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 Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, 
St. Louis, Missouri.

Mechanisms of Evasion of the Type I Interferon Antiviral 
Response by Flaviviruses

Michael S. Diamond

Virus survival and the ability to cause disease in mammalian hosts depend on their ability to avoid recognition 
and control by the interferon signal transduction and effector pathways. Flaviviruses comprise a large family 
of nonsegmented positive sense enveloped cytoplasmic RNA viruses, many of which are globally important 
human pathogens. Although the mechanistic details are still being dissected, new insight has emerged as to 
how a fl avivirus minimizes the antiviral activity of type I interferon (IFN) to establish productive and poten-
tially lethal infection. This review will summarize our current understanding of how mammalian cells rec-
ognize fl aviviruses to induce an inhibitory IFN response and the countermeasures this group of viruses has 
evolved to antagonize this response.

Introduction

Flaviviruses comprise a genus of greater than 70 envel-
oped, positive sense RNA viruses and are distantly 

related to other Flaviviridae family members including 
hepatitis C virus (Lindenbach and Rice 2001). Many fl a-
vivirus infections are transmitted through the bite of an 
infected mosquito or tick, and have the potential to cause 
severe diseases in humans. Among the more common path-
ogenic fl aviviruses in humans are Dengue (DENV), yellow 
fever (YFV), West Nile (WNV), Japanese encephalitis (JEV), 
Murray valley encephalitis (MVEV), Saint Louis encephali-
tis (SLEV), and tick-borne encephalitis (TBEV) viruses.

The ~11 kb fl avivirus genome is transcribed as a single 
polyprotein and is cleaved by host and viral proteases into 3 
structural and 7 nonstructural proteins. The structural pro-
teins include a capsid protein (C) that binds viral RNA, a pre-
membrane (prM) protein that blocks premature viral fusion, 
and an envelope (E) protein that mediates viral attachment, 
membrane fusion, and virion assembly (Mukhopadhyay 
and others 2005). The nonstructural proteins (NS1, NS2A, 
NS2B, NS3, NS4A NS4B, and NS5) regulate viral translation, 
transcription, and replication and also attenuate host antivi-
ral responses. NS1 has cofactor activity for the viral replicase 
(Lindenbach and Rice 1997; Khromykh and others 1999), is 
secreted from infected cells (Flamand and others 1992; 
Flamand and others 1999), and antagonizes complement acti-
vation (Chung and others 2006). NS3 has protease, NTPase, 

and helicase activities (Murthy and others 2000; Xu and oth-
ers 2005) with NS2B serving as a required cofactor for NS3 
protease activity (Yusof and others 2000). NS4A and NS4B 
are small hydrophobic proteins that lack conserved sequence 
motifs of known enzymes. Overexpression of NS4A induces 
membrane rearrangements that are observed in fl avivirus-
infected cells (Roosendaal and others 2006; Miller and oth-
ers 2007) whereas NS4B, along with NS2A, colocalizes with 
replication complexes (Mackenzie and others 1998; Miller 
and others 2006). NS5 encodes the RNA-dependent RNA 
polymerase and a methyltransferase (Egloff and others 2002; 
Malet and others 2007; Yap and others 2007).

After binding to poorly characterized cell surface recep-
tors on mammalian cells, internalization of fl aviviruses 
occurs through receptor-mediated, clathrin-dependent 
endocytosis (Gollins and Porterfi eld 1986a; Kimura and oth-
ers 1986; van der Schaar and others 2007; Acosta and others 
2008; van der Schaar and others 2008), possibly in cholesterol-
rich microdomains (Medigeshi and others 2008). After traf-
fi cking to Rab5- and/or Rab7-positive endosomes (Krishnan 
and others 2007; van der Schaar and others 2008), a low pH-
catalyzed structural change in the E protein (Bressanelli and 
others 2004; Modis and others 2004) facilitates viral fusion 
and release of the infectious genomic RNA into the cyto-
plasm (Gollins Porterfi eld 1986b). Flavivirus RNA traffi cs 
to the rough endoplasmic reticulum (ER) where it is trans-
lated, and serves as a template for a negative strand RNA 
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and -β production in mice appears largely independent of 
the downstream transcription factor IRF-3 (Bourne and oth-
ers 2007; Daffi s and others 2007). Individual cell types (mye-
loid, fi broblast, and neuronal) use distinct IRF-3 responses to 
protect against WNV infection through both IFN-dependent 
and -independent pathways (Daffi s and others 2007). In cells 
that generate robust IFN responses after WNV infection in 
the absence of IRF-3, it is likely that alternate sets of PRR and 
transcriptional regulators are used.

TLR3, which is expressed on the surface of fi broblasts 
and in the endosomes of myeloid cells, promotes IRF-3 
phosphorylation after binding double-stranded viral RNA 
through a complex signaling cascade that includes recruit-
ment of TRIF and activation of the kinases TBK1 and IKK-ε 
(Matsumoto and others 2004; Schroder and Bowie 2005). 
Initial studies with TRIF-defi cient MEF suggested that TLR3 
may be dispensable for recognition of fl aviviruses in cells 
(Fredericksen and Gale 2006). Indeed, TLR3−/− mice injected 
by an intraperitoneal route paradoxically showed decreased 
lethality despite higher peripheral viral titers, presumably 
because of blunted cytokine responses (eg, TNF-α) that nor-
mally facilitates WNV entry into the CNS (Wang and others 
2004). Subsequent studies with TLR3−/− mice and a differ-
ent North American WNV strain have shown increased 
viral burden in the brain and enhanced lethality (Daffi s and 
others 2008a), as might be anticipated for a PRR that trig-
gers a protective host immune response. Ex vivo and in vivo 
experiments suggest a cell-specifi c role of TLR3 as it protects 
against WNV largely by restricting replication in neurons.

TLR7 is an endosomal PRR that detects guanosine- and 
uridine-rich single-stranded RNA (Diebold and others 2004; 
Heil and others 2004) and activates IRF-7 via the Myd88 
adaptor molecule. IRF-7 was identifi ed as a primary regula-
tor of antiviral gene induction after YFV infection (Gaucher 
and others 2008), with some of this activation occurring 
through TLR7 recognition of viral RNA (Querec and oth-
ers 2006). Similarly, DENV stimulates IFN production in 
plasmacytoid dendritic cells in a TLR7-dependent manner 
after virus uncoating (Wang and others 2006). The antivi-
ral IFN-α response against WNV is primarily mediated by 
IRF-7, and at least some of this signal is likely attributed to 
recognition of viral RNA by TLR7 (Daffi s and others 2008b). 
An independent role for dsRNA-dependent protein kinase R 
(PKR) in the early induction of IFN in fi broblasts after WNV 
infection has also been observed (Gilfoy and Mason 2007).

IFN-mediated control of fl aviviruses

Type I IFN is an important innate immune system reg-
ulator of viral infections (reviewed in Platanias and oth-
ers (1996); Platanias (2005)). IFN-α and -β are secreted by 
many cell types following virus infection and induce an 
antiviral state by up-regulating genes with both direct and 
indirect antiviral functions. Type I IFN also primes adap-
tive immune responses through stimulation of dendritic 
cells, activation of B and T cells, and by preventing death 
of recently activated T cells (Stetson and Medzhitov 2006; 
Purtha and others 2008). Pretreatment of cells with IFN-α/β 
inhibits fl avivirus replication in vitro (Diamond and oth-
ers 2000; Anderson and Rahal 2002; Lin and others 2004; 
Best and others 2005; Samuel and others 2006), but treat-
ment after infection is much less effective (Diamond and 
others 2000; Anderson and Rahal 2002; Crance and others 

intermediate that primes synthesis of positive strand viral 
RNA containing an N7-methyl-guanosine cap but lack-
ing a poly-A tail (Lindenbach and Rice 2001; Brinton 2002). 
Flavivirus positive strand RNA is either packaged within 
progeny virion or used to translate additional viral pro-
teins. Flaviviruses assemble at and bud into the ER to form 
immature particles that display the prM protein. Following 
transport through the trans-Golgi network, furin-mediated 
cleavage of prM to M generates mature, infectious virions 
that are released by exocytosis (Guirakhoo and others 1991; 
Elshuber and others 2003).

Recognition of fl aviviruses by host sensors

Interferon (IFN) responses are an initial and essential 
host defense program against many viruses, including fl avi-
viruses. IFNs are produced during the earliest stages of viral 
infection after recognition of pathogen-associated molecular 
patterns (PAMP) by specifi c pathogen recognition receptors 
(PRR). In mammalian cells, the host detects and responds 
to infection by fl aviviruses by primarily recognizing viral 
RNA through several distinct PRR including the cell sur-
face and endosomal RNA sensors Toll-like receptors 3 and 7 
(TLR3 and TLR7), and the cytoplasmic RNA sensors retinoic 
acid-inducible gene I (RIG-I) and melanoma differentiation-
associated gene 5 (MDA5) (Fig. 1A and 1B). Binding of single- 
and/or double-stranded viral RNA to these PRR results in 
downstream activation of transcription factors, such as inter-
feron regulatory factors 3 and 7 (IRF-3 and IRF-7) and NF-κB, 
and induction of IFN-α and -β. Secretion of IFNs followed by 
engagement of the IFN-αβ receptor (IFNAR) in an autocrine 
and paracrine fashion activates JAK-STAT-dependent and 
-independent signal transduction cascades (Stark and others 
1998; Li and others 2007) that induce the expression of hun-
dreds of interferon-stimulated genes (ISGs), a subset of which 
likely have antiviral activity against fl aviviruses (Fig. 2).

Recent studies suggest that RIG-I and MDA5 contribute 
to the induction of host IFN and antiviral response to fl a-
viviruses. Murine embryonic fi broblasts (MEF) defi cient in 
RIG-I and MDA5 demonstrate decreased IRF-3 activation, 
delayed induction of host interferon and ISG responses, 
and augmented WNV and DENV replication (Fredericksen 
and others 2004; Fredericksen and Gale 2006; Fredericksen 
and others 2008; Loo and others 2008). In these cells, RIG-I 
appeared to prime the early IFN response whereas MDA5 has 
a more signifi cant role in a second phase of IFN-dependent 
gene expression that occurs later in the course of infection 
(Fredericksen and others 2008). A genetic defi ciency of IPS-1 
(also known as Cardif, MAVS, or VISA), an essential RIG-I 
and MDA5 adaptor molecule that is anchored to the outer 
leafl et of the mitochondria, completely disabled the innate 
IFN response to WNV (Fredericksen and others 2008). 
However, MDA5 may be less essential for recognition of fl a-
viviruses in some myeloid cell types, as IFN production by 
MDA5−/− myeloid dendritic cells remains largely intact after 
WNV infection (Gitlin and others 2006), and a defi ciency of 
MDA5 in mice did not affect survival after JEV (Kato and 
others 2006). Consistent with this, JEV and DENV induce the 
host type I IFN response through a mechanism involving 
RIG-I/IRF-3 and NF-κB (Chang and others 2006).

Despite the compelling data from MEF suggesting that 
RIG-I and likely MDA5 recognize WNV RNA and induce 
type I IFN responses (Fredericksen and others 2008), IFN-α 
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resistant cell populations and tissues after fl avivirus infec-
tion of IFNAR−/− mice, suggesting that IFN acts in part, 
to restrict viral tropism. The importance of type I IFN in 
restricting fl avivirus infection has been confi rmed in ther-
apeutic disease models. Pretreatment of mice with IFN-α 
or inducers of IFN-α attenuates infection by SLEV, WNV, 
YFV, and Modoc viruses in mice and hamsters (Stephen and 
others 1977; Brooks and Phillpotts 1999; Leyssen and others 

2003; Samuel and Diamond 2005). Although fl aviviruses 
can antagonize IFN-induced responses after infection (see 
below), IFN still restricts replication and spread in vivo. 
Mice lacking the type I IFN receptor (IFNAR−/−) show 
markedly enhanced lethality and replication after infection 
with WNV (Samuel and Diamond 2005; Keller and others 
2006), DENV (Shresta and others 2004), and MVEV (Lobigs 
and others 2003). Enhanced infection occurred in normally 
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FIG. 1. Detection of fl avivirus RNA by pathogen recognition receptors (PRRs) and mechanisms of viral evasion. (A) 
Cytoplamsic PRR and signaling cascade. Infection by fl aviviruses produces dsRNA replication intermediates within the 
cytoplasm that display motifs recognized by the RIG-I and MDA5 helicases. Binding of viral RNA promotes an interaction 
with IPS-1 that results in recruitment of signaling proteins (NEMO and TRAF3) that activate IRF-3 and NF-κB. These tran-
scription factors translocate to the nucleus and bind to the promoter region of the IFN-β gene leading to transcription and 
translation. (Continued)
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number of proteins with antiviral, immunomodulatory, 
and cell death-promoting functions (Stark and others 1998). 
Binding of IFN-α and -β to their cognate common receptor 
(IFNAR1/IFNAR2 heterodimer) activates intracellular JAK1 

2001; Leyssen and others 2003; Morrey and others 2004; 
Julander and others 2007).

Secretion of IFN initiates a complex signal transduc-
tion cascade (Fig. 2) that results in the induction of a large 
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FIG. 1. (Continued) (B) Toll-like receptor (TLR) signaling cascade. In some cells, the transmembrane pathogen recognition 
receptors (PRRs) TLR3 and TLR7/8 in endosomes recognize dsRNA and ssRNA motifs leading to recruitment of cyto-
plasmic adaptor molecules (TRIF and MyD88, respectively), which initiates signaling cascades (via IKK-ε, TBK1, RIP-1, and 
IRAK4) that activate IRF-3, IRF-7, and NF-κB, resulting in IFN-β gene transcription. Mechanisms of evasion by fl aviviruses 
are believed to include the following: (1) a delay in recognition of West Nile virus (WNV) RNA by RIG-I; (2) impairment of 
RIP-1 signaling by high mannose carbohydrates on the structural E protein; (3) attenuation of TLR3 signaling by the NS1 
protein; and (4) reduction in IFN-β gene transcription by the viral NS2A protein. Cartoon is modeled after published images 
(Gale and Foy 2005; Best and others 2006; Keller and others 2007; Takeuchi and Akira 2007).
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(Meurs and others 1992). RNase L is activated by 2′-5′-linked 
oligoadenylates that are synthesized by OAS enzymes. 
RNAse L functions as an endoribonuclease that cleaves viral 
and host RNA (Zhou and others 1993; Zhou and others 1997). 
RNase L−/− MEF and PKR−/− × RNase L−/− macrophages sup-
ported increased WNV replication in vitro (Samuel and others 
2006; Scherbik and others 2006). Moreover, mice defi cient in 
both PKR and RNase L showed increased lethality following 
WNV infection, with higher viral loads in peripheral tissues at 
early time points after infection (Samuel and others 2006). The 
antiviral mechanism of action of PKR against WNV remains 
unclear: it could exert direct antiviral effects due to inhibition 
of viral translation, or function indirectly by inducing IFN 
(Gilfoy and Mason 2007). Interestingly, at least in MEF, a sim-
ilar antiviral effect of PKR and RNAse L on DENV infection 
was not observed (Diamond and Harris 2001).

and Tyk2 Janus kinases, which phosphorylate tyrosine resi-
dues on the cytoplasmic tail of the IFNAR. These phosphor-
ylated tyrosine residues function as recruitment sites for the 
cytoplasmic proteins, STAT1 and STAT2, which themselves 
become phosphorylated by the JAKs. Phosphorylated STAT1 
and STAT2 proteins heterodimerize, associate with IRF-9, 
and translocate to the nucleus, where they transcriptionally 
activate specifi c DNA promoter sequences to induce expres-
sion of hundreds of ISG mRNA.

Recent studies have begun to defi ne the specifi c IFN-
induced antiviral effector mechanisms that limit fl avivi-
rus infection. dsRNA-dependent protein kinase (PKR) and 
2′-5′-oligoadenylate synthase (OAS) proteins mediate intrinsic 
cell resistance to WNV. PKR is activated by binding dsRNA 
and phosphorylates the eukaryotic translation initiation fac-
tor 2 (eIF2-α) resulting in attenuation of protein synthesis 

IFN-α/β

WNV, JEV, DENV
and LGV NS5

WNV and
LGV NS5

WNV

Cholesterol

DENV

JEV NS5

Cytoplasm

ISGF3

DENV, WNV,
and YFV NS4B

TBEV NS5

PTPase

Scribble

1 2

3

5

6

4

7
Tyk2 Jak1

STAT1

STAT1

STAT2
STAT2

STAT1

STAT2

IRF9

STAT1

STAT2

IRF9

ISRE

ISGsNucleus

IRF9
IRF9

pY
pY

pY

pY

pS

pS

pY

pY

pY
pS

pS

pY
pS

pS

IFN-α/β

IFN-α/β

FIG. 2. Type I interferon (IFN) signaling and mechanisms of disruption by fl aviviruses. Secretion of IFN by a fl avivirus-
infected cell results in autocrine and paracrine signaling through the heterodimeric IFN-αβ receptor (IFNAR). Binding by 
IFN results in activation and tyrosine phosphorylation of JAK family members (JAK1 and Tyk2) and the cytoplasmic tail of 
the IFN-αβR. This promotes recruitment of the STAT1 and STAT2, which themselves become phosphorylated by the JAKs. 
Phosphorylated STAT1 and STAT2 proteins heterodimerize, associate with IRF-9, and translocate to the nucleus, where they 
bind ISRE sequences to induce expression of hundreds of ISG. Mechanisms of evasion by fl aviviruses are believed to include 
the following: blockade of phosphorylation of (1) Tyk2 and (2) JAK1 by NS5; (3) activation of a phosphotyrosine phosphatase 
by NS5; (4) reduction in STAT2 gene and protein expression; attenuation of STAT signaling by (5) NS4B and (6) NS5; and (7) 
down-regulation of the IFNAR through virus-induced redistribution of cellular cholesterol. Cartoon is modeled after pub-
lished images (Gale and Foy 2005; Keller and others 2007).

06-JIR-2009_0069.indd   525 8/27/2009   11:24:47 AM



DIAMOND526

dependent on TLR3 or its adaptor molecule TRIF but 
instead occurred downstream at the level of the signaling 
intermediate and NF-κB activator, receptor-interacting 
protein (RIP)-1 (Arjona and others 2007). Based on studies 
with macrophages from different age cohorts, this E pro-
tein inhibitory pathway may be dysregulated in elderly 
humans, leading to a pathogenic cytokine response (Kong 
and others 2008). Although the mechanistic basis for how 
specifi c forms of the E protein alter antiviral signaling 
programs remains uncertain, glycosylated E proteins can 
bind to and potentially signal through multiple cell sur-
face lectins including the mannose receptor (Miller and 
others 2008) and CLEC5a (Chen and others 2008).

Impaired IFNAR pathway signaling. In addition to antago-
nizing induction of IFN-β gene responses, several fl avivi-
ruses target the JAK-STAT signaling pathway for evasion 
(Best and others 2006; Robertson and others 2009) to prevent 
the induction of antiviral ISG with possible antiviral activity. 
Thus, even when type I IFN is produced, it may not achieve 
the same inhibitory effect because of attenuated signaling 
capacity. As the nonstructural proteins NS2A, NS3, NS4A, 
NS4B, and NS5 mediate many of the viral evasion mecha-
nisms described below, these countermeasures are largely 
intrinsic to infected cells. One caveat to the majority of the 
studies below is that the conclusions were derived from 
experiments in transformed cells. Even with these attenu-
ating mechanisms, in primary macrophages and dendritic 
cells, fl aviviruses such as WNV remain potent ISG inducers 
(Daffi s and others 2007, 2008a, 2008b).

a.  Phosphorylation of JAKs. Studies with the tick-borne 
Langat virus (LGV) and WNV have shown interference 
with phosphorylation of both JAK1 and Tyk2 (Best and 
others 2005; Guo and others 2005). A slight variation on 
this theme was observed with JEV, which showed com-
plete inhibition of phosphorylation of Tyk2 with little 
effect on JAK1 phosphorylation (Lin and others 2004). 
Expression of a subgenomic replicon or infection of cells 
with DENV also inhibited Tyk2 phosphorylation and had 
no effect on IFNAR expression (Ho and others 2005; Jones 
and others 2005). However, there may be cell- or virus-
specifi c effects as JEV also inhibits STAT1 and STAT2 
activation in the setting of normal levels of Tyk2 phos-
phorylation (Lin and others 2008).

b.  STAT gene expression. DENV has been reported to 
antagonize IFN function by reducing STAT2 expression 
(Jones and others 2005). Cell lines that stably propagated 
subgenomic DENV replicons were resistant to the anti-
viral effects of IFN-α, had reduced levels of STAT2, and 
blunted ISG responses. Accordingly, IFN-α but not IFN-γ 
responses were blocked in these cells.

c.  Cholesterol redistribution. Recent studies have shown 
that fl avivirus infection can actively promote relocaliza-
tion of cholesterol to intracellular membranous sites of 
replication. This redistribution diminishes the forma-
tion of cholesterol-rich lipid rafts in the plasma mem-
brane and attenuates the IFN antiviral signaling response 
(Mackenzie and others 2007).

d.  NS proteins as specifi c IFN antagonists. The observation 
that fl aviviruses antagonize IFN-signaling responses has 
prompted several groups to identify the viral determi-
nants and mechanisms that mediate this process. Initial 

Although susceptibility to fl aviviruses in mice has been 
mapped to a mutation in the Oas gene 1b, resulting in the 
expression of a truncated OAS isoform (Mashimo and others 
2002; Perelygin and others 2002), the mechanism of control 
by this gene appears independent of RNAse L (Samuel and 
others 2006; Scherbik and others 2006) and the type I IFN-
signaling pathway (Brinton and others 1982).

Antagonism of the IFN response by fl aviviruses

Flaviviruses have evolved specifi c strategies to avoid 
and/or attenuate induction of IFN and its effector responses 
(Figs. 1 and 2). Indeed, in cell culture fl aviviruses are largely 
resistant to the antiviral effects of IFN once infection is estab-
lished (Diamond and others 2000; Anderson and Rahal 2002). 
This may explain in part, the relatively modest therapeutic 
window for IFN-α administration that has been observed 
clinically in animal models or humans infected with JEV, 
SLEV, and WNV (Brooks and Phillpotts 1999; Solomon and 
others 2003; Rahal and others 2004; Chan-Tack and Forrest 
2005; Kalil and others 2005). Experiments by several groups 
have demonstrated that individual fl aviviruses attenuate 
IFN signaling at distinct steps in the cascade.

Inhibition of IFN-β gene induction. To date, 3 independent 
mechanisms have been proposed by which fl aviviruses 
minimize the induction of IFN-β.

a.  IFN-β gene transcription. Studies with Kunjin (KUNV) 
virus, a less pathogenic lineage I WNV variant, have iden-
tifi ed the nonstructural protein NS2A as an inhibitor of 
IFN-β gene transcription (Liu and others 2004; Liu and 
others 2006). Transgenic expression of NS2A was suffi -
cient to suppress IFN-β transcription in Semliki Forest 
virus-infected cells. Incorporation of an A30P mutation of 
NS2A into a KUNV genome results in a virus that elicits 
more rapid and sustained synthesis of type I IFN; infec-
tion of this mutant virus in vitro and in vivo was highly 
attenuated. Nonetheless, the exact cellular target of NS2A 
and its mechanism of inhibition remain unknown.

b.  PRR detection. Highly pathogenic WNV strains evade 
IRF-3-dependent recognition pathways without actively 
antagonizing the host defense signaling pathways 
(Fredericksen and Gale 2006). Indeed, WNV replication 
did not alter the ability of Sendai virus to activate IRF-3. 
Thus, virulent WNV strains appear to delay activation of 
PRR, such as RIG-I, through uncertain mechanisms to 
provide the virus with a kinetic advantage in the infected 
cell to elude host detection during replication at early 
times after infection (Keller and others 2007). In contrast, 
less pathogenic strains of WNV induced greater levels of 
IFN at early time points (Keller and others 2006).

c.  TLR3-dependent responses. Activation of IRF-3 and stim-
ulation of IFN-β transcription in response to dsRNA 
(poly (I:C)) are inhibited in HeLa cells infected with WNV 
or stably propagating a subgenomic replicon (Scholle and 
Mason 2005). The viral NS1 protein may mediate a part of 
this inhibitory effect as expression of WNV NS1 inhibited 
TLR3-induced transcriptional activation of the IFN-β and 
IL-6 transcription and NF-κB promoter activity (Wilson 
and others 2008). Alternatively, the high mannose carbo-
hydrates on the viral E protein may independently block 
the production of IFN-β, IL-6, and TNF-α that is induced 
by dsRNA in macrophages. This effect was not directly 
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the particular ISG that mediate antiviral effector functions 
against fl aviviruses? Although some molecules (eg, PKR and 
RNAse L) have been identifi ed, they do not account for the 
majority of inhibitory activity that is generated after exoge-
nous IFN treatment or endogenous IFN induction in most 
cells? What ISG have key inhibitory functions against fl a-
viviruses? Will IFN-induced microRNA that regulate tran-
scription of host genes essential for viral replication explain 
some of the inhibitory effect (Pedersen and others 2007; 
Mahajan and others 2009)?; (c) How do fl avivirus proteins 
disable the cellular IFN induction and signaling response? 
What are the precise host target proteins and the molecular 
and structural basis of the antagonism?; and (d) Are viru-
lence determinants that antagonize specifi c IFN induction 
or effector pathways a quality that defi nes highly virulent 
and disease causing fl avivirus strains? As these basic mech-
anisms are explored and characterized, the fi eld undoubt-
edly will gain insight into fundamental cellular responses 
as well mechanisms of viral pathogenesis. It is this infor-
mation that may facilitate the design of novel vaccine or tar-
geted therapeutic strategies and enhance our understanding 
of how pathogens of all types cause disease.
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