 transcription. On the paternally 
inherited allele, the Rasgrf1 DMD is methylated and prevents CTCF binding. 
Because CTCF is not bound, the enhancer blocker does not function on the 
paternal allele and enhancer-to-promoter communicate to permit expression of 
the paternal Rasgrf1 allele. 
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I.4.3. The Rasgrf1 repeat region 

Imprinted methylation at Rasgrf1 is controlled by a region of repetitive 

DNA located adjacent to the DMR. (Fig I.4)  The repetitive region consists of a 

degenerate 41nt sequence repeated 40 times. By deleting this region during 

gametogenesis, and during embryonic development, it was determined that the 

repeats are both necessary (Yoon et al., 2002) and sufficient (Park et al., 2012) 

for establishing 5mC in the male germline and for maintaining 5mC during early 

somatic development (Holmes et al., 2006). The repeats combined with the DMR 

constitute the first documented cis-regulatory sequence responsible for 

deposition of 5mC, and together act as a binary switch that regulates Rasgrf1 

imprinted expression. Prior to these studies focusing on Rasgrf1, no cis-acting 

5mC regulatory sequence had been identified. One significant question remains 

however: “What features of the repeat region enable it to act in such a way?” 

Answering this question may provide insight into a mechanism to explain how 

DNA methylation is localized in the genome at various times during development.   

 

I. 5.  Combinatorial relationships of epigenetic marks 

 

I. 5.1. H3K27me3 and 5mC at Rasgrf1  

 The unmethylated maternally inherited copy of the Rasgrf1 DMR happens 

to be marked by H3K27me3, while the paternally inherited allele has none. 

Interestingly, deletion of the paternal Rasgrf1 repeat region not only caused loss 
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of 5mC in cis, but also caused acquisition of H3K27me3 to the paternal DMR 

(Lindroth et al., 2008). Direct inhibition of DNMT1 with 5-aza-2'-deoxycytidine 

(5azaC), not only caused a decrease in 5mC levels, but also caused increased 

levels of H3K27me3 specifically on the paternally inherited DMR (Lindroth et al., 

2008). These experiments indicated that there is an antagonistic relationship 

between H3K27me3 and 5mC at Rasgrf1. Specifically, the presence of one 

epigenetic mark excludes the placement of the other mark. Recently published 

data demonstrated that this antagonistic relationship is maintained genome wide 

in normal tissue (Brinkman et al., 2012; Hagarman et al., 2013). It is possible 

however, that the antagonism is specific to a subset of cell types.  

 

I.5.2. Is epigenetic coordination the norm? 

This type of coordinate regulation is fairly common through out the epi-

genome, where numerous other combinatorial epigenetic effects have been 

observed.  In Arabidopsis, when present over the promoter there is mutual 

antagonism between 5mC and H2AZ (Zilberman et al., 2008), indicating that not 

only can 5mC affect TF binding (as is the case with the previously mentioned 

CTCF), but it can also directly impact chromatin structure. In yeast, H2AZ 

antagonizes H3K36me, a mark associated with active gene transcription within 

the gene body (Li et al., 2005).  Combinatorial relationships have also been 

observed in higher organisms, and can act cooperatively rather than 

antagonistically. For example, in mammalian embryonic stem cells, H3K4me3 
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and H3K27me3 are often found together, on the same nucleosome over 

promoters of genes where precise temporal expression is required for 

developmental progression. Because these marks typically oppose one another 

(one is associated with active transcription while the other with silencing) they are 

thought to render a gene “poised” enabling it to be rapidly activated by H3K4me3 

or repressed by H3K27me3 (Bernstein et al., 2006). In recent years numerous 

marks have been assayed, and mark coordination has been implicated in a 

variety of important processes (Ram et al., 2011) including developmental 

differentiation (Mikkelsen et al., 2007), gametogenesis (Ooi et al., 2007), and 

DNA replication (Eaton et al., 2011). Many of these studies that assay for 

coordination of epigenetic marks rely on correlations to conclude that marks are 

physically together on the same chromatin fragment. This post process analytical 

method remains controversial however. For example, the combination of 

H3K4me3 and H3K27me3, which render a gene “poised”, were once thought to 

antagonistic. Prior to sequential ChIP experiments, where the product from one 

ChIP is used for a second ChIP, work based on the Drosophila Hox gene 

clusters concluded that the activating H3K4me mark, placed by the Trithorax 

complex, restricted to the repressive H3K27me mark, placed by the Ploycomb 

complex (Papp and Müller, 2006). This conclusion was based on correlations 

from ChIP and gene expression datasets. Later,  sequential ChIP (reChIP) 

experiments (which will be discussed the next section) were used to determine 
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that, although these marks serve opposite functions, they are not actually 

antagonistic (Bernstein et al., 2006).    

 

I.5.3. Analysis of coordinate epigenetic marks 

The ChIP technique is used almost exclusively to determine where in the 

genome certain epigenetic marks reside, and is traditionally performed only on 

one epigenetic mark at a time. In these experiments DNA from pull downs using 

separate antibodies against distinct epigenetic marks are sequenced, and then 

the location of each epigenetic mark is mapped to the genome separately. After 

genomic mapping, the overlap of these marks is typically reason enough to infer 

casually they occur together on the same chromatin fragment. This is a flawed 

inference; only after sequential ChIP can one confirm whether various marks do 

indeed reside on the same individual chromatin fragment (Bernstein et al., 2006). 

In sequential ChIP experiments, two immuno-precipitations (IPs) are performed 

where the purified chromatin from the first pull down is used as the input for the 

second pull down. Though useful, this technique is extremely difficult to perform, 

and often times not sensitive enough to detect co-occupancy of two epigenetic 

marks within rare cells. This is due to the large amounts of input required for a 

relatively low yield. Sequential ChIP is completely impractical when attempting to 

assay for simultaneous presence of more than two marks. Alternatively, a variant 

of ChIP can be used to assay for coincidence of histone modifications and mC 

(Brinkman et al., 2012); here immuno precipitated chromatin is treated with 
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bisulfite and sequenced. Additionally mass spectrometry can be used to quantify 

combinations of histone marks (Johnson et al., 2004), and when combined with  

ChIP, can be used to assay for two epigenetic marks on different histones within 

the same nucleosome (Voigt et al., 2012). Each method is labor intensive, highly 

inefficient, and requires large input quantities for application. In fact, no 

currently available technique can assay for multiple epigenetic marks from 

rare populations of cells. Recently many labs, including ours, have begun to 

develop custom methods to solve this problem.  

 

I.6. New techniques for biological research 

 

I.6.1. Single molecule methods in biology 

As alluded to in the previous section, the highly variable and dynamic 

nature of the chromatin fiber within a population of cells contributes to high 

background levels, increased false negatives, and overall low resolution when 

performing macro-scale assays like ChIP. For this reason, single molecule based 

studies offer an attractive alternative when assaying chromatin molecules. They 

allow for direct inspection of molecules, without ensemble averaging, and can be 

preformed using very small amounts of input material (Wang et al., 2008a; 

Gorman et al., 2010; Jin et al., 2010). In recent work, single molecule studies on 

chromatin have facilitated the visualization of  DNA repair proteins as they 

navigate through nucleosomes (Gorman et al., 2010), and have helped to 
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confirm the existence of centromeric hemisome (Dalal et al., 2007b; Wang et al., 

2008b). These and other key findings could not have occurred without the use of 

single molecule based techniques.  

 

Typically, when assaying, single chromatin molecules, samples are affixed 

to a solid surface and a high resolution camera is used to image numerous highly 

ordered arrays in an automated manner such that numerous molecules can be 

assayed simultaneously. Techniques like this have been used to sequence DNA 

(Braslavsky et al., 2003; Levene et al., 2003), assay for the assembly of 

transcription machinery (Blair et al., 2012), as well as identify histone proteins on 

chromatin molecules (Cerf et al., 2012). Although these techniques are powerful, 

because the molecules are affixed to a surface, sample recovery is difficult, and 

throughput it limited.  

 

As an alternative, nanofluidic channels are often used for assaying 

biologically relevant molecules. The small dimension of the nano-channels, which 

often creates a sub-femtoliter confinement volume, when combined with 

Fluorescence Correlation Spectroscopy (FCS), enable samples to be analyzed at 

relatively high concentrations (>1nM), and allow for increased overall throughput 

while maintaining single molecule resolution (Elson, 2011).  For example, using a 

combined nanofluidic and FCS based platform, DNA sequences were assayed in 

high throughput at near physiological concentrations (Levy and Craighead, 
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2010). When combined with multicolor fluorescence microscopy, single molecule 

nanofluidic based techniques may allow for the detection and characterization of 

multi-protein complexes as single molecules. In this manner, if these types of 

techniques were adapted to assay chromatin, they could potentially be useful for 

simultaneously detecting multiple epigenetic marks on chromatin purified from 

only a few cells. 

 

Because methods for extracting small amounts of material are limited, 

often traditional macro-sized extractions are performed, and only a small amount 

of purified material is analyzed. Essentially, the power of single molecule 

techniques to assay small amounts of material is negated by the fact that such 

small amounts are not available when assaying rare and difficult to purify cell 

types. 

 

I.6.2. A contained system 

In recent years numerous labs have begun to take advantage of micro-

fluidic systems to extract material that is too precious to be analyzed using more 

traditional techniques. For these types of studies it has become common to 

design custom micro scale devices for extraction and “in-line” analysis of 

material. For example,  fluidic channels have been designed that can execute all 

aspects of gene expression analysis on single cells, including cell capture, lysis, 

reverse transcription, and quantitative polymerase chain reaction (qPCR) (White 
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et al., 2011). Because the experimental pipe-lines are contained within fluidic 

devices, these assays require no physical handling of reagents, essentially 

reducing sample loss and increasing sensitivity. Others have applied similar 

techniques for assaying histone modifications. In these systems numerous buffer 

containing reservoirs and actuated valves are enclosed within microfluidic 

channels, allowing for  the blocking, washing and binding steps necessary to 

implement small scale chromatin immuno-precipitation (Wu et al., 2009, 2012). 

Similarly, cell extraction devices have been fabricated to purify small amounts of 

DNA from only a few cells (Pasquardini et al., 2011).  

 

Ideally, if these types of extraction devices were fused to a nanofluidic 

single molecule detection platform, it may allow for efficient extraction and high-

throughput analysis of epigenetic marks on chromatin isolated from very few 

cells. This would first require the micro-scale extraction device, and buffer 

conditions to be altered in order to purify chromatin and be compatible with a 

nanoscale analysis device. It would also require the nanofluidic channels to be 

altered to allow chromatin to flow and epigenetic marks to be characterized. 

Finally, it would require those molecules containing a given epigenetic mark to be 

purified and recovered for downstream sequencing. Developing a system to 

detect epigenetic marks on single chromatin molecules in a nanofluidic system 

has formed the bulk of my graduate work.  
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I.7. Experimental objectives 

The broad focus of this dissertation will present work that furthers the 

understanding of epigenomic mark regulation.  

 

To address the following questions: 

1. How is 5mC localized during its establishment in germ cells?  

Using the highly characterized Rasgrf1 system as a model, I will demonstrate 

that the repeat region functions as a promoter for a non-coding RNA, and 

through the PIWI pathway it is able to impart cis mediated 5mC during male 

gametogenesis. 

 

2. Can single molecule methods be used to assay for epigenetic marks on 

chromatin molecules? 

I will describe single molecule nanofluidic FCS based techniques that are 

capable of detecting intact chromatin, assaying for epigenetics marks, and 

purifying DNA based on 5mC.  

 

3. Is the relationship between H3K27me3 and 5mC that is observed at 

Rasgrf1 maintained genome wide, and can simultaneous co-occupancy 

of these two epigenetics marks be detected using single molecules 

techniques? 



 
 

31 

I will describe single molecule nanofluidic assays for directly detecting 

multiple epigenetic marks simultaneously and use it to demonstrate that 

genome wide 5mC prevents the placement of H3K27me3 in normal cells, 

but breaks down during cellular immortalization. 
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II. How is 5mC localized during its establishment in germ cells?   

 

II.1 Abstract - piRNA mediated Rasgrf1 imprinting 

 Previous work has determined that imprinting at the Rasgrf1 locus is 

directly controlled by 5mC, which is placed on a differentially methylated region 

(DMR) located 30kb 5’ to the gene promoter, and is dependent on a cis acting 

repeat region (Yoon et al., 2002, 2005; Herman et al., 2003; Holmes et al., 2006).  

Although the pattern of methylation and the mechanism by which imprinted 

expression is controlled have been rigorously studied, the precise model to 

explain acquisition of methylation is not well resolved. Chiefly, it remains 

unknown how the Rasgrf1 repetitive domain is able to impart 5mC at the 

neighboring sequence. Preliminary data and pilot experiments suggested that a 

ncRNA plays a role in this process. This hypothesis was confirmed during a 

collaboration with Hiroyuki Sasaki, through which we were able to determine that 

the repeat region functions through the PIWI/piRNA repressive pathway to 

deposit paternal allele-specific 5mC during mouse gametogenesis at embryonic 

day 16.5 (e16.5).  Our results indicate that the repeats function as a promoter for 

transcription of a piRNA-targeted ncRNA (pitRNA), which is required for proper 

methylation of the DMR. Experiments proved that repeat-mediated deposition is 

dependent on transcription through the DMR in cis and not in trans. These data 

led to a new model for co-transcriptional acquisition of imprinted 5mC at the 

Rasgrf1 locus.  
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II.2 Introduction 

 

II.2.1 Rasgrf1 imprinting 

The Rasgrf1 gene is paternally methylated and expressed in mouse 

neonatal brain (Plass et al., 1996), and allele specific expression is regulated by 

5mC on the DMR, which contains an RMER4B like sequence element, and is 

located 30kb 5’ to the Rasgrf1 promoter. (Fig II.1A). Located directly 3’ to the 

DMR is a highly repetitive region, which is not only required for establishment of 

5mC over the DMR (Yoon et al., 2002), but is also required for maintenance of 

5mC in the zygote (Holmes et al., 2006) (Fig II.1B). When the repeat region was 

removed at any point between fertilization and epiblast formation the embryonic 

DMR became hypomethylated in somatic DNA of neonates. When the repeats 

were removed subsequent to this critical window, there was no effect on 5mC. 

These studies demonstrated that the repeats combined with the DMR constitute 

the first documented cis-regulatory sequence responsible for deposition of 5mC, 

and together act as a binary switch that regulates Rasgrf1 imprinted expression. 

In independent studies the DMR was found to directly bind the insulator binding 

protein CTCF (Yoon et al., 2005). This binding occurred only in the absence of  

capability, the Rasgrf1 DMR and repeats were inserted into the chicken beta-

globin enhancer and neo reporter system (Chung et al., 1993). In this assay, 

5mC, and was therefore hypothesized to occur on the unmethylated maternal 
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Fig II.1 - Model to explain patterns of imprinted 5mC and expression at the 
Rasgrf1 locus. 

Methylation is illustrated by dark lollipops and lack of methylation is illustrated 
by open lollipops. Black arrowheads represent repeat sequences. The 
expression over the promoter is represented as on with an arrow, or off 
with lack of an arrow. ncRNA transcript is illustrated using a long wavy 
line. 

A) 5mC is present over the paternal differentially methylated region (DMR) 
and absent from the maternal DMR. This pattern correlates directly with 
promoter expression. 

B) When the repeat region is deleted from the paternal allele there is failure to 
establish methylation over the DMR, and improper gene expression.  

C) The unmethylated maternal DMR binds the insulator binding protein CTCF 
and prevents expression. On the paternal allele CTCF cannot bind, the 
enhancer can interact with the promoter, and facilitate monoallelic 
expression.  

D) The R2 region from Igf2r, which is the promoter for an ncRNA, was 
inserted in place of the Rasgrf1 repeat region on the paternal allele. It 
successfully recapitulated wild type Rasgf1 paternal establishment of 
5mC, however it caused aberrant 5mC in trans to the normally 
unmethylated maternal allele.   
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and not the methylated paternal allele (Fig II.1C). To test for enhancer blocker 

when placed between the enhancer and promoter, the Rasgrf1 sequences 

significantly reduced enhancer to promoter communication regardless of 

orientation, indicating that the DMR sequence functions as an enhancer blocker. 

These combined studies led to a model where on the silent maternal allele the 

unmethylated DMR binds CTCF and prevents the enhancer from interacting with 

the promoter. On the paternal allele however, where the DMR is methylated (in a 

repetitive sequence dependent manner), CTCF cannot bind and the enhancer 

efficiently communicates with the promoter, leading to imprinted mono-allelic 

expression.  

 

II.2.2 Evidence for ncRNAs at Rasgrf1 

Two main questions that came from these studies were namely: “How do 

the repeats function during establishment of methylation in the paternal germ 

line?” and “How do they operate to maintain methylation in the developing 

embryo?” Interestingly, Igrf2r is also imprinted in mouse, and similar to Rasgrf1, 

imprinted expression is maintained through allele specific methylation in cis.  In 

contrast to Rasgrf1 however, methylation is present on the maternal Igf2r allele 

and absent on the paternal allele.  Within the second intron of the Igrf2r locus is a 

differentially methylated region known as region 2 (R2). When this region is 

methylated on the maternal allele there is proper mono-allelic maternal 

expression, and when R2 is deleted from the paternal allele, the gene loses 
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imprinted methylation and is expressed regardless of parental origin (Wutz et al., 

1997). 

 

At the time, it was hypothesized that sequence features contained within 

the R2 sequence were able to impart maternal specific 5mC (Birger et al., 1999), 

and in a similar way, different sequence features contained within Rasgrf1 

repeats were able to impart paternal specific 5mC. In a way, the mechanisms 

acting on the maternal allele of Igf2r were the similar to those acting on the 

paternal allele of Rasgrf1. To test this hypothesis, a mutant mouse was made 

where the R2 region was inserted in place of the Rasgrf1 repeat region (Fig 

II.1D). When the mutation was transmitted through the paternal allele, it was able 

to impart 5mC to the paternal Rasgf1 DMR. Surprisingly however, paternal 

transmission also led to improper acquisition of 5mC on the maternal DMR in 

trans (Herman et al., 2003). Independent work led to the discovery that the R2 

region functions as a promoter for a long ncRNA (named Air), which is paternally 

transcribed and required for proper imprinted expression at Igf2r (Sleutels et al., 

2002). Subsequently, it was hypothesized that the observed trans affect was 

mediated by improper regulation of an unidentified endogenous Rasgrf1 ncRNA, 

and that ncRNA is able to regulate 5mC at the DMR.   

 

Regulation of 5mC by ncRNAs has several precedents. In plants, RNA 

that functions during post-transcriptional gene silencing of transgenes is thought 



 
 

38 

to guide 5mC methyltransferases to specific DNA based on sequence homology 

(Jones et al., 1999). In human cells (HeLa), shRNAs generated in vitro, which 

were made complementary to the RASSF1A promoter, can target de novo DNA 

methylation and induce gene silencing (Castanotto et al., 2005). PIWI proteins, 

responsible for processing of short 26-31bp small RNAs called piRNAs, which 

are required for male gametogenesis, have also been shown to mediate 

deposition of 5mC (Kuramochi-Miyagawa et al., 2008).  These piRNAs, which 

interact with PIWI subfamily proteins, function to suppress retrotransposon 

activation during primordial germ cell epigenetic reprogramming, and specifically, 

transposon sequences are hypomethylated when a member of the PIWI protein 

family (MILI) is mutated in mouse (Kuramochi-Miyagawa et al., 2004; Aravin et 

al., 2007b). 

 

Because small RNAs by nature are complementary to the DNA sequence 

from which they are derived, often it is hypothesized that they serve as a guide, 

and provide protein complexes with the capacity to target specific genomic 

locations. Many mammalian piRNAs arise as a product of a biogenesis cycle, 

which is often referred to as “the ping-pong cycle”, and requires transcription of 

two complimentary ncRNAs (Fig II.2) (Aravin et al., 2008). Some have even 

speculated that complimentary piRNAs, produced from the ping-pong cycle, can 

recruit both PIWI and chromatin modifying complexes to simultaneously cleave 

target RNAs and establish new repressive epigenetic states. This new epigenetic 
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Fig II.2 - A model of mouse ping-pong cycle  
In the male germline, an active transposable element, which is transcribed in an 
opposite orientation to a piRNA cluster, is the substrate for primary piRNA (blue) 
processing. Presumably, these piRNAs interact with either MILI or MIWI2 to form 
a complex. The complex is then guided to the piRNA cluster by base 
complimentarily, where cleavage of the secondary antisense cluster derived 
piRNA (red) occurs. The secondary piRNA then forms a second complex, which 
facilitates processing of the transposon derived piRNA. This process leads to 
cyclic amplification of both piRNAs, transcript silencing, and ultimately acquisition 
of m5C to the transposon. 
Adapted from (Brennecke et al., 2007). 
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state is then proposed to be stabilized by the recruitment of DNA 

methyltransferase (Aravin et al., 2008) (Fig II.2).   

 

In summary, a repeat region within the Rasgrf1 locus controls methylation 

patterns at the adjacent DMR. The DMR is homologous to an RMER4B 

retrotransposon sequence, and like other retrotransposon sequences, 5mC 

establishment takes place during male gametogenesis. When the R2 mutation 

was made to the paternal allele at the Rasgrf1 locus, there was improper 

acquisition of 5mC in trans presumably through ncRNA mechanisms.  These 

combined data led to the hypothesis that establishment of 5mC at the Rasgrf1 

DMR was dependent on ncRNAs.  Because Rasgrf1 RMER4B epigenetic 

reprogramming takes place in the germ line, at the same time and in the same 

tissue as PIWI mediated transposon silencing, piRNAs were the most likely 

candidate for regulating Rasgrf1 methylation. So, we embarked on a 

collaboration with an expert in the field of piRNA mediated epigenetic 

reprogramming, Hiroyuki Sasaki.   

 

II.3 Materials and methods 

 

II.3.1 Collaborator contributions 

 Spermatogonia isolation, preliminary bisulfite sequencing (BS-Seq), small 

RNA library preparation, sequencing and mapping analysis, were performed in 
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the Sasaki lab and are described in our collaborative publication (Watanabe et 

al., 2011b). The experiments, which I performed, are described below. 

 

II.3.2 Mouse breeding 

 Mice harboring the BJR3 targeted Rasgrf1 mutation, in which the repeat 

region is deleted, were generated previously and maintained on the C57BL/6 

(B6) background (Yoon et al., 2002). Creation of mice harboring the RC1 

transgene (which contains the entire Rasgrf1 locus), was on the FVB/n (FVB) 

background, took place in the Soloway lab, and is described in an additional 

publication, in which I hold co-authorship (Park et al., 2012). These two mutant 

mouse lines (BJR3 and RC1) were crossed over a series of generations to create 

mice that were both hemizygous for RC1 and homozygous for BJR3. Reciprocal 

wild type outbreed FVB to B6 mouse crosses were also made, and used for the 

purpose of generating offspring with a high level of sequence polymorphism.  

 

II.3.3 Mouse embryonic day 16.5 tissue collection  

 To determine the precise date of conception, females from various 

breeding crosses, were monitored twice daily (in the morning and in the evening) 

for the presence of vaginal plugs. Sixteen days after plugs were observed 

females were dissected and embryos were harvested.  From each individual 

male embryo, two testicles and a single limb were collected. DNA was extracted 

from the limb and used for genotyping or for methylation analysis. RNA was 
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extracted from the testicles and used for expression analysis. In cases where 

genotypes were known prior to dissection (for example: homozygous BJR3 

embryos) no direct genotyping was performed and up to 12 embryonic testes 

were pooled prior to RNA extraction. 

 

II.3.4 pitRNA and piRNA cluster expression analysis 

RNA was extracted from either e16.5 embryonic or adult testes and 

complimentary DNA (cDNA) was made for Reverse Transcription PCR (RT-PCR) 

using random oligonucleotides. To assess pitRNA expression, cDNA was 

amplified using primers specific to the Rasgrf1 pitRNA DMR sequence. To 

amplify the Rasgrf1 pitRNA in either Wt mice or in BJR3 homozygotes, and to 

amplify the RC1 pitRNA in a BJR3 homozygous mouse background, primers 

were: F-ATACGGGCAACCTTGGGATCATAGGCA, and R-

CAAAATTCTTACTACACATGGCACA, to give a 251bp product. To amplify RC1 

in a wild type (Wt) Rasgrf1 background, primers were: F- 

CTGCACCGCTGCCGCTAAGC and R-

ATCACTAGTGCGGCCGGCCGCCTGCA, which generate a 198bp product. To 

amplify the endogenous Rasgrf1 pitRNA in RC1 mutants, primers were:  F- 

CTGCACCGCTGCCGCTAAGC, and R-GCAGCAGTAGCAGTCGTGGT, which 

generate an 85bp product.  To assess imprinted expression of the piRNA cluster 

cDNA was amplified using primers specific to the cluster region located on 

chromosome 7. Primers were: F-TGTTAACAGTTGAGGTATTTATTTTTG, and 
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R- TAGTCACCTTAATGGGAGCAAAATC to produce a 139bp product, and 

spanned a single nucleotide polymorphism (SNP) between FVB (SNP=A) and B6 

(SNP=T). To control for total cDNA loading, Rpl32 (F- 

CATGCACACAAGCCATCTACTCA, R- TGCTCACAATGTGTCCTCTAAGAAC), 

which generates a 128bp product, and Timp1 (F- 

ACTCTTCACTGCGGTTCTGGGAC, R- GTCATAAGGGCTAAATTCATGGG) 

primers were used, which produced a 389bp fragment from DNA and a 194bp 

fragment from cDNA. 

 

II.3.5 Mouse genotyping 

 To genotype the RC1 and BJR3 mutant mice, DNA was extracted from 

either adult tails for embryonic soma, and the following primers were used for 

multiplex PCR amplification: F- GCACTTCGCTACCGTTTCGC, R- 

TGTCCTCCACCCCTCCACC, and W- TTTCTGCCATCATCCCAGCC, where F 

and R amplify the BJR3 allele and F and W amplify the RC1 allele. Using these 

primers in multiplex PCR, the Wt allele should be amplified from W and R to 

produce a 190bp fragment, the RC1 allele should be amplified using W and R to 

produce a 280bp product, and the BJR3 allele should be amplified with F and R 

to produce a 351bp product. 
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II.3.6 Methylation analysis 

 Methylation analyses of the RC1 and BJR3 alleles were performed using 

the Sequenom Epityper technique (Ito et al., 2010). In short, the technique 

combines bisulfite treatment, with PCR, in vitro transcription, RNA nucleotide 

specific cleavage, and mass spectrometry. Bisulfite treatment of DNA was 

performed as described previously (Park et al., 2012). Treated DNA was 

amplified using primers that contained both a region of homology (not underlined) 

and either a tag (double underlined), or a T7 (underlined) primer sequence (on 

the reverse primer). The following primers were used to amplify the RC1 allele:  

F-TGGCCTTGCTGTTGTTGTTTTTATATTTATT and R-  

CAGTAATACGACTCACTATAGGGGAGAAGGCTCAAAAACAACAATAATAACA

AAAACAAAAACAATAT to produce a 416bp product. The following primers were 

used to amplify the BJR3 allele:  

F-TGGCCTTGCTGTTGTTGTTTTTATATTTATT and R- 

CAGTAATACGACTCACTATAGGGAGAAGGCTCCACCCCTCCACCCCTCTCC

TAAAAAAA, which produced a 381bp product. After amplification PCR products 

were submitted to the Cornell Core Facility where the remaining steps were 

completed.  
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II.4 Results: 

 

II.4.1 Small RNAs at Rasgrf1 (collaborator contributions) 

We hypothesized that establishment of 5mC at the Rasgrf1 DMR was 

dependent on ncRNAs. Interestingly, the DMR sequence is a degenerate 

sequence derived from a retrotransposon called RMER4B. As mentioned 

previously, transposon silencing in mouse gametes is dependent on PIWI 

pathway mediated DNA methylation (Aravin et al., 2008; Kuramochi-Miyagawa et 

al., 2008).  

 

To test the hypothesis that the Rasgrf1 DMR methylation was dependent 

on the PIWI pathway our collaborators surveyed small RNA libraries made from 

embryonic testes, searching for 24-30nt sequences with Rasgrf1 DMR homology. 

Interestingly, numerous unique reads were identified that mapped to the Rasgrf1 

DMR sequence (Fig II.3A). To confirm these small ncRNAs were piRNAs, small 

RNA libraries were made from MitoPLD mutant testes. MitoPLD is a nuclease 

domain-containing protein known to be involved in primary piRNA production and 

thought to have RNase activity (Watanabe et al., 2011a). In the MitoPLD mutant 

library, the Rasgrf1-specific small RNAs were considerably depleted (Fig II.3B), 

indicating that they were indeed piRNAs and their presence was dependent on 

components of the PIWI piRNA processing machinery. Since piRNAs are 

essential for for establishment of 5mC in retrotransposons, our collaborators  
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Fig II.3 - The PIWI pathway member MitoPLD controls methylation at the 
Rasgrf1 DMR.  

A + B) Numbers and locations of Small RNA abundance from MitoPLD+/+ (A) 
and MitoPLD−/− testes (B) from 16.5 embryonic testes, mapping to the 
Rasgrf1 DMR (top). Results for small RNAs mapping was relaxed to 
include up to two mismatches including indels.  

C + D) Bisulfite sequencing to determine methylation level in MitoPLD+/+ (C) 
and MitoPLD−/− (D) spermatogonia. Each row corresponds to a given 
sequencing run where circles represent a single CpG. Open circles depict 
lack of methylated, and filled in circles depict methylated CpGs. Loss of 
methylation correlates with decreased abundance of small RNAs. 
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reasoned that Rasgrf1-specific 5mC may also be impaired in the MitoPLD 

mutants. To test this, they performed BS-Seq of the locus. There was a 67% 

reduction in 5mC over the Rasgrf1 DMR in MitoPLD mutants (Fig II.3C+D), 

indicating that like retrotransposons, Rasgrf1 is dependent on the piRNA 

pathway for proper establishment of DNA methylation. The reduction in 

methylation observed in the MitoPLD mutant was similar to the levels observed 

when the Rasgrf1 repeat region was deleted. We therefore wondered: Does the 

repeat region somehow function in accordance with the piRNA pathway to 

regulate imprinted 5mC? 

 

II.4.2 Repeat region is a promoter for pitRNA 

During piRNA ping-pong biogenesis it is hypothesized that transcription 

from two different genomic regions is required for proper silencing. The model 

proposes that two long ncRNAs, one from the target locus and the other from a 

piRNA cluster region, are sequentially processed to generate two small 24-30bp 

piRNAs that have a 10bp overlapping region of complementarity (Aravin et al., 

2007a, 2007b). It also predicts that removal of one of the long ncRNAs would 

result in failed piRNA processing, and derepression of the target locus. We 

therefore reasoned that the repeat region is required for transcribing a noncoding 

DMR spanning RNA. To test this hypothesis, we extracted RNA from e16.5 

testes, made cDNA and PCR amplified using primers that partially overlapped 

with the DMR (Fig II.4A). PCR was performed using cDNA made from both Wt  
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Fig II.4 - Detection of pitRNA trascript from Rasgrf1 in embryonic day 16.5 
testes 

A) A schematic illustration of the Rasgrf1 locus (similar to figure II.1) primer 
locations are marked for both Wt (B6) Rasgrf1 and direct repeat deletion 
(RD) mutant mice. Arrows correspond to primer binding sites.  

B) Detection of pit-RNA by reverse transcription polymerase chain reaction 
(RT-PCR) in germ cells from both mutant repeat deletion (RD) and Wt 
(B6) embryonic day 16.5 testes. Timp1 shown as an RNA loading control.  

C) RT-PCR was preformed similar to B, however levels were quantified using 
qPCR. Error bars represent standard deviation (n = 3). The level of Oct4 
mRNA was used as a reference. 
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and mutant BJR3 e16.5 testes RNA. We anticipated that if the repeats are 

required from expression of the Rasgrf1 ncRNA, we would see a PCR product 

only from Wt cDNA and not from BJR3 cDNA, which is precisely what we 

observed (Fig II.4B). In fact, the BJR3 homozygous mutant had <10% of the Wt 

pitRNA transcript levels (Fig II.4C). We concluded from these experiments that 

the repeat region functions as a promoter for a ncRNA, which is transcribed 

through the DMR, and is processed into smaller piRNAs. Furthermore, based on 

what has been observed at other retrotransposons, we believe the Rasgrf1 

specific RNA is targeted by other piRNAs and functions to recruit epigenetic 

modifiers, like DNMTs or HMTs. It is therefore referred to as the piRNA-targeted 

ncRNA (pitRNA). Future research will ultimately determine how these factors are 

recruited.   

 

Because there is no methylation on the maternally inherited Rasgrf1 DMR, 

the pitRNA must mediate deposition of 5mC to the paternal allele in an exclusive 

manner. It is likely this occurs because pitRNA expression is limited to male 

gametes (Fig II.5A). Although there was a moderate level of allelic bias when the 

mother was on the B6 background, reciprocal crosses of Wt B6 to FVB and 

sequencing of RT-PCR products, confirmed that there is no imprinted expression 

of the piRNA cluster region, and regulation of imprinted 5mC is likely limited to 

the Rasgrf1 locus itself (Fig II.5B).   
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Fig II.5 - Characterization of PIWI pathway RNA transcritpion  
A) Fetal testis-specific expression of pit-RNA, using RT-PCR and primers similar 

to Fig II.4. qPCR was performed with total RNAs from indicated tissues. The 
expression level of pit-RNA was normalized using that of beta-actin.  

B) Allelic expression status of the RNA in the chr7 piRNA cluster. Sequence 
traces of the RT-PCR products generated from embryonic day 16.5 testes 
RNA with primers flanking the single nucleotide polymorphism (highlighted in 
yellow). Control samples were from inbred FVB/n mice (FVB) (top), B6 mice 
(second from top) or a 1:1 mixture of the two inbred samples to simulate a 
scenario where both alleles were equally expressed (middle). The F1 test 
progeny were from B6 mothers and FVB fathers (second from bottom), or 
from the reciprocal cross (bottom). 
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II.4.3 Cis mediated regulation of 5mC by the pitRNA 

It is unknown if transcription at the targeted locus is necessary for 5mC 

deposition. It is possible that pitRNA function is limited to production and 

processing of the piRNA species during ping-pong biogenesis. In this scenario 

we anticipate, when all the necessary machinery is present, that the piRNAs 

would have the capacity to act in trans at the BJR3 locus, which cannot 

transcribe the pitRNA. Alternatively, if transcription of the Rasgrf1 pitRNA is 

necessary for targeting of DNMTs to the DMR, we expect that the piRNAs would 

act exclusively in cis, and DNMTs can only be recruited to the DMR which is 

actively transcribed. 

 

To distinguish between these two scenarios, we decided to assay a 

mutant mouse that possessed a transgenic copy of the entire Rasgrf1 locus 

(RC1). Aside from repeat-flanking LoxP sites, RC1 is identical and unlinked to 

the endogenous allele. Previous work has demonstrated that patterns of 

imprinting at RC1 are also identical to Rasgrf1, including establishment and 

maintenance of 5mC on the paternally inherited allele, and its imprinted 

expression in neonatal brain (Park et al., 2012). To confirm that the transgenic 

RC1 pitRNA is expressed in a similar fashion as Rasgrf1 , allele-specific RT-PCR 

was performed (Fig II.6A). Additionally, to confirm transgenic pitRNA expression, 

the transgenic allele was crossed through both the material and paternal lineage  

into the BRJ3 homozygous mutant background. Then, using primers specific to 
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Fig II.6 – Proper expression of the pitRNA from the RC1 transgene 
A) Pedigree showing the crosses used to generate mouse embryos that were 

homozygous for the BJR3 mutation and hemizygous for the RC1 transgene.  
B) RT-PCR to assay for pitRNA expression in RC1 containing, and wild type 

mice. Rpl32 primers were used to control for RNA input. When necessary 
primers were specific to the endogenous allele. Primers were either specific 
for the transgene derived pitRNA (transgenic) or did not distinguish between 
pitRNA from the transgenic and endogenous alleles (total). 

C) RT-PCR to assay for pitRNA expression. Data demonstrate that the BJR3 
mutation and lineage have no effect on pitRNA expression. Embryos were 
derived from mating where fathers inherited RC1 either maternally or 
paternally. All mice are BJR3 homozygous mutant at the Rasgrf1 allele.  
"Paternal Genotype" refers to RC1 status of male parent, and "RC1 
Transmission" refers to genotype of the mice analyzed. 
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the transgene, we assayed for RC1 specific pitRNA expression in both the Wt 

Rasgrf1 (Fig II.6B) and homozygous BJR3 mutant (Fig II.6C) backgrounds. The 

pitRNA was expressed independent of the mutant background, confirming the 

RC1 behaves identically to endogenous locus.  

 

These crosses produced double mutants, which were hemizygous for the 

RC1 allele and homozygous for the BJR3 allele, allowing us to determine what 

role the pitRNA has in establishment of 5mC.  As previously mentioned, if the 

piRNAs have the capacity to act in trans and deposit 5mC at an untranscribed 

locus, then the activity of the pitRNA is not limited to the locus from which it was 

transcribed and it is likely the pitRNA's function is limited to piRNA production, 

which is sufficient for 5mC deposition at the DMR. However, if the piRNAs act 

exclusively in cis, then aside from piRNA production, transcription of  

the pitRNA is required for targeting of DNMTs to the allele from which it was 

transcribed. These two scenarios can be distinguished by measuring 5mC levels 

over the DMR at both the endogenous BJR3 allele and the transgenic RC1 allele. 

To assay 5mC, we performed a modified version of BS-Seq using the Sequenom 

Epityper (Ehrich et al., 2005). Although imprinted 5mC patterns were as expected 

at the transgenic locus (Fig II.7B), there was no acquisition of methylation at 

either the endogenous maternal or paternal alleles (Fig II.7A). This indicated that 

the pitRNA, when expressed from the repeats, can only function in cis and not in 

trans, and must have a role outside of ping-pong biogenesis in targeting of  
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Fig II.7 - pit-RNA transcribed by the Rasgrf1 repeats controls DNA 
methylation only in cis and not in trans 
DNA methylation of the endogenous (A) and transgenic (B) copies of the Rasgrf1 
DMD was analyzed by Sequenom MassARRAY. Circles represent a given CpG 
dinucleotide. Color corresponds to methylation level (top). All mice were 
homozygous for a deletion of the endogenous copies of the Rasgrf1 repeats and 
contained (+) or lacked (−) a paternally inherited copy of the RC1 transgene. 
Bisulfite PCR assays were specific for the endogenous (A) or RC1-derived (B) 
DMR. The first 18 CpG within 210 base pairs are shared between the two copies 
of the DMR; other CpGs are specific to the alleles. DNAs came from adult or 
embryonic somatic tissues. Robust DNA methylation and pit-RNA expression 
characteristic of the paternal transgene recapitulates what was seen at the wild 
type endogenous locus. Because the endogenous locus failed to acquire 
methylation, the pit-RNA made by RC1 could impart methylation only at the RC1 
DMR and not the endogenous locus, indicating pit-RNAs function in cis when 
transcribed from the repeat. 
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DNMTs. We cannot exclude to possibility that chromosomal location of RC1 

limits its ability to function in trans. 

 

II.5 Discussion 

In mammals, two de novo methyltransferases, DNMT3a and DNMT3b, are 

responsible for establishment of 5mC throughout the genome. Targeting of 

methyltransferases to specific genomic regions is likely to be regulated by a 

variety of mechanisms. Interestingly, DNMT3 single mutants maintain proper 

5mC at the Rasgrf1 DMR, indicating that the DNMTs have redundant function 

there. There is reasonable evidence to support a model where histone 

modifications (Ooi et al., 2007; Rai et al., 2010), and/or DNA sequence context 

(Lienert et al., 2011), are critical for localization of 5mC. Because only a portion 

of genomic DNA methylation can be explain by these data, presumably 

undefined mechanisms exist and crosstalk between them could help to establish 

genome wide 5mC patterns (Denis et al., 2011). 

 

Earlier work the at Rasgrf1 locus determined that imprinted expression 

patterns are dependent on 5mC over an enhancer blocking sequence (Yoon et 

al., 2005). Methylation of this sequence was shown to be dependent on the 

presence of a proximally located repeat region, which functions during a critical 

window where mouse epigenetic developmental reprogramming takes place 

(Yoon et al., 2002; Holmes et al., 2006). The precise mechanism by which the 
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repeat region regulates 5mC remained unknown however.  Interestingly, there 

was compelling evidence from the Soloway lab and others  that suggested 

ncRNAs were involved in this process (Herman et al., 2003; Aravin et al., 2007b, 

2008).  

  

 We define a novel function for the Rasgrf1 repeat region, and show that 

the repeats are essentially a promoter for a pitRNA, which is a precursor for 

smaller piRNA. We demonstrate: 1) These piRNAs, and the PIWI pathway are 

essential for establishment of 5mC to the Rasgrf1 locus, and 2) Transcription of 

the pitRNA is not only required for piRNA biogenesis, but is also for proper 

targeting of 5mC to the DMR in cis. These findings not only redefine the model 

for regulation of imprinted Rasgrf1 expression, but also describe a previously 

undocumented mechanism for targeting of DNMTs to euchromatic loci.  

 

We propose a model where targeting of the nascent pitRNA by piRNA-

containing complexes occurs in a co-transcriptional manner, and is an important 

step in the sequence specific methylation of the Rasgrf1 DMR. This process 

takes place during mouse embryonic development, when germ cells’ epigenetic 

marks are reprogrammed.  In order to establish new parent-specific modifications 

during migration of male primordial germ cells at embryonic day 11.5, 5mC is 

removed. Removal of 5mC relieves genomic transposon silencing genome wide, 

which presumably includes derepression of the retrotransposon present at 
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Rasgrf1 (RMER4B). Subsequently, nascent transcription begins at the repeat 

region and pitRNA expression is initiated. PIWI pathway members then process 

the pitRNA into a primary piRNA, which has complementarity to an RNA 

transcribed on chromosome 7 and located within a piRNA cluster.  This produces 

secondary piRNAs and begins the ping-pong cycle piRNA biogenesis cycle, 

leading to rapid amplification of both primary and secondary piRNA species.  

 

Although we have determined the pitRNA is required for the recruitment of 

DNMTs, its unclear how this process takes place. Perhaps, piRNA in mammals 

function similar to siRNAs in S.pombe, where siRNAs are able to target 

repressive histone modifiers, like histone 3 lysine 9 methyltransferase, to specific 

genomic sequences (Verdel and Moazed, 2005).   If this were the case, it is 

conceivable that H3K9me would be deposited prior to 5mC at the Rasgrf1 DMR, 

and DNMT3a or DNMT3b would be recruited in an H3K9me dependent manner. 

Additionally, this model suggests H3K9me3 would be specific to the paternal 

allele, and its abundance would decrease when the repeats are deleted in a 

paternal allele specific manner. Previous studies have demonstrated both of 

these predictions to be the case (Delaval et al., 2007; Lindroth et al., 2008). 

There is precedent for this mechanism in other systems, including Arabidopsis, 

Zebra fish, and at pericentric heterochromatin in mouse (Johnson et al., 2002; 

Lehnertz et al., 2003; Rai et al., 2010). It is also possible that members the 

piRNA processing machinery, like MitoPLD for instance, directly recruits DNMTs 
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during biogenesis, and the DNA methylation is established prior to deposition of 

histone modifications. Future research in this area will likely uncover a more 

detailed mechanism, and refine this model further. 

 

 We have demonstrated cis-mediated deposition of 5mC at the Wt Rasgrf1 

locus, however, there are exceptions. When the repeats were replaced with the 

R2 sequence from Igf2 there was acquisition of methylation on the maternal 

allele in trans. These results are in direct opposition to the aforementioned 

model. It is possible the R2 sequence causes improper timing of expression 

and/or increased piRNA transcript abundance. Either of these may lead to the 

observed trans effect. Perhaps over-expression causes a high molarity of 

piRNAs, enabling them to outcompete the DNA sense strand, bind the 

complementary antisense maternal DNA stand, and establish aberrant trans 

5mC. This hypothesis can be tested by creating mice where the DMR-spanning 

pitRNA is regulated by an inducible expression promoter. Controlling the 

temporal expression, spatial localization, and transcription level of the pitRNA in 

this manner may allow for proper assessment of aberrant methylation 

phenomena.   

 

The experiments described focus on defining the function of the repeat 

region and its associated ncRNA during establishment of 5mC in gametic tissue.  

Interestingly, the repeats have also been shown to function after fertilization to 
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maintain imprinted 5mC in the developing embryo (Holmes et al., 2006). It is 

possible repeat mediated pitRNA transcription plays a role during zygotic 

development similar to its role during gametogenesis. Since piRNAs and PIWI 

proteins are not known to function at this time, it is likely the repeats are 

interacting with an additional pathway and have a third yet to be defined role. 

Various pathways have been recently reported to function in preserving 5mC at 

Rasgrf1 in the post fertilization embryo (Quenneville et al., 2011; Messerschmidt 

et al., 2012; Nakamura et al., 2012). Two proteins identified, ZFP57 and Kap1, 

function in the same molecular pathway and, similar to the repeat deletion 

mutant, there is a decrease in paternal 5mC and H3K9me over the DMR when 

either of the genes encoding these proteins are mutated. This genetic interaction 

suggests the repeat region functions in the same pathway as ZFP57 and Kap1 to 

maintain imprinted 5mC at Rasgrf1 in the developing zygote. It would be 

interesting to determine if recruitment of these factors is dependent on the repeat 

region, or on its transcription. It is likely that future research will focus on defining 

the direct relationship between these proteins the Rasgrf1 repetitive region.  

 

Because aberrant localization of 5mC has been implicated in a variety of 

diseases including cancer (Doi et al., 2009; Lendvai et al., 2012), defining the 

means by which DNMTs are targeted is of utmost importance. Modulating DNMT 

targeting or inhibiting their activity has even been suggested as a means to treat  

patients (Foulks et al., 2012). Here we made use of the highly characterized 
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mouse Rasgrf1 locus to study the complicated mechanisms of ncRNA mediated 

DNMT targeting in a controlled and well defined system, and the work presented 

has helped to redefine the mechanism by which 5mC is established and targeted 

to specific loci during male gametic epigenetic reprogramming. Furthermore, 

these data, and our conclusions, will inspire new research and help to address 

previously unresolved questions relating to mammalian RNA mediated DNA 

methylation, and maintenance of 5mC in the early embryo. 
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III. Designing and optimizing a platform to perform single molecules 

epigenetic analysis 

 

III.1 Abstract 

Epigenetic mark coordination occurs on a genome wide scale in order to 

synchronize the expression changes that are necessary for cellular differentiation 

and development (Ernst et al., 2011; Ram et al., 2011). Abnormal epigenetic 

mark placement has been associated with both initiation and progression of 

cancer (Feinberg, 2007). Additionally, epigenetic state can be influenced by 

environmental factors that include diet (Waterland and Jirtle, 2003), 

environmental toxins (Anway et al., 2005), and maternal behavior (Weaver et al., 

2004). Therefore, it is of great interest to identify epigenetic marks genome-wide. 

Developing a system that would enable rapid, quantitative measurement of 

epigenetic marks on a genome wide scale would prove useful for characterizing 

epigenomic regulatory mechanisms, for discovery of disease biomarkers, and 

potentially for clinical assessment of patient response. Though tools for this type 

of analysis exist, they have significant limitations. For example, no technique is 

capable of quantifying genomic epigenetic mark abundance from very few cells, 

and no currently available assay can survey for more than two epigenetic marks 

simultaneously. If a newly designed platform were capable of detecting multiple 

epigenetic marks from rare populations of cells, it would enable researchers to 

survey coordination of multiple epigenetic marks, and potentially identify novel 



 
 

62 

mechanisms in tissue types where epigenetic analysis is currently unavailable.  

Here we describe the development and optimization of a platform capable of 

doing just this. By collaborating with Harold Craighead and his research group, 

we were able to engineer a system that combines single molecule nanofluidics 

and fluorescence correlation spectrometry (FCS) with real-time automated 

electrical sorting. We then use our system to assay for and purify epigenetic 

marks on single molecules.  

 

We demonstrate quantitative detection of both individual chromatin 

molecules, and in-vitro methylated DNA. We go on to sort and purify for 5mC 

from a mixed population of both in-vitro methylated and unmethylated DNAs. 

These experiments provide a proof of principle that it is possible to sort 

molecules based on epigenetic state, and therefore, establish groundwork for 

future biologically significant studies. 

 

III.2 Introduction 

 

III.2.1 Limitations of current techniques 

Typically, ChIP and BS-Seq based techniques (Barski et al., 2007; Lister 

et al., 2008) are used to study epigenetic modifications. Although these methods 

are very powerful, and have produced a wealth of data, they are not without 

limitations. For example, for studies simply seeking to determine the genomic 
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abundance of a given epigenetic feature, both techniques are cumbersome, 

requiring many days for sample preparation, data collection, and analysis. 

Typical ChIP protocols require around 106 cells, making experiments that assay 

for epigenetic marks on chromatin from tissue that cannot easily be harvested, or 

from rare cell types, difficult, if not impossible. The limitations to ChIP and BS-

Seq are primarily due to the incredibly low yield and high background level which 

may lead to misrepresentation of the true chromatin structures (Pondugula and 

Kladde, 2008).   

 

Occasionally, multiple epigenetic marks are found together at a given 

locus, and can act combinatorially to control gene expression patterns. ChIP 

experiments aimed to assay for coincidence of multiple epigenetic marks 

traditionally rely on two independent immuno-precipitations. The co-occurrence 

of epigenetic marks is then inferred by overlapping the datasets. Methods to 

overcome this limitation exist and will be discussed further in chapter 4.  

 

III.2.2 Single molecule approaches 

Single molecule based approaches have the ability to overcome many of 

the limitations imposed by bulk, ensemble methods. The most obvious 

advantage is the ability to directly inspect each molecule rather than infer their 

characteristics indirectly or from population averaging. The average state may 

not be representative of the discrete properties for any single chromatin molecule 



 
 

64 

within the population. In one example, data have been generated using 

traditional macro scale experiments, which argued that centromeric nucleosomes 

are actually tetrameric hemisomes rather than octamers (Dalal et al., 2007a). 

However, others cite structural data (Tachiwana et al., 2011) to argue that 

tetramers did not truly exist. When studies were performed using single molecule 

platforms, which allowed for direct observation, the existence of centromeric 

hemisome structures was confirmed (Wang et al., 2008b).  

 

In a second example, DNA repair enzyme function is typically studied in 

vitro, using either naked DNA or reconstituted chromatin. It is assumed based on 

the results of these studies that the repair enzyme can efficiently navigate 

through the nucleosome uninhibited. However, because this process had never 

been directly observed, some questioned how, or if, it was actually occurring in 

vivo. Recent single molecule studies have allowed for direct detection, and 

observation of the DNA repair enzyme as it traversed through nucleosomes, 

confirming earlier inferences (Gorman et al., 2010). There were similar questions 

with regard to RNA polymerase and its ability to navigate through nucleosomes.  

Again, single molecule based direct detection methods proved useful. They 

demonstrated that not only can the polymerase efficiently navigate the 

nucleosome, but data suggest trailing polymerases can assists with progression 

and alleviate polymerase pausing and backtracking behavior (Jin et al., 2010). 
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III.2.3 Nanofluidic single molecule approaches 

The previously mentioned methods made observations from immobilized 

single molecule entities. There are additional advantages when molecules are 

flowed through nanofluidic channels and assayed in real-time. With the addition 

of real-time fluidic detection, single molecule studies allow for direct detection of 

each individual molecule in a high throughput manner, and promote accuracy 

and precision combined with high sensitivity (Moerner and Fromm, 2003). For 

example, the size and relative proportion of individual DNA fragments has been 

determined from only 76 femto grams of material (Foquet et al., 2002), the 

expression level of 45 different human microRNAs was determined from only 

femto molar concentrations of RNA (Neely et al., 2006), and the abundance of a 

beta-actin transcript has been quantified from as low as 100 femto moles of RNA 

(Nolan et al., 2003). Generally speaking, single molecule nanofluidic techniques 

are capable of assaying very small amounts of biologically relevant material at 

near physiological concentrations. Due to the very small molecular confinement 

volumes, we can reliably perform direct detection of single molecules at high 

throughput speed in a highly sensitive manner. In these assays, as a sample 

flows through a nanoscale channel, each molecule passes through what is called 

an "inspection volume." In our case, the inspection volume is the space created 

when a laser beam intersects with a nano-channel (Fig III.1A+B). The Poisson  
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Fig III.1 - Tools for single molecule analysis. 
A) A micrograph image of nanoscale channel is displayed. The inner most 

portion of the channel, which is used for single molecule laser inspection, has 
dimensions of 500nm wide, 250nm deep and 10um long. The scale bar is 10 
um. 

B) A diagram of a SCAN device mounted on a confocal fluorescence 
microscope. Two overlapped lasers illuminated a 1.3 µm length of the 
nanofluidic channel and formed an inspection volume of ~150attoL. Collection 
of fluorescent emission was achieved using a confocal apertures and 
avalanche photodiodes (APDs). 

C) The probability a molecule resides within the inspection volume at any given 
time is determined by the Poisson statistic. P = probability, m = molecules 
within inspection volume at any given time. c = input concentration, where V = 
volume, x = molecules in solution, and NA = Avogadro’s Number.   
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statistic determines the probability a molecule has of passing through the 

inspection volume at any given time (Fig III.C). 

 

III.2.4 Real-time detection of ensemble molecules by FCS  

  Although, as previously mentioned, single molecule studies alone are 

useful for analyzing a variety of biological phenomena, when combined with FCS 

one gains the ability to monitor the behavior of molecules in real-time rather than 

in post-process analysis. Simply, FCS is used to measure the fluctuations and 

diffusion of fluorescent single molecules (Magde et al., 1974). From FCS based 

detection, one can observe both the auto correlation and the cross correlation. 

The autocorrelation defines the flow (or the diffusion) characteristics of a single 

fluorophores; and the cross correlation defines the coordinated flow (diffusion) 

characteristics of multiple fluorophores. When a solution carries multiple 

fluorophores, that are behaving in a correlated manner are likely to exist together 

in a complex. From FCS one is able to determine: 1) estimated flow rate and 

consistency for each population of molecules, and 2) if different colored 

molecules are flowing as a correlated unit (or complex) within the larger 

population of molecules. However, it's important to note that FCS based 

detection is not single molecule based analysis and the conclusions represent 

characteristics of ensemble data. It is, therefore, only a tool used in parallel to 

single molecule studies, in order to facilitate real-time monitoring and detection. 

For the purpose of our research FCS has proven to be a useful tool when 
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operated in parallel with single molecule analysis. It enables us to monitor flow 

rate, discern channel clogging, detect when two different colored fluorophores 

are bound to one another, and observe fluorescence crossover bleed-through, 

which occurs when a given fluorescent emission is inappropriately ascribed to a 

different fluorophore emitting at a longer wavelength. 

 

III.2.5 A novel single molecule fluorescence detection technique 

Although single molecule nanofluidic based fluorescent detection 

platforms have been used for assaying a number of biological substrates (Foquet 

et al., 2002; Nolan et al., 2003; Neely et al., 2006), they have never been used 

for detection of chromatin and, more importantly, up until this point no one has 

detected epigenetic marks using these type of tools. Here we present the 

development of a novel technique called SCAN (Single Chromatin Analysis at the 

Nanoscale) that combines single molecule nanofluidics with multicolor 

fluorescence microscopy to detect DNA, 5mC, or histones on individual 

chromatin fragments. Furthermore, we go on to present an advanced version of 

this platform that enables real-time detection and automated sorting of individual 

fluorescent molecules. In proof of principle experiments, we use this new 

platform to sort and purify 5mC from a mixture of both methylated and 

unmethylated DNA samples. We envision this tool will eventually become an 

alternative to ChIP, and allow for detection and purification of material that 

currently cannot be analyzed. We also foresee a modified version of this 
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technique will be used to assess histone modifications and potentially to 

determine if multiple epigenetic marks are actually coincident on the same 

chromatin fragments through out the genome. 

 

III.3 Materials and methods 

 

III.3.1 Collaborator contributions 

Fabrication of nanofluidic channels, fluorescence confocal microscopy, 

real-time photon counting, qPCR and post experimental data analysis were 

performed by collaborators in the Craighead and Soloway labs and are described 

in our collaborative publications (Cipriany et al., 2010, 2012). The methods which 

I performed, are described below. 

 

III.3.2 HeLa cell culture 

HeLa cells constitutively expressing green fluorescent protein (GFP) on 

histone H2B (H2B–GFP) were provided by Geoffrey M. Wahl at The Salk 

Institute for Biological Studies, USA (Kanda et al., 1998). Cells were cultured in 

Dulbecco's modified Eagle's medium (DMEM) supplemented with 5% fetal calf 

serum, and were passaged when 80% confluence was reached.  

 

III.3.3 Chromatin preparation 

Cells were harvested from two 15cm dishes, when a density of 1 x 106 
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cells/ml was reached. Harvesting was by gentle scraping, followed by washing in 

5mL RSB buffer (10 mM Tris pH 7.6, 15 mM NaCl, 1.5 mM MgCl2). Pellets were 

then resuspended in 5 mL RSB buffer containing 1% Triton-X 100 and 

homogenized with eight strokes of a loose fitting pestle in a 7mL Dounce 

homogenizer. Samples were then centrifuged at 4000g (units of gravitational 

force) for 5min at room temperature (RT) in a swing bucket rotor. The nuclei 

containing pellet was resuspended in 1.5 ml Buffer A (15 mM Tris pH 7.6, 15 mM 

NaCl, 60 mM KCl, 0.34 M Sucrose, 0.5 mM Spermidine, 0.15 mM Spermine, 

0.25 mM PMSF, 0.1 M CaCl2, and 0.1% β-mercaptoethanol) and micrococcal 

nuclease (MNase) were added at a concentration of 266 gel-units/mL of buffer. 

At various time points (ranging from 0 to 90 minutes) 250uL aliquots were taken 

and reactions were stopped using 5 µL of 0.5 M EDTA. Digests were centrifuged 

at 10,000g and pellets were suspended in 450 µL 10 mM EDTA, 50 µL 5 M NaCl 

to solubilize native chromatin. To confirm size ranges and chromatin integrity, 

DNA was extracted and analyzed by agarose gel electrophoresis. Concentration 

of extracted DNA, was measured by Nanodrop, and used as a proxy to estimate 

chromatin concentration. Typically concentration was 150-600ng/ul.  

 

III.3.4 Methyl binding domain (MBD) protein synthesis and labeling 

Plasmid for bacterial expression of 1xMBD (pET31b) was provided by 

Adrian P. Bird at The Wellcome Trust Centre for Cell Biology, University of 

Edinburgh, UK (Jørgensen et al., 2006). Recombinant His-tagged MBD was 
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purified, from 200 mL of IPTG induced BL21(DE3) bacterial cultures, on Ni-NTA 

agarose (Qiagen) using denaturation and on-column refolding. Briefly, cells were 

grown to log phase and inducted with 1mL of 1 Molar IPTG, which took place 

when optical density reached 0.5. After 3 hours, cultures were pelleted and lysed 

in 40mL denaturing buffer (6 M Guanidinium HCl, 0.3 M NaCl, 0.1 M Sodium 

Phosphate, 0.01 M Tris-HCl, 10 mM 2-ME, 10 mM imidazole) and sonicated 

using a microtip with 12 cycles of 10 seconds on and 10 seconds off at mid level 

power output. Lysed culture was then centrifuged at 10,000g. The soluble 

fraction was added to 20mL of 50% nickel-NTA slurry, and allowed to bind over 

night at 4C on a rotator. The next day the entire sample was loaded into an 

empty column, and washed 12 times with 5mL of various buffers that gradually 

transitioned from denaturing to native buffer conditions (0.3 M NaCl, 0.1 M 

Sodium Phosphate, 0.01 M Tris-HCl, 10 mM 2-ME, 10 mM imidazole). Once 

refolded, MBD was eluted using 5mL PBS containing 250 mM imidazole. The 

sample was then dialyzed into PBS to remove imidazole and an equal volume of 

100% glycerol was added prior to storage at -20 Celsius. Following purification 

the protein was labeled with Alexa-488 (green) using Invitrogen's Microscale 

Labeling kit (A30006), which labels free amines. Three additional rounds of resin 

purification (included within kit) were performed to better purify away free label. 

Absorbance measurements indicated an average degree of labeling of 1.5 dye 

per MBD. Southwestern blotting was used to confirm MBD activity. In subsequent 

experiments, instead of resin based purification, serial filter based size exclusion 
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spin columns were used in an attempt to better eliminate free dye (Ambicon 

UFC501008).  

 

III.3.5 Southwestern blotting  

 Nitrocellulose membranes were spotted with various quantities (ranging 

from 5ng to 500ng) of either methylated or unmethylated Lambda DNA. Prior to 

probing with MBD, membranes were blocked with 10mL of tris-buffered saline 

(TBS) containing 1% BSA and 0.1% triton X- 100 (TBST-B). The blots were then 

submerged in 3mL of TBST-B solution containing 12nM concentrations of Alexa-

488 labeled MBD. After overnight incubation on a rocker, samples were washed 

4 times for 15 minutes each with 10mL of TBS containing 0.1% triton X- 100. 

They were then imaged using a Typhoon Fluorescent scanner. 

 

III.3.6 Intercalator labeling 

All DNAs analyzed were labeled with TOTO-3 DNA intercalator (red) 

(Invitrogen). The labeling reaction was conducted by mixing DNA and the dye at 

a 1:5 dye to base pair ratio. Based on the DNA mass within a given sample the 

appropriate amount of intercalator dye stock was added directly to each sample 

and immediately vortexed. After mixing, samples were protected from light and 

incubated at RT for 1 hour. Following 1 hour RT incubation samples were moved 

to 4C and left for at least on additional hour. Oftentimes samples remained at 4C 

overnight, prior to analysis. There was a significant increase in fluorescence 



 
 

73 

intensity following intercalator binding, eliminating the need to purify samples 

further. 

 

III.3.7 pML4.2, pUC19, and Lambda preparation and in-vitro methylation 

Lambda DNA was purchased from Promega, and had been grown in a 

methylation deficient host (D1521). pUC19 and pML4.2 (Herman et al., 2003) 

were grown in dam-/dcm- Escherichia coli (New England Biolabs—C2925) and 

purified using a QIAGEN Plasmid Midi Kit (12143). Lambda and pML4.2 were in 

vitro methylated with SssI methyltransferase. Efficiency of methylation was 

assessed by resistance to digestion using methylation sensitive enzymes HpaII, 

and HhaI. 

 

III.3.8 MBD-DNA affinity binding reaction 

1.9uM MBD was mixed with 75nM TOTO-3 labeled DNA and incubated in 

20uL total binding buffer for two hours at RT with moderate agitation, then stored 

at 4 °C in the dark. The binding buffer consisted o f TBS at pH 8.0 in 0.5% BSA 

and 0.1% triton X- 100. The following morning all biological samples were diluted 

into flow buffer (10 mM Tris, and 1 mM EDTA, 0.1% Triton X-100, 0.3% 

polyvinylpyrrolidone, buffered to pH 8.0) such that total concentration of 

molecules was below 1nM.  

 

 



 
 

74 

III.4 Results: 

 

III.4 Nanofluidic system 

The nanofluidic fluorescence based detection system used is similar to 

one developed previously to size and elongate DNA molecule (Foquet et al., 

2002; Levy and Craighead, 2010). The nanofluidic channels were 500 nano 

Meters (nm) wide and 250nm deep. The length varied depending on whether we 

were sorting, or simply counting molecules (Fig III.1A). Channels were fabricated 

by our collaborators in fused silica substrates using photolithography and 

reactive ion etching. Two 10 centimeter (cm) silica discs were bonded, where 

channels were etched in the bottom disc, and a second disc was placed over the 

first to form a roof for the channels. Prior to bonding the two, the second disc was 

sandblasted to provide access ports to fill the channels. Devices were designed 

in arrays of 16 parallel channels, with each array having a single input and a 

single output reservoir on each end. These reservoirs served as sample loading 

ports, and where were the electrodes made contact with the fluid sample. The 

nanofluidic device was mounted on a confocal microscope and a series of 

mirrors and fiber optics were used to direct light from a series of lasers through 

the objective lens and onto the stage. When the laser beams intersect the 

nanoscale channel, it creates a 150 attoL inspection volume (Fig III.1B). When a 

fluorescently labeled molecule is present within the inspection volume the laser is 

able to excite the fluorophore, and a longer wavelength light is emitted. Emitted 
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light is then directed back through the objective and is detected using avalanche 

photo diodes (Fig III.1B). Due to the 150attoL inspection volume created by the 

laser intersection, the Poisson statistic indicates that if molecules are below 1nM 

concentration, there is greater than a 99.9% probability that one or fewer 

molecules are being inspected at any given time. In other words, these 

parameters establish the limits we must stay within for each experiment to 

generate meaningful data, and to ensure that we are working at single molecule 

resolution.  

 

III.4.2 Detection of intact native chromatin 

For our first proof of principle experiments, we needed to determine if 

chromatin could remain intact as it passed through the nanoscale channels. To 

do this, we chose to use chromatin from HeLa cells that expressed a transgenic 

H2B-GFP fusion protein. These cells were chosen specifically to extract 

chromatin from because no post extraction histone labeling needed to be 

performed in order for them to be fluorescent. As a second means for detection, 

we chose to use the DNA intercalator TOTO-3 (red), which has excitation and 

emission profiles that are spectrally distinct from GFP.  Both FCS and post-

process color correlation analysis (which will be discussed later) rely on two color 

fluorescence. Using two distinct flours (TOTO-3 is red and GFP is green) allowed 

us to eliminate confounding variables like FRET (Föster’s Resonance Energy 

Transfer), which occurs when emission energy from one fluorophore can excite 
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neighboring fluorophores. FRET effects can cause quenching of emission from 

the first fluorophore. Bleed-through occurs when the first fluorophore has 

emission energy that is so intense that it is mistakenly detected as the second, 

longer wavelength, fluorophore (Andrews, 1989; Periasamy, 2001). The two color 

scheme we designed allowed us to determine if DNA and histones could be 

detected, and if chromatin remained intact as molecules flowed though the 

inspection volume. 

 

After extracting native chromatin from the GFP expressing HeLa cells, we 

confirmed chromatin was intact prior to being loaded into the input port by 

purifying DNA from a small portion of extracted chromatin and running it on an 

agarose gel. Following MNase digestion, if chromatin extraction was successful 

and had remained intact, we anticipate that extracted DNA would form a 160bp 

ladder (Fig III.2A). Next TOTO-3 (red) was bound to our chromatin and samples 

were loaded into the nanoscale channels. After a voltage was applied, 

fluorescence emissions intensity and time of occurrence were collected using a 

single molecule photon counter contained within our FCS system (Fig III.2B). 

FCS allowed us to monitor flow rate, aggregation, and clogging of channels in 

real-time. For both the red TOTO-3 molecules, and for the green GFP molecules, 

no clogging or aggregation was observed. As molecules entered the inspection 

volume their time of entry was recorded, and if the time between two different 

color fluorescent bursts was below a single molecule’s anticipated residence time  
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Fig III.2- Chromatin remains intact as it flows through nanoscale channels 
A) Chromatin was extracted from GFP containing HeLa nuclei and digested 

using MNase. With increased time of MNase treatment, we observed a 
decrease in chromatin fragment sizes, as verified by gel electrophoresis. 
160bp laddering patterns are an indication of chromatin intactness.   

B) Process of Single Molecule Detection (SMD) and Two-Color Coincidence 
Analysis. Time-trace record of photon bursts observed by each APD, showing 
0.25 seconds of a 15 minute nanofluidic SCAN. A burst with a sum of 10 or 
more photons satisfied a threshold condition and was designated a SMD 
event, shown here by a red or green marker identifying DNA and histone H2B 
respectively. Intact chromatin fragments, highlighted in blue, were identified 
by time-coincident detection of both a red and green event.  

C) Coincident Detection Illustration.  As molecules passed through the inspection 
volume (top) the elapsed time between adjacent color events was precisely 
measured (middle). If binding between antibody and chromatin occurred, the 
elapsed time approached zero.  Binding events (bottom) appear as a central 
peak centered at time zero on the frequency plot. 

D) A TCH (time coincidence histogram) illustrates the absence of coincident two-
color SMD events when analyzing chromatin from wild-type HeLa nuclei. With 
GFP-HeLa chromatin, a central Gaussian peak, corresponding to intact 
chromatin molecules emitting two fluorescent colors, emerged from a 
background of uncorrelated events.  

E) Chromatin was extracted from both GFP containing, and Wt HeLa nuclei and 
digested using MNase (similar to A). In some cases GFP containing nuclei 
were mixed with Wt HeLa nuclei prior to digestion. The portion of GFP nuclei 
is indicated.  

F) The proportion of two-color chromatin molecules increased in direct proportion 
with GFP-HeLa nuclei content, as described by a linear fit with R-squared 
=0.98 and R-squared =0.95 for the 5 and 15 minute digestion assays, 
respectively. Error bars represent the error from both the bound and unbound 
molecules. 
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within the inspection volume, the event was called as a single two color 

“coincident event”. This initial characterization is somewhat arbitrary and true 

coincident burst detection requires post analysis processing. During post-

processing, the time between different colored bursts for all coincident events is 

measured (elapsed time) and plotted as a histogram (Fig III.2C). We anticipate 

that with intact chromatin, there would be an enrichment of molecules with an 

elapsed time approaching zero. As a control, we repeated the experiment using 

chromatin extracted from HeLa cells that did not express GFP (Wt HeLa). We 

expected there to be no coincidence in this sample. We observed precisely what 

we expected for both the GFP expressing and the Wt HeLa chromatin samples 

(Fig III.2D), indicating that as molecules flow through the nanoscale inspection 

volume they remain as intact chromatin.  To confirm the level of coincident 

detection corresponded to the abundance of GFP chromatin, we mixed Wt HeLa 

nuclei with GFP expressing HeLa nuclei and prepared chromatin (Fig III.2E). For 

two different MNase digest times the level of coincidence was proportional to the 

input fraction of GFP containing nuclei (Fig III.2F), which not only confirmed our 

chromatin was intact, but also indicated the coincident detection level can be 

used for relative quantification of chromatin.     

 

III.4.3 Detection of 5mC on Lambda DNA 

Our next goal for SCAN was to detect true epigenetic marks. DNA 

methylation was chosen as the first epigenetic mark that would be queried. To  
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Fig III.3 - Detection of methylated DNA using MBD 
A) Lambda DNA was either methylated using SssI or left unmethylated. As a test 

for efficacy of the methylation reaction, aliquots of DNAs were then digested 
with HindIII or with both HindIII and the methylation sensitive enzyme HpaII. 
Resistance to digestion by HpaII is evidence for DNA methylation. 

B) Southwestern blot analysis of MBD-1 specificity binding to methylated DNA. 
Both unmethylated and in-vitro methylated lambda DNA were bound to a 
nitrocellulose membrane in varying quantities using a slot blotting apparatus. 
The Alexa 488 labeled MBD protein was then used to probe the entire blot. 
Following over night incubation at 4° C the blot wa s washed and scanned with 
Typhoon imager to detect the Alexa Fluor 488 label.  

C) Detection of DNA methylation using SCAN. Unmethylated (top) and 
methylated (bottom) DNA samples labeled with TOTO-3 were both incubated 
with a molar excess of MBD-488 protien then analyzed for 15 minutes using 
SCAN. MBD-1 binds to only the methylated sample. 

D) Mixtures of methylated and unmethylated DNA were assayed using SCAN (as 
in C). MBD binding frequency (y-axis) increases as the proportion of the 
methylated DNA in the mixture increases (x-axis).  Linear fit with R-squared 
=0.99. Error bars represent the error from both the bound and unbound 
molecules. 
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optimize conditions amenable to 5mC detection, we needed to first generate a 

substrate for detection, Lambda DNA was purchased and in vitro methylated 

using SssI methyltransferase. This enzyme is able to methylate efficiently all CG 

dinucleotide pairs, of which 3,113 exist on the Lambda sequence. To confirm the 

methylation level of Lambda, 5mC sensitive restriction digests were performed  

 (Fig III.3A). Next, to generate a reagent that was able to bind specifically to 

methylated DNA, we chose to use a recombinant methyl binding domain (MBD) 

protein. The histidine tagged MBD was purified from E.coli using IPTG inducible 

expression, and nickel-NTA based purification. The refolded protein was labeled 

using AlexaAlexa-488 (green) dye and the activity of the reagent was tested 

using a southwestern blotting technique (Fig III.3B). In this assay both 

methylated and unmethylated DNA was immobilized on a membrane at various 

concentrations. The entire blot was then incubated in the presence of the labeled 

MBD protein. Following incubation and a series of washes, to eliminate 

nonspecific signal, the blots were imaged using a fluorescent scanner. Using this 

assay we observed specific binding of the MBD only to the methylated samples, 

and there was no binding to unmethylated samples (Fig III.3B). Once we had 

confirmed the MBD’s activity, we used it in combination with either methylated or 

unmethyated Lambda, to test our SCAN device. We anticipated that we would 

see two color coincidence only in the sample that was methylated, and there 

would be no coincidence in the unmethylated sample. We observed precisely 

what was expected (Fig III.3C). Additionally, similar to the GFP HeLa samples, 
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when we added increasing concentrations of methylated Lambda to an 

unmethylated sample, there was a direct increase in the level of coincidence 

detected, indicating that in a binding reaction SCAN can be used to quantify the 

relative abundance of 5mC (Fig III.3C).  In the next chapter I will discuss the 

application of these methods to more complex systems using chromatin instead 

of naked DNA. I will demonstrate detection and quantification of 5mC and histone 

modifications, and perform measurements using chromatin from genetically 

modified or pharmacologically treated cells. 

 

III.4.4 Devising a method for sorting 

Eventually we plan to use the material we detect in our single molecule 

platform for sequencing, and map the genomic location of various epigenetic 

marks. In order to do this, it is vital that we devise a means to sort molecules 

based on their ability to bind a fluorescent probe that is specific for a given 

epigenetic mark. To engineer a sorting device, we modified the nanofluidic 

device by adding a bifurcation, which created two outflow channels (Fig III.4A). 

By applying a voltage switch molecules could be sorted into one or the other 

branch of the bifurcation. Furthermore, to confirm molecules were being sorted 

correctly, instead of only a single inspection volume, two additional inspection 

volumes were added. This was done by creating an elongated laser beam that 

stretched across all three of the channel regions, including the input channel, and 

both output channels (Fig III 4.B). This design allows for coincidence to be  
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Fig III.4 - Tools for purifying epigenetically modified DNA 
A) A bright field photomicrograph of a bifurcated nanofluidic sorting channel with 

cross-section 500 nm wide by 250 nm deep. The scale bar is 10 µm. 
B) (Top) Single molecule detection and sorting schematic. Samples were loaded 

into the input of a bifurcated nanofluidic device. An applied voltage flowed 
molecules through the device. As each fluorescently labeled molecule passed 
through the input inspection volume its fluorescence was detected and then 
evaluated in real time. In this example, a green MBD protein is bound to 
methylated DNA, and identified by its two-color coincident fluorescence. 
These type of molecules were then directed to the sorted output channel. The 
sorted and default channel inspection volumes, which were used to confirm 
sorting, are also illustrated.(Bottom) An example of time resolved fluorescent 
detection and data collection is illustrated. The two color coincident 
fluorescent molecules cause an actuated sort trigger and a pair of opposing 
switches to direct the molecule toward the sorted output. 
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assessed at three times, first in the input channel prior to sorting, then again 

subsequent to sorting, in both the sorted and default channels. The platform 

design facilitates the ability to confirm that molecules have been sorted correctly. 

In order for molecules to be sorted properly, coincidence analysis needs to be 

performed in real-time, and an automated electrical switch needs to be applied to 

modulate voltage and sort those molecules that are called as coincident (Fig 

III.4B). All of these modifications were made by our collaborators.   

 

III.4.5 Sorting methylated DNA 

With the newly fabricated device, we designed an experiment to test the 

performance of the system. Our goal was to sort methylated DNA. Because 

intercalator dye fluorescence intensity directly corresponds to DNA length, we 

thought it useful to perform experiments using two different sized species of 

plasmid DNA. This choice was made specifically to allow for an orthogonal 

means to confirm sorting accuracy in real-time. In other words, by choosing a 

large methylated fragment and a small unmethylated fragment, which bind 

different amounts of intercalator and hence have different intensities of 

fluorescence emission, we could predict which should be sorted based only on 

intensity. We chose to use pUC19 (2.7kb) and pML4.2 (15.2kb). To test the 

integrity of the automated sorting device, we mixed our two plasmids, loaded 

them into the input port, applied a voltage, and asked the automated program to 

sort based only on fluorescent intensity (Fig III.5A+B). The voltage switch was  
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Fig III.5 – Sorting based on fluorescence intensity 
A) A time-resolved record of single molecule events. Fluorescence intensity was 

monitored over a 2 second window of time (top). As a molecule passes 
though the input laser inspection volume its time of entry (x-axis) and 
fluorescence intensity (y-axis) was recorded. When a given molecule met the 
intensity threshold requirement a pulse was initiated to trigger sorting (second 
from top). Once sorted, molecules were monitored again in both the sorted 
channel and in the default channel. In this example three bright molecules 
were correctly sorted. 

B) Following a given sorting experiment, where a mixture of 15,848 molecules 
were sorted, fluorescence intensity and occupancy time duration were 
measured as each molecule passed through the input (top), sort (middle) and 
default (bottom) laser inspection volumes. The molecules were plotted in 
accordance with their intensity (x-axis) and time duration (y-axis). The degree 
of event overlap is illustrated using a heat map (right). 
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applied each time a bright molecule (with an intensity above a predetermined 

threshold) passed through the laser inspection volume (FigIII.5A). By measuring 

the fluorescence intensity of each molecule, we observed two sub-populations 

(Fig III.5B). The first population, those molecules that were bright, represents the 

pML4.2 molecules, and the second, those that were dim, represent the pUC19 

molecules. Fluorescence intensity measurements were also made in both the 

output ports. After counting molecules and classifying them as either bright or 

dim, we observed a 49-fold enrichment for pML4.2 in the sorted channel (Fig 

III.5B). Next, in order to sort for methylation, the longer of the two plasmids 

(pML4.2) was in vitro methylated in a way similar to what had been previously 

done for Lambda DNA. We confirmed the methylation level of both pUC19 and 

pML4.2 using 5mC sensitive restriction digest (Fig III.6A+B).  Because in 

previous experiments MBD binding had a high level of background false 

coincidence (Fig III.3C), we suspected that free Alexa-488 (green) dye remained 

in our sample. To eliminate excess free dye, we performed serial purification in 

size exclusion filter-based spin columns, instead of resin based purification 

methods used in the past.  Because this required new purification, and new 

protein labeling, we needed to re-confirm the MBD’s activity. Similar to what was 

described previously, southwestern blotting was performed, and results indicated 

that the new MBD was able to specifically bind methylated DNA (Fig III.6C). Next 

MBD was bound to methylated pML4.2, and flowed into the nanoscale sorting 

devices. In order to calibrate the  
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Fig III.6 - Detection of methylated DNA using new MBD and sorting device 
A + B) pUC19 (A) and pML4.2 (B) were linearized with EcoRI and AscI, 

respectively, and methylation-sensitive restriction enzymes, HhaI and HpaII, 
were used to confirm proper in vitro methylation of pML4.2 and the 
unmethylated state of pUC19. Methylation insensitive enzymes DdeI and AluI 
were used as controls to cut pUC19. 

C) Southwestern blotting was preformed similar to fig III.3B except with the newly 
purified and labeled MBD.  

D + E) Coincidence analysis (TCH) of MBD bound pML4.2 molecules at two 
separate places within sorting channel. Analysis was performed first in the 
input inspection volume (D) then again in the sorted output channel (E) to 
confirm proper sorting. 

 

 

 

 



 
 

88 

automated sorter, and determine the occupancy time of bound molecules, 

coincident time offset analysis was performed. This analysis was performed in 

both the input inspection volume, and in the sorted output channel. Results 

indicated there was abundant binding of the MBD to the methylated DNA, with an 

occupancy time less than one millisecond (ms) and background false 

coincidence levels lower than were previously observed (Fig III.6D+E), indicating 

the new experiment yielded a higher sensitivity. 

 

Once the system was fully calibrated, we began to test its ability to sort for 

methylated DNA. For this experiment we mixed the methylated pML4.2 with the 

unmethylated pUC19 plasmid. The mixed sample was then bound to MBD 

overnight and the following morning TOTO-3 (red) DNA intercalator was added.  

The sample was then loaded into the sorting device, and the automated electrical 

voltage switching system was applied. When molecules passed through the input 

laser inspection volume red fluorescence intensity, which reported the presence 

of DNA molecules and their length, was recorded. We observed two populations 

of molecules, one having 5-fold higher fluorescence intensity than the other (Fig 

III.7A). The 5-fold difference corresponds to the size difference between pUC19 

and pML4.2. Since pML4.2 was methylated, and pUC19 was unmethylated, we 

anticipated that if the automated sorting device was working properly, MBD 

would be bound and coincident only with the bright molecules, and those bright 

molecules, if properly sorted, would be detected in the sorted output channel. We  
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Fig III.7 - Sorting methylated DNA 
A) Four seconds of time-resolved fluorescent detection are shown for both red 

colored events and green colored events. Three two color coincident 
molecules were identified, which triggered an actuated sorting event. After 
sorting, the fluorescence from two of the three MBD molecules remained 
paired with DNA, while the third had fluctuated below the intensity threshold.  

B) During a sorting experiment 5,723 DNA molecules were analyzed. 
Fluorescence intensity data, for both the red color (x-axis) and the green color 
(y-axis), were collected in the input, sort, and default channels.  

C) Following sorting, samples were removed from the reservoir and DNA levels 
were quantified using qPCR. For two different automated sorting experiments 
there was between 11 and 3.1 fold enrichment and a standard error of 3 and 
0.5 respectively. 
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observed precisely what was expected (Fig III.7A). Following 20 minutes of 

continuous automated sorting, data were analyzed to characterize the 

fluorescence intensity of all molecules surveyed. By measuring the two color 

fluorescence intensity of each molecule, we observed five sub-populations (Fig 

III.7B). The first population, those molecules that were only green, represented 

the unbound MBD, and those that were only red represented the unbound DNA. 

Among the molecules that were red, there were dim red molecules, which have 

fluorescent properties of pUC19, and there were bright red molecules, which had 

fluorescent properties of pML4.2. Those that were both red and green were the 

MBD bound DNA molecules, included both pML4.2 and pUC19. In the sorted 

output channel we anticipated the unmethylated pUC19 molecules would be 

purified away and less abundant. Again, our observations were precisely as 

anticipated.  (Fig III.7B). MBD-DNA complexes include 27 MBD-pUC19 and 270 

MBD-pML4.2. In situ molecule tracking demonstrated significant enrichment of 

methylated pML4.2 at the sorted output, which demonstrated specific binding of 

MBD and enrichment of methylated DNA (Fig III.7C). From these data the false 

positive rate was determined to be 5.6%. To confirm we were actually purifying 

the methylated DNA, samples were removed from the input, sort, and default 

reservoirs, and were analyzed using qPCR to quantify the abundance of each 

plasmid. From this analysis, after two separate experiments, we observed 

between 3 and 11-fold enrichment of methylated DNA post sorting (Fig III.7C), 
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which confirmed the sorting device was working properly and enriching for the 

molecules of interest.   

 

III.5 Discussion 

 We have described the development of two nanofluidic devices that can 

be used for epigenetic analysis. One, called SCAN, was used to analyze 

individual fluorescently labeled chromatin molecules and to characterize 

methylation on DNA fragments. The other, a nano-sorter, was used to detect and 

purify methylated DNA in an automated fashion. Using the SCAN device, we 

demonstrated that chromatin can passage through a nanoscale channel based 

on electrokinetic flow, and remain intact. By effectively diluting wild-type HeLa 

chromatin into GFP containing HeLa chromatin, we were able to confirm the 

authenticity of coincidence detection. We also show that 5mC can be reliably 

detected using the SCAN device, and sorted for using the automated nano-

sorter. Using the nanoscale sorting device, we demonstrated that methylated 

DNA can be detected, and purified, and samples can be recovered for down 

stream analysis.  

 

We plan to use this device to sort for epigenetic marks on native 

chromatin samples. We also envision sequencing the DNA that has been sorted, 

and mapping epigenetic marks to the genome. Although in principle this process 

is quite possible, with our current throughput and recovery method, it is wholly 
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impractical. Throughput may be increased in several ways. For example, by 

removing the post sort laser inspection volumes, we can increase the 

concentration of molecules by 20-fold and still remain under single molecule 

analytical conditions. Molecules that are part of bound complexes make up the 

very small minority of all molecules that pass through the laser inspection 

volume. Essentially, this means there is a large amount of time wasted, while the 

sorting device is idling through uninformative molecules. To solve this problem, 

and increase throughput, we envision performing a pre-purification of our MBD 

bound material and remove unbound fluorescent probes. Finally, if the sorting 

devices were fabricated to operate in parallel arrays, multiple nano-sorters can 

potentially function simultaneously, and greatly increase total yield. Our current 

method of simply pipetting material out of the reservoir is highly inefficient and 

leads to considerable sample loss and variability. In the future, we plan to 

perform whole genome amplification within our sorted output reservoir to 

eliminate this problem. We also envision fusing our sorting device with single 

molecule sequencing platforms (Braslavsky et al., 2003; Levene et al., 2003); this 

would potentially eliminate sample loss and greatly increase sensitivity.   

 

In chapter 4, we will discuss the use of our SCAN device for analysis of 

bona fide epigenetic marks on native chromatin molecules. For these 

experiments antibodies were used and a cross-linking step was implemented 

following the binding reaction. We will also discuss SCAN as a means for 
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detecting simultaneous presence of epigenetic marks. In fact, with the addition of 

fluorescently labeled antibodies, the SCAN technique could potentially allow for 

simultaneous detection of numerous marks, and if proper modifications were 

made to our fluorescent microscope setup, including additional color filters and 

inspection volumes, there would be no limit to the number of marks that could be 

simultaneously queried and sorted.  

 

We plan for this technique to operate at very high throughput, by making 

use of multiple channel arrayed devices, and eventually sort whole genomes for 

actual epigenetic marks, and sequence the DNA from our sorted material. If this 

goal is achieved, we will have developed a technology that is an alternative to 

ChIP-seq. More importantly, if we can detect and sort for multiple epigenetic 

marks simultaneously, we will have potentially created a technology that 

supersedes ChIP-seq, and allows for investigations of the histone code at a level 

that is more extensive than has ever been preformed.  
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IV. Single-molecule Analysis of Combinatorial Epigenomic States in Normal 

and Tumor Cells 

 

IV.1. Abstract 

Proper placement of epigenetic marks on DNA and histones is 

fundamental to normal development, and perturbations contribute to a variety of 

disease states.  Combinations of marks act together to control gene expression, 

therefore, detecting their colocalization is important, but because of technical 

challenges, such measurements are rarely reported.  Instead, measurements of 

epigenetic marks are typically performed one at a time in a population of cells, 

and their colocalization is inferred by association. In other words, multiple 

independent chromatin states could exist in a single population of cells being 

analyzed, and genomic location could vary from cell to cell. Comparing across 

ChIP datasets will not allow one to determine if two epigenetic marks truly reside 

on the same chromatin molecule, or if they simply map to the same genetic 

location and are never actually on the same piece of chromatin. Sequential ChIP 

can be used to overcome this limitation; however it is wholly impractical when 

small inputs are assayed, or when more than two epigenetic modifications are 

queried. Mass spectrometry can also assay for multiple epigenetic marks, but 

only if they reside in close proximity on the same histone tail (Britton et al., 2011). 

All other epigenetic mark combinations cannot be assayed using mass 

spectrometry. Here we describe a novel single-molecule analytical approach that 
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can perform direct detection of multiple epigenetic marks simultaneously, and 

use it to identify mechanisms coordinating H3K9me3, H3K27me3, and cytosine 

methylation (5mC) placement in the normal and cancer genome.  We show that 

5mC and H3K9me3 are present together on individual chromatin fragments in 

mouse embryonic stem cells (ESC) and that half of the H3K9me3 marks require 

5mC for their placement.  In contrast to H3K9me3, H3K27me3 is antagonized by 

5mC in both ESC and primary mouse fibroblasts (MF), indicating this antagonism 

is shared among primary cells.  However, antagonism is lost upon 

immortalization of MF and persists after tumorigenic transformation.  Importantly, 

human promyelocytic cells show the same loss of H3K27me3 antagonism by 

5mC.  Because aberrant placement of gene silencing marks like H3K27me3 and 

5mC correlate with tumor suppressor silencing and tumor progression, loss of 

H3K27me3 antagonism by 5mC upon immortalization measured by these 

methods is likely to be fundamental to cancer.  Our platform can enable other 

studies involving coordination of epigenetic marks, and leverage efforts to 

discover disease biomarkers and epigenome-modifying drugs. 

 

IV.2. Introduction 

 

IV.2.1. Coordination and co-occupancy of epigenetic marks 

Epigenetic marks are responsible for controlling the temporal and spatial 

pattern of gene expression throughout the genome. In a number of instances, 
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these marks have been shown to act combinatorially (Bernstein et al., 2006; 

Murr, 2010).  Co-occurance of epigenetic marks have been implicated in a 

variety of important processes including developmental differentiation (Bernstein 

et al., 2006), gametogenesis (Ooi et al., 2007), and DNA replication (Eaton et al., 

2011). Additionally, examples exist where epigenetic marks can directly promote 

or inhibit the presence of one another (Tamaru et al., 2003; Zilberman et al., 

2008).  Consequently, reliably detecting epigenetic mark colocalization is an 

essential step for advancing a host of biological studies. Histone modifications 

and 5mC are traditionally assayed by ChIP and BS-Seq respectively. Typically, 

one assay is performed at a time and colocalization of marks is inferred by 

association.  As previously mentioned in chapter 3, with this approach, it remains 

unknown if the inferred combinatorial states actually exist (Ernst et al., 2011).  

reChIP can detect combinations of histone modifications, but its low efficiency 

requires an abundant source of chromatin, and it is impractical for assaying more 

than two modifications; BS-Seq of ChIP DNA can report coincidence of histone 

modifications and 5mC (Brinkman et al., 2012). As discussed in the previous 

chapter, mass spectrometry can quantify combinations of histone marks, but if 

they reside nearby on the same histone (Johnson et al., 2004).  Each method is 

labor intensive and difficult to use when quantitative data are needed.  Here we 

describe a novel single-molecule analytical approach that can rapidly and 

quantitatively assay combinations of epigenomic marks.   
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IV.2.2. Improved SCAN 

We previously described SCAN (Single Chromatin fragment Analysis in 

Nanochannels), a nanofluidic approach that enabled high throughput fluorescent 

measurements of single DNA and chromatin molecules (Cipriany et al., 2010).  

When used to analyze native chromatin from H2B-GFP expressing HeLa cells, 

we showed that molecules bound with a fluorescent DNA intercalator also carried 

GFP, demonstrating the chromatin remained intact during the analysis.  When 

we analyzed mixtures of methylated and unmethylated DNAs that were 

combined with a fluorescently tagged MBD protein, we observed specific 

detection of methylated DNA.  These results suggested SCAN could be used for 

rapid, quantitative epigenomic measurements, and that it could be used to detect 

the presence of combinations of epigenetic features on individual chromatin 

molecules.  Here, we reduce this objective to practice and apply SCAN to 

demonstrate the interdependence of histone modifications on DNA methylation 

status.  We show that 5mC is needed for proper H3K9me3 placement and that it 

antagonizes H3K27me3 in primary cells, however, the antagonism is lost in 

immortalized and transformed cells.  This loss of antagonism might be a 

mechanism for aberrant placement of gene silencing marks on tumor 

suppressors and disease progression. 
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IV.3. Materials and methods 

 

IV.3.1 Collaborator contributions 

Fabrication of nanofluidic channels and design of post experimental data 

analysis software were performed by collaborators in the Craighead lab. All other 

experiments, which I performed, are described below. 

 

IV.3.2. Chromatin preparation   

Native chromatin was prepared as described (Cipriany et al., 2010).  

Briefly, 3X107 cells where homogenized using a Dounce homogenizer and triton 

X-100 containing PBS buffer.  Isolated nuclei were treated with micrococcal 

nuclease, and chromatin was solubilized in a high salt EGTA containing buffer.  

Presence of nucleosome ladders was verified and sizes estimated using agarose 

gels loaded with DNA purified from chromatin (Fig IV.1).  Samples used for 

analysis had size distributions centered on 2kbp.  Concentration was assessed 

spectrophotometrically.   

 

IV.3.3. Labeling epigenetic probes  

Antibodies were purchased from Active Motif (61013, 39155, 61037, 

39763) and the MBD probe was prepared as previously described (Cipriany et 

al., 2010).  All reagents were then labeled using Invitrogen’s Microscale Protein 

Labeling kits (A10238, A30009, A30006) according to manufacturer’s instructions  
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Fig IV.1 -  Native Chromatin Purification Laddering  
DNA was purified by phenol chloroform extraction and ethanol precipitation from 
native chromatin isolated from (A) HeLa cells expressing GFP-tagged H2B; (B) 
Wild type mouse ESC or DNMT TKO ESC deficient for the three DNA 
methyltransferases, and (C) HL-60 cells cultured without or with 5-Aza-2′-
deoxycytidine, and then analyzed by agarose gel electrophoresis. (D) Following 
72 hours of culture in media containing 10ng/mL of 5-Aza-C, cells were 
harvested and native chromatin was extracted. The above chromatin samples 
were selected for analysis based on a fragment size distribution that was similar 
to previously analyzed from ESC and HL-60 samples. Micrococcal nuclease 
incubation times were varied.  1 kbp+ ladders are shown. 
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and purified from free dye by seven cycles of 10 fold dilution into PBS and re-

concentration in Amicon Ultra Centrifuge concentration columns (UFC501008, 

UFC51008).  Labeling was assayed using fluorometry and absorbance; protein 

concentrations were confirmed using a BCA assay.   

 

IV.3.4. Binding reactions  

Native chromatin (3-10nM) and fluorescent antibodies (125-400nM) were 

mixed such that there was a 15-40 fold molar excess of antibody or MBD and 

then left to incubate over night at 4°C on a rotato r.  The following morning 0.75% 

formaldehyde was added and samples incubated at RT for 15min, after which, 

160mM glycine was added to quench the crosslinking reaction.  Once 

crosslinked, fluorescent DNA intercalator dye (TOTO-3 or YOYO-1, Invitrogen) 

was added such that there was 1 molecule of dye for every 5 DNA base pairs.  

Samples were left to incubate for 1 hour at RT followed by 1 hour at 4°C. Before 

SCAN, binding reactions were diluted into flow buffer such that the total 

concentration of fluorescent molecules was below 1nM.  

 

IV.3.5. SCAN and data analysis  

SCAN data were collected as described (Cipriany et al., 2010). To 

measure the abundance of epigenetic marks, we determined the fraction of 

intercalator-stained material bound to the epigenetic probe, and normalized this 
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value to the fraction bound to anti-H2B for both test and control cells, and then 

took the ratio of normalized values for the two cell types according to the formula: 

             
 

 

 

 

where NAE = Normalized Abundance of Epigenetic marks, Be = count of 

molecules bound to both intercalator and epigenetic probes, I= count of 

intercalator bound molecules, B2 = count of molecules bound to both intercalator 

and anti-H2B, T = Test cells, C = Control cells.  All data analysis was performed 

using MATLAB 2010b (Mathworks).  Raw intensity versus time traces were 

autocorrelated and fit to the 1D FCS equation with the addition of intersystem 

crossing and directed flow terms, to determine the characteristic transit time of 

molecules through the focal volume.  A noise level of random background 

photons was established and used to set a baseline for the intensity traces.  

Single molecule events were identified above the baseline by applying a signal 

threshold and locating local maxima among contiguous points above the 

threshold.  Coincident molecules were identified by temporally translating one 

channel trace relative to a second, over a time window whose size was 

determined from the characteristic transit time of the single molecule events.  

The number of overlapping local maxima from both channels was determined at 

each time offset generating a time distribution of coincident events. By analyzing 
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the time distribution of coincident events from multiple datasets a signal to noise 

ratio was determined and used to calculate background levels and correct the 

values for abundance of epigenetic mark detection. Due to an increased noise 

level from falsely detected coincident events, for experiments where two different 

colored probes were used, a similar background correction was applied by 

uniformly subtracting the bulk of background events from total events, effectively 

shifting the y-axis on coincidence plots. 

 

IV.3.6. Cell culture and drug treatment   

A variety of cell types were used for the described experiments and 

culture conditions varied. The conditions used for HeLa cell culture were 

described in chapter 3. Mouse embryonic stem cells were V6.5 and cultured in 

DMEM supplemented with 15% fetal calf serum and 1,000 units per mL of 

leukemia inhibitory factor (LIF). Mouse fibroblasts, 3T3 fibroblasts, and 60.1 

(Soloway et al., 1996) fibroblasts were cultured in DMEM supplemented with 

10% fetal calf serum. HL-60 cells were cultured in RPMI media supplemented 

with 5% fetal calf serum. During drug treatment, 5X107 cells were cultured in 

media containing 1.1ng/mL (HL-60) or 10ng/mL (MF lines) 5-Aza-2′-

deoxycytidine (Sigma A3656) for 72 hours with the addition of fresh drug 

containing media every 24 hours.  Chromatin was prepared as described above.  

Concentrations were chosen that permitted cell accumulation at a level equal to 

40-60% of untreated cells (Fig IV.2). 
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Fig IV.2 - 5-Aza-2′-deoxycytidine Kill Curve   
Four different concentrations of 5-Aza-2′-deoxycytidine were added to HL-60 or 
mouse fibroblast (MF) cells, which included primary fibroblasts (MF), 
immortalized fibroblasts prepared by groWth under 3T3 conditions (MF3T3) or 
fully tumorigenic fibroblasts transformed with Ha-ras and v-myc containing virus 
(MF60.1). Fresh drug was added every 24 hours and after 72 hours cells were 
harvested and counted.  Three biological replicates were used for each cell line 
and three technical replicate counts were made per dish.  The graph corresponds 
to the average across three biological replicates, ± standard deviation.  
Experiments in fig. 4 used HL-60 cells grown in 1.1ng/mL 5-Aza-2′-deoxycytidine 
and MF cells grown in 10ng/mL 5-Aza-2′-deoxycytidine. 
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IV.4. Results 

 

IV.4.1. Detection of epigenetic marks on native chromatin 

We first established conditions for binding fluorescent MBD and antibodies 

recognizing histone features to chromatin with high specificity (Fig IV.3A).  As an 

initial test, we labeled an antibody recognizing the unmodified N-terminal tail of 

histone-H3 (anti-H3) with AlexaFluor647, bound it to native chromatin isolated 

from HeLa cells expressing an H2B-GFP fusion protein, and then analyzed the 

mixture by SCAN.  We ensured the total concentration of fluorophores in our 

analyte remained at or below 1nM so that the probability of detecting only a 

single molecule or complex was greater than 99.5% (Fig IV.3B). If SCAN could 

detect antibody-chromatin complexes, we should detect individual molecular 

complexes that emit both green (GFP) and red (Alexa647) photons.  This is 

precisely what we observed demonstrating labeled antibodies could be used to 

detect chromatin features on single molecules using SCAN (Fig IV.4A+B).   

 

Because most chromatin samples of interest will not come from cells with 

GFP-tagged histones, we extended this anti-H3 binding test using native 

chromatin from wild type mouse embryonic stem cells (Wt-ESC) labeled with the 

fluorescent intercalator YOYO-1, and then used SCAN to detect complexes 

carrying YOYO-1 and anti-H3AlexaFluor647.  We could easily detect these 
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Fig IV.3 - Single chromatin molecule analysis at the nanoscale (SCAN) 
workflow 
A) Native chromatin bearing epigenetic marks is mixed with fluorophore (e.g. 

Alexa Fluor-488) labeled antibody specific to a given mark.  After binding, the 
chromatin is labeled with an intercalator (e.g. TOTO-3).  Finally, the chromatin 
is driven by voltage through a nanoscale channel fabricated in fused silica 
and fluorescent measurements of individual molecules are taken in a 150 aL 
inspection volume. A more detail schematic of laser setup can be found in our 
previous publication (Cipriany et al., 2010). 

B) Probability of erroneously interrogating more than a single molecule increases 
with analyte concentration according to a Poisson distribution, and is less 
than 0.5% at the concentrations used here (≤1 nM).  Pc(m), probability of m 
molecules residing in the 150 aL interrogation volume at any one time, given 
concentration c of fluorescent molecules in analyte, expressed as molecule 
count x in 150 aL, where NA is Avogadro’s Number.  The curve shows the 
probability of more than 1 molecule is in the inspection volume.   
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Fig IV.4 – SCAN detects chromatin features with high specificity  
AlexaFluor dye-tagged antibodies or MBD protein was bound to chromatin before 

analysis by SCAN. 
A+B) Chromatin was from H2B-GFP expressing HeLa cells, and antibody was 

H3-specific.   
A) 0.5 s of time-resolved photon counts reporting GFP (top) and H3 (bottom) 

fluorescent emissions, depicted as colored peaks.  Blue shading identifies 
antibody-bound chromatin complexes emitting both fluorophores nearly 
simultaneously.  

B) Time offset histogram for 7,065 GFP chromatin molecules analyzed in A.  
GFP fluorescence from coincident events is placed at time 0 and the time 
offset identifies how soon before or after the GFP emission, Alexa dye was 
detected.   The peak centered at time 0 with width less than the transit time 
for molecules passing through the inspection volume (~1 ms) identifies 
antibody-chromatin complexes.  A more detailed illustration of the 
coincidence calculation is provided in supplemental methods and in Fig. 2.  

C+ D) Chromatin was from wild type mouse ES cells (Wt ESC) bound to anti H3 
antibody (C), or pre-immune mouse serum (D).   

E + F) Antibody probe was specific for H3K27me3 and chromatin was from Wt 
ESC (E) or Eed– ESC, which are deficient for H3K27me3 (F).  

G + H) MBD probe was specific for mC in duplex DNA, and chromatin was from 
Wt ESC (G) or DNMT TKO ESC, which are deficient for mC (H).  Chromatin 
in C-F was detected by labeling with the intercalator YOYO-1, whose 
emission defined the 0 time in the offset plots.   
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complexes, demonstrating the utility of SCAN for a variety of chromatin sources 

(Fig IV.4C).  To test the effects of non-specific crosslinking of antibody to 

chromatin, as a negative control, we repeated this test using AlexaFluor647 

labeled pre-immune mouse serum in place of anti-H3 and observed no antibody-

chromatin complexes, demonstrating specificity of antibody binding (Fig IV.4D). 

Similar experiments were performed at various formaldehyde concentrations, 

and over a range of incubation times. From these tests, optimal cross linking time 

was determined to be 15 minutes, and optimal formaldehyde concentration was 

0.75%. However, we observed no increase in binding or in nonspecific 

crosslinking when formaldehyde concentration was increased to 1%, or when 

incubation time was increased to 20 minutes. (data not shown) Presumably there 

is still room to improve the crosslinking protocol with further optimization. In 

additional pilot experiments, MBD was bound to chromatin from ES cell 

chromatin isolated from both Wt and TKO (mutant for all three of the DNA 

methyltansferases) cells at various concentrations ranging from 312nm to 2.5um. 

Although there was abundant binding in Wt chromatin, there was no detectable 

binding of the MBD in the TKO chromatin when concentrations were at or below 

625nM. However, when concentrations of MBD exceeded 625nM there was 

binding in both the Wt and DNMT TKO samples (data not shown). This result 

indicated there are concentration dependent effects on crosslinking specificity. 

For this reason, the cross linking reaction was always performed at 

concentrations below 500nM. 
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Anti-H3 should bind most if not all chromatin molecules in a mixture of 

complex chromatin.  To determine if we could use SCAN to detect less common 

epigenomic features of particular interest, we bound AlexaFluor647 labeled anti-

H3K27me3 specific antibodies to native chromatin from Wt-ESC, labeled it with 

YOYO-1, and then performed SCAN.  We could readily detect YOYO-1 labeled 

chromatin bound to anti-H3K27me3 antibodies (Fig IV.4E).  As a negative control 

for anti-H3K27me3 binding specificity, we repeated this test using chromatin from 

ESC homozygous for a mutation in Eed, which encodes a PRC2 component 

needed for efficient H3K27me3 (Montgomery et al., 2005).  In Eed-deficient cells, 

the number of YOYO-1 labeled molecules bound to antibody was greatly 

diminished (Fig IV.4F).  Coincidence in Eed- chromatin was <25% of Wt levels. 

Therefore, detection of H3K27me3 using SCAN and anti-H3K27me3 antibodies 

is specific. The moderate level of coincidence in the Eed- chromatin samples 

could be the result of either nonspecific antibody binding, or residual H3K27me3 

in the absence of EED. We performed a similar test using fluorescently-tagged 

MBD protein to detect DNAs harboring 5mC in Wt-ESC, and included as a 

negative control chromatin from DNMT TKO ESC that are deficient for the three 

mammalian DNA methyltransferases, which have ~2% of the 5mC content of Wt 

ESC (Meissner et al., 2005).  The MBD bound chromatin from Wt ESC, but 

binding to DNMT TKO ESC chromatin was greatly diminished (Fig IV.4G+H).  

Like H3K27me3, detection of 5mC by SCAN and MBD is specific.   
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IV.4.2. Simultaneous detection of two epigenetic marks 

We next used SCAN to detect combinations of epigenetic features on 

chromatin.  For these experiments, we bound to chromatin two different probes 

recognizing epigenetic features, both labeled with spectrally distinct fluorophores.  

In our first tests we bound antibodies recognizing H3 and H2B to Wt ESC, which 

are expected to bind virtually all chromatin fragments.  As a negative control for 

antibody aggregation, we performed an identical binding reaction without 

chromatin.  Only in the binding reactions that included chromatin could we detect 

complexes with both antibodies, demonstrating that we can use SCAN for 

simultaneous detection of multiple chromatin features (Fig IV.5A+B).  We 

extended this test incrementally by substituting anti-H3K27me3 for the anti-H3 

antibody and were able to detect chromatin molecules binding both antibodies 

(Fig IV.5C).  Finally, we performed binding reactions using anti-H3K9me3 and 

MBD and detected chromatin molecules bearing two combined epigenetic 

features (Fig IV.5D).  To our knowledge, this is the first direct detection of a 

combination of epigenetic features on single chromatin molecules.  As 

combinations of epigenetic features are fundamental to genomic regulation 

(Ruthenburg et al., 2007), their multiplexed detection with tools like SCAN can 

provide new insights into the epigenome. 

 

Having shown that 5mC and H3K9me3 were commonly detected on the 

same individual chromatin molecules, we wondered if H3K9me3 was dependent 
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Fig IV.5 - Detection of two epigenetic marks simultaneously   
A + B) Antibodies against H3 and H2B were labeled with spectrally distinct 

fluorophores and bound to chromatin (A), or included in a binding reaction 
without chromatin as a negative control (B).   

C+ D) Binding reactions were performed as in (A) using antibodies against H2B 
and H3K27me3 (C), or using MBD protein and an antibody against H3K9me3 
(D).  Chromatin was from Wt ESC; the central peak identifies chromatin 
molecules bound to two fluorescent probes as described in Figure 2. Due to 
increased false coincident detection, events (y-axis) were background 
corrected for A-D. 
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on 5mC for its placement.  There is precedent for cross regulation of the two 

marks:  H3K9me3 is needed for normal 5mC deposition in Neurospora crassa 

and mice (Lehnertz et al., 2003; Tamaru et al., 2003); conversely, 5mC positively 

affects H3K9me3 placement at normally silenced loci in Arabidopsis thaliana 

(Johnson et al., 2002) however in some human cell cultures, 5mC antagonizes 

H3K9me3 placement (Komashko and Farnham, 2010).  In none of these studies 

was the magnitude of these effects quantified genome wide.  We used 

quantitative SCAN to measure the relative abundance of H3K9me3 on chromatin 

in Wt ESC vs. DNMT TKO cells, using H2B antibody to normalize the signals 

from the two cell types.  Our results showed that 60% of the H3K9me3 levels in 

ESC depend on 5mC placement (Fig IV.6A).   

 

IV.4.3. Coordination of epigenetic mark placement 

H3K27me3, like H3K9me3 and 5mC, is commonly associated with gene 

silencing; therefore, we also measured changes in H3K27me3 levels when 5mC 

was diminished.  In contrast to H3K9me3, H3K27me3 levels rose approximately 

220% when 5mC was lost (Fig IV.6A).  This is consistent with previous reports 

that 5mC antagonizes H3K27me3 placement in primary mouse fibroblasts at 

Rasgrf1 (Lindroth et al., 2008) and is consistent with global suppression of 

H3K27me3 in mouse ESC by 5mC (Hagarman et al., 2013).  Interestingly, the 

antagonism between 5mC and H3K27me3 seen in primary cells breaks down 
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Fig IV.6 - DNA methylation state controls histone modification states  
ESC (A), HL-60 (B) MF primary mouse fibroblasts (C), MF3T3 immortal mouse 
fibroblasts (D) or MF60.1 transformed oncogenic mouse fibroblasts (E) had 
normal mC, or mC impaired by mutation (A) or 5-Aza-2′-deoxycytidine (5AzaC) 
treatment (B-E).  Chromatin from cells was analyzed by SCAN after labeling with 
an intercalator (TOTO-3 or YOYO-1) and fluorescent MBD protein or antibody 
recognizing H2B, H3K9me3 (K9) or H3K27me3 (K27).  H2B signals were used to 
normalize relative abundance of H3K9me3, H3K27me3, and mC in cells with 
normal and impaired mC.  In box plots, whiskers represent 5th and 95th 
percentile.  
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in transformed cells.  For example, 5mC requires H3K27me3 at several loci in 

HeLa cells (Vire et al., 2005).  Additionally, 5mC is not found at many PRC2 

binding sites in primary cells but 5mC is aberrantly acquired at PRC2 binding 

sites in cancerous cells (Keshet et al., 2006; Ohm et al., 2007, 2010; Schlesinger 

et al., 2007; Widschwendter et al., 2007; Doi et al., 2009; 5mCCabe et al., 2009).  

Generally, coordination between 5mC and H3K27me3 in transformed vs. normal 

cells varies by genomic location (Hon et al., 2012).  To compare the influence of 

5mC on H3K27me3 in transformed cells with its effect in primary ESC, we 

treated the human acute promyelocytic leukemia cell line HL-60 with the 

demethylating agent, 5-Aza-2′-deoxycytidine (5AzaC) (Fig IV.6), and then used 

quantitative SCAN to measure H3K27me3 abundance.  In contrast to primary 

ESC where 5mC depletion leads to increases in H3K27me3 placement, depletion 

of 5mC in HL-60 cell caused a 24% decrease in chromatin associated 

H3K27me3, consistent with the hypothesis that antagonism between 5mC and 

H3K27me3 that exists in primary cells breaks down in cancer (Fig IV.6B).  As a 

further test of this hypothesis, and to define when during oncogenic 

transformation antagonism between 5mC and H3K27me3 is lost, we used 5AzaC 

to demethylate mouse fibroblasts from primary cultures (MF), from cells 

immortalized during 3T3 culture selection (MF3T3) and from tumorigenic 

fibroblasts (MF60.1), fully transformed with Ha-ras and v-myc (Soloway et al., 

1996), and then used SCAN to quantify the effects of 5mC depletion on 

H3K27me3 abundance.  Similar to mouse ESC, depletion of 5mC in primary MF 
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caused 570% increase in the abundance of H3K27me3, indicating the 

antagonism of H3K27me3 by 5mC seen in primary ESC was also seen in other 

primary cells (Fig IV.6C).  However, in immortalized MF3T3 and fully tumorigenic 

MF60.1 cells depleted of 5mC, H3K27me3 levels decreased by 98% and 81% 

respectively, demonstrating antagonism of H3K27me3 by 5mC was lost (Fig 

IV.6D + E). Therefore, upon immortalization and extending into oncogenic 

transformation the influence of 5mC on H3K27me3 switches from inhibitory to 

stimulatory, leading to an overall increase in the abundance of H3K27me3 mark 

placement (Fig IV.7). Although there was a significant decreases in the levels of 

5mC following drug treatment, the degree of decrease varied across cell types. 

This variation is presumably do to non-uniform drug susceptibility from one cell 

type to another. Alternatively, observed variation could be a reflection of our 

detection method’s limits on sensitivity. The observed switch in antagonism might 

be fundamental to epigenetic chaos associated with cancer and that contributes 

to tumor suppressor silencing.  That it occurs upon immortalization and before 

full transformation suggests loss of H3K27me3 antagonism by 5mC is an early 

biomarker for cancer.   

 

IV.5. Discussion 

Here we described a single molecule analytical approach to characterize 

epigenetic states.  This allowed us to detect combinations of epigenetic features, 
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Fig IV.7 - H3K27me3 abundance in mouse fibroblasts   
H3K27me3 abundance was quantified for primary mouse fibroblasts (MF), 
immortalized mouse fibroblast (MF3T3), and tumoregenic mouse fibroblasts 
(MF60.1). Similar to figure 4, abundance was determined by measuring antibody 
binding in chromatin from each cell type. Counts are first normalizing to H2B 
binding abundance then displayed as compared to H3K27me3 levels in primary 
fibroblasts. Error bars represent standard deviation. 
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measure epigenetic mark abundance rapidly, identify coordinated regulation 

among 5mC, H3K9me3 and H3K27me3, and monitor effects of epigenome 

modifying drugs on cancer cells.    

 

Our platform directly detected the colocalization of H3K9me3 and 5mC on 

individual molecules in ESC.   The colocalization is relevant mechanistically:  

H3K9me3 requires 5mC for its normal placement in the genome.  The 

requirement is not absolute as nearly half of H3K9me3 is placed in the absence 

of 5mC.  It is possible that without 5mC, the histone deacetylase-containing 

NuRD complex is not recruited to 5mC by the MBD2 protein in the complex, and 

H3K9Ac persists preventing H3K9me3 placement.   

 

In contrast to H3K9me3, 5mC antagonizes H3K27me3 in primary cells.  

The antagonism can be explained by the fact that 5mC impairs binding of PRC2, 

which is needed for H3K27me3 (Wu et al., 2010).  This antagonism breaks down 

in immortalized mouse cells and fully transformed mouse and human cells.   

Further characterization of H3K27me3 antagonism by 5mC will be necessary to 

determine if its loss is a reliable biomarker for different cancers.   

 

How immortalization and subsequent transformation causes H3K27me3 to 

become dependent on 5mC is unknown.  It is possible that the composition of 

PRC2 or PRC2 associated factors, or posttranslational modifications of any of 



 
 

120 

these changes upon immortalization, enabling recruitment of PRC2 to 5mC 

rather than exclusion as occurs in primary cells.   Alternatively, the failure of 5mC 

to exclude H3K27me3 might be a consequence of altered energy metabolism in 

cancerous cells.  Increased glycolysis and reduced tricarboxylic acid (TCA) cycle 

activity occurs in many cancer types (Cao et al., 2010; Cardaci and Ciriolo, 2012; 

Mullen and Deberardinis, 2012), which can lead to accumulation of succinate, 

which in turn has been shown to directly inhibit the H3K27 demethylase JMJD3 

(Cervera et al., 2009). It is possible that in normal cells, antagonism of 

H3K27me3 by 5mC entails targeting of JMJD3 to methylated DNA sequences, 

and increased succinate in transformed cells might impair removal of H3K27me3, 

causing it to accumulate at sites where 5mC is present (Fig IV.7).  The 

mechanisms controlling H3K27me3 placement in primary cells are fundamentally 

different from immortal and tumorigenic cells and loss of H3K27me3 antagonism 

by 5mC during transformation might contribute to cancer-associated phenotypes 

such as tumor suppressor silencing.  Interfering with this aberrant epigenetic 

mechanism might be beneficial therapeutically. 

 

Our studies of coordination among 5mC, H3K9me3 and H3K27me3 

represent just one application of our single molecule analytical platform.  Other 

applications for the SCAN platform include enabling discovery of additional 

epigenome based cancer biomarkers, facilitating quantitative assays for the 

effects of epigenome modifying agents in a drug discovery pipeline, and serving 
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in clinical assays to measure patient responses to such drugs.  There are several 

additional embodiments possible for our system that can expand its capabilities, 

including performing parallel analyses in multiple channels to increase 

throughput; adding a third fluorescent color, which would allow for absolute 

quantitation of epigenetic marks; and implementing a recently developed method 

to sort single DNA molecules based on epigenetic state (Cipriany et al., 2012) 

which would  allow for downstream sequencing.  Aside from epigenetic marks, in 

the future we anticipate using SCAN to access the genomic localization of 

transcription factors, which would likely be accomplished by analyzing in vivo 

cross linked chromatin. Because individual molecules are queried, only small 

amounts of cellular material are required, raising the possibility of epigenomic 

analyses of cells that are rare, impossible to culture or even of single cells 

(Benítez et al., 2012).  
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V. Expanded discussion 

Waddington originally used the term epigenetics to describe the combined 

effects and interaction of genes with their products as they contribute to a 

developmental phenotype. In Waddington's day the mechanisms controlling 

epigenetic phenomena were largely a mystery. Today we have a deep 

understanding of what epigenetic modifications are, and where they are placed 

throughout the genome, but generally, even after 75 years of research, we only 

have a superficial understanding of what mechanisms determine which genes 

are chemically modified, and how these epigenetic modifications lead to an 

altered cell fate.  

 

This dissertation investigated the mechanism underlying epigenetic mark 

localization and mark coordination during transformation. In doing so, we have 

defined a mechanism that functions to control placement of 5mC in the genome 

during gametic epigenetic mark establishment. Additionally, we have developed 

a new method to assay for epigenetic phenomena, and use it to determine that 

genome wide antagonism of H3K27me3 and 5mC breaks down during 

immortalization and tumorigenic progression. The findings presented here have 

not only helped to characterize epigenetic mark regulation, but will ultimately lead 

to new questions and innovative research projects. 
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The characterization of 5mC establishment during mouse epigenetic 

reprogramming was accomplished using the imprinted Rasgrf1 model locus. Our 

data indicate that a repeat region, located 3’ the DMR functions as a promoter for 

a pitRNA. They also indicate that 24-30bp piRNAs are produced from a pitRNA 

transcript and are processed by PIWI proteins. Together, PIWI proteins, the 

repeat region, the pitRNA, and piRNAs are necessary for deposition of 5mC. 

Additionally, we determined that cis and not trans mediated transcription of the 

pitRNA is required for proper establishment of 5mC. For this reason, we propose 

a model where deposition of methylation takes place in a co-transcriptional 

manner. 

 

The means by which DNMTs are targeted to the DMR is unclear, and the 

mediator proteins are unknown. Presumably by RNA-Immuno precipitation (RIP), 

and by gel shift assays these mediator proteins can be identified. An inducible 

pitRNA promoter system, in combination with a variety of techniques like ChIP 

and RIP, may also be useful to confirm that methylation is being placed co-

transcriptionally. The inducible expression system may also enable one to 

determine during at what developmental time, at what expression level, and in 

which tissue, the pitRNA is required.  

 

Maintaining 5mC in the prelimplantation embryo also requires the repeat 

region (Holmes et al., 2006). It is possible that in the embryo, similar to their role 
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in embryonic gametes, the repeats drive expression of a ncRNA. However 

PIWI/piRNA mechanisms have not been described in early embryonic somatic 

tissue, and have not been linked to maintenance of 5mC. Perhaps there is an 

unreported low level of expression from genes within the PIWI pathway in the 

zygote, and piRNA mediated silencing is required for maintenance of 5mC. 

Alternatively, independent of piRNAs, the repeats may facilitate binding of 

proteins, or histone modifying agents that protect against demethylation of the 

DMR. In either case the inducible promoter system could help to address this 

question. By regulating the pitRNA expression at various developmental time 

points with a promoter distinct from the repeats, and monitoring 5mC of histone 

modifications, one may be able to determine when, and in what tissues pitRNA 

transcription is required for 5mC deposition on the DMR. By creating a system 

where trans-acting factors are tethered directly to the DMR  (Quenneville et al., 

2012), one may be able to determine which factors and/or histone modifications 

are necessary for maintenance of 5mC over the Rasgrf1 DMR.  It is likely that 

future research will focus on defining this mechanism and refine the model to 

explain both establishment and maintenance of 5mC at the imprinted Rasgrf1 

DMR. In general, mechanisms to explain genomic acquisition of 5mC are not well 

established, so research in this area will be important for the field.  

 

Interestingly, earlier work at Rasgrf1 led to the hypothesis that H3K27me3 

and 5mC are antagonistic on a genome wide scale (Lindroth et al., 2008). 
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Understanding coordinate regulation of epigenetic marks, and identifying 

complex relationships between various modifications is important for a number of 

reasons (Li et al., 2005; Bernstein et al., 2006; Mikkelsen et al., 2007; Ooi et al., 

2007; Zilberman et al., 2008; Eaton et al., 2011). Unfortunately, prior to our work, 

no technique could assay for multiple epigenetic marks from rare populations of 

cells. For this reason, our goal was to develop a technology capable of doing just 

that. Here we have described the optimization of single molecule nanofluidic 

based techniques that are capable of detecting intact chromatin, assaying for 

epigenetic marks, purifying DNA based on 5mC, quantifying relative epigenetic 

mark abundance, and detecting multiple simultaneous epigenetic mark presence 

on single chromatin molecules. Importantly, we have used this new technology to 

determine that normal antagonism of H3K27me3 and 5mC breaks down during 

cellular immortalization. We have not, however, demonstrated this device’s utility 

to analyze very rare populations of cells.  

 

Recently we have begun to isolate small amounts of genetic material from 

fewer than 100 cells using microscale extraction devices (Benítez et al., 2012). In 

this system, cells are loaded directly into a single stream cell-capture and DNA 

extraction system. The capture device consists of a micro-fluidic channel in the 

shape of a bottle neck. Cells are deposited into the narrow end of the channel 

and, as the device loads, they tumble down towards the wide end of the channel. 

Through-out the device are a series of randomly positioned pillars that are meant 
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to trap, and immobilize cells. Once trapped, cells are chemically lysed, and DNA 

(or chromatin) is then immobilized and elongated on the pillars. At this point DNA 

can be assayed using either in situ hybridization probes, or intercalator dyes. 

Alternatively, DNA can be released by nucleases, and collected in the outflow 

reservoirs for downstream analysis.  We foresee the nanofluidic epigenetic 

sorting device will be fused to the microscale cell capture device, and following 

extraction and sorting, epigenetic mark containing molecules will be sequenced. 

Thus, we envision a system able to perform genome wide multiple epigenetic 

analyses from fewer than 100 cells.  Because our nanoscale channels require 

sub attogram quantities of material, it’s conceivable that we would be able to 

sample the epigenetic state of a single cell a number of times during an individual 

experiment. However, to perform whole genome analysis, we would need to 

increase the throughput of sorting by 4 to 5 orders of magnitude. Strategies to 

accomplish this were discussed in chapter 3. Because this new and improved 

version of SCAN would allow for chromatin to be purified and analyzed within a 

very short amount of time and with relatively little sample loss, we foresee its use 

in a clinical setting, as a means for analyzing the epigenome of rare populations 

of cells, or for patient diagnosis.  

 

In this dissertation I have described two mechanisms by which epigenetic 

marks are regulated. The first occurs during embryonic gamete development 

while in utero and during preimplantaiton development, and the second occurs in 
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normal tissue, but breaks down during carcinogenesis. The latter observations 

were made using a novel technology developed through the thesis work 

described. Determining the mechanisms that control epigenetic state is 

fundamental to our understanding of normal development and disease. Next 

generation technologies, like SCAN, will enable new kinds of studies to explore 

epigenomic mechanisms, and will provide tools for diagnoses and treatment of 

disease.  

 

Previously, I discussed the carcinogenic effects in rodents from in utero 

BPA exposure (Doshi et al., 2012). Frighteningly, this chemical is used 

extensively in a variety of house hold products, including toys, drinking bottles, 

food containers, and  plumbing (Welshons et al., 2006). Recent studies have 

found that human BPA exposure is significantly higher than originally predicted, 

and such levels could have significant effects on human phenotype and disease 

state (Welshons et al., 2006). There are other examples. From 1940 to 1970, 

diethylstilbestrol (DES) was prescribed to women in order to reduce the risk of 

pregnancy complications. DES has subsequently been found to cause an 

increased risk of hypospadias in both male and female offspring (Brouwers et al., 

2006), and effects have been shown to persist in generations following initial 

exposure, indicating trans-generational inheritance of the an environmentally 

induced phenotype. This drug has since been banned from consumption. Its 

conceivable BPA use and exposure will also be restricted.  
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Aside from drug induced effects, diet and behavior can also impact 

successive generations. For example, humans conceived during the Dutch 

famine of 1944-1945 had higher rates of adult obesity (men at age 19 and 

women at age 50) than those conceived before or after the famine (Ravelli et al., 

1999).  Obesity has also been shown to be correlated with decreased DNA 

methylation over the imprinted IGF2 gene for those conceived from fathers who 

were in utero during the famine (Heijmans et al., 2008). Earlier we discussed how 

maternal behavior in rats can have a significant impact on 5mC in offspring, and 

lead to inappropriate stress response (Weaver et al., 2004). Similarly, in humans, 

abuse as children can lead to increased levels of cytosine methylation over a 

neuron-specific glucocorticoid receptor promoter and a greater risk of suicide 

(McGowan et al., 2009).  

 

Epigenetic modifications not only control ES cell differentiation, cell fate 

determination, and carcinogenesis, but when we consider humans, epigenetic 

alterations can have broad and long lasting effects on both the individual and the 

offspring. Since epigenetic modifications can be reliably passed from parent to 

offspring, the effect of our actions could have a significant impact on multiple 

future generations. It is therefore supremely important for us, as a scientific 

community, to study both epigenetic effects and their causal mechanisms. The 

work presented here may have only helped us to understand small details of 
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epigenetics as a whole, but hopefully, others will build upon this work, and our 

ultimate findings will together lead to better diagnosis, therapeutic treatment, 

disease prevention, and human life style alterations.  
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