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Abstract

Faces are among the most informative stimuli we ever perceive: Even a split-second glimpse of a

person's face tells us their identity, sex, mood, age, race, and direction of attention. The specialness

of face processing is acknowledged in the artificial vision community, where contests for face

recognition algorithms abound. Neurological evidence strongly implicates a dedicated machinery

for face processing in the human brain, to explain the double dissociability of face and object

recognition deficits. Furthermore, it has recently become clear that macaques too have specialized

neural machinery for processing faces. Here we propose a unifying hypothesis, deduced from

computational, neurological, fMRI, and single-unit experiments: that what makes face processing

special is that it is gated by an obligatory detection process. We will clarify this idea in concrete

algorithmic terms, and show how it can explain a variety of phenomena associated with face

processing.
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1. Introduction

The central challenge of visual recognition is the same for both faces and objects: we must

distinguish among often similar visual forms despite substantial changes in appearance arising

from changes in position, illumination, occlusion, etc. Although face identification is often

singled out as demanding particular sensitivity to differences between objects sharing a

common basic configuration, in fact such differences must be represented in the brain for both

faces and non-face objects. It is true that most humans can easily identify hundreds of faces

(Diamond & Carey 1986), but, even if one cannot recognize a hundred different bottles by

name, one can certainly distinguish them in pairwise discrimination tasks. Further, most of us

can recognize tens of thousands of words at a glance, not letter by letter, a feat requiring expert

detection of configural patterns of non-face stimuli. Thus, face perception is in many ways a

microcosm of object recognition; and the solution to the particular problem of face recognition

will undoubtedly yield insights into the general problem of object recognition.

The system of face-selective regions in the human and macaque brain can be defined precisely

using fMRI, so we can now approach this system hierarchically and physiologically to ask
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mechanistic questions about face processing at a level of detail previously unimaginable. Here

we review what is known about face processing at each of Marr's levels: computational theory,

algorithm, and neural implementation.

Computer vision algorithms for face perception divide the process into three distinct steps.

First, the presence of a face in a scene must be detected. Then the face must be measured, to

identify its distinguishing characteristics. Finally, these measurements must be used to

categorize the face in terms of identity, gender, age, race, and expression.

Detection

The most basic aspect of face perception is simply detecting the presence of a face, which

requires the extraction of features that it has in common with other faces. The effectiveness

and ubiquity of the simple T-shaped schematic face (eye, eye, nose, mouth) suggest that face

detection may be accomplished by a simple template-like process. Face detection and

identification have opposing demands: The identification of individuals requires a fine-grained

analysis to extract the ways in which each face differs from the others despite the fact that all

faces share the same basic T-shaped configuration, whereas detection requires extracting what

is common to all faces. A good detector should be poor at individual recognition, and vice

versa.

Another reason why detection and identification should be separate processes is that

detection can act as a domain-specific filter, ensuring that precious resources for face

recognition (e.g., privileged access to eye movement centers (Johnson et al 1991)) are used

only if the stimulus passes the threshold of being a face. Such domain-specific gating may be

one reason for the anatomical segregation of face processing in primates (it is easier to gate

cells that are grouped together). A further important benefit of preceding identification by

detection is that detection automatically accomplishes face segmentation, i.e., isolates the face

from the background clutter, and can aid in aligning the face to a standard template. Many face

recognition algorithms require prior segmentation and alignment and will fail with non-uniform

backgrounds or varying face sizes.

Measurement & categorization

After a face has been detected, it must be measured in a way that allows for accurate, efficient

identification. The measurement process must not be so coarse as to miss the subtle features

that distinguish one face from another. On the other hand, it must output a set of values that

can be efficiently compared to stored templates for identification. There is a zero sum game

between measurement and categorization: the more efficient the measurement, the easier the

classification; conversely, less efficient measurement (e.g., a brute force tabulation of pixel

gray values), makes the classification process more laborious.

2. Computer Vision Algorithms

A comprehensive review of computer algorithms for face recognition can be found in Zhao et

al. (2003) and Shakhnarovich and Moghaddam (2004). Our goal here is to discuss algorithms

that offer special insights into possible biological mechanisms.

Detection

How can a system determine if there is a face in an image, regardless of whose it is? An obvious

approach is to perform template matching (e.g., search for a region containing 2 eyes, a mouth,

and a nose, inside an oval). In many artificial face-detection systems a template is swept across

the image at multiple scales, and any part of the image that matches the template is scored as

a face. This approach works, but it is slow.
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To overcome this limitation, Viola and Jones (2004) introduced the use of a cascade of

increasingly complex filters, or feature detectors. Their reasoning was that the presence of a

face can be ruled out most of the time with a very simple filter, thus avoiding the computational

effort of doing fine-scale filtering on uninformative parts of the image. The first filter in their

cascade consists of only 2 simple features, each composed of a few rectangular light and dark

regions (Figure 1a). Subsequent stages of filtering are performed only on regions scoring

positive at any preceding stage. This cascade approach proved just as accurate, but 10 times

faster, than single-step face detector algorithms.

Sinha's face detection algorithm (Sinha 2002a) is based on the observation that qualitative

contrast relationships between different parts of a face are highly conserved, even under

different lighting conditions (Figure 1b). Even though any single contrast relationship between

two facial regions would be inadequate to detect a face, a set of such relationships could be

(because probabilities multiply). A subset of Sinha's directed contrasts ([r2, r3] and [r4, r5])

are equivalent to the first stage of the Viola Jones face detector.

Effective primitives for face detection can also be computed using an information theory

approach by identifying “fragments” (subwindows) of face images that are maximally

informative about the presence or absence of a face (Ullman et al 2002). The resulting

fragments consist of medium-resolution face parts, e.g., an eye, rather than the whole face, so

in this algorithm face detection is triggered by detection of a threshold number of such

fragments.

All three algorithms discussed above use basic feature detectors much simpler than a whole

face (rectangle features in the Viola Jones algorithm, qualitative contrast ratios between pairs

of face regions in the Sinha algorithm, and face parts in the Ullman algorithm). Yet, all three

algorithms perform holistic detection, that is, they obligatorily detect faces as correctly

arranged wholes. This is because all three algorithms detect overlapping constellations of

elemental features that cover the whole face. The feature overlaps implicitly enforce the correct

overall arrangement of features.

Measurement

Once a face has been detected, it may need to be identified or classified. Algorithms for the

identification of individual faces generally are either feature-based or holistic. In feature-based

methods, fiducial points (e.g., eyes, mouth, nose) are identified and used to compute various

geometric ratios. As long as the features can be detected, this approach is robust to position

and scale variations. In holistic methods, the entire face is matched to memory templates

without isolating specific features or parts. One advantage of holistic methods is that all parts

of the face are used, and no information is discarded.

The simplest holistic recognition algorithm is to directly correlate a presented image to a bank

of remembered templates, but having templates for every face is expensive in time and storage

space. Turk and Pentland (1991) developed the Eigenface algorithm to overcome these

limitations. The Eigenface algorithm exploits the fact that all faces share a common basic

structure (round, smooth, symmetric, two eyes, a nose, and a mouth). Thus the pixel arrays

defining various faces are highly correlated, and the distinguishing characteristics of a face can

be expressed more efficiently if these correlations are removed using principal components

analysis (PCA). When PCA is performed on a large set of faces, the eigenvectors with largest

eigenvalues all look like faces, and hence are called “Eigenfaces” (Figure 2a). An arbitrary

face can be projected onto a set of Eigenfaces to yield a highly compressed representation;

good face reconstructions can typically be obtained with just 50 Eigenfaces and passable ones

with just 25. In other words, something as ineffable as an identity can be reduced to 25 numbers

(Figure 2b).
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PCA on sets of faces varying in both expression and identity generates some principal

components that are useful for only expression or only identity discrimination, and others that

are useful for both (Calder et al 2001). This partial independence of PC's can successfully

model the independent perception of expression and identity (Cottrell et al 2002).

The Eigenface algorithm does not perform well if the sample face is not accurately aligned in

scale and position to the template Eigenfaces. Human face perception, on the other hand, is

tolerant to changes in both scale (Figure 5d) and position. Moreover, if a face is transformed

further along the morph line representing the deviation of that face from the average face, the

transformed face is easily recognized as the same individual (e.g. Figure 5c); this is the basis

of caricature (Leopold et al 2001). The process of morphing one individual into another

(Wolberg 1996) involves both an intensity transform (which Eigenfaces model very well) and

a simultaneous geometric transform. Because Eigenfaces represent axes of intensity values on

a fixed spatial basis, the Eigenface approach does not interpret caricature transformations as

the same individual.

Jebara (2003) proposed a clever way to get around the spatial rigidity of the original Eigenface

approach: instead of performing PCA on the intensity values, the size of the representation is

tripled, so each pixel conveys not only the image intensity value but also the intensity value's

(x,y) location. Then PCA can be done on the triple-sized image containing a concatenation of

(x,y,I) values (Figure 3). The power of this approach is that spatial coordinates are treated just

like intensity coordinates and can also be represented in the resultant Eigenfaces. The fact that

this “bags of pixels” approach performs three orders of magnitude better than standard

Eigenface analysis on face sets with changes in pose, illumination, and expression is

computational proof of the importance of representing geometric variations in addition to

intensity variations.

Categorization

Turk and Pentland used a simple Euclidean distance metric on face Eigen-coordinates to

perform recognition. More powerful classifiers that have been applied to the problem of face

recognition include Fisher linear discriminants (Belhumeur et al 1997), Bayesian Estimation

(Moghaddam et al 2000), and Support Vector Machines (Shakhnarovich & Moghaddam

2004). These classification techniques can be regarded as second-tier add-ons to the basic

Eigenface measurement system. Measurement yields analog descriptions, while

classification is non-linear and yields discrete boundaries between descriptions.

Separating the process of measurement from the process of classification gives a computational

system maximum flexibility, because different categorizations (e.g., emotion, identity, gender)

can all operate on the same set of basic eigenvector projections. Gender determination can be

based on large eigenvalue eigenvectors, while identification of individuals relies on lower value

eigenvectors (O'Toole et al 1993). Furthermore, because classifications are necessarily

nonlinear, if mechanisms for classification are indeed independent from the mechanisms for

measurement, this would be very exciting from an experimental point of view, because the

templates used for measurement could be linear and therefore their detailed structure could be

mapped. We will return to the idea of linear measurement when we discuss tuning properties

of face cells.

Invariance

Developing position and scale invariant recognition is a huge challenge for artificial face

recognition systems. Initial attempts to compute a meaningful set of Eigen-coordinates for a

face required that the face be accurately aligned in scale, position, and rotation angle to the

template Eigenfaces. However, if, as we propose, face detection precedes measurement, the
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detector can determine the location, size, and rotation angle of the eyes and face outline, and

then use these to normalize the input to face measurement units.

Summary

The main lesson we can extract from artificial systems for face processing is that detection and

recognition are distinct processes, with distinct goals, primitives (coarse contrast relationships

versus detailed holistic templates), and computational architectures (filter cascade versus

parallel measurements). By preceding recognition, detection can not only act as a domain-

specific filter to gate subsequent processing, but it can include alignment and segmentation,

preparing faces for subsequent measurement. The effectiveness of the Eigenface algorithm for

face recognition shows that faces can be represented by their deviation from the average in a

compressed subspace. To most effectively characterize faces, this subspace needs to include

spatial variations as well as intensity variations.

Some machine vision models of recognition use common “meta-algorithms” to learn the

primitives for both detection and recognition of faces (Riesenhuber & Poggio 2000, Ullman

2007) thus the two processes may share core computational principles. Whether biological

systems use discrete steps of detection, measurement, and classification to recognize faces is

a question that can only be resolved empirically.

3. Human Behavior and functional imaging

The extensive behavioral literature on face perception provides a rich source of clues about the

nature of the computations performed in processing faces. One of the hallmarks of face

processing is that recognition performance drops substantially when faces are presented upside

down (Figure 5a) or in negative contrast, and both effects are much smaller for objects (Kemp

et al 1990, Yin 1969). We propose that both these properties can be explained if only upright,

positive-contrast faces gain access to the face processing system, i.e., if an upright, positive-

contrast template is used for face detection. This template may be innate in humans, as

evidenced by the tendency for newborns to track normal schematic faces longer than scrambled

schematic faces (Johnson et al 1991, Simion et al 1998).

Detection

As argued above, it is computationally efficient to separate detection and recognition, and to

have detection precede recognition because detection can act as a domain-specific filter to

make the recognition process more efficient (by focusing recognition on regions actually

containing faces). That there are also separate detection and recognition stages in human face

processing fits with one of the most striking findings from the neuropsychology literature:

Patient CK, who is severely impaired at object recognition, including many basic midlevel

visual processes, is nonetheless 100% normal at face recognition (Moscovitch et al 1997). His

pattern of deficits indicates that face processing is not simply a final stage tacked onto the end

of the non-face object recognition pathway, but rather a completely different pathway that

branches away from object recognition early in the visual hierarchy, and it is this branching

off that we propose to equate with the detection process. CK's dissociation is illustrated by his

perception of the face made up of vegetables by Arcimbaldo—CK sees the face, but not the

constituent vegetables.

CK's ability to recognize famous or familiar faces is at least as good as normal controls, until

the faces are shown upside down, and then his performance becomes much worse than that of

controls. Conversely prosopagnosics perform better than controls in recognizing inverted faces

(Farah et al 1995). This double dissociation of the inversion effect is consistent with the

existence of a face-specific processing system that can be accessed only by upright faces,
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present in CK and absent in prosopagnosics. Presumably CK can only process objects using

the face-specific system; prosopagnosics have a general object recognition system but not the

face-specific system, and normal subjects have both systems. The general non-face object

system is not as good at processing faces as the face-specific system (hence the inversion effect

in normal subjects), is missing in CK (hence his disproportionate deficit for inverted faces),

and is the only way prosopagnosics can process any face (hence their relatively better behavior

than normals with inverted faces, because of extra practice).

“Holistic” Processing of Faces

Face processing is said to be distinct from non-face object processing in that it is more

“holistic”; that is, faces are represented as non-decomposed wholes, rather than as a

combination of independently-represented component parts (eyes, nose, mouth), and the

relations between them (Farah et al 1998). Evidence for holistic processing of faces comes

from a number of behavioral paradigms, of which the two most cited are the part-whole effect

(Tanaka & Farah 1993) and the composite effect (Young et al 1987). In the part-whole effect,

subjects are better able to distinguish two face parts when the parts are presented in the context

of a whole face than in isolation. In the composite effect, subjects are slower to identify half

of a chimeric face if it is aligned with an inconsistent other half-face than if the two half-faces

are misaligned (Young et al 1987). As with the part-whole effect, the composite effect indicates

that even when subjects attempt to process only part of the face, they suffer interference from

the other parts of the face, suggesting a lack of access to parts of the face and mandatory

processing of the whole face.

One interpretation of uniqueness of face processing is that it uses special neural machinery not

shared by other kinds of objects, an idea that is consistent with functional imaging studies, as

described below. Another interpretation is that holistic processing is characteristic of any kind

of object that must be distinguished on a subordinate level, especially objects with which the

subject is highly trained or familiar (Diamond & Carey 1986). It is not yet clear what the

perceptual phenomenology of holistic processing implies either mechanistically or

computationally. We suggest that holistic face processing can be explained by an obligatory

detection stage that uses a coarse upright template to detect whole faces (Figure 4). An aligned

chimera would be detected as a whole face and therefore would be processed as a unit by

subsequent measurement and classification stages.

However, we cannot rule out alternatives, such as “one-stage” models in which both face

detection and identification are carried out by the same set of face-selective cells. In this case,

to explain holistic properties of face processing, we would have to postulate that individual

face cells unlike non-face cells are selective not just for local features but for whole faces, or

that the readout of face information must comprise all or most of the population code. Either

or both of these models would produce the behavioral holistic effects, even without an earlier

detection gate. The key evidence favoring our early detection gating hypothesis over a single-

stage system comes from the identification of a series of face-selective areas in the macaque

(Pinsk et al 2005, Tsao et al 2003) and the finding that an area early in this hierarchy already

consists entirely of face-selective cells (Tsao et al 2006); both of these results will be discussed

more extensively below.

Although faces are unique in the degree to which they are processed holistically, other non-

face objects can also show holistic effects, especially well-learned categories; for review see

(Gauthier & Tarr 2002). Words may approach faces in the degree to which they are processed

holistically: Coltheart et al. (1993) found that some acquired dyslexics can read whole words

and understand their meanings, but cannot distinguish individual letters making up the words.

And Anstis (2005) showed that words can show the composite effect, in that observers cannot

tell whether two words have same or different top halves.
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Norm-based coding

Caricatures are remarkably powerful in evoking recognition (Figure 5c): caricatured faces are

often more identifiable than veridical photographs (Lee et al 2000). This finding has led to the

proposal that faces are coded in terms of their deviation from the norm, or average, face

(Leopold et al 2001, Rhodes et al 1987). Further, the existence of face aftereffects (Figure 5b)

shows that the face norm is adaptable (Webster & MacLin 1999). Because such face aftereffects

transfer across retinal positions (Leopold et al 2001), and image sizes (Jeffery et al 2006) they

apparently do not reflect adaptation to specific low-level image features, but instead indicate

adaptation of higher-level representations. This “face identity aftereffect” was interpreted as

indicating that adaptation to a given face shifts the norm or average face in the direction of the

adapting face, making faces on the opposite side of the norm more distinctive (i.e., more

different from the norm). To explain these results Rhodes et al (2006) propose that face identity

is coded by pairs of neural populations that are adaptively tuned to above-average and below-

average values along each dimension of face space.

Opposite adaptation can occur simultaneously for upright and inverted faces, consistent with

the idea that two distinct neural pathways underlie the coding (and adaptation to) upright and

inverted faces (Rhodes & Jeffery 2006). Finally, although norm-based coding can only work

for classes of stimuli that have similar enough first-order shape that a “norm” can be defined,

this situation may not be unique to faces. Rhodes & Mclean (1990) showed evidence for norm-

based coding for images of birds, and adaptation effects can also be observed for simple shapes

such as taper and overall curvature (Suzuki & Cavanagh 1998). Thus it is possible that adaptive

norm-based coding is a general feature of high-level form coding processes.

Human functional imaging

PET studies initially showed activation of the fusiform gyrus in a variety of face perception

tasks (Haxby et al 1991, Sergent et al 1992), and subsequently fMRI revealed more of the

specificity of these cortical regions for faces, with demonstrations of fusiform regions that

responded more strongly to faces than to letter strings and textures (Puce et al 1996), flowers

(McCarthy et al 1997), everyday objects, houses, and hands (Kanwisher et al 1997). Although

face-specific fMRI activation can also be seen in the superior temporal sulcus (fSTS) and in

part of the occipital lobe (the “occipital face area”, OFA), the most robust face-selective

activation is consistently found on the lateral side of the right mid-fusiform gyrus, the “fusiform

face area” or FFA (Kanwisher et al 1997) (Figure 6). The fact that this part of the brain is

activated selectively in response to faces indicates that activity in this region must arise at or

subsequent to a detection stage.

A number of studies support the idea that the FFA is activated specifically by faces, and not

by the low-level stimulus features usually present in faces, that is, activity in the FFA indicates

that stimuli have been detected as faces: The FFA shows increased blood flow in response to

a wide variety of face stimuli: front and profile photographs of faces (Tong et al 2000), line

drawings of faces (Spiridon & Kanwisher 2002), and animal faces (Tong et al 2000).

Furthermore, the FFA BOLD signal to upright “Mooney faces” is almost twice as strong as to

inverted Mooney stimuli (which have similar low-level features but do not look like faces)

(Kanwisher et al 1998). Finally, for bistable stimuli such as the illusory face-vase, or for

binocularly rivalrous stimuli in which a face is presented to one eye and a nonface is presented

to the other eye, the FFA responds more strongly when subjects perceive a face than when they

do not, even though the retinal stimulation is unchanged (Andrews et al 2002, Hasson et al

2001).

Although the FFA shows the strongest increase in blood flow in response to faces, it does also

respond to non-face objects. Therefore two alternative hypotheses have been proposed to the

Tsao and Livingstone Page 7

Annu Rev Neurosci. Author manuscript; available in PMC 2009 January 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



idea that activity in the FFA represents face-specific processing: The Expertise Hypothesis.

According to this hypothesis the FFA is engaged not in processing faces per se, but rather in

processing any sets of stimuli that share a common shape, and for which the subject has gained

substantial expertise (Tarr & Gauthier 2000). Distributed coding: In an important challenge to

a more modular view of face and object processing, Haxby et al. (2001) argued that objects

and faces are coded via the distributed profile of neuronal activity across much of the ventral

visual pathway. Central to this view is the suggestion that “nonpreferred” responses, for

example to objects in the FFA, may form an important part of the neural code for those objects.

The functional significance of the smaller but still significant response of the FFA to non-face

objects will hopefully be unraveled by the combined assaults of higher resolution imaging in

humans and single-unit recordings in non-human primates.

Measurement & Categorization

Does the human brain use separate systems for face measurement and face classification? Some

fMRI evidence suggests that it does. For example, in a study of morphing between Marilyn

Monroe and Margaret Thatcher, adaptation strength in the OFA followed the amount of

physical similarity along the morph line, while in the FFA it followed the perceived identity

(Rotshtein et al 2005), suggesting that the OFA performs measurement and the FFA performs

classification. However, another study indicates that release from adaptation occurs in the FFA

when there are physical differences unaccompanied by changes in perceived identity (Yue et

al 2006).

According to Bruce and Young (1986) the processing of facial expression (one form of

categorization) and facial identity (another form of categorization) take separate routes. A

possible neural basis for this model has been proposed by Haxby and colleagues (2000).

According to this proposal, the inferior occipital gyri are involved in early perception of facial

features (i.e., measurement). The pathway then diverges, with one branch going to the superior

temporal sulcus, which is proposed to be responsible for processing changeable aspects of faces

including direction of eye gaze, view angle, emotional expression, and lip movement. The other

projection is to the lateral fusiform gyrus, which is responsible for processing identity. A recent

review has challenged the Bruce and Young model, arguing that changeable aspects and

invariant identity may instead be processed together and rely on partially overlapping visual

representations (Calder & Young 2005).

Invariance

Several studies have used fMRI-adaptation for face identity in the FFA, and found invariance

to position (Grill-Spector et al 1999), image size (Andrews 2004, Grill-Spector et al 1999),

and spatial scale (Eger et al 2004). Thus representations in the FFA are not tied to low-level

image properties, but instead show at least some invariance to simple image transformations,

though not to viewpoint (Pourtois et al 2005).

Summary

Behavioral studies complement computational approaches in indicating that specialized

machinery may be used to process faces and that a face-detection stage gates the flow of

information into this domain-specific module. Also reminiscent of successful computational

approaches, the gating or detection step may use coarse, simple filters to screen out non-face

images. These filters, or templates, require an upright, positive contrast face, with the usual

arrangement of features, and images that do not fit the template are analyzed only by the general

object recognition system. Even images that pass into the face-specific module are probably

processed in parallel by the general system. The face module appears to process images

differently from the general object system: Face processing is holistic, in the sense that we

cannot process individual face parts without being influenced by the whole face. We suggest
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that this difference arises early in the face module. The face-detection stage may, in addition

to gating access, obligatorily segment faces as a whole for further processing by the face

module. Finally, substantial recent evidence suggests that face identity is coded in an adaptive

norm-based fashion.

Human imaging studies converge on the conclusion that faces are processed in specific

locations in the temporal lobe, but the degree of specialization for faces within these locations

is debated. The modular interpretation is consistent with neurological findings, and, as

described below, with single-unit recordings in macaques. The role of experience in

determining both the localization of face processing and its holistic characteristics is also

debated. And the relationship, if any, between modular organization and holistic processing is

completely unexplored. Only a few visual object categories show functional localization in

fMRI: faces, body parts, places, and words (for review see (Cohen & Dehaene 2004, Grill-

Spector & Malach 2004)). Faces, bodies, and places are all biologically significant, and their

neural machinery could be genetically determined, but the use of writing arose too recently in

human history for word processing to be genetically determined, therefore at least one kind of

anatomical compartmentalization must be due to extensive experience. We have suggested that

the existence of discrete regions of the brain dedicated to face processing implies an obligatory

detection stage and that an obligatory detection stage then causes holistic processing. What we

know about word processing suggests that it too displays holistic properties, and it is localized,

interestingly, in the left hemisphere in an almost mirror symmetric location to the position of

the FFA in the right hemisphere (Cohen & Dehaene 2004, Hasson et al 2002).

Monkey fMRI & single unit physiology

Detection

The seminal finding by Gross and his colleagues (1969, 1972) that there exist cells in

inferotemporal cortex driven optimally by complex biologically relevant stimuli, such as hands

or faces, was novel and initially not well accepted, despite the fact that Konorski (1967) had

predicted the existence of face selective cells, or “gnostic” units and that they would be found

in IT. Although IT cells do not generally appear to be “detectors” for complex objects, there

are consistently observed populations of cells selectively responsive to faces, bodies, and

hands, suggesting that faces, bodies, and hands are treated differently from other types of

complex patterns, consistent with their also being among the only object category besides faces

and words that show localization in human fMRI. But the strong possibility remained that these

cells were not really tuned to environmentally relevant objects, but rather to some more abstract

basis set, in which all possible shapes are represented by different cells, and some cells were

tuned to particular parameters that happened to fit the face or hand stimuli better than any of

the other objects tested. Foldiak et al. (2004) recently provided evidence that face selectivity

is not just an incidental property of cells tuned to an exhaustive set of image features: they

presented 600-1200 stimuli randomly chosen from several image archives to cells recorded

from both the upper and lower bank of the STS and found that the distribution of tuning to

these images showed bimodality, i.e. cells were either predominantly face selective or not face

selective. It is not unprecedented to have specialized neural systems for socially important

functions: birds have evolved specialized structures for the perception and generation of song,

and in humans there are specialized parts of the auditory and motor systems devoted specifically

to language.

Direct evidence that some face cells are used for face detection comes from a microstimulation

study by Afraz et al. (2006). Monkeys were trained to discriminate between noisy pictures of

faces and non-face objects. Through systematic sampling, Afraz et al. identified cortical

locations where clusters of face-selective cells could be reliably recorded. When they
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microstimulated these regions and observed the monkeys' perceptual choices, they found a

shift in the psychometric curve favoring detection of a face.

Holistic processing of faces

In general face cells require an intact face and are not just selective for individual features

(Bruce et al 1981, Desimone et al 1984, Kobatake & Tanaka 1994., Leonard et al 1985, Oram

& Perrett 1992, Perrett et al 1982, Perrett et al 1984, Scalaidhe et al 1999, Tsao et al 2006).

Figure 7 shows nonlinear combinatorial response properties of a face selective cell recorded

in IT by Kobatake and Tanaka (1994). Out of a large number of 3D objects, this cell responded

best to the face of a toy monkey (a), and by testing various simplified 2D paper stimuli, they

determined that the cell would also respond to a configuration of two black dots over a

horizontal line within a disk (b), but not in the absence of either the spots or the line (c and d)

or the circular outline (e). The contrast between the inside and the outside of the circle was not

critical (g), but the spots and the bar had to be darker than the disk (h). In other words, the cell

only responded when the stimulus looked like a face, no matter how simplified.

The response selectivity of face cells indicates that they must not only combine features

nonlinearly but also require them to be in a particular spatial configuration, however such

spatial-configuration selective responses and nonlinear combination of features is not restricted

to face cells, as such behavior has been reported for other kinds of complex-object selective

cells in the temporal lobe (Baker et al 2002, Kobatake & Tanaka 1994, Tanaka et al 1991).

Even earlier in the temporal pathway, nonlinear combinatorial selectivity can be seen (Brincat

& Connor 2004).

Anatomical specialization of face cells

Most studies on face cells reported face-selective cells scattered throughout the temporal lobe,

though they tended to be found in clusters (Perrett et al 1984). Because other kinds of shape

selectivities also tend to be clustered (Desimone et al 1984, Fujita et al 1992, Tanaka et al

1991, Wang et al 1996), it was assumed that within the temporal lobe there was a columnar

organization for shape, in which face columns represented just one of many shape-specific

types of columns. However this view was inconsistent with emerging evidence from human

neurology and functional imaging that human face processing was localized to specific,

reproducible regions of the temporal lobe. The apparent discrepancy was resolved by two recent

studies by Tsao et al. (2003, 2006) who found that in monkeys, as in humans, face processing,

as revealed by functional imaging, is localized to discrete regions of the temporal lobe, and

they further showed that even at the single unit level, face processing is highly localized (Figure

8, note also Figure 7, top).

Tsao et al. used functional imaging to localize regions in the macaque temporal lobe that were

selectively activated by faces, compared to non-face objects, and then they recorded almost

500 single units within the largest of these face-selective regions in two monkeys. They found

a remarkable degree of face selectivity within this region, with 97% of the cells being face

selective, on average showing almost 20 fold larger responses to faces than to non-face objects.

The region where they recorded was quite posterior in the temporal lobe (6 mm anterior to the

interaural canal, corresponding to posterior TE/anterior TEO). The fact that an area consisting

almost entirely of face-selective cells exists so early in the ventral stream provides strong

support for the hypothesis that the face pathway is gated by an obligatory detection stage.

In light of the clear large-scale organization of face processing in macaques revealed by Tsao

et al. and recently by Pinsk et al. (2005) we re-examined all previous physiological studies that

mapped out locations of face-selective cells, and by remapping their face-cell localizations

onto a common map, we found that, taken en masse, these studies do show a higher
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concentration of face selectivity in two major regions of the temporal lobe, regions that

correspond to the middle and anterior face patches described by Tsao and colleagues using

functional imaging (Figure 8d).

The functional significance of the ananatomical localization of face processing

The cerebral cortex is functionally parcellated: neurons concerned with similar things are

organized into areas and columns, each having extensive interconnections and common inputs

and outputs (Mountcastle 1997). It is not surprising that face processing, being an identifiable

and discrete form of object recognition, is also organized into anatomically discrete processing

centers. Individual neurons connect with only a small fraction of the rest of the neurons in the

brain, usually to nearby cells, because longer axons delay neural transmission, are energetically

expensive, and take up space. Barlow (1986) has pointed out that facilitatory interactions within

a functional area or column could underlie Gestalt linking processes—clustering cells

concerned with color or motion might facilitate interactions between parts of the visual field

having common color or motion. However enriched local inhibitory interactions might be an

even more important function of co-localization, since inhibitory neurons are always local, and

long-range intracortical connections are invariably excitatory (Somogyi et al 1998). Wang et

al. (2000) recorded responses in anterior IT to a set of complex stimuli before during and after

applying the GABA receptor antagonist bicuculline near the recording electrode. In many

cases, for both face selective and non-face selective cells, blocking local inhibition revealed

responses to previously non-activating stimuli, which were often activating stimuli for

neighboring cells. This suggests that neighboring cells refine each other's response selectivity

by mutual inhibition.

Timecourse of feature-combination responses

Although a large fraction of the information about which face stimulus was shown is carried

by the earliest 50 ms of the response of face-selective cells (Tovee et al 1993), several studies

have shown that the information carried by the early part of the response is different from the

information carried by later spikes. In particular, the earliest spikes in a response are sufficient

for distinguishing faces from other object categories, but information about individual facial

identity does not develop until about 50 ms later (Sugase et al 1999, Tsao et al 2006).

Similarly, responses in IT to non-face stimuli also become more selective, or sparser, over time

(Tamura & Tanaka 2001, Tanaka et al 1991). Similar temporal dynamics indicative of early

detection activity followed by later individual identification activity have been observed for

face-selective MEG responses in human occipitotemporal cortex (Liu et al 2002). The

observation that global information precedes finer information is consistent with a role for local

inhibition in sharpening tuning within a local cluster of cells having similar response properties.

Such response dynamics suggest a feedback or competitive process, whereby cells that respond

best to a given stimulus inhibit nearby cells, resulting in a winner-take-all situation.

Norm-based coding

Recently an idea has emerged for both face processing and general object coding in the temporal

lobe—that firing rate represents the magnitude of deviation from a template or norm for that

property. Cells in V4 can be tuned to curvature, but the optimal values for curvature are most

often found at either extreme or zero curvature, with few cells tuned for intermediate curvature

(Pasupathy & Connor 2001). Kayaert and colleages (2005a) found norm based tuning for

shapes in IT; neurons tuned for different shapes tended to show monotonic tuning, with

maximum responses for extreme values of those shapes. Lastly, Leopold et al. (2006) recorded

from face-responsive cells in anterior IT, and found that most cells were tuned around an

identity ambiguous average human face, showing maximum firing to faces farthest from an

average face (i.e., tuning was V-shaped around the average). Freiwald et al., (2005) on the
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other hand, reported that many cells in the macaque middle face patch showed monotonic

turning curves to different feature dimensions in a large cartoon face space, with the maximum

response at one extreme and the minimum response at the opposite extreme (Figure 9). This

ramp-shaped tuning is consistent with the model proposed by Rhodes et al. (2004) for

explaining the face adaptation illusion (Figure 5b)—that each face feature axis is coded by two

opponent cell populations. Interestingly for both faces and for non-face objects many cells

show tuning to several feature dimensions, and the tuning is separable, or independent, for the

different tuning axes (Freiwald et al 2005, Kayaert et al 2005b).

Invariance

Face selective cells in the temporal lobe are usually position and scale invariant in their ability

to detect and distinguish faces, but they are seldom view and angle invariant (Desimone et al

1984, Perrett et al 1989, Perrett et al 1991, Perrett et al 1984, Perrett et al 1985, Rolls & Baylis

1986, Tanaka et al 1991, Tovee et al 1994, Tsao et al 2006). The marked view selectivity of

some IT cells may reflect a role in interpreting social gestures (who is looking at whom)

(Argyle & Cook 1976, Bertrand 1969). De Souza et al. (2005) recently found a striking pattern

of view selectivity in rostral vs caudal anterior STS. In caudal anterior STS, they found mirror-

symmetric view-tuned cells, but in rostral anterior STS, view tuning was not mirror-symmetric,

and furthermore, view angle and gaze direction interacted, with neurons selective for a

particular combination of face view and direction of gaze and often strongly modulated by eye

contact.

Recordings from the medial temporal lobe of human epilepsy patients have revealed the

existence of cells that respond to familiar individuals in a highly invariant manner (Quiroga et

al 2005), as expected of a “grandmother cell”. For example, some cells each responded to

multiple pictures of a well-known individual as well as to a letter string of their name, but were

unresponsive to all other images. Such individual-specific cells have not been found in the

lateral inferior temporal lobe, where most face cells in monkeys have been recorded, though

as a population cells in the anterior inferior temporal gyrus of the macaque can represent view-

invariant identification (Eifuku et al 2004).

Summary

The correlation between fMRI localization of face processing in macaques and the strong

clustering of physiologically identified face-selective cells supports the idea of domain

specificity, suggested earlier by neurological findings and fMRI studies in humans. The

strength and predominance of face selectivity within the middle face patch are not consistent

with either the expertise hypothesis or the distributed coding model. The existence of neurons

located at an early stage of form processing in the macaque brain that respond selectively to

faces supports the idea that face processing begins with a detection stage, and the response

properties of face cells indicate that this stage is highly nonlinear.

However face cells seem to measure different face variables independently and linearly, so

how does this reconcile with perceptual evidence that face perception in humans is `holistic';

i.e. how can we explain the composite effect and the part-whole” effect neurally? We suggest

that both these apparently non-linear perceptual effects can be consistent with a linear neural

measuring stage if the preceding detection stage is holistic. One surprising result from

physiological studies on face processing is the preponderance of view-selective units, but what

role they play in face processing is still unclear.
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Future Research Directions

1. Is face processing special? We don't yet understand the details of how either faces or

non-face objects are represented in the brain—perceptual studies have shown major

differences in the ways that faces and objects are recognized, but there are nevertheless

similarities in the response properties between face-selective cells and object-

selective cells in IT. Both face and object selective cells in IT show tuning

characteristic of a norm-based code. A variety of evidence suggests that our perception

of faces is holistic, but processing of some non-face objects, like words, also shows

important context effects. One fact is clear: the basic computational challenges to face

processing are common to all object recognition (namely: detection, measurement,

and classification). What is a face template in computational and neural terms, and

how does it differ from a chair template? A truly satisfying answer to this question

will come only when we understand the precise neural mechanism underlying both

face and non-face object recognition.

2. Is face processing modular? Perhaps the most striking result to come from the

neurobiological research on face perception in the past decade is that specialized

machinery is used for processing faces. There is a fundamental specialization both at

the gross anatomical level and at the level of single cells. It will be exciting to move

forward along this pathway, to understand how these face cells are used for different

high level percepts and behaviors; e.g., conveying invariant identity, expression,

direction of attention, social dominance, etc. But we believe that equally important

new insights will come from looking back, asking how these cells acquire their face

selectivity—undertaking a systematic study of the process of face detection.

3. What makes face processing special? We have proposed that what is special about

face processing is that it is gated by an obligatory detection process. Such a design

would be computationally elegant (by allowing for fast domain-specific filtering,

segmentation, and alignment prior to fine-grained identification), and could explain

the existence of face cells, face areas, prosopagnosia, and holistic processing. This

detection-gating hypothesis naturally leads to the idea that there may be two distinct

classes of face cells: face recognition cells, which encode precise face templates, and

face detector cells, which (contrary to their name) could perform the triple function

of detection, segmentation, and alignment. However, it is also possible that detection

and discrimination are carried out by the same cells (either simultaneously or

sequentially). Either way, we should at least be able to find out the answer. Because

we know that face-selective cells are coding faces, we can distinguish detection-

related activity from discrimination-related activity, impossible for a cell whose form

specialization is unknown. Perhaps what is truly special about face processing is that

it is now amenable to being understood. We have a beautiful hierarchy, a gift from

nature, and we should exploit it, in both directions.

Mini glossary

BOLD signal, Hemodynamic signal measured in fMRI experiments. Active neurons consume

oxygen, leading to a delayed blood flow increase 1-5 seconds later.; Caricature, An artistic

technique to enhance the recognizability of a face by exaggerating features distinguishing that

face from the average face.; Distributed coding, Representation scheme using distributed

activity of coarsely-tuned units. A key challenge is specifying how distributed codes can be

read out.; Eigenface, An eigenvector of the covariance matrix defined by a set of faces that

allows a compressed representation.; expertise hypothesis, That face-processing mechanisms

are used to process any stimuli sharing a common shape and visual expertise.; fMR adaptation,

Controversial technique for deducing tuning properties of single cells using fMRI, which
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averages activity of tens of thousands of cells.; gnostic unit, Or “grandmother cell”. A

hypothetical cell responding exclusively to a single high-level percept in a highly invariant

manner.; inferotemporal cortex, Ventral temporal lobe, including the lower bank of the STS

and outer convexity, specialized for visual object recognition.; inversion effect, The ability to

recognize an object better when it is upright than inverted, especially strong for faces and

words.; Prosopagnosia, A highly specific inability to recognize faces, due to either congenital

brain miswiring (“developmental prosopagnosia”) or focal brain lesions (“acquired

prosopagnosia”)..

Acronyms

BOLD signal, blood-oxygen-level dependent signal; STS, superior temporal sulcus; PCA,

principal components analysis.
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Figure 1.

(a) The two most diagnostic features defining a face comprise the first level of the detection

cascade in the Viola-Jones algorithm for face detection. From (Viola & Jones 2004). (b) The

Sinha algorithm for face detection, showing the “ratio-templates” defining a face. From (Sinha

2002a).
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Figure 2.

The Eigenface algorithm for face recognition. (a) The first 25 eigenvectors computed from the

Yale face database (a collection of 165 face images). (b) Eigenface reconstructions of 5

different images, using the 25 Eigenfaces shown in (a). Note that nonface images can have

nontrivial projections onto Eigenfaces. Courtesy of Christopher DeCoro.
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Figure 3.

A computational approach that can represent both spatial and intensity variations. (a) The

computer graphics technique of morphing, in which the identity of one individual can be

continuously transformed into that of another, provides insight about the nature of the face

template. In the middle row, the individual outlined in red is continuously morphed into the

individual outlined in green, which requires both a geometric transform and an intensity

transform. The top and bottom rows show pure geometric transforms (morphing of the mesh)

of the same 2 faces (the top rows shows the geometric distortion of the red face into the shape

of the green face, while the bottom row shows the distortion of the green face into the shape

of the red face). The middle row shows a weighted intensity average of the aligned meshes
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from the top and bottom rows. From (Wolberg 1996). (b) “Bags of Pixels” variant on the

Eigenface algorithm. The (x,y) coordinate of each pixel is elevated to the same status as the

intensity value. (c) Adding or subtracting traditional Eigenfaces to an average face produces

only intensity variations at each pixel. Adding or subtracting Eigenfaces computed using Bags

of Pixels, however, can produce geometric variations in addition to intensity variations. From

(Jebara 2003).
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Figure 4.

Holistic (composite) effects of face processing can be explained by a detection stage that

obligatorily segments faces as a whole. Subjects are asked to identify the top (faces) or left

(car) part of each chimera (third and fourth rows), or to simply identify the object (first and

second rows). Four face (a) and car (b) stimuli are detected, projected onto holistic templates,

and then identified through a winner-take-all mechanism. The numbers in the third and fourth

columns indicate the result of projecting each stimulus, after detection, onto the respective

templates. Aligned faces are obligatorily detected as a whole, but misaligned faces and cars

are not, and therefore their attended parts can be processed independently. According to this

hypothesis, the essential difference between face (a) and non-face (b) processing occurs at the

detection stage (red boxes). Subsequent measurement and classification could use similar

mechanisms.
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Figure 5.

Behavioral experiments probing the nature of human face processing. (a) Flip the page upside

down. The Thatcher Illusion shows that faces are obligatorily processed as wholes (an identical

pair of features such as the upright and inverted mouth can appear similar or dramatically

different depending on the surrounding context). From (Thompson 1980). (b) Adaptation: run

your eyes along the 5 red dots for a minute, and then shift your gaze to the single red dot.

Courtesy of Seyed-Reza Afraz. (c) Robustness of face identification to caricature. (d)

Robustness to compression. From (Sinha & Poggio 1996). (e) The importance of external

features. From (Sinha et al 2006). (f) Robustness to low resolution. From (Sinha 2002b).
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Figure 6.

Face-selective regions in one representative subject. Face-selective regions (yellow) were

defined as regions that respond more strongly to faces than houses, cars and novel objects (P

< 10-4) From (Grill-Spector 2003).
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Figure 7.

Holistic face detection. (top) recording location and receptive-field location of a face cell. (a-

h) Response selectivity. From Kobatake and Tanaka (1994).
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Figure 8.

Mapping face and object selectivity in the monkey brain. (a) Five stimulus categories included

faces, four non-face object categories (hands, gadgets, fruits, and bodies), and grid scrambled

patterns. (b) Map of faces > objects. (c) Map of objects > scrambled. (d) Meta-analysis showing

the location of physiologically identified face-selective cells; studies identified by first author

and date. 500 face-selective cells were recorded by Tsao et al., 2006 at the location indicated

by the pink asterisk. (e) Responses of 182 neurons from M1's middle face patch to 96 images

of faces and non-face objects. (f) Average normalized population response to each image. (a,b,

c, e &f) From Tsao et al., 2006.
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Figure 9.

Tuning of face cells to a cartoon face space. (A) Three example dimensions of the 19-

dimensional cartoon space. Each row shows example values for one parameter, with all other

parameters fixed at their mean. (B) Tuning curves of two example cells to each of the 19 feature

dimensions. In grey maximal, minimal and mean values from shift predictor are shown. Stars

mark significant modulation. (From Freiwald et al., 2007)
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