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Immune checkpoint inhibitors (ICIs) have provided tremendous clinical benefit in several
cancer types. However, systemic activation of the immune system also leads to several
immune-related adverse events. Of these, ICI-mediated colitis (IMC) occurs frequently and
is the one with the highest absolute fatality. To improve current treatment strategies, it is
important to understand the cellular mechanisms that induce this form of colitis. In this
review, we discuss important pathways that are altered in IMC in mouse models and in
human colon biopsy samples. This reveals a complex interplay between several types of
immune cells and the gut microbiome. In addition to a mechanistic understanding,
patients at risk should be identifiable before ICI therapy. Here we propose to focus on
T-cell subsets that interact with bacteria after inducing epithelial damage. Especially,
intestinal resident immune cells are of interest. This may lead to a better understanding of
IMC and provides opportunities for prevention and management.

Keywords: immune checkpoint inhibitor (ICI), immune-related adverse events, colitis, mechanisms, treatment
INTRODUCTION

Immune checkpoint inhibitors (ICIs), such as anti-programmed cell death-1 (PD-1), anti-
programmed cell death ligand-1 (PD-L1), and anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4),
have revolutionized the treatment of cancer in the past decades. ICI therapy resulted in overall
survival benefit for patients with advanced stage cancer, shifting standard clinical practice (1). ICIs
are now often administered instead of or along with conventional therapies, such as chemotherapy
and radiation therapy, in several advanced cancer types (2).

ICIs release the brake of the immune system during priming of naive T-cells [anti-CTLA-4, but
more recently also shown for anti-PD-(L)1 (3, 4)] and during reactivation of memory anti-cancer T-
cell responses (anti-PD-(L)1), rather than inducing direct tumor cell death as conventional
therapies. However, one may argue that ICIs work by normalization rather than enhancement of
the immune system (5). This means that an immune defect, in this case inactivation of T-cells, is
normalized. Naive T-cell activation needs three signals: I) T-cell receptor binding to an antigen
presented in the context of MHC; II) a signal mostly generated by binding of costimulatory
org October 2021 | Volume 12 | Article 7689571
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molecules CD80 and/or CD86 on antigen presenting cells
(APCs) to receptors of the B7 family (6), and III) cytokine-
derived signals mediating T-cell differentiation and
expansion (7).

ICI antibodies interfere during different time points of T-cell
activation. CTLA-4 is a costimulatory molecule that negatively
regulates activation of T-cells. It is a direct antagonist of CD28
(8). CTLA-4 is frequently expressed on regulatory T-cells (Tregs)
(9). In mouse models the important role of CTLA-4 expression
by Tregs is demonstrated: CTLA-4 deficiency leads to fatal auto-
immunity (10). Blocking of the CTLA-4 receptor with
ipilimumab, a clinically approved monoclonal IgG1 antibody
(11), increases the number of CD4+ and CD8+ T-cells (12). It was
debated for a long time whether anti-CTLA-4 therapy causes
depletion of Tregs. In a prospective study in humans, the ratio of
CD8+ T-cell/Treg increased due to anti-CTLA-4 treatment.
However, the density of Tregs in the tumor increased upon
anti-CTLA-4 treatment in most cancer types studied (13).
Increased levels of Tregs are also observed in patients with
autosomal dominant immune dysregulation syndrome due to
CTLA4 mutations. The Tregs in these patients were not
functional, most likely related to the inability of the CTLA-4
protein to bind and antagonize the T-cell costimulatory molecule
CD80. In contrast to healthy controls, Tregs from these patients
were not able to inhibit proliferation of CD4+ T-cells (14).
Although patients with germline CTLA4 gene variants and
response of cancer patients to ICI therapy are fundamentally
very different, both result in an impairment of CTLA-4 binding,
impacting the function of Tregs.

PD-1 and the known PD-1 ligands, PD-L1 and PD-L2, are
immune checkpoint proteins involved in cell-cell interaction and
downstream signal transduction. PD-1 expression has been well
characterized on T-cells. Upon binding to PD-L1, T-cell
proliferation is inhibited or T-cells are inactivated by inducing
a state of anergy (15, 16). PD-L1 is expressed on almost all
tumors, as well as on T-cells, B-cells, DCs, and macrophages. In
some tumor types PD-L1 expression has proven utility as a
predictive response biomarker, whereas certain PD-L1 positive
patients do not respond to anti-PD-(L)1 therapies (17).
Nevertheless, assessment of PD-L1 expression on protein level
on tumor tissue has become clinical practice even though its
predictive value is moderate at best. Methods to detect and
quantify tumor PD-L1 expression vary greatly (18). The
expression and function of PD-L2 is rather similar to PD-L1
(19). PD-L2 is mainly expressed on DCs and macrophages (20).
Its expression is also observed in several solid tumors and in
hematologic malignancies (21). PD-1 is blocked with FDA- and
EMA-approved antibodies nivolumab, pembrolizumab, and
cemiplimab, and PD-L1 with atezolizumab, avelumab, and
durvalumab (22–27). There are no approved drugs that target
PD-L2 directly. Blocking the PD-(L)1 axis leads to increased
numbers of CD8+ cells, predominantly near the tumor site, with
high expression of the cytotoxic granzyme B pathway (28).

Taken together, described anti-CTLA-4 and anti-PD-(L)1
antibodies restore the ability of the immune system to attack
the tumor. However, this systemic activation of immune cells
Frontiers in Immunology | www.frontiersin.org 2
and induction of potentially self-reactive T-cells also leads to off-
target activity.
IMMUNE-RELATED ADVERSE EVENTS
(irAEs)

Dual ICI therapy with anti-CTLA-4 and anti-PD-1 antibodies
frequently leads to severe irAEs in more than half of the patients
(29, 30). All-grade irAEs have been reported in up to 90% of
patients receiving both ICIs (30, 31). IrAEs range from mild (50-
90%) to severe (10-50%) according to Common Terminology
Criteria for Adverse Events (CTCAE). Common immunotoxicity
includes dermatitis, rash, endocrinopathy, diarrhea, colitis,
hepatitis, and pneumonitis (32, 33). Of these, ICI-mediated
colitis (IMC) most frequently requires discontinuation of ICI
therapy and is also responsible for at least 3 out of 10 fatal irAEs
(33, 34). This particular inflammation in the colon is often
characterized by excessive, watery diarrhea, possibly with blood
or mucus in the stool, or abdominal pain (35). As discussed, anti-
CTLA-4 therapy leads to more naïve T-cell priming, hence
expected to be more frequently accompanied with systemic
adverse events, such as IMC. Indeed, a higher occurrence of
high-grade ICI-mediated diarrhea (IMD) or IMC is observed
after ipilimumab monotherapy (15%) compared to anti-PD-1
monotherapy (3%) in patients with metastatic melanoma and
non-small cell lung cancer. In combination therapy with anti-
CTLA-4 and anti-PD-1 severe IMD/IMC was observed in 17% of
treated patients (30).

Ideally, one would like to be able to restore homeostasis in
irAE tissues while maintaining an antitumor response, or to be
able to predict which patients are at risk of severe irAE
development. To do so, understanding the origin and
mechanisms of action of irAEs is essential. In this review, we
discuss the current knowledge on mechanisms, biomarkers, and
risk factors of IMC. Based on our review of the existing literature,
we make recommendations for future research aimed at
enhancing fundamental knowledge of the mechanisms and
risks of IMC development.
MECHANISMS OF IMC DEVELOPMENT

While the antitumor mechanisms of ICIs have been carefully
studied, large studies trying to unravel the mechanisms involved
in irAEs are still lacking. The clinical picture of IMC is often
considered comparable to inflammatory bowel diseases (IBD),
but there are also many differences. Normal colonic mucosa
consists of a normocellular inflammatory infiltrate, which is a
mixture of lymphocytes, plasma cells, eosinophilic granulocytes,
and histiocytes. In IBD there is an increase in cells, predominantly
more plasma cells and neutrophilic granulocytes. In patients with
IMC, an increase in cell numbers, intraepithelial lymphocytes, and
neutrophilic granulocytes is observed (36). For a better
understanding of IMC, and to gain insight in possible differences
October 2021 | Volume 12 | Article 768957
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between ICI therapies in IMC, it is imperative to understand the
mechanisms by which IMC is developed in these patients.

Immune Cell Profile
A CTLA-4 deficiency downregulates Treg functionality in mice,
leading to resistance to the inhibitory effects of Tregs on CD4+

and CD8+ T-cell induction (10). Accordingly, an increased
frequency of activated CD4+ and CD8+ T-cells with a
concomitant decrease in naive T-cell populations was seen in
blood of ipilimumab-treated patients (12, 13). Histopathologic
features of IMC patients treated with ipilimumab showed mainly
neutrophilic inflammation, but also increased CD4+ cells in the
lamina propria and increased CD8+ cells within the crypt
epithelium were observed (36). A recent study by Luoma et al.
has shown that in particular the numbers of cytotoxic T-
lymphocytes (CTLs) and proliferating T-cells (Ki-67+) were
increased in IMC biopsies following ipilimumab monotherapy
or ICI combination therapy (37). In contrast, tissue-resident
memory (Trm) T-cells, a T-cell subset that does not recirculate
(38), were reduced in IMC patients as a fraction of total T cells.
Interestingly, ICI treated patients who did not develop IMC did
not show changes in colonic Trm cells. In IMC patients only, T-
cell receptor clonotypes overlapped between CD8+ Trm cells and
CTLs, suggesting differentiation from the former to the latter
(37). This might indicate that there is a shift from CD8+ Trm
cells towards CTLs in patients with IMC specifically. In non-
small cell lung carcinoma, Trm cells have indeed shown to be
capable of becoming cytotoxic (39). These potentially Trm-
derived CTLs of IMC patients exhibited a genetic profile
strongly related to an interferon gamma (IFNg)-mediated T-
helper 1 (Th1) response (37). If IFNg is indeed abundantly
secreted by CTLs in IMC, this could cause disruption of the
epithelial barrier function or even apoptosis of human colonic
epithelial cells, as shown in in vitro models (40, 41). This might
explain colonic inflammation and damage that is seen
in colonoscopies.

Under normal circumstances, Tregs are able to suppress
intestinal inflammation (42), which is evidently compromised in
IMC. Similarly to intratumoral Tregs (13), in colonic biopsies of
patients with IMC, ipilimumab treatment tends to increase the
number of Tregs, defined as FOXP3+ cells (43, 44). In a study with
IMCpatients who received combination therapy, an altered genetic
Treg expression profile was seen. These alterationswere considered
beneficial for suppressing an IFNg-mediated Th1 response (37).
Likewise, elevated mRNA expression of interleukin-10 (IL-10) has
been reported in colonicmucosaof IMCpatients after anti-CTLA-4
treatment (44). This cytokine is typically secreted by Tregs to
dampen inflammation and is an important mediator to suppress
colon inflammation (45). However, IL-10 is regulated by various
factors on the posttranscriptional level, and its mRNA stability and
degradationmayvary immensely basedonextrinsic signals (46, 47).
Thus, while Tregs of IMC patients show expression of Th1-
suppressive mechanisms, it may very well be attenuated at the
translational or protein level, thereby limiting Treg functionality.

In the context of reduced Treg-mediated immune
suppression, Th17 cells may become more pronounced in
IMC. Th17 cells are capable of developing colitis in mouse
Frontiers in Immunology | www.frontiersin.org 3
models when the IL-10 receptor (IL-10R) is deleted in Tregs
(48), highlighting the importance of IL-10 in maintaining
intestinal homeostasis. In addition to IL-10, CTLA-4 is
required for Tregs to suppress Th17 cells (48, 49). Inability to
suppress Th17 cells possibly explains why CTLA-4 blockade
leads to increased mucosal IL-10 mRNA in IMC biopsies without
successfully resolving IMC (44). Th17 cells, which are potent
secretors of IL-17, are present in IMC. Serum IL-17 levels
correlated strongly with ipilimumab-induced IMC, from onset
to resolution, while the other examined cytokines did not express
such a pattern (50). Parallel to serum levels, in ipilimumab-
induced IMC IL-17A mRNA is significantly increased in colonic
biopsies, as is similar to IBD (44). Together, these findings
indicate an important role for Th17 cells in IMC.

The Th17/IL-17 axis is, amongst others, responsible for
production of the chemokines CXCL8 and GM-CSF by
intestinal epithelial cells (51). These chemokines attract
neutrophils and prevent their apoptosis, employing them as a
mucosal barrier defense (52–54). Neutrophil infiltration in the
epithelial layers is indeed a characteristic of human IMC biopsies
after both anti-CTLA-4 (36) and anti-PD-1 therapy (55). Th17-
mediated neutrophil recruitment may thus be an important
mechanism of inflammation in IMC. Furthermore, the mouse
equivalent of human CXCL1, an important chemokine for
neutrophil recruitment (56, 57), was found in serum following
ICI therapy in colitis mouse models (58, 59). The same mouse
models showed high serum levels of IL-6, which has a significant
role in the balance between Tregs and Th17 cells, after ICI
treatment. IL-6 skews transforming growth factor-beta-mediated
differentiation of naïve CD4+ cells into Tregs towards Th17
differentiation, even by reprogramming Tregs into Th17 cells
(60, 61). The serum levels of CXCL1 and IL-6 thus indicate that
neutrophil recruitment and the Treg/Th17 balance are important
mechanisms in IMC.

In IBD, CXCL1 and IL-6 are secreted by activated
macrophages. This cell type may play a significant role in
neutrophil recruitment and the skewed Th17 balance in IMC
(62, 63). Indeed, in human IMC biopsies macrophages have been
reported to upregulate CXCL9/10 expression, alongside their
ligand CXCR3 on T-cells (37), and are therefore responsible for
recruiting T-cells to a site of Th1-type inflammation (64).
CXCR3 deficient mice have shown to be resistant to dextran
sulfate sodium-induced colitis (65), highlighting the role of this
pathway in the development of colitis. Moreover, macrophage-
derived CXCL9 and CXCL10 is also required for T-cell
infiltration in tumor sites, indicating the importance of this
pathway (66). However, macrophages form a heterogeneous
cell population, which has been studied to a limited extent in
the context of IMC. Taken together, these data suggest that
macrophages potentially have a significant role in T-cell
recruitment in IMC. It is therefore to be expected that
macrophages are important in more aspects of IMC.

Anti-Microbial Immunity
The lumen of the colon contains a multitude of mostly bacteria,
together referred to as the microbiome. Under certain
conditions, some bacteria may become pathogenic. Epithelial
October 2021 | Volume 12 | Article 768957
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tight-junctions, mucus covering the mucosa, and tissue resident
macrophages are the first line of defense against such intestinal
pathogens. Macrophages detect these pathogens through
recognition of exogenous pathogen-associated molecular
patterns (67). As a response, macrophages secrete many pro-
inflammatory cytokines, such as TNFa, IL-1 and IL-6, but also
the anti-inflammatory cytokine IL-10 (68). In ulcerative colitis
(UC) and Crohn’s disease (CD), both IBDs, an abnormal
reaction to commensal bacteria leads to mucosal inflammation.
Several bacteria in IBD stimulate a pathogenic Th1/Th17
response while other bacteria are associated with regulation of
Tregs and regulatory B-cells (69). Whether this also applies to
IMC is yet to be investigated.

Next to macrophages, Th17 cells are prominent actors in
resistance against intestinal pathogens. Interestingly, the
composition of commensal bacteria in the gut can skew
differentiation of Tregs into Th17 cells (60), a phenomenon that
is important in IMC, as discussed above. Noteworthily, a knockout
of IL-10R leads to Th17-mediated colitis in regular mice (48), but
not in germfree mice (70). This strengthens the idea of a significant
role for the microbiome in the onset of UC, and probably also IMC.
It is evident that active UC, and most probably also IMC, share a
shift toward a Th1/Th17-mediated immune response to the
commensal and/or pathogenic microbiota.

Another cell type that leads us to the importance of the
microbiome is mucosal-associated invariant T (MAIT) cells.
These cells are elevated in gut biopsies of patients with IMC
after ipilimumab and nivolumab combination therapy, but not in
patients that remained free of adverse events or in patients with
UC (71). MAIT-cells are activated indirectly upon bacterial
infection and exert antimicrobial properties on bacterial-
infected cells (72, 73). The fact that these cells were specifically
enhanced in IMC patients, provides a link between the
microbiome and IMC that is not seen in similar pathologies.
Antimicrobial activity of MAIT-cells against epithelial cells may
lead to an impaired barrier function and immune regulation
towards intestinal bacteria in patients with IMC.

Bacterial Strains
The importance of intestinal bacteria has been especially
highlighted in mouse models of IMC, induced by oral
administration of dextran sulfate sodium prior to anti-CTLA-4
therapy. Treatment with vancomycin, an antibiotic agent that
depletes Gram-positive bacteria, reportedly exacerbated severity
of IMC histologically and clinically (58, 74). Interestingly, re-
introduction of a genus of Gram-positive anaerobic bacteria,
Bifidobacterium (74) or Lactobacillus (58), after vancomycin
treatment caused significant amelioration of IMC, both
clinically and histologically. Specific strains of these genera, at
least Lactobacillus reuteri, Lactobacillus rhamnosum and
Bifidobacterium breve, have shown to be responsible for this
positive effect in mice (58, 59).

In humans, Abu-Sbeih and colleagues tested the effect of
antibiotic treatment on IMC, including IMD, in a cohort of 826
patients (75). Whereas the use of antibiotics strongly correlated
with a lower occurrence of total IMC and IMD, it caused more
Frontiers in Immunology | www.frontiersin.org 4
severe IMC and more hospitalizations. More specifically,
anaerobic antibiotics were clinically more detrimental than
aerobic antibiotics. This is in accordance with the observations
in aforementioned mouse models that Gram-positive anaerobic
bacteria were required for IMC resolution (58, 59, 74). The
importance of the anaerobic bacterial strains used in those
mouse studies is possibly enhanced by it being Gram-positive
bacteria that are capable of inducing anti-inflammatory
cytokines, rather than induction of only a Th1 secretome by
Gram-negative bacteria (76). Nevertheless, the lower overall
occurrence of total IMC and IMD following antibiotic therapy
in humans, but on the other hand a clinically more severe IMC
phenotype, could indicate that IMD and IMC are
mechanistically different. Data supporting this hypothesis are
currently lacking.

In mouse models of IMC, aiming to get more insight in the
underlying bacterial-related mechanisms has yielded various
important observations. Anti-CTLA-4 treatment induced a
decline in the relative abundance of Lactobacillus in stool
samples (58). Probiotic Bifidobacterium treatment, however,
increased the relative abundance of Lactobacillus, thereby
showing a relation between the two genera (59). These strains
may be important to protect the colon against IFNg-induced
epithelial barrier disruption, as shown in human organoid
models in v i t ro (40) . Any protect ive funct ion of
Bifidobacterium is Treg-mediated, since depletion of Tregs
abrogated beneficial effects of Bifidobacterium in IMC mouse
models (59). This bacterial strain caused a genetic upregulation
of IL-17R in Tregs of the colonic lamina propria, suggesting Treg
behavior in response to IL-17, and thus Th17 cells, may be
altered. To date, the effect of IL-17R activation in Tregs remains
unknown, but an increase in the receptor for IL-17 might
indicate increased sensitivity to Th17 cytokines, allowing Tregs
to regulate these cells properly. Tregs may indeed reduce Th17
differentiation and neutrophil infiltration following either
Bifidobacterium or Lactobacillus treatment, since those
treatments lead to a decrease in serum levels of IL-6 and
keratinocyte-derived chemokine (58, 59).

Another indication for Tregs suppressing inflammation
following Bifidobacterium administration is the upregulation of
the IL-10R on these cells. Interestingly, not only IL-10 was
required for attenuation of IMC, but IL-22, a key modulator of
epithelial homeostasis (77), also showed to be important (59).
This fits with an observation by Wang et al. in mice treated with
Lactobacillus reuteri (58). They reported that the presence of type
3 innate lymphoid cells (ILC3s), a lymphoid line innate immune
cell type known to secrete IL-22 (78), is strongly related to IMC
severity. Beneficial probiotic treatment reduced ILC3 cell
numbers and improved inflammation in these mice. However,
ILC3 cell numbers may be a consequence of IMC, rather than a
cause, since crosstalk between ILC3s, macrophages, and the
microbiome is reported to be essential for maintaining
intestinal homeostasis (79). In addition, a recent study showed
that IL-22 producing ILC3s were able to protect against colitis in
mice, even when the mice were modified to express abnormal
pro-inflammatory secretion profiles (80). However, ILCs, among
October 2021 | Volume 12 | Article 768957
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which those of group 3, are also known for secretion of IL-17 (81,
82), indicating that there could be an ambivalent role for ILCs
in IMC.

In general, mouse studies have shed light on the importance of
certain genera for protection against IMC. However, fundamental
data are limited and thus many other genera or species could be
beneficial or detrimental for IMC. Probiotic treatment has not
been tested in humans in the context of IMC. Nevertheless, in two
out of the three patients who received fecal microbiota
transplantation (FMT), a quick reduction of inflammation, as
observed by colonoscopy, was noticed (83, 84). Following FMT,
Bifidobacterium was elevated, even though the patients had a
distinct taxonomy from each other prior to FMT (83). This finding
might indicate that this particular genus is as important in IMC in
humans, as it is in mice.

Anti-CTLA-4 vs Anti-PD-1
Most studies regarding IMC focus on ipilimumab-induced IMC,
either through monotherapy or combination therapy. Several
differences in T-cell behavior in IMC between ipilimumab and
nivolumab or pembrolizumab treatment are shown (85, 86). In
anti-PD-1 treated patients, mucosal infiltration of T-cells was
dominated by CD8+ T-cells, whereas CD4+ dominated after
ipilimumab (85). Additionally, ipilimumab led to more
epithelial infiltration of lymphocytes and significantly higher
levels of mucosal TNFa compared to anti-PD-1 treatment (85,
86). This suggests that mechanisms by which IMC is induced are,
to some extent, different between ICI therapies. Furthermore,
endoscopic evaluation following anti-PD-1 treatment often does
not show aberrations, as opposed to ipilimumab-induced IMC
(87). Other than that, mechanistic understanding of IMC and the
differences between ICI therapies are mostly suggestive, such as
CTLA-4 blockade increasing the numbers of Th17 cells (88),
while PD-1 blockade leading to a Th1 dominancy as described in
a case report of two IMC patients (89). However, in-depth, head-
to-head comparisons are still lacking.

Any additional functional discrepancies between ICI
treatments in IMC might be hypothesized by the role of each
receptor in colonic homeostasis. In mice, the PD-1/PD-L1 axis is
important to maintain tolerance against self-antigens in
peripheral tissues, including the gut, by limiting expansion of
CD4+ and CD8+ T-cells (90, 91). That seems to indicate that
anti-PD-1 therapy predisposes to intestinal toxicity. However, it
has been suggested that PD-L1 can also affect T-cells in the
absence of PD-1 (92), thereby possibly remaining functional to
some extent after anti-PD-1 blockade. CTLA-4 affects Treg
accumulation in the intestinal lamina propria, but not in the
thymus, spleen, and mesenteric lymph nodes (93), highlighting
its importance in the gut in particular. Considering the difference
in frequency of IMC between ICI treatment strategies, CTLA-4
indeed appears to have a more pronounced role in maintaining
intestinal homeostasis. The evidence for this difference is mostly
suggestive, as data is difficult to compare across studies and
different ICI regimens were not studied head-to-head. Hence, it
is not yet clear why blockade of CTLA-4 causes IMC more
frequently than anti-PD-1 therapy in humans, even though it is
Frontiers in Immunology | www.frontiersin.org 5
clear that both CTLA-4 and PD-1/PD-L1 are important for
maintaining mucosal homeostasis in mice.

Overall, more evidence is emerging suggesting that some
immune cells are predominantly responsible for IMC. As
described, in IMC the functional balance between Tregs and
Th17s is skewed towards Th17s, leading to increased neutrophil
infiltration. Moreover, there is a Th1-dependent inflammatory
state, in which in particular IFNg is suggested to disrupt the
epithelial barrier (Figure 1). Epithelial permeability leads to
interaction between the microbiome and immune cells,
although potentially pathogenic microbes and/or commensal
microbes that trigger an uncontrolled inflammatory response
have not been identified in IMC. However, there are also some
subsets for which it is not clear what their exact role is, such as
MAIT-cells, ILC3s, and macrophages. In addition, it is not
understood why these pathways are induced in some patients
and not in others. Answers to these uncertainties may explain the
occurrence of immune-related toxicities in certain patients,
whereas others remain free of adverse events.
BIOMARKERS

In-depth understanding of the mechanisms underlying IMC
development is critical to select appropriate immunosuppressive
treatments, or to prevent the development of IMC. Another way to
reduce the incidence and severity of IMC is to identify markers
which predict patients at risk of developing IMC, either all grade or
specifically high-grade toxicity. Being able topredict the risk of IMC
for patients allows closer monitoring of those that are likely to
develop high-grade toxicities, or enables selection of an alternative
anti-cancer treatment.

Cellular Indicators
Several cell types are involved in or correlate with IMC. Cellular
products or even the mere presence of cells are potential
candidates for biomarkers of IMC development.

As already discussed, IL-17 secreting Th17s are important
mediators. While baseline IL-17 serum levels do not correlate
with all grade ipilimumab-induced IMC occurrence (50), it
significantly correlated with grade 3 IMC in a cohort of 33
patients (94). Baseline serum IL-17 is therefore a potential
marker for high-grade colitis, although it remains to be
confirmed in larger cohorts.

Another cell type that is abundantly present in IMC is
neutrophils. A high neutrophil to lymphocyte ratio (NLR) in
serum is known to correlate with worsened ICI clinical outcome
(95–97). Although its predictive correlation with all irAEs is
mostly weak, NLR distinguishes grade 3 and higher irAEs from
low grade irAEs after pembrolizumab therapy and it can be used
to monitor the onset of irAEs (98, 99). For IMC in particular, a
baseline NLR higher than 5 correlated with development of IMC
(100). However, in the same study, a validation cohort failed to
show a significant correlation between NLR and IMC. Another
interesting marker related to neutrophils is the genetic
expression of CD177, a modulator of neutrophil migration
October 2021 | Volume 12 | Article 768957

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Westdorp et al. Mechanisms of IMC
(101), in circulating cells. At week 3 after the first ipilimumab
treatment, this marker showed high specificity for predicting
patients who later developed gastrointestinal adverse events
(102). However, the sensitivity was low in this study, meaning
CD177 is unable to capture all patients at risk of IMC on its own.

Other potential neutrophil-related biomarkers are based on
similarities with IBD. Fecal calprotectin and lactoferrin are
established markers for active inflammation in IBD (103).
Calprotectin is abundantly present in the cytoplasm of
phagocytes and has pro-inflammatory functions upon secretion
(104). A major source of calprotectin release is cell death of
neutrophils (105). Lactoferrin is, amongst others, released in
granules by activated neutrophils (106). Neutrophil infiltration is
often observed in IMC biopsies. Accordingly, levels of fecal
calprotectin and lactoferrin correlate with endoscopic findings
of ulceration and histological signs of IMC (107). Furthermore,
fecal calprotectin is increased upon the onset of diarrhea and
Frontiers in Immunology | www.frontiersin.org 6
reduced when clinical remission is observed (108, 109). This
could therefore be a promising marker to monitor disease
activity and relapse in patients, as already suggested in
American Society of Clinical Oncology guidelines (110). The
predictive value of fecal calprotectin and lactoferrin has not yet
been investigated. However, since these are both markers for
neutrophil infiltration, distinguishing IMC from an IBD
exacerbation will not be possible for IBD patients who
underwent ICI therapy (111, 112).

Microbiota
At a bacterial level, some potential biomarkers have been
reported. In two patient cohorts of 34 and 55 patients,
microbiota composition analysis was performed on feces of
patients prior to the start of ICI therapy for metastatic
melanoma. In feces of patients later developing IMC, several
families of the Bacteroidetes phylum were underrepresented
FIGURE 1 | Mechanisms of immune checkpoint inhibitor-mediated colitis (IMC). Pro-inflammatory pathways (CTL, Th17 cells, and neutrophils) are predominantly
enhanced in IMC, while anti-inflammatory pathways (Treg differentiation and IL-10 secretion) are inhibited. Other cell types, such as macrophages and ILC3s, are
expected to play a role in IMC, but to which extent is unknown. This image was created with BioRender.com. CTL, Cytotoxic T-lymphocyte; CXCL, C-X-C motif
chemokine ligand; GM-CSF, Granulocyte-macrophage colony-stimulating factor; IFN, Interferon; IL, Interleukin; ILC, innate lymphoid cell; Th17, T helper 17 cell; TNF,
Tumor necrosis factor; Treg, regulatory T-cell; Trm, tissue-resident memory T-cell.
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(113, 114). The same observation was made for IMD in a cohort
of 26 patients with lung cancer, which may suggest a gut
protective role of this phylum (115). The Firmicutes phylum,
on the other hand, was increased at baseline for patients later
developing IMC (114, 115). Thus, a high ratio of Firmicutes to
Bacteroidetes at baseline measurements of feces may provide
predictive insight in which patients are likely to develop IMC,
although these observations should be validated in larger patient
cohorts to test clinical applicability. Whereas IMC has
overlapping characteristics with several IBDs, a low Firmicutes
to Bacteroidetes ratio is actually seen in CD (116). This indicates
a different role of these bacterial families in IMC and CD.

Looking at resistance to IMC development rather than risk of
development, polyamine transport units in bacteria may be
beneficial. A prediction model using molecular levels of these
polyamine transport units showed a sensitivity of 70% and a
specificity of 100% for resistance to IMC development, indicating
all patients that were predicted to develop IMC indeed did so,
however, 30% of patients were false negatively assigned to
remain free of IMC (113). Interestingly, blocking polyamine
reduces the number of tumor-infiltrating immune suppressor
cells, such as myeloid-derived suppressor cells, Tregs and M2
macrophages, thereby boosting the antitumor response in mouse
models (117, 118). Hence, the microbiome might exert a
suppressive function in the immune response through
polyamine transport, which could explain its correlation with
resistance to IMC.
Other Markers
While most of the potential biomarkers reported so far focused
on neutrophils, Th17 cells, or the microbiome, there are also
some markers that are less specific. In IBD, vitamin D intake has
been reported to improve clinical outcomes (119). The
importance of vitamin D is underscored in mice: immune cells
from vitamin D deprived mice do show increased IL-17 and
IFNg secretion, failure to develop essential anti-inflammatory T-
cell subsets, and disruption of the epithelial barrier, all of which
are important mechanisms of IMC (120, 121). Indeed, vitamin D
intake during ICI treatment was found to be strongly correlated
with reduced risk of IMC development in a cohort of 213
patients, which was additionally validated on an independent
cohort of 169 patients (100). Although this does not necessarily
mean that vitamin D has a predictive value in this context, it is
interesting to take vitamin D into account in the clinic,
particularly in case of an insufficiency.

For irAEs in general, a wide range of predictive markers is
studied. For instance, a large multi-omics study showed that a
bivariate model using ADPGK and LCP1, which are both related
to T-cell activation, is a promising prediction tool (122). Since
such markers are not specific for IMC, we would like to refer the
reader to some reviews on this topic (123, 124). While some of
these markers provide a decent predictive value, it is mostly
unclear whether these are applicable for IMC specifically. Such
general markers, however, are definitely of interest to investigate
in prospective studies regarding IMC.
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MECHANISM-BASED FUTURE RESEARCH
AND APPROACHES TO MANAGEMENT

It is well established that Th17 cells, derived from Tregs or naïve
T-cells, are important actors in IMC. Also, CTLs are thought to be
pathogenic in IMC by disrupting the epithelial barrier and creating
a state of inflammation. However, many questions still remain. It
is often unclear which signals induce these cell developments, or
why this signaling is evoked in certain patients. Is it directly or
indirectly related to ICI therapy? In other words, does ICI
treatment lead to attraction of macrophages and skewing
towards Th17 cells, or is it secondary to e.g., activation of
autoreactive B or T-cells? Moreover, there is still a lot to be
elucidated about tissue-resident T-cells. For instance, CTLs appear
to be to be partly derived from Trms, although its mechanism is
unknown. In addition, several resident T-cell types involved in
interactions with the microbiome, ILC3s, MAIT-cells, and
macrophages, are indicated to be affected. While macrophages
are suggested to promote T-cell recruitment, it is likely that their
role in IMC is larger. Their secretome has strong overlap with
several cytokines and chemokines that are expressed in IMC. Yet,
many studies have focused on the role of T-cells in IMC. ILC3s
and MAIT-cells may have more protective, antimicrobial roles.
Knowledge on how these cell types are behaving in IMC is
important for understanding the role of potentially
pathogenic bacteria.

To answer these remaining questions, future research should
focus on specific mechanisms of IMC development. Cellular
composition and involved cytokines and chemokines in baseline
and on-treatment sigmoid biopsies should be compared in ICI-
treated patients who developed IMC. With the use of several
advanced techniques, such as RNA-sequencing, multiplex
immunohistochemistry, and flow cytometry, cellular and
molecular data can be readily harvested from these biopsies.
The microbiome should also be taken into account in prospective
studies, considering its significant role. Especially those microbes
in close contact with the mucosal tissue should be examined and
differences in host-microbe interactions in the mucosa of
patients with IMC versus patients remaining free of IMC
should be explored. In future IMC-focused trials, blood, colon
biopsies, and stool should be collected at standardized points in
time, e.g., at baseline and during ICI cycles. Understanding the
interactions between all key players in IMC is of utmost
importance to improve the current clinical treatments. This
research may lead to additional targets for treatment, as well as
biomarkers that could identify patients at risk of high-
grade IMC.

Currently, several guidelines suggest that patients diagnosed
with high-grade IMC are to be treated with first-line systemic
corticosteroids (110, 125, 126). In case of steroid-refractory IMC,
anti-TNFa treatment with infliximab is often initiated. However,
both treatments are unspecific for IMC and therefore come with
several drawbacks, such as risk of infection and drug-induced
comorbidities (127, 128). Infliximab has even been observed to
compromise the long-term anti-tumor response in steroid
refractory patients (129).
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Recently, the use of immunosuppressants targeting
specifically the gut in IMC has been investigated, primarily
vedolizumab. This antibody blocks the a4b7 integrin, which is
involved in homing of T-cells to the gut (130). Vedolizumab has
adequately replaced infliximab in steroid-refractory patients, and
administration within 10 days of IMC onset leads to better
management and clinical remission (131, 132). However,
histologic remission is often not seen six months after clinical
remission, indicating that there is room for improvement (131).
Prospective studies interfering with alternative pathways may
provide more options for IMC-specific treatments.

Several potential targets for IMC are already in clinical trials
(Figure 2). For instance, blocking IL-6 with tocilizumab could
Frontiers in Immunology | www.frontiersin.org 8
reduce Th17 differentiation, thereby restoring the dysfunctional
balance between Tregs and Th17 cells (NCT03601611).
Additionally, cytokine secretion by Th17 cells could be
targeted using secukinumab, an anti-IL-17A monoclonal
antibody. Secukinumab has already shown a beneficial
therapeutic effect in patients suffering from ICI-induced
psoriasis, without affecting their anti-tumor response (133).
Caution is required when using this antibody to treat IMC,
since secukinumab is ineffective in CD, risking fungal infections
along the way (134). In UC, an antagonist of the p40 subunit of
IL-12 and IL-23, called ustekinumab, showed to induce and
maintain disease remission (135). It has not been studied in the
context of IMC and the cytokines IL-12 and IL-23 have not been
FIGURE 2 | Targets for treatment of immune checkpoint inhibitor-mediated colitis (IMC). Infliximab and vedolizumab are already standard of care in steroid-refractory
IMC. The other agents are currently not routinely given to patients. This image was created with BioRender.com. CTL, Cytotoxic T-lymphocyte; IFN, Interferon; IL,
Interleukin; JAK, Janus kinase; Th17, T helper 17 cell; TNF, Tumor necrosis factor; Treg, regulatory T-cell.
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reported to be important in IMC yet. IFNg, on the other hand,
does have an important role in IMC, causing a pro-inflammatory
response and epithelial damage. The function of IFNg can be
inhibited by targeting the JAK signaling pathway with tofacitinib.
Tofacitinib has shown efficacy against IMC in five patients (136,
137) and will be investigated in a clinical trial with ten patients
(NCT04768504). Tofacitinib has also shown efficacy in
treatment of IBD (138). However, JAK signaling is reported to
be important for an anti-tumor response upon ICI therapy (139),
so caution with inhibition of this pathway in IMC is necessary.
Future IMC trials should focus on mechanism-based approaches
for selection of first-line immunomodulating agents. Such agents
should interfere with IMC, without compromising the efficacy of
ICI antibodies.

In addition to interfering with pathways of the immune
system, targeting the microbiome is also an option for
treatment of IMC. For instance, an experimental FMT
immediately showed alleviation of IMC symptoms in patients
refractory to corticosteroids, infliximab, and vedolizumab (83,
84). FMT has already shown promising therapeutic effects in
Clostridoides difficile infections (140). Recently, a large clinical
trial, 800 patients with any stage melanoma, non-small cell lung
cancer or genitourinary cancer, has been set up to study potential
biomarkers in the microbiome and the safety and efficacy of FMT
in IMC (NCT03819296). An alternative to FMT would be the use
of probiotics. Probiotics are effective in mouse models of IMC,
and successfully used against necrotizing enterocolitis in human
preterm infants (141). Since FMT and probiotics aim to
normalize the gut microbiome, it is an attractive strategy to
treat IMC without affecting the efficacy of ICI therapy. The
composition of the gut microbiome can affect the antitumor
Frontiers in Immunology | www.frontiersin.org 9
response negatively or positively (142, 143). Promising is the
observation in mouse models that probiotic treatment with two
different bacterial genera attenuates IMC without compromising
the antitumor response (58, 74). Therefore, IMC treatment with
specific bacterial strains might be more suitable than unspecific
FMT treatment with the risk of lowering the anticancer activity
of the immune system.

All in all, it is expected that ICI therapy becomes available for
more types of cancer in upcoming years (144, 145). To reduce
physical harm and loss of quality of life due to irAEs, the balance
between efficacy and toxicity requires optimization. Results of
mechanism-based IMC research may lead to optimization of
treatments and predictions of IMC. In addition, it may provide
new insights concerning non-intestinal irAEs. We envision direct
clinical relevance for future patients undergoing ICI therapy, in
which severe irAEs with quality-of-life deterioration can be
treated or even be prevented.
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