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The BNT162b2 mRNA vaccine developed by Pfizer and 
BioNTech is the first US Food and Drug Administration 
(FDA)-approved mRNA vaccine in history. The vaccine 

demonstrated 95% efficacy against symptomatic coronavirus dis-
ease 2019 (COVID-19) caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection in a phase-III 
trial1,2. However, despite its widespread use, the mechanisms by 
which BNT162b2 stimulates protective immunity remain largely 
unknown. BNT162b2 comprises N1-methyl-pseudouridine (m1Ψ) 
nucleoside-modified mRNA encapsulated in a lipid nanoparticle 
(LNP). Following administration in muscle, the mRNA is translated, 
resulting in the expression of the spike protein and spike-specific B 
and T cell responses3. Kariko et al. found that the m1Ψ-modification 
on RNA dampens the inflammatory response mediated by TLR3, 
TLR7 or RIG-I, and increases translational efficiency and biological 
stability3,4. mRNA vaccines encapsulated in LNPs were also found to 
induce a high magnitude of germinal center B (GC B) cell and fol-
licular helper T cells (TFH) responses after a single immunization5–8.

Several studies have analyzed immune responses to the 
BNT162b2 vaccine in humans and revealed insights about the nature 
of the antibody and T cell responses to vaccination1,2,9–13. Despite 
our emerging understanding of immune responses to BNT162b2, 
there are major knowledge gaps on its mechanisms of action. For 
example, there is a paucity of understanding on the nature of the 
innate response to BNT162b2 and, in particular, how BNT162b2 is 

sensed by the host’s innate immune system. Studies of mRNA vac-
cines against cancer demonstrate that they can trigger TLR4 (ref. 14), 
TLR7 (ref. 15) or STING16 signaling pathways, but such knowledge 
is lacking in the context of BNT162b2. Arunachalam et al. used a 
systems vaccinology approach to analyze the innate and adaptive 
immune responses to vaccination with BNT162b2 in humans9. 
Our analysis demonstrated detectable neutralization antibody 
titers after primary immunization, which was enhanced consider-
ably upon secondary immunization. Furthermore, there was only 
a modest innate immune response, at 1 or 7 d after primary immu-
nization. Surprisingly however, secondary immunization with 
BNT162b2 induced a much higher magnitude of innate immune 
response than after primary vaccination9. This enhanced ‘second-
ary innate response’ was characterized by increased levels of IFN-γ 
in the plasma, enhanced transcriptional signatures of innate immu-
nity and antiviral immunity in myeloid cells. However, the cellular 
sources of the rapidly produced IFN-γ and its role in the enhanced 
innate immune response after secondary vaccination remains 
unclear. Furthermore, although vaccination with BNT162b2 has 
been shown to induce substantial frequencies of antigen-specific 
CD8+ T cell responses in the blood9,17, there are currently no data 
on the nature of immune responses in tissues, as most studies have 
focused on analyzing immune responses in the blood. In addi-
tion, the in vivo distribution of the mRNA and the spike protein 
that it encodes, after intramuscular vaccination, remains poorly 
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understood. To address these knowledge gaps, we performed a 
detailed analysis of innate and adaptive immune responses to 
BNT162b2 vaccination in mice. In particular, we analyzed (1) the 
adaptive immune response induced by BNT162b2 after both pri-
mary and booster vaccines in organs including the lung and spleen; 
(2) the innate immune response in draining lymph nodes (dLNs), 
non-draining lymph nodes and other organs at the single-cell level, 
using systems immunology approaches; and (3) the innate sens-
ing mechanisms that regulate antigen-specific antibody and T cell 
responses to BNT162b2 vaccination.

Results
BNT162b2 immunization stimulates robust germinal cen-
ter responses. To evaluate immune responses to BNT162b2, we 
immunized C57BL/6 mice on days 0 and 21 with 5 μg BNT162b2 
by intramuscular injection (Fig. 1a). Anti-spike binding IgG 
responses, comprising both IgG1 and IgG2c, increased sig-
nificantly at 14 d after primary immunization and persisted 
until day 21, while the secondary immunization increased the 
response more than tenfold (Fig. 1b). Consistent with bind-
ing antibody responses, neutralizing antibody responses against 
the SARS-CoV-2 wild-type (WT) strain and variants of concern 
including B1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 
(delta) and B.1.429 (epsilon) were detected on day 21 and increased 
significantly following secondary immunization (Fig. 1c). While 
the neutralizing titers against the alpha and epsilon variants did 
not differ significantly from those of the WT strain, neutralizing 
antibody titers at day 42 against the beta, gamma and delta vari-
ants were lower by 4.2-fold, 2.5-fold and 3.9-fold, respectively 
relative to the titers against the WT strain (Fig. 1c), consistent 
with findings in humans18. In addition to serological responses, 
we examined the responses of GC B cells (CD19+CD38−CD95+) 
and TFH cells (CD3+CD4+PD1+CXCR5+) as well as plasma cells 
(CD44+CD138+). BNT162b2 immunization induced a strikingly 
high magnitude of GC B cells, TFH cells and plasma cells in dLNs, 
which peaked on day 7 and decreased by day 21 (Fig. 1d–f). 
Collectively, these data demonstrate the potent stimulation of 
humoral immune responses by BNT162b2. In addition, we tested 
antibody responses in mice immunized with 0.2 μg of the vaccine, 
which is an equivalent dose to that used in humans based on body 
weight19,20. The antibody kinetics mirrored the response induced 
by the higher dose, but the magnitude was approximately tenfold 
lower (Extended Data Fig. 1a).

T cell response induced by BNT162b2 vaccination. Next, we mea-
sured antigen-specific T cell responses in spleen and lung on days 
21 and 42 after vaccination following the prime-boost immuniza-
tion strategy presented in Fig. 1a. While the primary immunization 
elicited detectable antigen-specific CD4+ and CD8+ T cell responses 
in both tissues consistent with previous reports8,21, there was a strik-
ing increase in the frequency of antigen-specific CD8+ T cells after 
secondary immunization, especially in the lung, where we observed 
a median of 10% MHC-I tetramer-positive CD8+ T cells on day 
42 (Fig. 2a). There was a robust induction of spike-specific CD8+ 
T cells secreting IFN-γ, tumor necrosis factor (TNF) and interleu-
kin (IL)-2 following in vitro stimulation with an overlapping peptide 
pool (Fig. 2b). The CD4+ T cell responses were primarily of the TH1 
type with little induction of IL-4 response (Fig. 2c), consistent with 
previous reports8,21. As tissue-resident memory T cells (TRMs) play 
an essential role in preventing local infection22,23, we measured TRM 
(CD3+CD8+CD44+CD69+CD103+) levels in the lung at day 21 and 
day 42 after BNT162b2 immunization and found that BNT162b2 
immunization did not induce TRMs in the lung (Fig. 2d), consistent 
with previous findings24. The low dose (0.2 μg) of immunization 
resulted in ~fivefold lower magnitude of T cell responses (Extended 
Data Fig. 1b–d).

BNT162b2 induces robust innate immune responses. To pro-
file the innate immune response induced by BNT162b2, we first 
analyzed the dLNs by multiparametric flow cytometry (Extended 
Data Fig. 2a). Frequencies of monocytes (CD11b+Ly6Chi), plasma-
cytoid DCs (pDCs; CD11cloPDCA1+) and CD103+ migratory DCs 
(mDCs) increased significantly on day 1 and returned to baseline 
levels on day 7 (Extended Data Fig. 2b). In contrast, resident DCs 
(rDCs; both CD8a+ and CD11b+) decreased in frequency on day 
1 but increased significantly on day 7 (Extended Data Fig. 2b). 
Further, multiple innate immune cells including monocytes, mac-
rophages (CD11b+Ly6CloF4/80+), pDCs and DC subsets (CD8a+ 
rDCs, CD11b+ rDCs, CD103+ mDCs and CD11b+ mDCs) were 
highly activated, as indicated by the enhanced expression of the 
activation marker CD86 (Fig. 3a). The low dose (0.2 μg) of immuni-
zation induced lower levels of innate cell activation (Extended Data 
Fig. 1e). These innate cell types remained activated until day 3 after 
immunization (Fig. 3b). In comparison, the innate cells were mod-
erately activated in the contralateral lymph nodes (non-dLNs), lung 
and spleen (Fig. 3c,d).

Next, we analyzed serum cytokine responses using a Luminex 
assay. BNT162b2 immunization induced the release of many cyto-
kines, including MCP1, MIP1b, IL-6 and CXCL10, as well as IFN-γ, 
that peaked at 6 h after immunization (Fig. 3e) in contrast to the 
significantly elevated levels of only two cytokines/chemokines 
(IFN-γ and CXCL10) in human volunteers after receiving the same 
vaccine9. It should, however, be noted that in the study in humans, 
Arunachalam et al. only measured plasma cytokine levels at 1 and 
7 d after vaccination, and not at the earlier time point of 6 h exam-
ined in the current mouse study9. All the cytokines, except IFN-γ, 
returned to normal levels at day 3 after immunization. Strikingly, 
there was a significant induction of IFN-α (IFN-α2 and IFN-α4) in 
mice at 6 h, which was not observed in humans at the 1-d time point 
we examined9. Of note, the lower dose (0.2 μg) of immunization did 
not induce IFN-α as seen in humans; however, there was also an 
absence of IFN-γ response (Extended Data Fig. 1f), suggesting that 
there was not a human equivalent dose of BNT162b2 in mice.

Single-cell transcriptomics of innate immunity to BNT162b2. 
To further understand the cellular and molecular mechanisms 
involved in the immunogenicity of BNT162b2, we performed 
single-cell transcriptional profiling of cells in the dLNs 1, 3 and 7 d 
after immunization (Fig. 4a). As a benchmark, we compared the 
responses to BNT162b2 with those of the live attenuated yellow 
fever vaccine YF-17D, one of the most effective vaccines ever devel-
oped in humans25. Our previous work showed that YF-17D activates 
multiple subsets of DCs via several different Toll-like receptors 
(TLRs) to stimulate potent adaptive immune responses26,27. We 
used an ‘enrich-mix’ strategy in which CD11b+ myeloid cells, pDCs 
(CD11b−CD11cloPDCA-1+) and DCs (CD11c+MHC-II+) were 
enriched by cell sorting and then mixed with total cell suspension at 
a ratio of 1:1 (Fig. 4a). The resulting cell suspension was subjected 
to droplet-based single-cell gene expression profiling. After quality 
control, we obtained 52,788 high-quality transcriptomes (Fig. 4b). 
Using dimensionality reduction via uniform manifold approxima-
tion and projection (UMAP) and graph-based clustering, we identi-
fied 20 cell clusters containing all major innate and adaptive immune 
cell types (Fig. 4b and Extended Data Fig. 3a). First, we analyzed 
the number of differentially expressed genes (DEGs) within each 
cluster. The YF-17D vaccine stimulated a profound DEG response 
in multiple cell types, as seen in previous study28, which peaked at 
day 1 and returned to baseline by day 7. Interestingly, the mRNA 
vaccine stimulated a larger number of DEGs, especially in mono-
cyte/macrophage, DCs and natural killer (NK) cells on day 1 that 
persisted until day 7 (Fig. 4c). Gene-set enrichment analysis using 
blood transcriptional modules (BTMs) revealed activation of type 
I interferon and antiviral responses in multiple cell types, which 
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peaked at day 1 and returned to baseline levels by day 7 (Fig. 4d). 
In contrast, cell cycle-associated genes and transcription-associated 
genes increased at day 1 and persisted to day 7, especially in NK 
cells and T cells (Fig. 4d). The overall responses were comparable to 
those of the YF-17D immunization (Extended Data Fig. 3b,c).

Arunachalam et al. demonstrated that the BNT162b2 vaccina-
tion in humans results in an enhanced innate immune response fol-
lowing the secondary vaccination in comparison with the primary 
vaccination9. A crucial aspect of that study was the discovery of an 
innate cell cluster (C8) using single-cell transcriptional profiling that 
emerged 1 d after secondary vaccination, a ~100-fold increase in 
comparison to the first day after primary vaccination. We determined  

that these cells were a transcriptional counterpart of an epige-
netically programmed monocyte population that Wimmers et al. 
described in humans vaccinated with the H5N1 avian influenza 
subunit vaccine adjuvated with AS03 (H5N1 + AS03) (ref. 29). The 
core transcriptional signature of these cells was an increased expres-
sion of interferon-stimulated genes (ISGs; ISG15, GBP1, IFITM3, 
IFIH1, ANKRD22, IFI35, MX1, IRF1, IRF7, IRF8 and STAT1) and 
decreased expression of AP-1 transcription factors encoded by 
FOS and JUN9,29. Therefore, we asked if a similar cell population 
would also emerge in response to mRNA vaccination in mice. We 
re-embedded C2_mono_macrophage (a cluster containing a mix 
of monocyte and macrophage populations) and C15_macrophage 
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fluorescence-activated cell sorting; ICS, intracellular cytokine staining. b, Serum anti-spike IgG, IgG1a and IgG2c binding titers (EC50) detected by 
ELISA. c, Pseudotyped lentivirus neutralization antibody titers (NT50) against SARS-CoV-2 WT and variants of concern (B.1.429, B.1.1.7, B.1.351, P.1 and 
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clusters using genes that characterized the epigenetically remod-
eled monocyte population enriched in humans 21 d after vaccina-
tion with two doses of H5N1/AS03 (ref. 29). Principal components 
were calculated from the 2,000 most variable genes within the 
cells originally part of macrophage clusters C2 and C15. Applying 
Louvain community detection to the nearest-neighbor graph  

structure derived from principal-component analysis embeddings 
with a resolution of 0.2, the monocytes/macrophages were segre-
gated into 12 subclusters (Fig. 4e). Cluster membership differences 
between cells derived from mice treated with mRNA and YF-17D 
were mostly due to cells profiled on day 1 and day 3 (Fig. 4e).  
Strikingly, we found subclusters (3, 5, 7 and 8) that appeared within 
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1 and 3 d after immunization, with increased levels of Irf8, Stat1, 
Stat2, Irf1 and Stat3, and decreased levels of Atf3, Fos, Junb and Jund, 
mirroring the innate immune cell populations described above  
(Fig. 4f and Extended Data Fig. 3d).

BNT162b2 stimulates enhanced secondary innate immune 
response. A hallmark of the immune response to BNT162b2 vac-
cination in humans is the striking increase in the innate immune 
response following secondary vaccination, relative to the response 
after primary vaccination9. To determine whether a similar effect 
was observed in mice, we measured serum cytokine/chemo-
kine responses after the primary and secondary immunizations. 
Consistent with observations in humans9, median IFN-γ response 
increased 8.6-fold, from 44.5 pg ml−1 at 6 h after immunization  

(day 0.3) to 383.1 pg ml−1 at 6 h after the secondary immunization 
(day 21.3; Fig. 5a). The data generated with the Luminex assay pro-
vided evidence that IFN-γ and other cytokines like IL-2, CCL2, 
CCL4 and CCL5 were enhanced at 6 h after the secondary immuni-
zation compared with those after the primary immunization, while 
there was no difference between prime and boost with a 0.2 μg dose 
(Extended Data Fig. 4a). Consistent with an increased IFN-γ level 
after secondary immunization, innate cells, including monocytes, 
macrophages and DCs, were more activated after secondary than 
after primary immunization, as judged by the level of CD86 expres-
sion (Fig. 5b).

In addition, we purified monocytes and quantified the expres-
sion of key ISGs and AP-1 transcription factors that distinguished 
cluster 8 from the other myeloid cells, defined in the human study 
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with BNT162b2 (ref. 9). All the key ISGs (Isg15, Mx1, Ifih1, Oas1a, 
Ifi35, Ifitm3, Ccl5, Irf1, Irf7, Irf8, Stat1, Stat2 and Stat3) were induced 
after the primary immunization, and importantly, the expression 
was increased further after the secondary immunization (Fig. 5c). 
Further, the AP-1 transcription factors encoded by Fos and Fosb 
were downregulated (Fig. 5c), as in previous studies9,29. Next, to 

identify the cellular origin of plasma IFN-γ, we performed ex vivo 
flow cytometry (Extended Data Fig. 4b). Notably, while the NK 
cells produced IFN-γ after both primary and secondary immuniza-
tions, CD4+ and CD8+ T cells contained the highest frequency of 
IFN-γ-expressing cells on day 22 (Fig. 5d,e). To determine whether 
the IFN-γ produced by T cells and NK cells within 1 d of secondary 
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immunization acted on myeloid cells to induce the expression of 
ISGs, we blocked the activity of IFN-γ in vivo with an IFN-γ receptor 
neutralizing antibody against the IFN-γ receptor, before secondary 
immunization on day 21 (Fig. 5f), and measured gene expression on 
day 22. We observed a significant reduction in the expression of all 
ISGs (Gbp1, Ifih1, Ifitm3, Ankrd22, Ccl5, Irf1, Irf7, Irf8, Stat1, Stat2 
and Stat3) in monocytes of anti-IFN-γ receptor antibody-treated 
mice versus mice treated with an isotype control (IgG), while the 
AP-1 transcription factors encoded by Fos, Fosb, Jun and Junb were 
upregulated (Fig. 5g). Furthermore, activation of monocytes, mac-
rophages and DCs was significantly reduced in IFN-γ-receptor 
antibody-treated mice (Fig. 5h), suggesting that IFN-γ signaling 
plays an important role in the innate immune activation induced 
by BNT162b2. We also measured spike-specific T cell and antibody 
responses on day 42 after IFN-γ receptor blockade. We found that 
the antigen-specific CD4+ and CD8+ T cell responses did not dif-
fer significantly in the lung, nor was there a difference in antibody 
response (Extended Data Fig. 4c–e). However, there was a ~twofold 
reduction in the spike-specific CD8+ T cells producing IFN-γ in 
the spleen (Extended Data Fig. 4c). To further delineate the rela-
tive importance of T cells versus NK cells in producing the burst 
of IFN-γ on day 22, we depleted NK or T cells (CD4+ and CD8+ 
T cells) before boost using NK1.1 or CD4/CD8-depletion antibod-
ies. The T cell depletion, but not NK cell depletion, abrogated serum 
IFN-γ on day 22 (Extended Data Fig. 4f), 1 d after the boost demon-
strating that the CD4+ and CD8+ T cells were the primary source of 
the circulating IFN-γ. Consistent with this, the activation of innate 
immune cells measured by mean fluorescence intensity of CD86 
expression was more substantially reduced in T cell-depleted mice 
than in the control mice or mice depleted of NK cells (Extended 
Data Fig. 4g).

mRNA uptake by lymph node dendritic cells and macrophages. 
Many characteristics of LNP-mRNA vaccines, including size of the 
LNP, pKa of the ionizable lipid, and lipid gradients, affect the tis-
sue and cell specificity of the mRNA vaccine15,30. Using single-cell 
RNA-sequencing (scRNA-seq) data, we investigated the cells con-
taining spike mRNA in the dLNs. We observed high levels of spike 
mRNA reads on day 1 that decreased sharply by day 3 (Fig. 6a). 
The reads were primarily restricted to clusters 2 and 4, which rep-
resent monocyte/macrophages and mDCs, respectively (Fig. 6a). 
Quantification of cells with at least one read per cell demonstrated 
that 40% of monocyte/macrophages and 20% of mDCs contained 
spike mRNA on day 1 (Fig. 6b). The frequency of these cells increased 
after vaccination (Fig. 6c). We also measured mRNA in various tis-
sues using real-time PCR and found that the dLNs contained the 
highest concentration of mRNA (Fig. 6d). Interestingly, the spleen 
tissue also contained mRNA but at a much lower concentration  
(Fig. 6d). Consistent with the transcriptional data, serum concen-
tration of spike protein increased on day 1 and decreased by day 7  
(Fig. 6e). There was a small amount of mRNA in other tissues such as 
muscle, liver, lung and non-dLNs (Fig. 6e), consistent with previous 
reports31. Finally, we analyzed the gene expression profile associated 
with the spike mRNA signals in macrophages and mDCs (Fig. 6f). 
In both cell clusters, the spike mRNA signal was associated strongly 
with interferon-related and innate immune response-related BTMs 
including type I interferon response (M127), activated DCs (M64 
and M67) in C2, chemokine cluster (II; M27.1), TLR and inflamma-
tory signaling (M16) in C4, and RIG-I-like receptor signaling (M68) 
and antiviral IFN signature (M75) in both C2 and C4 (Fig. 6f), sug-
gesting direct activation of innate immune signaling by the mRNA. 
Notably, Ifih1, the gene encoding MDA5, and downstream targets 
of MDA5 signaling were highly correlated with the spike mRNA 
signal in monocytes and macrophages (Fig. 6g). On the other hand, 
expression of TLRs and MyD88 was highly associated with the spike 
mRNA levels in the mDCs (Fig. 6g).

BNT162b2 stimulates CD8+ T cell responses via MDA5–IFN-α 
axis. TLRs are the most studied sensors of pathogen-associated 
molecular patterns32. TLR3 and TLR7 recognize double-stranded 
and single-stranded RNA, respectively33–35. Therefore, we first 
examined whether deficiency of these receptors results in a dimin-
ished immune response to BNT162b2. However, immunization of 
Tlr3−/− or Tlr7−/− mice did not cause a reduction of antibody or T cell 
responses (Extended Data Fig. 5a–c), suggesting that they are not the 
primary sensors of BNT162b2 in vivo. Previous evidence indicates 
that the SARS-CoV-2 spike protein binds to and stimulates TLR2 
and TLR4 signaling36,37. Further, we have shown that the immune 
responses to the seasonal flu and other unadjuvanted vaccines are 
controlled by microbiota via the TLR5 pathway38. Therefore, in addi-
tion to examining TLR3 and TLR7, we measured antibody and T cell 
responses in Tlr2−/−, Tlr4−/− and Tlr5−/− mice. None of the mice dem-
onstrated an impaired immune response to BNT162b2 vaccination 
(Extended Data Fig. 5d–i), providing evidence that these receptors 
are also not the primary sensors of BNT162b2.

Inflammasomes are critical regulators of innate immunity 
that regulate adaptive immunity to vaccines and adjuvants39,40. 
We examined the role of the inflammasome pathway using Asc−/− 
(also known as Pycard−/−) and Nlrp3−/− mice and found no signifi-
cant difference in antibody or T cell responses in comparison to 
WT mice (Extended Data Fig. 6a–c). Next, we examined the role 
of the cGAS–STING pathway, a cytoplasmic nucleic acid-sensing 
mechanism41,42. Cgas−/− and Sting−/− mice did not display a reduced 
response (Extended Data Fig. 7a–c), suggesting that these pro-
teins do not play a role in immunogenicity of BTN162b2. Kim 
et al. reported that damage-associated molecular patterns, released 
during cell death pathways such as necroptosis, regulate immu-
nity to adjuvants43. Like the adjuvant MF59 (ref. 43), BNT162b2 
induced damage-associated molecular pattern signals, including 
double-stranded DNA and HMGB1 peaking at 24 h after immu-
nization, and uric acid peaking 2 d after immunization (Extended 
Data Fig. 8a–c). However, Ripk3−/− and Gsdmd−/− mice displayed no 
effect of BNT162b2-mediated T cell and antibody responses com-
pared with littermate controls (Extended Data Fig. 8d–i).

The RIG-I-like receptor family of proteins sense cytosolic RNA 
and are a second family of putative sensors of BNT162b244,45. To 
evaluate whether RIG-I-like receptors are involved in mRNA recog-
nition, we immunized mice deficient in MDA5. There was no reduc-
tion in the antibody responses (Fig. 7a,b). Interestingly, Mda5−/− mice 
had a striking reduction in the frequency of antigen-specific CD8+ 
T cells as evidenced by fewer class I tetramer-specific CD8+ T cells 
and IFN-γ-producing CD8+ T cells after primary (Extended Data 
Fig. 9) and secondary (Fig. 7c,d) immunizations, suggesting that 
the MDA5 sensing of BNT162b2 is responsible for the induction 
of spike-specific CD8+ T cell responses. We also observed that the 
concentration of serum total IFN-α was below the detection limit 
in Mda5−/− mice, while the WT B6 mice produced as much as 2 ng 
ml−1 of IFN-α at 6 h, as measured by ELISA (Fig. 7e). Further, the 
activation of innate immune cells measured by CD86 expression 
was significantly downregulated in these mice (Fig. 7f). As type I 
interferons are known to directly stimulate clonal expansion of 
CD8+ T cells46,47, we examined whether mice deficient in IFNAR1 
are likewise deficient in CD8+ T cell responses. Consistent with our 
hypothesis, there was a striking reduction in spike-specific CD8+ 
T cell frequencies enumerated by tetramer staining in the lung 
and spleen of Ifnar1−/− mice (Fig. 7g). In addition, there was also 
a significant but incomplete downregulation in the frequency of 
spike-specific T cells secreting IFN-γ (Fig. 7h); however, there was 
only a negligible effect on the antibody response (Fig. 7i). Moreover, 
the serum cytokine/chemokine responses (Fig. 7j,k) and the acti-
vation of innate immune cells measured by CD86 expression were 
also reduced (Fig. 7l). Collectively, these data show that MDA5 
senses BNT162b2 to induce expression of IFN-α, which stimulates 
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antigen-specific CD8+ T cell expansion via IFNAR1, to promote a 
high magnitude of antigen-specific CD8+ T cells. Thus, MDA5 defi-
ciency leads to IFN-α deficiency, which in turn leads to reduced 
CD8+ T cell response after primary vaccination, which then leads 
to reduced recall responses. Finally, we also detected a reduced fre-
quency of CD8+ T cells, and negligible reduction of IgG titers in 
Batf3−/− mice (Extended Data Fig. 10), which lack cross-presenting 
CD8α+ DCs48, suggesting the cross-presentation is important for 
BNT162b2-induced T cell responses.

Discussion
The current study, involving a detailed analysis of immune responses 
to vaccination of mice with the BNT162b2 vaccine, provided  

several new mechanistic insights (Fig. 8). As is the case in humans, 
after secondary immunization of mice, BNT162b2 induced a ten-
fold greater magnitude of antigen-specific binding and neutralizing 
antibodies, and potent GC B cell and TFH responses. Surprisingly, 
there was a strikingly high magnitude of antigen-specific CD8+ 
T cells in the lung and spleen, after the secondary immunization. 
The higher magnitude of T cell response in lung than in spleen is 
not unique to the mRNA vaccine, as we have observed this in mice 
immunized with YF-17D49, and with AddaVax or MF59 plus Ova43. 
Experiments using a low dose (0.2 μg) of vaccine also resulted in 
similar B cell and T cell responses, but the magnitude was fivefold 
to tenfold lower than the high dose. Consistent with findings in 
humans9, we observed in mice enhanced innate immune responses, 
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including enhanced plasma IFN-γ concentrations, enhanced acti-
vation of DCs and myeloid cells in the dLNs, with a potent tran-
scriptional signature of ISGs, and diminished expression of AP-1 
transcription factor genes, after the secondary immunization with 
BNT162b2. We extended these findings to show that the CD4+ and 
CD8+ T cells were the primary source of serum IFN-γ 1 d after 

secondary immunization, which results in the enhanced myeloid 
cell activation after the secondary immunization. The heightened 
IFN-γ response following secondary immunization could conceiv-
ably enhance innate antiviral immunity during the first few days 
or weeks of vaccination, a period during which antigen-specific 
T cell and B cell responses are still nascent. In line with this notion, 
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Wimmers et al. showed that vaccination with H5N1 + AS03 
induces epigenetic changes in monocytes and myeloid DCs associ-
ated with enhanced IRF accessibility and heightened resistance to 
infection with unrelated blood-borne viruses, such as dengue virus 
and Zika virus29. Whether BNT162b2 can also cause the epigenetic 
changes on a genomic level to provide broader protection against 
other infectious diseases remains an open question in both humans 
and mice.

The distribution and dynamics of the BNT162b2 mRNA and the 
spike protein encoded by it, in tissues and cell types in vivo remains 
unclear. In this study, we found that BNT162b2 mRNA could be 
detected in mDCs and monocyte/macrophage subsets in the dLNs 
for at least 7 d following intramuscular immunization. Furthermore, 
mRNA could be detected in the spleen, and the spike protein itself 
was detectable in the serum, for up to 7 d after immunization.

Another insight to emerge from this study is how the innate 
immune system senses the BNT162b2 mRNA vaccine and modu-
lates adaptive immunity. By analyzing responses in various strains 
of knockout mice, we found that induction of antigen-specific 
T cell and antibody responses was independent of TLR2–TLR5 
and TLR7, or the STING–cGAS DNA-sensing pathway, and inde-
pendent of NLRP3-dependent ASC inflammasome activation. 

Furthermore, mice deficient in RIP3 kinase and gasdermin D, the 
central mediators of necroptosis50,51 and pyroptosis52 respectively, 
mounted normal T and antibody responses to BNT162b2, arguing 
that these cell death pathways were not essential for the immunoge-
nicity of this vaccine. However, we found that the MDA5–IFNAR1 
signaling pathway is critical for the CD8+ T cell response induced 
by BNT162b2. A previous study showed that MDA5 deficiency 
resulted in a modest impairment of antigen-specific CD8+ T cell 
response following primary immunization with OVA+polyI:C, but 
a more pronounced impairment of secondary T cell responses53. 
MDA5 deficiency affects clonal expansion of CD8+ T cells after 
primary as well as secondary immunization with BNT162b2 via 
impaired production of IFN-α, within the first few hours of pri-
mary vaccination. These data are consistent with studies showing a 
critical role for type I interferon responses in the clonal expansion of 
antigen-specific CD8+ T cells46. mRNA is known to spontaneously 
form double-stranded RNA structures, and it is likely that MDA5 
recognizes these double-stranded elements54 in the target cells.

Whether these findings with BNT162b2 are applicable to other 
mRNA vaccines, such as mRNA-1273 from Moderna55 and MRT5500 
from Sanofi56, remains to be determined. Although our data pro-
vide no evidence for a role for TLR2–TLR5 and TLR7, Alameh et al. 
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showed that GC B cell and TFH cell responses induced by a different 
mRNA vaccine (a nucleoside-modified HA mRNA-LNP vaccine) is 
dependent on MyD88 but not MAVS57. Whether this difference is 
due to synergistic triggering through multiple TLRs, or differences 
between the BNT162b2 vaccine from Pfizer-BioNTech versus the 
vaccine used by Alameh et al. remains to be determined.

As will be appreciated, the aforementioned experiments in mice 
have revealed several new mechanistic insights about the innate and 
antigen-specific T and B cell responses induced by the BNT162b2 
mRNA vaccine. A key question relates to the relevance of these vari-
ous responses to protection against infection and disease caused by 
SARS-CoV-2. Israelow et al. found that mRNA-mediated protection 
from SARS-CoV-2 infection in mouse models is primarily mediated 
by humoral responses, while the cell-mediated immune responses 
are efficient in clearing infection24. The extent of the immunologi-
cal defects observed in the mice deficient in MDA5 and IFNAR1, 
as well as the defects in secondary innate immunity caused by 
blockade of IFN-γ activity before secondary vaccination, remains 
to be determined. Finally, it should be remembered that, while the 
immune systems of mice and humans are broadly similar, nearly 
80 million years of evolutionary divergence of these species have 
resulted in many differences in the details of how their immune 
systems work58. Therefore, the results obtained in mice should be 
interpreted in the context of similar studies in humans, in order to 
arrive at an integrated understanding of how our immune systems 
sense and respond to mRNA vaccines58–60. In summary, our study 
provides rich insights into the mechanism of BNT162b2’s effects 
in vivo. These results not only help us better understand the mecha-
nism of the BNT162b2 vaccine but also will help in the design of 
improved vaccines in the future.
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Methods
Mice and immunization. C57BL/6, B6129SF2/J, Tlr2−/−, Tlr3−/−, Tlr4−/−, Tlr5−/− 
and Tlr7−/− mice were purchased from Jackson Laboratories. Ripk3−/− and Gsdmd−/− 
mice and littermates were gifts from Genentech (A. Gitlin). Ifnar1−/−, Mda5−/−, 
Sting−/−, cGas−/− and Batf3−/− mice were bred in our animal facility at Stanford 
University. Asc−/− and Nlrp3−/− mice were initially obtained from Genentech 
(V. Dixit) and maintained in our private colony at Jackson Laboratories. Tlr3−/− 
mice are on the B6129SF2/J background, while other strains are on C57BL/6 
background. Mice were matched for sex and aged between 8 and 14 weeks.

Discarded remnant material (Pfizer/BioNTech) was used within manufacturer’s 
guidelines for stability at 50 μl of BNT162b2 mRNA vaccine (5 or 0.2 μg per 
mouse), as described in previous study61. In addition, because this was not available 
for purchase and as only remnant (otherwise to be discarded) material could be 
used at the time (as the product was approved for emergency use authorization 
only), we obtained approval from the Dean of Research at Stanford, Office for 
General Counsel at Stanford, and the FDA-Center for Biologics Evaluation and 
Research vaccines division). For immunization, mice were injected intramuscularly 
with 50 μl of BNT162b2 mRNA vaccine (5 or 0.2 μg per mouse) or subcutaneously 
at the base of the tail with 100 μl of 106 plaque-forming units of YF-17D. All mice 
in this study were maintained under specific pathogen-free conditions, a 12-h 
light/12-h dark cycle and temperatures of ~18–23 °C with 40–60% humidity, and 
were handled according to the protocol approved by the Institutional Animal Care 
and Use Committee of Stanford University.

Flow cytometry analysis of innate cells. Draining iliac lymph nodes from 
BNT162b2-immunized mice and draining inguinal lymph nodes from YF-
17D-immunized mice, along with whole lung or spleen, were collected and 
digested with 1 mg ml−1 collagenase type IV (Worthington) for 20 min at 37 °C, 
followed by smashing with a 100-μm strainer to make a single-cell suspension. Red 
blood cells from the lung and spleen were lysed before staining. Single-cell samples 
were then stained with Zombie UV (1:300 dilution; BUV496; BioLegend, 423107), 
anti-Ly6C (1:500 dilution; BV780; BioLegend, 128041), anti-Ly6G (1:400 dilution; 
APC-Cy7; BioLegend, 127624), anti-CD19 (1:100 dilution; BB700; BD, 566411), 
anti-CD3 (1:100 dilution; BB700; BD, 742175), anti-MHCII (1:400 dilution; AF700; 
eBioscience, 56-5321-82), anti-CD11b (1:100 dilution; BV650; BioLegend, 101239), 
anti-CD11c (1:400 dilution; BV421; BioLegend, 117330), anti-CD86 (1:300 
dilution; A647; BioLegend, 105020), anti-Siglec-F (1:400, PE-CF594; BD, 562757), 
anti-CD45 (1:200 dilution; BV610; BioLegend, 103140), anti-CD169 (1:200 
dilution; PE-Cy7; BioLegend, 142412), anti-PDCA-1 (1:200 dilution; BUV563; 
BD, 749275), anti-CD8a (1:200 dilution; BUV805; BD, 612898), anti-CD103 
(1:100 dilution; PE; eBioscience, 12-1031-82), anti-NK1.1 (1:200 dilution; BV510; 
BioLegend, 108738) and anti-F4/80 (1:100 dilution; BUV737; BD, 749283). Data 
were collected on a BD FACSymphony analyzer with BD FACSDiva (v8.0.1).

Flow cytometry analysis of GC B, TFH and plasma cells in lymph nodes. 
dLNs were collected and smashed with a 100-μm strainer to make a single-cell 
suspension followed by staining for viability with Ghost Dye Violet 510 (Tonbo 
Biosciences) for 5 min on ice in 1× PBS-2 mM EDTA. After washing out viability 
dye, cells were blocked with Fc receptor antibody α-CD16/32 (clone 2.4G2, BD) 
for 5 min on ice before staining with fluorochrome-conjugated antibodies in FACS 
staining buffer (1× PBS, 3% FBS, 1 mM EDTA, 0.02% sodium azide): CD3 (1:50 
dilution; clone 17A2, BioLegend), CD4 (1:200 dilution; clone GK1.5, BioLegend), 
CXCR5 (1:50 dilution; clone L138D7, BioLegend), PD1 (1:200 dilution; clone 
29F.1A12, BioLegend), CD19 (1:200 dilution; clone 6D5/CD19, BioLegend), 
CD95 (1:200 dilution; clone Jo2, BD Biosciences), CD38 (1:200 dilution; clone 
90, BioLegend), CD44 (1:300 dilution; clone IM7, BioLegend) and CD138 (1:200 
dilution; clone 281-2; BD Biosciences). Surface staining was carried out for 30 min 
on ice followed by fixation for 10 min in room temperature. Data were acquired in 
LSR-II and analyzed using FlowJo analysis software v10.

Intracellular cytokine staining assay. Whole spleen and lung samples were 
collected 42 d after prime (21 d after boost). Briefly, mononuclear populations 
from the lung were isolated from the interphase of a 70–40% Percoll gradient 
of single suspension prepared by enzymatic digestion with 1 mg ml−1 type IV 
collagenase and DNase I. Single-cell suspensions from the spleen were prepared 
without digestion. Cells were plated at ~2 × 106 cells per well in 96-well U-shaped 
plates and restimulated with S-specific overlapping peptide pools (1 µg ml−1 of 
each peptide) in complete RPMI 1640 medium for overnight incubation at 37 °C 
in the presence of brefeldin-A (10 μg ml−1). At day 2, cells were stained with 
Ghost Dye Violet 510 (Tonbo Biosciences) for 10 min on ice in 1× PBS-2 mM 
EDTA. After washing out viability dye, cells were blocked with Fc receptor 
antibody α-CD16/32 (clone 2.4G2, BD) for 5 min on ice before staining with 
fluorochrome-conjugated antibodies in FACS staining buffer (1× PBS, 2% FBS): 
CD3 (1:50 dilution; clone 145-2C11, BioLegend), CD8α (1:200 dilution; clone 
53-6.7, BioLegend), CD4 (1:200 dilution; clone RM4-5, BioLegend), CD44 (1:400 
dilution; clone IM7, BioLegend), CD69 (1:200 dilution; clone H1.2F3; BioLegend) 
and CD45 (1:200 dilution; clone 30-F11, BioLegend). Cells were incubated for 
30 min on ice for surface staining followed by fixation and permeabilization in BD 
Fix/Perm buffer and then stained intracellularly with fluorochrome-conjugated 

antibodies in Fix/Perm buffer: IFN-γ (1:100 dilution; clone XMG1.2, BioLegend), 
TNF (1:100 dilution; clone MP6-XT22, BioLegend), IL-2 (1:100 dilution; clone 
JES6-5H4, BioLegend) and IL-4 (1:100 dilution; clone 11B11, BioLegend) per the 
manufacturer’s recommendation. Data were acquired in LSR-II and analyzed using 
FlowJo v10.

Antigen-specific tetramer and tissue-resident memory T cell staining. After 
staining cells with viability dye, cells were surface stained with anti-CD3 (1:50 
dilution; clone 145-2C11, BioLegend), CD8α (1:200 dilution; clone 53-6.7, 
BioLegend), CD4 (1:200 dilution; clone RM4-5, BioLegend), CD44 (1:400 dilution; 
clone IM7, BioLegend), CD45 (1:200 dilution; clone 30-F11, BioLegend), CD69 
(1:200 dilution; clone H1.2F3, BioLegend), CD103 (1:200 dilution; clone 2E7, 
BioLegend) and Spike S-specific Tetramer (1:200 dilution; residues 539–546, 
VNFNFNGL, H-2K(B)), followed by fixation. Data were acquired in LSR-II and 
analyzed with FlowJo v10.

Flow cytometry analysis of IFN-γ-producing cells in lymph nodes. After staining 
cells with viability dye, cells were surface stained with anti-CD3 (clone 145-2C11, 
BioLegend), CD8α (clone 53-6.7, BioLegend), CD4 (clone RM4-5, BioLegend), 
CD44 (clone IM7, BioLegend), CD45 (clone 30-F11, BioLegend), NK1.1 (clone 
PK136, BioLegend) and TCR delta (1:100 dilution; clone Gl3, BioLegend), 
fixed and permeabilized in BD Fix/Perm buffer, and stained intracellularly 
with anti-IFN-γ (XMG1.2, BioLegend) according to the manufacturer’s 
recommendation. Data were acquired in LSR-II and analyzed with FlowJo v10. 
To block IFN-γ receptor, 1 mg per mouse of IFN-γ receptor neutralizing antibody 
(clone 2E2, BioXCell, BE0287) or isotype control (IgG, BioXCell, BE0091) was 
given intraperitoneally on days 19, 20 and 21 after prime. Then, mice were boosted 
at day 21 after prime, and lymph nodes were collected at day 1 after boost. To 
delete T cells or NK cells, 0.3 mg per mouse of anti-mouse CD8 (clone YTS 
169.4, BioXCell, BE0117), anti-mouse CD4 (clone GK1.5, BioXCell, BE0003-1) 
or anti-mouse NK1.1 (clone PK136, BioXCell, BE0036) or isotype control (clone 
LTF-2, BioXCell, BE0090 for anti-CD4/CD8; or clone C1.18.4, BioXCell, BE0085 
for anti-NK1.1) was given intraperitoneally on day 20 after priming. Mice were 
boosted at day 21. Serum IFN-γ levels and innate cell activation in spleen were 
checked at day 22.

Luminex assay. The assay was performed by the Human Immune Monitoring 
Center at Stanford University. Mouse 48-plex Procarta kits (EPX480-20834-901) 
were purchased from Thermo Fisher and used according to the manufacturer’s 
recommendations with modifications as described below. Beads were added to a 
96-well plate and washed in a BioTek ELx405 washer. Samples were added to the 
plate containing the mixed antibody-linked beads and incubated overnight at 4 °C 
with shaking. Cold (4 °C) and room temperature incubation steps were performed 
on an orbital shaker at 500–600 r.p.m. Following the overnight incubation, plates 
were washed in a BioTek ELx405 washer and biotinylated detection antibody 
was added for 60 min at room temperature with shaking. Plates were washed as 
described above and streptavidin-PE was added. After incubation for 30 min at 
room temperature, a wash was performed as above and reading buffer was added 
to the wells. Each sample was measured in singlets. Plates were read on a FM3D 
FlexMap instrument with a lower bound of 50 beads per sample per cytokine/
chemokine. Custom Assay Chex control beads were purchased from Radix 
BioSolutions, and were added to all wells.

Anti-spike binding ELISA. SARS-CoV-2 spike protein was purchased from Sino 
Biologicals (40589-V08B1). High-binding 96-well plates were coated with 100 ng 
of spike protein diluted at a concentration of 2 mg ml−1 in PBS. The plates were 
washed once and blocked with 3% non-fat milk for 1 h at room temperature. 
Sera samples serially diluted in 1% non-fat milk containing PBS were added to 
the plates and incubated at 37 °C for 1 h. The plates were washed 3× with PBS-T, 
and horseradish peroxidase-conjugated goat anti-mouse IgG, IgG1 or IgG2c 
(SouthernBiotech, 1:6,000 dilution) in PBS-T containing 1% non-fat milk was 
added and incubated for 1 h at room temperature. Wells were washed three 
times with PBS-T before addition of 3,3′,5,5′-tetramethylbenzidine substrate 
solution (Thermo Pierce). The reaction was stopped after 3 min by addition of 
0.16 M sulfuric acid. The optical density at 450 nm was measured with a Bio-Rad 
microplate reader.

Pseudotyped lentivirus virus production. Viral transfections were done in 
HEK293T cells using Bio T transfection reagent. Five million cells were seeded 
in D10 medium (DMEM + 10% FBS, l-glutamate, penicillin, streptomycin and 
10 mM HEPES) in 10-cm plates 1 d before transfection. A five-plasmid system62 
was used for viral production. The spike vector contained the 21 amino acid 
truncated form of the SARS-CoV-2 spike sequence from the Wuhan-Hu-1 strain 
of SARS-CoV-2. Plasmids were added to D10 medium in the following ratios: 
10 µg pHAGE-Luc2-IRS-ZsGreen, 3.4 µg FL spike, 2.2 µg HDM-Hgpm2, 2.2 µg 
HDM-Tat1b and 2.2 µg pRC-CMV-Rev1b in a final volume of 1 ml; 30 µl of Bio 
T was then added. Transfection reactions were incubated for 10 min at room 
temperature, and then added up to 10 ml with D10 medium. This mixture was 
added slowly to plated cells. Culture medium was removed 24 h after transfection 
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and replaced with fresh D10 medium. Viral supernatants were collected 72 h after 
transfection by spinning at 300g for 5 min followed by filtering through a 0.45-µm 
filter. Viral stocks were aliquoted and stored at −80 °C until ready for use.

Neutralization assay. The target cells used for infection in viral neutralization 
assays were from a HeLa cell line stably overexpressing the SARS-CoV-2 receptor, 
ACE2, as well as the protease known to process SARS-CoV-2, TMPRSS2 (ref. 63). 
ACE2/TMPRSS2/HeLa cells were plated 1 d before infection at 5,000 cells per 
well or 2 d before infection at 2,500 cells per well. White-walled, clear-bottom, 
96-well plates were used for the assay (Thermo Fisher Scientific). On the day of 
the assay, dilutions of serum were made into sterile D10 medium to a final volume 
of 30 µl. Samples were run in technical duplicate in each experiment. All other 
wells contained only D10 medium. A virus mixture was made containing the virus 
of interest (for example, SARS-CoV-2 with a 21 amino acid deletion on the C 
terminus), D10 medium (DMEM + 10% FBS, l-glutamine, 100 U ml−1 penicillin, 
100 U ml−1 streptomycin and 10 mM HEPES) and polybrene. Virus dilutions 
into medium were selected such that a suitable signal would be obtained in the 
virus-only wells. A suitable signal was selected such that the virus-only wells would 
achieve a luminescence of at least >10,000 relative light units. Sixty microliters 
of this virus mixture was added to each of the serum dilutions to make a final 
volume of 120 µl in each well. Virus-only wells were made containing 60 µl D10 
medium and 60 µl virus mixture. Cell-only wells were made containing 120 µl of 
D10 medium. The diluted serum/virus mixture was left to incubate for 1 h at 37 °C. 
Following incubation, the medium was removed from the cells on the plates made 
1 or 2 d before, replaced with 100 µl of diluted serum/virus dilutions, and incubated 
at 37 °C for approximately 48 h. Infectivity readout was performed by measuring 
luciferase with a microplate reader (BioTek). Normalized values were fit with a 
three-parameter nonlinear regression inhibitor curve in GraphPad Prism (v9.2.0) 
to obtain NT50 (half neutralizing antibody titer) values.

Spike protein detection in serum. SARS-CoV-2 (2019-nCoV) Spike Detection 
ELISA Kit (Sino Biological, KIT40591) was used to measure spike protein in 
mouse serum according to the manufacturer’s protocol. First, plates were washed 
three times followed by the addition of standard and diluted samples (2 µl mouse 
serum was added into 98 µl dilution buffer). Plates were then incubated for 2 h. 
After incubation, plates were washed three times and incubated with detection 
antibody for 1 h. Again, the plates were washed three times and 200 µl of substrate 
solution were added for 20 min. Finally, 50 µl stop solution were added and the 
optical density at 450 nm was measured with a microplate reader (Bio-Rad). All 
incubations were conducted at room temperature.

Spike mRNA vaccine detection by RT–PCR. Tissues were taken at day 1 after 
immunization. Tissues were weighted and homogenized with a bead miller 
(Fisher). Total RNA was purified with a PureLink RNA mini kit (Invitrogen).  
RNA purified from BNT162b2 mRNA vaccine was diluted serially and served  
as the standard. A Luna universal probe one-step RT–PCR kit (NEB) was used to  
measure the cycle threshold (Ct) of purified RNA with mRNA vaccine-specific  
primers (mVac-F: 5′-TACCAAGCTGAACGACCTGT, mVac-R: 5′-TTGCTGTTC 
CAGGCAATCAC, mVac-Probe: 5′-FAM-TGCCCGACGACTTCACCGGC-IBFQ).

IFN-γ, IFN-α and damage-associated molecular pattern signal detection. 
Serum IFN-γ and IFN-α levels were determined in serum samples by ELISA. 
Serum IFN-γ was detected with the Quantikine ELISA kit (R&D Systems, MIF00). 
IFN-α in serum was measured using ELISA sets (PBL, 421201). HMGB1 was 
detected with the Chemiluminescence ELISA kit (Novus Biologicals, NBP262782). 
ELISAs were performed according to the manufacturers’ instructions. Serum 
double-stranded DNA concentrations were determined with a Quant-iT PicoGreen 
dsDNA Kit (Invitrogen, P11496). Uric acid in serum was measured with a Uric 
Acid Assay Kit (Abcam, ab65344).

scRNA-seq samples and preparation. Draining iliac lymph nodes from 
BNT162b2-immunized mice and draining inguinal lymph nodes from YF-
17D-immunized mice were collected and digested into single-cell suspensions. 
One million total cells were set aside on ice. The rest of the cells were incubated 
with biotinylated CD3, CD19 and NK1.1 antibodies on ice for 20 min. 
Streptavidin-labeled magnetic beads (BD IMag Streptavidin Particles Plus-DM) 
were added and incubated on ice for 30 min. Unbonded cells were collected 
and CD11b+ myeloid cells, pDCs (CD11cloCD11b−PDCA-1+) and DCs 
(CD11c+MHC-II+) were sorted with flow cytometry. Sorted cells were combined 
with total lymphocytes at a 1:1 ratio and resuspended in cold PBS supplemented 
with 1% BSA (Miltenyi) and 0.5 U μl−1 RNase Inhibitor (Sigma Aldrich). Cells 
were partitioned into gel beads-in emulsion (GEMs) using the 10x Chromium 
3′ V3 chemistry system (10x Genomics). The released RNA was reverse 
transcribed in the C1000 touch PCR instrument (Bio-Rad), in accordance with 
the manufacturer’s recommendations. Barcoded cDNA was extracted from the 
GEMs by post-GEM RT-Cleanup and amplified for 12 cycles. Amplified cDNA 
was subjected to 0.6x SPRI beads cleanup (Beckman, B23318). Twenty five percent 
of the amplified cDNA was subjected to enzymatic fragmentation, end repair, 
A-tailing, adaptor ligation and 10X specific sample indexing per the manufacturer’s 

protocol. Sequencing libraries were generated and the quality was assessed through 
Bioanalyzer (Agilent) analysis. Libraries were pooled and sequenced on the HiSeq 
4000 instrument (Illumina) with a targeted read depth of 40,000 read pairs per cell.

scRNA-seq data analysis. Cell Ranger v3.1.0 (10x Genomics) was used to quantify 
transcript levels against the 10x Genomics GRCh38 reference (v3.0.0). Raw 
count data were filtered to remove cells with a mitochondrial RNA fraction of 
>20% of total RNA counts per cell, cells with <100 unique features or cells with 
<200 total reads. The filtered count matrix was used to create a Seurat64 (v3.1.4) 
object. Filtered read counts were scaled by a factor of 10,000 and log transformed. 
Doublets were identified with scds65 (v1.2.0); cells with a doublet score in the top 
decile were removed. The remaining 52,788 cells were processed with the default 
Seurat pipeline. Specifically, the most variable 2,000 RNA features were used to 
perform principal-component analysis on the log-transformed counts. The first 25 
components were used for further downstream analyses, including clustering and 
UMAP projections. Clusters were identified with Seurat SNN graph construction 
followed by Louvain community detection on the resultant graph with a resolution 
of 0.2, yielding 20 clusters. Differential expression for each time point compared to 
the baseline was calculated with a Wilcoxon rank-sum test. Gene-set enrichment 
analysis was run using all genes ranked by Wald statistic.

Macrophage clusters C2 and C15 were re-embedded using genes that 
characterized an epigenetically remodeled monocyte population enriched in 
humans 21 d after vaccination with two doses of H5N1/AS03 (ref. 29). Principal 
components were calculated from the most variable genes within this set; Louvain 
community detection was again used with a resolution of 0.2 to determine cluster 
identity. Complex Heatmap (v2.2.0) was used for all heat maps. All analysis was 
performed in R (v3.6.3).

Quantification and statistical analysis. scRNA-seq statistical analysis was 
completed as described above. All other statistical analysis was performed with 
Prism (GraphPad Software v9.2.0). For comparing two groups, P values were 
determined using Student’s t-tests (two-tailed). For comparing more than two 
groups, one-way ANOVAs followed by Tukey’s test were applied. Differences 
between groups were considered significant for P values < 0.05. No statistical 
methods were used to predetermine sample sizes, but our sample sizes are similar 
to those reported in previous publications38,43. Mice were assigned to the various 
experimental groups randomly. Data collection and analysis were not performed 
blind to the conditions of the experiments. Data distribution was assumed to be 
normal, but this was not formally tested. No data points were excluded from  
the analyses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Single-cell RNA-seq data are publicly accessible in the Gene Expression Omnibus 
under accession code GSE179131. All analyses and visualizations were performed 
in R (v3.6.3). Source data are provided with this paper.

Code availability
Computer code is available upon reasonable request.
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Extended Data Fig. 1 | Immune response induced by low immunization dose in mice. a, S binding titers induced by low dose (0.2 μg/mouse) of 
BNT162b2 immunization measured by ELISA. b, Class I tetramer specific CD8 T cell response in lung and spleen of mice measured at days 21 and 42 after 
BNT162b2 immunization (0.2 μg/mouse). c-d, Antigen specific CD8 (c) and CD4 (d) T cell response in lung and spleen of mice detected at days 21 and 
42 by intracellular cytokine staining (ICS) assay. e, Comparison between the activation of innate cells in dLNs induced by low (0.2 μg/mouse) and high 
immunization doses (5 μg/mouse). f, Cytokines/chemokines produced at 6 h post prime with low (0.2 μg/mouse) dose detected by Luminex assay. Data 
were combined from two independent experiments (a) or one representative experiment (b-f). One-Way ANOVA followed by Tukey’s test was applied 
(a-e). P-values were determined using Student’s t-tests (two-tailed) (f). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Extended Data Fig. 2 | Innate cells activated by BNT162b2. a, Gating strategy. b, Frequency of innate cells in live CD45 + cells after BNT162b2 
immunization in dLNs. Data were combined from at least two independent experiments. One-Way ANOVA followed by Tukey’s test was applied in (b). 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | scRNAseq analysis of immune response induced by BNT162b2 and YF-17D. a, Clusters and their associated cluster-specific 
genes. b, UMAP of cell types clustered by single-cell transcriptional analysis at indicated time. c, Significantly enriched interferon BTMs (false discovery 
rate [FDR] < 0.05, absolute normalized enrichment score [NES] > 2) across all clusters from days 1 to 7 after YF-17D immunization. Only clusters with a 
significantly modulated pathway are shown. d, Heatmap of key interferon response and AP-1 transcription factors after BNT162b2 immunization over time. 
Samples used for scRNAseq were pooled from three independent experiments containing 8-10 mice.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | IFNγ production after prime and boost. a, Luminex assay of serum cytokines/chemokines at 6 h post-prime and boost with 5 μg/
mouse and 0.2 μg/mouse, respectively. Data were combined from five mice for each group. b, Gating strategy to analyze IFNγ producing cells in dLNs. c-e, 
CD8 + and CD4 + T cell responses, and IgG titer at day 42 after blocking of IFNγ receptor. Mice were treated with IFNγ receptor neutralizing antibody or 
isotype control before boost at day 21. f, Serum IFNγ level at day 22 (1 day after boost) after T cells (CD4 and CD8 T cells) or NK cells depletion at day 21. 
g, Innate cell activation in spleen at 1 day post boost after T or NK cell depletion. P-values were determined using Student’s t-tests (two-tailed) (a, c-e), 
One-Way ANOVA (f), or Two-way ANOVA (g). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Extended Data Fig. 5 | Roles of TLRs for BNT162b2-induced antibody and T cell response. bAb and nAb titers of WT and Tlr3−/−, Tlr7−/− (a), bAb (IgG) 
titers of WT and Tlr2−/−, Tlr4−/− (d), Tlr5−/− (g) mice at day 42. CD8 + T cell response in WT and Tlr3−/−, Tlr7−/− (b-c), Tlr2−/−, Tlr4−/− (e-f), and Tlr5−/− (h-i) 
mice. Data were combined from two independent experiments. One-Way ANOVA followed by Tukey’s test was applied in (a-f). P-values in (g-i) were 
determined using Student’s t-tests (two-tailed). *P < 0.05, **P < 0.01.
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Extended Data Fig. 6 | Roles of inflammasome for BNT162b2-induced antibody and T cell response. a, IgG titers of WT, Asc−/−, and Nlrp3−/− mice at day 
42. (b-c), CD8 + T cell response in WT, Asc−/−, and Nlrp3−/− mice. Data were combined from two independent experiments. One-Way ANOVA followed by 
Tukey’s test was applied. *P < 0.05.
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Extended Data Fig. 7 | Role of cGAS and STING for BNT162b2-induced antibody and T cell response. a, IgG titers of WT, cGas−/−, and Sting−/− mice at 
day 42. (b-c), CD8 + T cell response in WT, cGas−/−, and Sting−/− mice. Data are one representative of two independent experiments. One-Way ANOVA 
followed by Tukey’s test was applied.
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Extended Data Fig. 8 | Role of cell death in BNT162b2-induced antibody and T cell response. a-c, DAMP signals including dsDNA (a), HMGB1 (b), and 
uric acid (c) induced by BNT162b2 immunization at the indicated time. d, IgG titers of littermate and Ripk3−/− mice at day 42. e-f, CD8 + T cell response in 
littermate and Ripk3−/− mice. g, IgG titers of littermate and Gsdmd−/− mice at day 42. h-i, CD8 + T cell response in littermate and Gsdmd−/− mice. Data were 
one representative of at least two independent experiments (a), or one representative experiment (b-i). One-Way ANOVA followed by Tukey’s test was 
applied in (a-c). P-values in (d-i) were determined using Student’s t-tests (two-tailed). *P < 0.05, ***P < 0.001, ****P < 0.0001.
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Extended Data Fig. 9 | Role of MDA5 in BNT162b2-induced T cell response after prime. a-b, CD8 + T cell response in WT and Mda5−/− mice at indicated 
time post prime. P-values were determined using two-way ANOVA. ****P < 0.0001.
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Extended Data Fig. 10 | Role of Batf3 in BNT162b2-induced antibody and T cell response. a, IgG titers of WT and Batf3−/− mice at day 42. b, CD8 + T cell 
response in WT and Batf3−/− mice. Data were one representative of three independent experiments. P-values were determined using Student’s t-tests 
(two-tailed). *P < 0.05, **P < 0.01.
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