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Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the
liver. It is the second leading cause of cancer-related deaths worldwide, with a
very poor prognosis. In the United States, there has been only minimal
improvement in the prognosis for HCC patients over the past 15 years. Details of
the molecular mechanisms and other mechanisms of HCC progression remain
unclear. Consequently, there is an urgent need for better understanding of these
mechanisms. HCC is often diagnosed at advanced stages, and most patients will
therefore need systemic therapy, with sorafenib being the most common at the
present time. However, sorafenib therapy only minimally enhances patient
survival. This review provides a summary of some of the known mechanisms
that either cause HCC or contribute to its progression. Included in this review are
the roles of viral hepatitis, non-viral hepatitis, chronic alcohol intake, genetic
predisposition and congenital abnormalities, toxic exposures, and autoimmune
diseases of the liver. Well-established molecular mechanisms of HCC progression
such as epithelial-mesenchymal transition, tumor-stromal interactions and the
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tumor microenvironment, cancer stem cells, and senescence bypass are also
discussed. Additionally, we discuss the roles of circulating tumor cells,
immunomodulation, and neural regulation as potential new mechanisms of HCC
progression. A better understanding of these mechanisms could have
implications for the development of novel and more effective therapeutic and
prognostic strategies, which are critically needed.

Key words: Hepatocellular carcinoma; Viral/non-viral hepatitis; Alcohol consumption;
Epithelial-mesenchymal transition; Tumor-stromal interactions; Tumor
microenvironment; Cancer stem cells; Circulating tumor cells; Immunomodulation;
Neural regulation
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Core tip: The overall prognosis for hepatocellular carcinoma patients remains poor, as
there has only been minimal improvement over the past 15 years. Details of the
mechanisms of hepatocellular carcinoma progression remain unclear. This review
discusses a summary of both well-established and newly proposed mechanisms of
hepatocellular carcinoma progression. A better understanding of these mechanisms is
critical to the development of novel and more effective therapeutic strategies likely to
improve hepatocellular carcinoma patient outcomes.

Citation: Ogunwobi OO, Harricharran T, Huaman J, Galuza A, Odumuwagun O, Tan Y, Ma
GX, Nguyen MT. Mechanisms of hepatocellular carcinoma progression. World J
Gastroenterol 2019; 25(19): 2279-2293
URL: https://www.wjgnet.com/1007-9327/full/v25/i19/2279.htm
DOI: https://dx.doi.org/10.3748/wjg.v25.i19.2279

INTRODUCTION
Hepatocellular  carcinoma  (HCC)  is  the  most  common  primary  liver  cancer
comprising 75%-85% of cases of liver cancer[1]. It is the sixth most common cancer and
the second leading cause of cancer deaths worldwide[1]. The incidence of HCC in the
United States has been increasing over the past two decades[1-3].  While the overall
prognosis for HCC patients in the United States has improved somewhat in the past
15 years, it still remains poor. In fact, in the United States, the 2-year survival for HCC
is less than 50% and 5-year survival is only 10%[4].

In Asia, chronic hepatitis B virus (HBV) infection is the primary cause of HCC.
While in the Western world, chronic hepatitis C virus (HCV), alcoholic cirrhosis and
non-alcoholic steatohepatitis (NASH) are the main causes[5]. Other known risk factors
of  HCC  include  heavy  alcohol  consumption,  nonalcoholic  fatty  liver  disease,
consumption of aflatoxins, obesity, type 2 diabetes and tobacco smoking[6,7].

Early diagnosis and effective treatment of HCC remain a challenge. While some
patients can be symptomatic, including symptoms such as right upper abdominal
quadrant pain, anorexia, early satiety, weight loss, obstructive jaundice, fever, watery
diarrhea,  lethargy,  and  bone  pain  (from  metastases)[6,7],  most  patients  remain
asymptomatic, and clinical presentation occurs at advanced stages of the disease.

If  detected very early,  HCC can actually be cured with an excellent long-term
prognosis[7], where the principal treatment options would be surgical resection or liver
transplantation if the patient is a suitable transplant candidate[8]. However, for the
vast majority of HCC patients, their cancer is detected at an advanced stage where
surgical  cure  is  no  longer  an  option [7 ].  Most  patients  will  therefore  need
chemotherapy,  which  works  by  destroying  cancer  cells  and  inhibiting  the
proliferation of new cancer cells via the use of chemical agents. Sorafenib, a small
multi-tyrosine kinase inhibitor that blocks Raf kinase, vascular endothelial growth
factor (VEGF), and platelet-derived growth factor (PDGF) receptor activities, is the
most commonly used chemotherapeutic agent to treat HCC[4]. Although a targeted
chemotherapeutic  agent,  its  use  has  been  shown  to  minimally  enhance  patient
survival[9] by only about 7-10 months[10]. Other drugs such as sunitinib, brivanib, and
other angiogenic inhibitors are currently still under development and hold promise in
targeting the extensive angiogenic network that is present in the liver[11,12]. Additional
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multi-kinase inhibitors recently approved for HCC treatment include regorafenib (for
secondary treatment after sorafenib), as well as levatinib (another first-line drug to
treat HCC besides sorafenib). However, neither provide much more additional benefit
than sorafenib treatment[13,14]. As such, better treatment options are still needed.

To address this unmet need, researchers are trying to identify different mechanisms
that may be involved in HCC progression to find alternative therapeutic strategies[8].
There  have  been various  signaling  pathways  and molecules  implicated in  HCC
progression.  Some  of  these  will  be  discussed  in  this  review  article  and  are
summarized in Figure 1.

MECHANISMS OF ETIOLOGY
Several risk factors have been implicated in the development and progression of
HCC, notably chronic  viral  hepatitis,  non-viral  hepatitis,  chronic  alcohol  intake,
certain disease states (obesity and diabetes), and consumption of toxin-contaminated
staples[15].  The epidemiologic distribution of these risk factors varies according to
geographic location and host-specific factors.

Viral hepatitis
HBV and HCV are major causes of viral hepatitis that lead to the development of
cirrhosis and HCC. The pathogenesis of HBV-induced HCC is thought to involve
several mechanisms, including HBV-DNA integration into host genetic machinery,
DNA methylation, oxidative stress, and HBx protein[16]. The risk of developing HCC
has been shown to be proportional to HBV-DNA level in liver cells. HBV gains entry
into liver cells through a receptor mediated pathway. Chronic illness results from
persistence of the virus in the host cells via various mechanisms that include infection
of immune defense control centers, viral inhibition of antigen presentation, selective
immune suppression, down-regulation of viral gene expression, and viral mutations
that functionally incapacitate virus-specific T cells from recognizing HBV antigen[17].
Immune  response  and  inflammatory  reactions  induce  cytokine  and  chemokine
mobilization, causing oxidative stress. This, in turn, promotes constant activation of
several genes that cause cirrhosis, including TERT, MLL4, RARβ, CCNE1, Cyclin A2,
FN1, ROCK1, SENP5, ANGPT1, PDGF receptor,  calcium signaling-related genes,
ribosomal protein genes, epidermal growth factor receptor (commonly known as
EGFR), and mevalonate kinase carboxypeptidase[15].

HBV and HCV viral proteins may be involved in hijacking the cellular machinery.
Viral attack can also directly cause cirrhotic tissue development through the release of
proinflammatory cytokines (e.g., interleukin (IL)6, tumor necrosis factor (TNF)-α, IL1
and IL18)[18].

HCV hijacks host cellular machinery to increase cellular proliferation, steatosis,
inflammatory processes, mitochondrial dysfunction, insulin resistance, all leading to
oxidative stress, genetic instability and DNA damage with cirrhosis and HCC as a
likely outcome[19].

HCC risk  drastically  increases  at  the  cirrhotic  liver  stage,  suggesting  a  close
association.

The corresponding interplay of inflammatory responses, gene activation, and viral
clearance suppression creates  a  conditioned environment that  promotes cellular
mutations leading to HCC.

Non-viral hepatitis
Even though viral hepatitis from HBV and HCV are strongly associated with liver
cancer, there are non-viral risk factors that can induce the development of HCC[20].
Diabetes mellitus, alcohol abuse, cardiovascular disease, liver inflammation, obesity,
dyslipidemia and non-alcoholic fatty liver disease (NAFLD) are some other major
contributors to HCC development.

Accumulation of iron in the liver of NASH and HCC patients[21,22] is correlated with
progression of fibrosis and HCC[23]. In this context, a possible tumor biomarker may be
serum ferritin  rather  than  iron.  However,  because  there  is  no  exact  correlation
between  iron  inside  the  liver  and  iron  in  the  blood,  it  is  difficult  to  clarify  the
pathological features of ferritin on the poor prognosis of non-viral HCC (nvHCC)[24].
Results of a cohort study of 93 patients with nvHCC, 62 of whom had alcohol abuse
problems, showed an increase in ferritin level in non-diabetics[24]. However, further
research needs to be done to assess the correlation between the impacts of alcohol and
ferritin on NAFLD[24].

On the other hand, HCC is associated with obesity. Obesity impairs metabolism,
induces  inflammation  and is  an  etiological  factor  for  NAFLD,  steatosis,  NASH,
hepatic fibrosis, cirrhosis, and ultimately HCC. Caused partly by a sedentary lifestyle
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Figure 1

Figure 1  Summary of the HCC progression mechanisms discussed in this review. HCC: Hepatocellular
carcinoma; HBV: Hepatitis B virus; HCV: Hepatitis C virus.

and obesity, impaired lipid metabolism and deregulation of energy equilibrium in the
liver contributes to the correlation between type 2 diabetes and NAFLD. In fact,
several studies have shown that high BMI, waist circumference, and type II diabetes
mellitus are associated with higher risks of liver cancer[25,26]. They have also suggested
that the association may vary depending on the status of viral hepatitis infection[25].
Conversely,  NAFLD  provides  the  metabolic  environment  to  induce  insulin
resistance[27], a known etiological factor for HCC.

Role of alcohol
Chronic alcohol intake is detrimental to our health. It leads to liver cirrhosis, and
subsequently HCC. Alcoholic liver disease is one of the leading causes of HCC[28].
According to case studies from all over the world, alcohol abuse is related to up to 2-
fold increased risk of HCC[29]. Moreover, studies performed on mice fed an alcohol
diet have shown exacerbation of inflammation, epithelial-mesenchymal transition
(EMT) and fibrosis, and consequent progression to HCC[28].

Pure ethanol does not directly cause inflammation and liver damage, however,
toxic by-products of alcohol catabolism such as accumulation of acetaldehyde and
free  radicals  can  influence  oxidative  stress,  apoptotic  cell  death,  necrosis  and
necroptosis[29]. Reactive oxygen species (ROS) generation is the result of increased
inflammatory cytokine secretion caused by constant inflammatory pathways[19]. ROS-
induced DNA damage,  genomic vulnerability  of  hepatocytes  and T-lymphocyte
suppression contribute to HCC development[19].

Also, alcohol catabolism impacts several steps of lipid metabolism, which leads to
liver steatosis and inhibition of fatty acid oxidation[29].

Reversibility of gene expression via epigenetic alteration is an important biological
phenomenon that often plays a role in tumorigenesis. Epigenetic mechanisms affected
by excessive alcohol consumption lead to altered DNA methylation and acetylation.
For instance, altered acetylation is associated with hepatic steatosis alcohol-induced
HCC[29]. Overexpression of c-Met and hepatocyte growth factor is directly associated
with  promoter  hypomethylation  in  circulating  tumor  cells  (CTCs)  of  HCC  in  a
syngeneic BALB/c mouse tumor model[30].

Moreover, alcohol abuse is associated with HCC via impaired metabolism, such as
accumulation of acetaldehyde, hypomethylation, lack of antioxidants and retinoic
acid, together with inflammation, oxidative stress, hypoxia and genetic instability[28].

Other mechanisms of progression to cirrhosis and HCC
In addition to the role of viral hepatitis and alcohol in the development of HCC, other
possible risk factors include genetic predisposition and congenital abnormalities, toxic
exposures (aflatoxin or arsenic contaminated food), and autoimmune diseases of the
liver.

Several congenital abnormalities have been shown to predispose patients to liver
cirrhosis and HCC. These include hereditary tyrosinemia, Wilson’s disease, alpha-1-
antitrypsin deficiency, and hemochromatosis[31].

The  pathogenesis  of  aflatoxin  B1  (AFB1)  -  induced  HCC  includes  several
mechanisms, including the formation of mutagenic and carcinogenic intermediates
and adducts. Aflatoxins are released from food contaminated by the fungi, Aspergillus
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flavus and Aspergillus parasiticus. A series of chemical transformations occur that result
in the conversion of  AFB1 to established mutagenic or carcinogenic compounds:
aflatoxin-B1  →  aflatoxin  B1-8,9  exo-epoxide  →  8,9-dihydroxy-8-(N7)  guanyl-9-
hydroxy aflatoxin B1 adduct → aflatoxin B1 formaminopyrimidine adduct. These
adducts and intermediates can also directly induce a mutation at codon 249 of the p53
tumor suppressor gene. This replaces arginine with serine, a change that reverses the
tumor suppressing ability of the gene. There are reports that suggest that AFB1 acts
synergistically[32]  with HBV to induce HCC. Additive interactions have also been
reported[33].

In  a  systematic  review,  Tansel  et  al[34]  demonstrated  a  relationship  between
increased  risk  of  developing  HCC in  patients  with  liver  cirrhosis  as  a  result  of
autoimmune hepatitis (AIH). The risk of liver cirrhosis from AIH was found to be
lower than that of liver cirrhosis secondary to HBV and HCV infection or primary
biliary cholangitis.  Nevertheless, the risk of liver cirrhosis and HCC from AIH is
clinically significant.

ESTABLISHED BIOLOGICAL MECHANISMS OF HCC
PROGRESSION
There are several established biological mechanisms involved in the progression of
HCC. These include EMT, tumor-stromal interactions,  tumor microenvironment,
cancer  stem  cells,  and  dysregulation  of  microRNAs  and  well-known  signaling
pathways[35,36]. Some of these are discussed below.

EMT
EMT is a biological process that occurs normally during development and wound
healing, but is hijacked by cancer cells. During this process, epithelial cells, which are
normally attached to a basement membrane and closely adhered to one another, lose
their cell adhesive properties and become migratory in nature[37-39].  This endowed
mesenchymal behavior permits the successful migration of cells, which if usurped by
cancer cells, can promote their dissemination and spread throughout the body.

EMT  has  been  recognized  by  many  in  the  field  to  be  important  for  cancer
progression[40,41]. In HCC, there have been several reports of EMT effectors such as
cadherins,  fibronectin,  vimentin,  and  integrins,  being  altered  to  permit  a  more
mesenchymal  phenotype.  Furthermore,  transcription  factors  promoting  EMT,
including  Snail,  Slug,  Twist  and  Zeb,  are  also  upregulated  during  HCC
progression[42,43].  Additionally, there have been a number of studies on exosomes,
microRNAs, long noncoding RNAs, and regulatory signaling pathways that have
been associated with EMT and demonstrate consequences in HCC progression[30,41,44-49].
This is indicative of the important role that EMT plays in HCC progression. The
molecular mechanisms of EMT may have diagnostic,  prognostic,  and therapeutic
implications in HCC.

Tumor-stromal interactions and role of the tumor microenvironment
Metastasis is the most common cause of cancer-related deaths[30,50]. Worldwide, HCC
is a leading cause of death from cancer[51]. However, the molecular mechanisms of
HCC and metastasis are still being clarified[50].

Tumor development and malignant progression can be promoted by a constantly
changing extracellular environment that is impacted by microenvironmental stimuli,
immune cell cooperation, and inflammatory signals. There is communication between
hepatic  tumor  cells  and  non-tumor  stroma.  The  non-tumor  stroma  consists  of
components of the extracellular matrix (ECM) such as non-malignant fibroblasts,
immune  and  endothelial  cells,  collectively  known  as  the  peri-tumoral
microenvironment[52]. Major alterations to the hepatic microenvironment and cells in
chronic  liver  disease  influence  cancer  development[53].  For  example,  a  hypoxic
microenvironment  in  primary HCC is  strongly associated with progression and
angiogenesis. The consequent enhanced blood supply in the tumor mediates growth
formation and metastasis[54].

According  to  previous  studies,  tumor  cells  cross-talk  with  the  abnormal
microenvironment,  ECM, inflammatory cytokines,  chemokines  and upregulated
growth factors, contributing to increased angiogenesis[55,56]. Although the molecular
mechanisms of tumor-stromal interactions are still being clarified, existing evidence
show an accumulation of hepatic stellate cells (HSCs), triggered by hypoxia-induced
platelet-derived growth factor-BB (PDGF-BB), and proliferation in the tumor stroma,
as well as an increase in VEGF-A expression in HSCs leads to HCC angiogenesis[54].

Interactions between normal tumor-suppressive microenvironment and hepatic
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stellate cells and normal liver fibroblasts have been reported[53].  One of the major
factors in liver fibrosis and cirrhosis is activated HSCs[53]. The important paracrine
interactions between activated HSCs and hepatocytes impact HCC proliferation and
metastasis[57-59]. HSCs (also known as peri-sinusoidal cells), one of the components of
the cellular tumor microenvironment in HCC, are responsible for collagen synthesis
in the liver[51]. As liver damage occurs, activated HSCs accumulate in the ECM and
induce hepatic fibrosis and hepatocarcinogenesis[51].

The  exact  molecular  mechanisms  of  interactions  between  non-tumor  stromal
constituents (specifically macrophages) and hepatic cancer cells are unclear. Studies in
mice  have  shown  induced  macrophage  infiltration  of  alternatively  activated
phenotype M2 pro-tumor monocyte-derived macrophages into tumors developed in
the chronically damaged livers of mice injected with carbon tetrachloride (CCl4) for 7
weeks[52].  Therefore,  an  inflamed liver  background is  favorably  associated  with
increased cancer development[52].

Cancer stem cells in HCC
Liver lineage studies have uncovered four maturational levels of cells that allow the
liver to strike a perfect balance between cell gain and cell loss. These include mature
hepatocytes, oval cells, bone marrow cells and hepato-pancreas stem cells[60]. These
different levels of stem cells integrate to respond to loss of liver cells in the body in
several ways, and are thus implicated in liver cirrhosis and HCC.

The cancer stem cell (CSC) theory has been proposed as an explanatory mechanism
of HCC metastasis, progression and aggressiveness. CSCs, like regular stem cells,
have self-renewing features and are capable of differentiating into tumor cells of
varying  phenotypes  and  through  several  pathways,  partly  accounting  for  the
heterogeneous clinical presentation of HCC[61].  Previous research has successfully
demonstrated that liver cells are directly involved in hepatocarcinogenesis[62], and
transformation of these cells may give rise to CSCs. Some reports also suggest that
cancer cells in HCC develop from dedifferentiation of mature hepatocytes rather than
from uncontrolled proliferation of liver stem cells[63], with intrinsic factors (genetics,
autoimmune diseases) contributing, and extrinsic factors (HBV, HCV, alcohol, AFB1)
accounting for 70%-90% of the transformation of small hepatocyte-like progenitor
cells to cancer cells of HCC[64]. Nevertheless, the correlation between stem-cell division
and cancer risk cannot distinguish the effect of intrinsic factors from that of extrinsic
factors.

Stem cells originating from the bone marrow, known as bone marrow-derived stem
cells, have been demonstrated to be involved in the progression of HCC. Yavorkovsky
et al[65] observed the biomarkers when liver trauma simulating HCC was induced with
allyl  alcohol  and demonstrated that  only  bone  marrow-derived stem cells  were
activated to respond to the trauma.

Stem cells originating from the canal of Hering (oval cells) are mobilized in chronic
liver injury[66]. Oval cell biomarkers include γ-glutamyl transpeptidase, glutathione-S-
transferase, OV6, α-fetoprotein, neural cell adhesion molecule 1, and chromogranin
A[67].  The normal compensatory mechanisms that mobilize stem cells during liver
injury are altered in HCC in such a way that promotes progression of the carcinogenic
process.

Various models are being used to explain cancer development and intra-tumoral
heterogeneity  in  HCC.  These  include CSCs,  cancer  cell  plasticity  and the  clonal
evolution model, to mention a few[68]. While the majority of heterogeneous tumor cells
stay inactive[69],  a  small  subgroup comprised of  CSCs and cancer  initiating cells,
facilitate tumor development and growth[70-72]. Phenotypic plasticity of cancer cells,
which allows conversion from cancer stem cell to non-CSC and vice versa, is one of
the proposed mechanisms that may be responsible for the intra-tumoral heterogeneity
found  in  solid  tumors[73].  According  to  previous  studies,  underlying  molecular
mechanisms of EMT and CSCs were found to be associated with a high risk for poor
prognosis of cancer patients[68].

During normal development, EMT plays a crucial role in organogenesis[74]. At the
time of early embryogenesis, through EMT, cell-cell adhesive epithelial cells undergo
trans-differentiation and become mobile mesenchymal cells that can migrate, and
invade into neighboring tissues and have increased resistance to apoptosis[73-75]. On the
other hand, mesenchymal cells can transform back to epithelial cells via the process of
mesenchymal-to-epithelial  transition,  or  MET.  These  reprogramming  processes
emphasize the epithelial cell plasticity[73] facilitating metastasis to distant and local
anatomical sites via increased invasive and migratory functions[68,73,74].

The CSC hypothesis in cancer remains controversial.  While some studies have
demonstrated the CSC hypothesis  in brain,  skin,  and colon cancers,  others  have
suggested that tumor-initiating cells (TICs, CSC-like cells) exist instead of CSCs in
other cancer types[69,76]. Some studies have demonstrated that HCC arises from either
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TICs or hepatocytes. According to previous research based on drug-treated HCC
patients,  TICs  are  the  main  trigger  of  tumor  development  and  progression[61].
However, the exact origin of TICs is still not completely understood.

Liver  CSCs  (LCSCs)  have  many  analogous  characteristics  to  normal  liver
stem/progenitor cells. In addition to self-renewal and tumorigenesis abilities, LCSCs
have been implicated in therapeutic drug resistance and relapse in patients[77]. Long-
term inflammatory microenvironment,  caused by HBV or  HCV,  chronic  alcohol
consumption  or  NASH,  and  progression  of  HCC [ 3 5 ]  highly  contribute  to
reprogramming of non-CSC into CSCs[78] and the acquisition of CSC-like properties by
non-CSCs through carcinogenic dedifferentiation[79].

Identification  of  tumor  -  specific  biomarkers  and  discovery  of  molecular
mechanisms are crucial to establish effective therapeutic and early detection strategies
for cancer[60,80]. Through the work of several investigators, we are now familiar with
some of the putative surface markers for liver CSCs, including epithelial cell adhesion
molecule (EpCAM)[81], CD90[82], CD133[83], CD44[84], and CD13[85]. However, there is still
uncertainty as to which cell surface markers best identify CSCs in different cancers.

Therapeutic approaches involving inhibitor targeting of signaling pathways, such
as Wnt, hedgehog (Hh), TGF-β and Notch signaling, have been shown to diminish
LCSC self-reprogramming, metastasis and tumor proliferation[60]. Moreover, drugs
designed  to  modulate  cross-talk  between  CSCs  and  cancer  cells  and  the  tumor
microenvironment may have success in inhibiting tumor growth[60]. Other efforts to
target LCSC markers and epigenetic modulators could produce promising results.

OTHER MECHANISMS OF HCC PROGRESSION
Another established mechanism of HCC progression is senescence bypass. The liver
cells have powerful regenerative abilities. Progenitor cells rapidly divide to restore the
balance offset by tissue loss. However, these cells reach a Hayflick limit, a point where
cell division is permanently arrested after a number of divisions. The cells are said to
exhibit replicative senescence. Replicative senescence can be due to (1) shortening of
telomeres in the absence of telomerase, thereby halting cell division; (2) telomeric-
independent oncogene activation; and (3) elevated ROS. Telomere shortening triggers
the DNA damage response, which is thought to activate several signaling pathways,
including the p53-p21pRB pathway, bringing replication to a halt.  Non-telomeric
senescence utilizes both ATM/Chk/p53 and p16-pRB pathways. Oncogene-induced
senescence is closely associated with DNA hyper-replication that succeeds oncogenic
activation.  Several  oncogenic  pathways  have  been  reported  to  be  involved  in
triggering oncogene-induced senescence, including activated Ras, c-myc or Wnt/β-
catenin[86,87]. Given the tumor suppressing tendency of cell senescence, bypassing it can
result in the proliferation of genetically mutated cells, further DNA instability and
propagation of HCC. Researchers have been exploring cell senescence induction as a
potential strategy in cancer therapeutics.

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) plays a
critical  role  in  how  cells  respond  to  stressful  stimuli,  including  infections  and
ultraviolet radiation[88].  Inflammatory responses mediated by the NF-kB signaling
pathway have been reported to be involved in perpetuating the malignant state. NF-
kB activation suppresses apoptosis[89], activates EMT[90], represses maspin (a metastasis
suppressor  gene)[91],  and targets  VEGF and other  angiogenic  factors  required in
forming new blood vessels that supply HCC[90].

There  has  been considerable  advancement  in  understanding the  fundamental
epigenetic  mechanisms  in  gene  expression,  which  is  now  allowing  for  the
development of novel insights into chronic liver disease epigenetic control[92].  For
example,  loss  of  DNA  methylation  has  been  pointed  to  as  potential  diagnostic
markers in HCC progression. Some studies have also suggested that non-coding
RNAs (ncRNAs) such as microRNAs (miRNAs), small non-coding RNAs (sncRNAs),
long non-coding RNAs (lncRNAs), RNA interference (RNAi), small interfering RNAs
(siRNAs), and piwi-interacting RNAs (piRNAs), could serve as therapeutic strategies
for  HCC[93,94].  Several  preclinical  studies  have  shown  that  significant  tumor
suppression can be achieved by modulating ncRNAs[93,94].

Other interesting factors  that  have been shown to correlate  with HCC patient
prognosis  are  molecular  stratification  and mutational  signatures[95,96].  There  are
different  classes  of  liver  cancer  based on varying molecular  features  and cell  of
origin[96].  It  has been shown that each stratification has a different implication on
patient  prognosis[95-97].  For  example,  proliferative  subclasses  result  in  a  more
aggressive phenotype and poorer patient outcomes[97].

In terms of  mutational  signature,  there are several  genetic  alterations that  are
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promising for therapeutic interventions. For instance, approximately 15% of HCCs
harbor amplifications at 11q13 and 6p21[95]. Currently, a better understanding of how
molecular stratification and mutational signatures affect HCC progression is still
needed before they can be used as therapeutic strategies or biomarkers in a clinical
setting.

CTCs in HCC
There is increasing evidence that CTCs play an important role in HCC progression.
CTCs are considered an intermediate stage of metastasis. They are cancer cells that
have dissociated from the primary tumor, enter circulation, and may subsequently
form metastatic  lesions[98,99].  There  is  strong interest  in  studying CTC biology to
understand their molecular mechanisms and how they affect metastasis. Moreover,
CTCs have clinical applications, such as diagnostic applications circumventing the
need for invasive tissue biopsies[100].

As illustrated in Figure 2,  a  considerable amount of  data has been and can be
gathered through the study of CTCs in HCC. Through isolation, characterization and
correlation of CTCs with pathological features, as well as disease stage, researchers
have shown that a greater CTC count in patient blood is associated with poorer HCC
prognosis[53,101-106]. As there is a current lack of reliable biomarkers for the early, non-
invasive detection of HCC, a few studies have demonstrated the potential feasibility
of using CTCs as a possible diagnostic marker[104,107-110]. Although CTCs are found in
very  low  numbers  in  the  blood[110,111],  the  advent  of  new  single-cell  sequencing
technologies and methods to successfully expand CTCs in long-term cultures has
enabled their molecular profiling and characterization[104,110,112-115], hence making CTCs
promising diagnostic biomarkers in HCC.

IMMUNOMODULATORY MECHANISMS IN HCC
Additionally, several immune mechanisms have been observed to be dysregulated
during  HCC  progression[116].  For  instance,  HCC  is  a  cancer  arising  against  the
backdrop of an inflammatory state in the liver. HBV, HCV, and many of the other
etiological factors discussed earlier in this article give rise to chronic inflammation. In
turn,  this  leads  to  the  production  of  inhibitory  cytokines  such  as  IL-10  and
transforming growth factor beta (TGFβ), which dampen the immune response and
favor tumor growth[117-119]. During HCC progression, regulatory T cells and myeloid-
derived suppressor  cells  are  also  recruited to  the  tumor site  as  a  result  of  these
cytokine secretions, adding to the already immunosuppressive environment[116,118,120].
Lastly, it has been found that several checkpoint inhibitor receptors such as CTLA4
and PD-1 are commonly upregulated in immune cells in the HCC setting. With more
checkpoint inhibitor receptors being expressed on these immune cells, they are unable
to become active and counterattack tumor cells for clearance from the body[119,121,122].

Ironically, a fundamental characteristic of the liver may also permit tumorigenesis.
The liver is immunologically tolerant. This is because the liver is in constant contact
with microbiota from the gut and therefore needs to have a tolerant immune response
so  that  it  does  not  become  hyperactivated[116,119].  This,  in  conjunction  with  the
supplementary  immunosuppressive  mechanisms  that  develop  during  HCC
progression, enable tumors to grow. This irony makes exploration of immunotherapy
for HCC a challenging but potentially exciting prospect to consider.

Indeed, several studies have shown that immune checkpoint inhibitors have had
some efficacy in preclinical and early stage clinical trials of HCC. Additionally, the
fact that sorafenib, the current first line treatment for advanced HCC, has been noted
to exhibit some immunomodulatory effects, seems to suggest the potential efficacy of
immunotherapeutic strategies in HCC[122-125].

NEURAL REGULATION OF HCC
Tumor cells  and the  cells  in  the  tumor  microenvironment  are  affected by stress
physiology[126]. Neuroeffector molecules can reach the tumor microenvironment via
the  circulatory  system  or  nerve  fibers.  During  threatening  or  stressful  life
circumstances,  there  is  an  activation  of  the  sympathetic  nervous  system,  which
mediates fightorflight stress responses. The hypothalamus-pituitary-adrenal axis is
responsible  for  mediating  withdrawal  responses  from  more  profound  and
overwhelming  threats.  The  neurotransmitter  norepinephrine  is  released  by  the
sympathetic nervous system nerve fibers, while the major stress hormone cortisol is
released into the blood by the adrenal gland upon hypothalamus-pituitary-adrenal
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Figure 2

Figure 2  Use of circulating tumor cells as a non-invasive means to study HCC progression. CTCs: Circulating
tumor cells; HCC: Hepatocellular carcinoma.

activation[126].  Cortisol is secreted by the adrenal glands. However, its secretion is
regulated by the pituitary gland. Under conditions of severe psychological stress,
corticotropin-releasing  factor  upregulates  the  secretion  of  adrenocorticotropic
hormone by the pituitary gland. The adrenocorticotropic hormone in turn upregulates
the  secretion  of  cortisol[127].  Cortisol  can  reach  the  tumor  microenvironment  via
circulating blood, while norepinephrine can do so by being released from nerve fibers
(carried by blood vessels), which are recruited in larger amounts by some tumors
when these tumors secrete nerve growth factors. Cortisol and norepinephrine binding
to  the  intracellular  glucocorticoid  receptor  (located  within  the  cell)  or  the  beta
adrenergic receptor (located on the cell surface) can trigger cellular responses[126].

It has long been recognized that psychosocial conditions affect the progression of
some  cancers[126].  In  fact,  epidemiological  studies  have  shown  that  there  is  an
accelerated progression of various cancers among patients with high stress levels or
low social support[126]. While the relationship between stress and cancer development
is not fully understood, some studies have shown that psychological stress causes
abnormal immune responses, which are associated with cancer pathogenesis[128,129].
Cortisol release has been linked to the development and progression of, and survival
from various cancers[130-134]. Cortisol inhibits immune responses, which allow cancer
cells to evade the immune system[127,134].

Prostate  cancer  patients  have  also  been  shown  to  have  high  cortisol  levels
compared to low risk individuals[131], and breast cancer patients were reported to have
high serum cortisol levels, which can be downregulated by emotional support[135].

Serum levels of cortisol have been shown to be higher in HCC patients than in
healthy individuals[134]. Studies by Wu and colleagues have shown that exposing HCC
cell cultures to cortisol represses p53 expression by upregulating expression of the p53
suppressor Bcl2L12. This suggests that cortisol is a factor that plays a role in the
development of HCC[134]. Consequently, it has been suggested that cortisol may be a
therapeutic target in HCC treatment[134].

Oxytocin is a neuropeptide hormone produced by hypothalamic neurons and has
multiple roles in the central nervous system. While oxytocin is best known for its role
in the female reproductive system (milk ejection), further research has shown that
oxytocin also plays important roles in complex social behaviors, including stress and
trust,  anxiety,  social  interaction  and  bonding,  and  parental  care,  as  well  as  in
neuropsychiatric disorders linked to such social behaviors[136,137].  Oxytocin and its
receptor have more recently been shown to play roles in some cancers[138-142].

Cortisol has also been linked to some functions of oxytocin[140]. Some studies have
shown that higher oxytocin levels and increased social support (a known prognostic
player  in  cancer)  are  associated with  diminished effects  of  stress.  In  a  study by
Mankorious and colleagues, it was shown that there is a cross-talk network between
oxytocin and cortisol at the molecular level, where the carcinogenic effect of cortisol
was reversed by oxytocin via autophagy in human ovarian cancer cells in vitro[140].

It is known that the effects of oxytocin in cancer may depend on cell type, hormone
concentration, its interactions with other hormones in the microenvironment, and the
location  of  its  receptor  on  the  cell  membrane[137].  Unpublished  work  from  our
laboratory analyzing data from sequenced HCC and pancreatic cancer cases in the
TCGA dataset showed that genetic alterations in the oxytocin and oxytocin receptor
genes were associated with lower median months of overall survival. It would be
interesting to determine whether there could be an interaction between oxytocin and
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cortisol, which could be involved in a potential neural regulation of HCC as well as
other gastrointestinal cancers.

CONCLUSION
There has been minimal improvement in the prognosis for HCC patients over the past
two  decades.  The  detailed  molecular  mechanisms  of  HCC  progression  remain
unclear, and there is an urgent need to better understand the mechanisms underlying
HCC progression so as to develop novel and effective therapeutic strategies and
reliable prognostic biomarkers. Further, a better understanding of mechanisms of
HCC  development  can  further  aid  efforts  at  developing  effective  preventative
strategies.  This  review provides a  summary of  some of  the mechanisms of  HCC
etiology,  and  some  of  the  well-established  as  well  as  a  few  recently  proposed
mechanisms of HCC progression.
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