
1

REVIEW
Mechanisms of glucocorticoid-induced myopathy
O Schakman, H Gilson and J P Thissen
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Abstract
Glucocorticoid-induced muscle atrophy is characterized by

fast-twitch or type II muscle fiber atrophy illustrated by

decreased fiber cross-sectional area and reduced myofibrillar

protein content. Muscle proteolysis, in particular through the

ubiquitin– proteasome system (UPS), is considered to play a

major role in the catabolic action of glucocorticoids. The

stimulation by glucocorticoids of the UPS is mediated

through the increased expression of several atrogenes (‘genes

involved in atrophy’), such as atrogin-1 and MuRF-1, two

ubiquitin ligases involved in the targeting of protein to be

degraded by the proteasome machinery. Glucocorticoids also

exert an anti-anabolic action by blunting muscle protein

synthesis. These changes in protein turnover may result from

changes in the production of two growth factors which

control muscle mass, namely IGF-I and myostatin respectively
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anabolic and catabolic toward the skeletal muscle. The

decreased production of IGF-I as well as the increased

production of myostatin have been both demonstrated to

contribute to the muscle atrophy caused by glucocorticoids.

At the molecular level, IGF-I antagonizes the catabolic action

of glucocorticoids by inhibiting, through the PI3-kinase/Akt

pathway, the activity of the transcription factor FOXO, a

major switch for the stimulation of several atrogenes. These

recent progress in the understanding of the glucocorticoid-

induced muscle atrophy should allow to define new therapies

aiming to minimize this myopathy. Promising new thera-

peutic approaches for treating glucocorticoid-induced muscle

atrophy are also presented in this review.
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Introduction

The catabolic effects of glucocorticoids have been well known

for many years. Either as drugs used to treat several medical

conditions or as endocrine hormones released in response to

many stress situations, glucocorticoids may cause skeletal

muscle atrophy. The resulting weakness of peripheral and

respiratory muscles may have major clinical implications such

as loss of quality of life, fatigue, impaired wound healing,

compromised lung function, and poor immune response. The

purpose of this review is to describe the cellular and molecular

mechanisms of the catabolic actions of glucocorticoids toward

skeletal muscle. Better understanding of the mechanisms of

the steroid myopathy should lead to the development of new

therapeutic avenues to preserve muscle mass and function in

patients exposed to high doses of glucocorticoids.
Role of glucocorticoids in muscle atrophy of
wasting conditions

Many pathological conditions characterized by muscle

atrophy (sepsis, cachexia, starvation, metabolic acidosis, severe
insulinopenia, etc.) are associated with increase in circulating

glucocorticoids levels (Lecker et al. 1999), suggesting that

these hormones could trigger the muscle atrophy observed in

these situations. In the case of sepsis, cachexia, starvation, and

severe insulinopenia, adrenalectomy or treatment with a

glucocorticoid receptor antagonist (RU-486) attenuate

muscle atrophy, indicating that glucocorticoids are in part

responsible for this muscle loss. In addition to glucocorticoid

excess, several other factors such as poor nutrition, cytokines

and bed resting may contribute to muscle atrophy observed in

these wasting conditions (Hasselgren 1999, Lecker et al.

1999). In contrast, glucocorticoids do not appear to be

required for disuse atrophy (Tischler 1994), but may clearly

exacerbate the deleterious effects of disuse on skeletal muscle

mass (Fitts et al. 2007).
Characterization of the glucocorticoid-induced
muscle atrophy

Skeletal muscle atrophy is characterized by a decrease in the

size of the muscle fibers. Glucocorticoids have been shown to

cause atrophy of fast-twitch or type II muscle fibers
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(particularly IIx and IIb) with less or no impact observed in

type I fibers (Dekhuijzen et al. 1995, Fournier et al. 2003).

Therefore, fast-twitch glycolytic muscles (i.e., tibialis

anterior) are more susceptible than oxidative muscles (i.e.,

soleus) to glucocorticoid-induced muscle atrophy. The

mechanism of such fiber specificity is not known.
Mechanisms of glucocorticoid-induced muscle
atrophy

In skeletal muscle, glucocorticoids decrease the rate of protein

synthesis and increase the rate of protein breakdown (Tomas

et al. 1979, Goldberg et al. 1980, Lofberg et al. 2002)

contributing to atrophy. The severity and the mechanism for

the catabolic effect of glucocorticoids may differ with age. For

example, glucocorticoids cause more severe atrophy in older

rats compared with younger rats. Furthermore, glucocorti-

coid-induced muscle atrophy results mainly from increased

protein breakdown in adult rats but mostly from depressed

protein synthesis in the aged animals (Dardevet et al. 1998).
Anti-anabolic action of glucocorticoids

The inhibitory effect on protein synthesis results from

different mechanisms. First, glucocorticoids inhibit the

transport of amino acids into the muscle (Kostyo &

Redmond 1966), which could limit the protein synthesis.

Secondly, glucocorticoids inhibit the stimulatory action of

insulin, insulin-like growth factor-I (IGF-I), and amino acids

(in particular leucine), on the phosphorylation of eIF4E-

binding protein 1 (4E-BP1) and the ribosomal protein S6

kinase 1 (S6K1), two factors that play a key role in the

protein synthesis machinery by controlling the initiation step

of mRNA translation (Shah et al. 2000a,b, Liu et al. 2001,

2004). Finally, there is also evidence that glucocorticoids

cause muscle atrophy by inhibiting myogenesis through the

downregulation of myogenin, a transcription factor

mandatory for differentiation of satellite cells into muscle

fibers (te Pas et al. 2000).
Catabolic action of glucocorticoids

The stimulatory effect of glucocorticoids on muscle

proteolysis results from the activation of the major cellular

proteolytic systems (Hasselgren 1999), namely the ubiquitin–

proteasome system (UPS), the lysosomal system (cathepsins),

and the calcium-dependent system (calpains). The protein

degradation caused by glucocorticoids affects mainly the

myofibrillar proteins as illustrated by the increased excretion

of 3-methyl histidine (Zamir et al. 1991, Tiao et al. 1996). To

activate the protein degradation, glucocorticoids stimulate the

expression of several components of the UPS either involved

in the conjugation to ubiquitin of the protein to be degraded

(ubiquitin; 14 kDa (E2), a conjugating enzyme; atrogin-1

and MuRF-1, two muscle-specific (E3) ubiquitin ligases;
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Bodine et al. 2001) or directly responsible for the protein

degradation by the proteasome (several subunits of the 20S

proteasome; Mitch & Goldberg 1996). This gene transcrip-

tion activation is associated with an increased rate of protein

ubiquitination and increased proteolytic activities of the

proteasome itself (Combaret et al. 2005). Using blockers of

the different proteolytic pathways, evidence was found that

glucocorticoids stimulate not only the UPS-dependent

proteolysis but also the calcium-dependent and lysosomal

protein breakdown (Hasselgren 1999). The role of lysosomal

system in the atrophic effect of glucocorticoids is also

suggested by the increase in cathepsin L muscle expression

in glucocorticoid-treated animals (Deval et al. 2001,

Komamura et al. 2003, Sacheck et al. 2004). Because the

proteasome does not degrade intact myofibrils, it is thought

that actin and myosin need to be dissociated (probably by

calpains) from the myofibrils before they can be degraded by

the UPS (Hasselgren & Fischer 2001). Finally, some in vivo

data also suggest that caspase-3 can be implicated in the

myofibrillar proteins breakdown induced by glucocorticoids.

Indeed, in glucocorticoid-dependent muscle wasting models,

such as diabetes mellitus and chronic renal failure, caspase-3

activity in muscle is increased and inhibition of caspase-3 by

Ac-DEVD-CHO, a peptide inhibitor, suppresses the

accelerated muscle proteolysis (Du et al. 2004). However,

the role of glucocorticoids in the induction of caspase-3

activity in these models has not yet been explored.
Signaling pathways involved in glucocorticoid-
induced muscle atrophy

FOXO

The muscle cell catabolism caused by glucocorticoids is

thought to be mediated by the transcription factors FOXO.

The role of these transcription factors in the glucocorticoid-

induced muscle cell atrophy has been established by different

observations. First, exposure of myotubes to glucocorticoids

increases the FOXO gene expression, particularly K1 and

K3 (Imae et al. 2003). Second, in vitro as well in vivo, FOXO

overexpression causes muscle cell atrophy (Kamei et al. 2004,

Sandri et al. 2004) together with activation of several genes

characteristic of muscle cell atrophy or atrogenes such as

atrogin-1, MuRF-1 and cathepsin L ( Jagoe et al. 2002, Sandri

et al. 2004). Finally, overexpression of a dominant negative

form of FOXO-3a prevents muscle cell atrophy together with

atrogin-1 induction caused by glucocorticoids in vitro (Sandri

et al. 2004). Because FOXO, but not atrogin-1, over-

expression is sufficient to cause muscle atrophy, it is thought

that FOXO transcription factors activate a variety of genes, in

addition to atrogin-1, that leads to atrophy. Taken together,

these data indicate that increased expression of FOXO by

glucocorticoids activates a gene transcriptional program

responsible for triggering muscle atrophy. Among the genes

most strongly induced in microarray analyses of muscle
www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 08/22/2022 08:30:29PM
via free access



Mechanisms of glucocorticoid-induced myopathy . O SCHAKMAN and others 3
atrophy due to a variety of wasting diseases are several genes

(atrogin-1, MuRF-1, cathepsin L, PDK4, p21, Gadd45, and

4E-BP1) controlled by the FOXO transcription factors

( Jagoe et al. 2002, Komamura et al. 2003, Lecker et al.

2004, Almon et al. 2007). The establishment of an active

transcriptional program necessary for the induction of muscle

atrophy has thus challenged the view that atrophy is a passive

adaptation of the muscle to a lack of anabolic stimuli. All these

observations support the role of FOXO in muscle atrophy

induced by glucocorticoids but there is not yet direct in vivo

evidence for the requirement of FOXO in this muscle

atrophy model (Fig. 2).
mTOR

The inhibition of protein synthesis by glucocorticoids mainly

results from the inhibition of mTOR, the kinase responsible

for the phosphorylation of 4E-BP1 and S6K1. Repression of

mTOR signaling results in a reduction in the initiation phase

of mRNA translation with downregulation of protein

synthesis. Recent studies indicate that the repression of
Figure 1 Alterations in protein synthesis signaling pathway induc
results from different mechanisms. First, glucocorticoids (GC) impa
into the muscle. Secondly, glucocorticoids inhibit the stimulatory act
(4E-BP1) and the ribosomal protein S6 kinase 1 (S6K1) through mTO
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mTOR signaling in response to glucocorticoids is the result

of enhanced transcription of REDD1, a repressor of mTOR

signaling (Wang et al. 2006). Through an as yet unidentified

mechanism, REDD1 represses mTOR function, leading to

decreased phosphorylation of both 4E-BP1 and S6K1.

Recent evidence suggest that mTOR signaling could also

be inhibited directly by FOXO (Southgate et al. 2007).

Whereas the effects of glucocorticoids on protein synthesis

have been explained at the molecular level, comparatively

little is known about how these hormones alter anabolic

gene expression. Recent studies identified ATF-4 as an

anabolic transcription factor that is repressed by glucocorti-

coids (Adams 2007). ATF-4 has been shown to be required

for the activation of a genetic program for the cellular uptake

of essential amino acids and the synthesis of non-essential

amino acids and aminoacyl-t-RNAs. This observation

suggests that glucocorticoids inhibit protein synthesis at

least partially by downregulating ATF-4, which could

limit intracellular amino acid availability. It is interesting to

note that insulin, an anabolic hormone, has been shown to

induce ATF-4 transcription, even in the presence of

glucocorticoids (Fig. 1).
ed by glucocorticoids. Inhibitory effects on protein synthesis
ir protein synthesis by inhibiting the transport of amino acids
ion of insulin, IGF-I, and amino acids on eIF4E-binding protein 1

R activity repression.
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GSK3b

A downstream target of IGF-I/Akt signaling, glycogen

synthase kinase 3b (GSK3b), which is phosphorylated and

inhibited by Akt, could also be involved in the atrophic effect

of glucocorticoids. GSK3b is known to suppress protein

synthesis by inhibiting eukaryotic transcription factor

2B-dependent translation ( Jefferson et al. 1999). Further-

more, not only is inhibition of GSK3b sufficient to cause

myogenic differentiation (Van Der Velden et al. 2006) and

muscle cell hypertrophy (Vyas et al. 2002) but also contributes

to the hypertrophic effect of IGF-I on skeletal muscle cells

(Vyas et al. 2002). More interestingly, inhibition of GSK3b by

overexpression of a dominant negative GSK3b or pharma-

cologic inhibitors prevents the proteolysis and cell atrophy

caused by glucocorticoids in vitro (Rommel et al. 2001,

Evenson et al. 2005, Fang et al. 2005). The mechanism by

which GSK3b inactivation inhibits muscle protein

degradation caused by glucocorticoids is not known.

However, the observation that inhibition of protein

degradation by GSK3b inhibitors is associated with the

blockade of the upregulation of atrogin-1 and MuRF-1 gene

expression suggests that this reduction in muscle proteolysis is

mediated at least in part by inhibiting the UPS (Evenson et al.

2005). Although the role of GSK3b in muscle atrophy
Figure 2 Alterations in protein breakdown signaling induced by gluco
different mechanisms. First, glucocorticoids (GC) stimulate several pr
Secondly, stimulation of GSK3b may also be involved in the stimulat

Journal of Endocrinology (2008) 197, 1–10
induced by glucocorticoids has not yet been demonstrated

in vivo, the anti-catabolic effect of GSK3b inhibitors suggests

that GSK3b may become an important target to inhibit

muscle wasting in the future (Fig. 2).
p300–C/EBPb

Finally, recent in vitro data suggest that glucocorticoid-

induced muscle proteolysis is at least in part regulated by

p300–histone acetyl transferase activity. Indeed, p300 protein

levels and activity are increased, in a time- and dose-

dependent manner, in dexamethasone-treated myotubes

(Yang et al. 2005). Additionally, dexamethasone increases

protein–protein interaction between p300 and C/EBPb,
which increases the transcription activity of C/EBPb by

acetylation (Yang et al. 2005). This interaction is particularly

important since C/EBPb may regulate multiple genes in the

UPS pathway (Penner et al. 2002). Finally, treatment of

myotubes with p300 small interfering RNA prevents the

dexamethasone-induced increase in protein degradation,

whereas overexpression of wild-type p300 potentiates the

effect of dexamethasone on protein degradation (Yang et al.

2007). Taken together, these results point out the main role of

p300 in muscle proteolysis induced by glucocorticoids.
corticoids. Stimulatory effects on protein breakdown results from
oteolytic systems by activating transcription factor FOXO.
ory effects of glucocorticoids on protein breakdown.
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Seeing that several transcription factors involved in muscle

wasting are regulated in part by acetylation (Mink et al. 1997,

Schwartz et al. 2003, Chen & Greene 2005, Perrot & Rechler

2005), it appears crucial for the future to determine which

proteins are acetylated in muscle atrophy and whether

their acetylation controls glucocorticoid-induced muscle

proteolysis.
Figure 3 Local growth factors production plays a crucial role in
glucocorticoid-induced muscle atrophy. Glucocorticoids can cause
muscle atrophy by altering the muscle production of IGF-I and
myostatin, two growth factors exhibiting opposite effects on muscle
mass development. Decrease in IGF-I together with increase in
myostatin both induced by glucocorticoids inhibit satellite cells
activation as well as myoblast proliferation and differentiation. In
mature muscle fibers, these growth factor changes cause down-
regulation of protein synthesis and stimulation of protein
degradation.
Role of local growth factors in glucocorticoid-
induced muscle atrophy

IGF-I

Glucocorticoids can also cause muscle atrophy by altering the

production of growth factors that control locally the muscle

mass development. Glucocorticoids inhibit the production by

the muscle of IGF-I (Gayan-Ramirez et al. 1999), a growth

factor that stimulates the development of muscle mass by

increasing protein synthesis and myogenesis while decreasing

proteolysis and apoptosis (Florini et al. 1996, Frost & Lang

2003). For these reasons, decreased muscle IGF-I has been

thought to play a key role in glucocorticoid-induced muscle

atrophy. This hypothesis has recently been confirmed both

in vitro and in vivo. First, by activating the PI3K/Akt/mTOR

pathway and blocking nuclear translocation of the

transcription factor FOXO, IGF-I downregulates the

different proteolytic systems (lysosomal, proteasomal, and

calpain dependent) and the expression of atrogenes such as

atrogin-1, MuRF-1, cathepsin L induced by glucocorticoids

(Dehoux et al. 2004, Latres et al. 2005, Li et al. 2005).

Secondly, IGF-I suppresses the muscle cell atrophy caused by

glucocorticoids in vitro (Li et al. 2004, Sacheck et al. 2004).

Thirdly, systemic administration (Tomas et al. 1992, Tomas

1998, Kanda et al. 1999, Fournier et al. 2003) or local

overexpression of IGF-I into skeletal muscle prevents

glucocorticoid-induced muscle atrophy (Schakman et al.

2005). Taken together, these results indicate that IGF-I has

a dominant effect, overriding glucocorticoids to turn off

catabolism. In addition, they support the key role of decreased

muscle IGF-I in the atrophy caused by glucocorticoids.

Therefore, restoration of IGF-I may provide a strategy to

reverse the catabolic effects of glucocorticoid excess (Fig. 3).
Myostatin

Glucocorticoids also stimulate the production by the muscle

of myostatin (Mstn; Ma et al. 2001, 2003, Artaza et al. 2002), a

growth factor that inhibits the muscle mass development by

downregulating the proliferation, and differentiation of

satellite cells (Thomas et al. 2000, McCroskery et al. 2003)

and downregulating protein synthesis (Taylor et al. 2001,

Welle et al. 2006). Recent evidence collected in vitro indicate

that Mstn also causes muscle cell atrophy by reversing the

IGF-I/PI3K/Akt hypertrophy pathway. Through inhibition

of Akt phosphorylation, Mstn increases the levels of active
www.endocrinology-journals.org
FOXO, allowing increased expression of atrogenes (McFar-

lane et al. 2006). Furthermore, targeted disruption of Mstn

gene expression in mice leads to dramatic increase in skeletal

muscle mass due to fiber hyperplasia and/or hypertrophy

(McPherron et al. 1997, Grobet et al. 2003). Finally, transgenic

mice that express Mstn selectively in skeletal muscle have

muscle atrophy (Reisz-Porszasz et al. 2003, Durieux

et al. 2007).

For these reasons, increased muscle Mstn has been thought

to play a key role in glucocorticoid-induced muscle atrophy.

This hypothesis has recently been confirmed in vivo (Gilson

et al. 2007) using a model of Mstn knockout (KO) mice. In

contrast to wild-type mice, Mstn KO mice did not develop a

reduction of muscle mass nor fiber cross-sectional area after

glucocorticoid treatment. This observation indicates that

Mstn is mandatory for the atrophic effects of glucocorticoids

on muscle. The mechanism by which Mstn deletion prevents

muscle atrophy caused by glucocorticoids is not known.

However, the observation that prevention of muscle atrophy
Journal of Endocrinology (2008) 197, 1–10
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by Mstn deletion is associated with the blockade of the

upregulation of atrogenes expression and proteosomal activity

caused by glucocorticoids suggests that this protection of

muscle mass results at least in part from the inhibition of the

muscle proteolysis (Gilson et al. 2007). Taken together, these

results suggest that increased Mstn contributes to the atrophic

effects of glucocorticoids on skeletal muscle. Therefore,

besides stimulating IGF-I, inhibition of Mstn may provide

another strategy to reverse the catabolic effects of glucocorti-

coid excess (Fig. 3).
Consequences of glucocorticoid-induced muscle
atrophy

Administration of high doses of glucocorticoids to animals

causes not only decreased muscle mass but also muscle

dysfunction characterized by reduced force and weakness

(Shin et al. 2000). Also, in humans, a significant relationship

between steroid usage and both peripheral and respiratory

muscle strength has been reported in chronic pulmonary

disease (Decramer et al. 1994) and cystic fibrosis (Barry &

Gallagher 2003). Peripheral muscle weakness has also been

observed in patients with Cushing’s syndrome, who exhibit

high levels of endogenous glucocorticoids (Khaleeli et al.

1983, Mills et al. 1999). Therefore, glucocorticoid-induced

atrophy may have significant clinical implications.
Prevention of glucocorticoid-induced muscle
atrophy

Growth factors

As already presented, stimulation of IGF-I and inhibition of

Mstn appear promising therapeutic tools to attenuate

glucocorticoid-induced muscle atrophy (Kanda et al. 1999).

Indeed, muscle IGF-I overexpression (Schakman et al. 2005)

or myostatin deletion (Gilson et al. 2007) prevents gluco-

corticoid-induced muscle atrophy. Therefore, IGF-I stimu-

lation or Mstn blockade might be beneficial for a variety of

myopathies, such as the ones caused by high doses of

glucocorticoids. Further experiments are needed to test this

possibility.
Branched chain amino acids (BCAAs)

Provision of the BCAAs mimics the effect of a complete

mixture of amino acids in stimulating protein synthesis in

skeletal muscle (Kimball & Jefferson 2006). Of the BCAAs,

leucine appears to be the most important in stimulating

protein synthesis (Lynch 2001). Therefore, it seems logical to

propose to override the catabolic effects of glucocorticoids

toward skeletal muscle by administration of BCAAs or

leucine alone. However, the fact that glucocorticoids make

the muscle protein synthesis resistant to exogenous BCAAs
Journal of Endocrinology (2008) 197, 1–10
(Liu et al. 2001, 2004, Kobayashi et al. 2006) and leucine

(Rieu et al. 2004) does not support this hypothesis.
Glutamine

Glutamine is a conditional essential amino acid in catabolic

states. Glutamine and alanyl-glutamine have been reported to

prevent glucocorticoid-induced muscle atrophy (Hickson

et al. 1995, 1996). However, attenuation of this muscle

atrophy by glutamine infusion is not associated with changes

in circulating IGF-I levels (Hickson et al. 1997). In contrast,

administration of glutamine prevents glucocorticoid-induced

Mstn expression, which suggests that glutamine may inhibit

the atrophic effect of glucocorticoids on muscle strength

through inhibiting Mstn (Salehian et al. 2006).
Taurine

Since ablation of taurine transporter gene results in

susceptibility of exercise-induced weakness in vivo, it has

been suggested that this transporter is essential for skeletal

muscle function (Uozumi et al. 2006a). The role of taurine in

the prevention of glucocorticoid-induced atrophy is

suggested by two observations. First, taurine attenuates

muscle cell atrophy caused by glucocorticoids in vitro

(Uozumi et al. 2006b). Second, induction of taurine

transporter prevents glucocorticoid-induced muscle cell

atrophy (Uozumi et al. 2006a). Although attractive, the

possibility for taurine to attenuate glucocorticoid effects on

skeletal muscle warrants further investigations.
Creatine

Dietary supplementation with creatine monohydrate has been

shown to attenuate the muscle weight loss and the atrophy

of gastrocnemius type IIb fibers caused by glucocorticoids

(Roy et al. 2002, Menezes et al. 2007). Furthermore, this

protective effect was associated with an attenuation of the

impairment of daily spontaneous running of animals receiving

glucocorticoids (Campos et al. 2006). Although further work

is required to determine the specific mechanisms underlying

the effects of creatine on muscle, evidence collected in vitro

suggests that creatine may act on muscle cells by increasing

IGF-I expression (Deldicque et al. 2005).
Clenbuterol

Clenbuterol, a b2-adrenergic receptor agonist used to

increase muscle mass in cattle, has been tested to prevent

glucocorticoid-induced muscle atrophy. Experiments have

shown that clenbuterol is able to blunt at least partially the

skeletal muscle atrophy caused by dexamethasone (Agbenyega

& Wareham 1992, Huang et al. 2000, Pellegrino et al. 2004).

However, on diaphragm, attenuation of muscle atrophy was

not associated with a protective effect on muscle dysfunction

( Jiang et al. 1996). Evidence collected in vivo suggest that
www.endocrinology-journals.org
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clenbuterol may exert its anti-catabolic effect on muscle by

increasing IGF-I expression (Awede et al. 2002) while

downregulating Mstn expression (Pearen et al. 2006).
Androgens

Administration of androgens, such as testosterone or

nandrolone, a minimally aromatizable analog, prevents

decreased muscle mass and strength caused by glucocorticoids

in animals (Van Balkom et al. 1998) and humans (Crawford

et al. 2003). Although the molecular mechanisms by which

testosterone attenuates the effects of glucocorticoids are not

fully elucidated, testosterone, like many other anabolic

stimuli, appears to stimulate muscle IGF-I expression

(Ferrando et al. 2002, Wu et al. 2007).
Conclusion

Glucocorticoids appear to play a crucial role in muscle

atrophy observed in various pathological conditions. Decrease

in protein synthesis and increase in protein degradation both

contribute to this muscle atrophy. Different intracellular

mediators, such as FOXO, GSK3b, C/EBPb, p300, REDD1,

and ATF4, are involved respectively in the muscle catabolic

and anti-anabolic effects of glucocorticoids. IGF-I stimulation

or myostatin blockade constitutes some of the most promising

future therapeutical approaches to prevent muscle atrophy

caused by glucocorticoids. Although many unanswered

questions remain, understanding the cellular basis of the

glucocorticoid-induced skeletal muscle atrophy will contrib-

ute to the rational development of therapeutic interventions

and therefore minimize the debilitating effects of the muscle

atrophic response to glucocorticoids.
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