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Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol
Rev 98: 2133–2223, 2018. Published August 1, 2018; doi:10.1152/physrev.
00063.2017.—The 1921 discovery of insulin was a Big Bang from which a vast and
expanding universe of research into insulin action and resistance has issued. In the inter-
vening century, some discoveries have matured, coalescing into solid and fertile ground for

clinical application; others remain incompletely investigated and scientifically controversial. Here, we
attempt to synthesize this work to guide further mechanistic investigation and to inform the develop-
ment of novel therapies for type 2 diabetes (T2D). The rational development of such therapies
necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D:
insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin
action. In this review, both the physiology of insulin action and the pathophysiology of insulin
resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and
white adipose tissue. We aim to develop an integrated physiological perspective, placing the
intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of
the tissue-specific functions that generate the coordinated organismal response. First, in section
II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white
adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III
considers the critical and underappreciated role of tissue crosstalk in whole body insulin action,
especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The
pathophysiology of insulin resistance is then described in section IV. Special attention is given to
which signaling pathways and functions become insulin resistant in the setting of chronic overnu-
trition, and an alternative explanation for the phenomenon of “selective hepatic insulin resistance”
is presented. Sections V, VI, and VII critically examine the evidence for and against several putative
mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol,
ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient
stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII
discusses non-cell autonomous factors proposed to induce insulin resistance, including inflamma-
tory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we
propose an integrated model of insulin resistance that links these mediators to final common
pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
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I. INTRODUCTION

Type 2 diabetes mellitus (T2D) is one of the defining med-
ical challenges of the 21st century (960). Overconsumption
of relatively inexpensive, calorically dense, inadequately sa-
tiating, highly palatable food in industrialized nations has

led to unprecedented increases in obesity. In the United
States, the combined prevalence of diabetes and prediabetes
is over 50% (538). Although only a subset of obese people
develops T2D, obesity is a major risk factor for T2D, and
rates of T2D prevalence have paralleled those of obesity
(381). The fasting hyperglycemia that defines T2D is

largely secondary to inadequate action of the major glu-

cose-lowering hormone: insulin. Understanding the

mechanisms of insulin action is therefore essential for the

continued development of effective therapeutic strategies to
combat T2D.

Insulin is an endocrine peptide hormone that binds plasma

membrane-bound receptors in target cells to orchestrate an

integrated anabolic response to nutrient availability. In all
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animals, insulin or insulin-like peptides (ILPs) have been
identified (120). In invertebrates, ILPs provide mitogenic
signaling input, but their effects on metabolic processes and
fuel selection are less significant (917). Leveraging gene du-
plication events through evolutionary time, mammals de-
veloped specialized functions for the related peptide hor-
mones insulin, insulin-like growth factor (IGF)-1 and IGF-2
(120). IGF-1 and IGF-2 promote cell growth and differen-
tiation in mammals; in contrast, insulin primarily controls
metabolic fluxes (204). However, the blurriness of these
functional distinctions is highlighted by the high homology
between the insulin and IGF-1 receptors, which form hybrid
heterodimers in many cell types and share many down-
stream effectors (41, 770). The overlap in signaling func-
tions between insulin and IGF-1 likely also contributes to
the well-established relationship between hyperinsulinemia
and several cancers (631). In this review, we focus on phys-
iological effects of mammalian insulin binding to the insulin
receptor and molecular mechanisms by which insulin’s ef-
fects are attenuated in the insulin-resistant state that heralds
and accompanies T2D.

Although many somatic cell types express insulin receptors,
the role of insulin in glucose homeostasis is typified by in-
sulin’s direct effects on skeletal muscle, liver, and white
adipocytes. These tissues perform distinct roles in metabolic
homeostasis, necessitating tissue-specific insulin signal
transduction pathways. For example, in skeletal muscle,
insulin promotes glucose utilization and storage by increas-
ing glucose transport and net glycogen synthesis. In liver,
insulin activates glycogen synthesis, increases lipogenic
gene expression, and decreases gluconeogenic gene expres-
sion. In white adipocyte tissue (WAT), insulin suppresses
lipolysis and increases glucose transport and lipogenesis.
Despite these diverse effects, the proximal components in-
volved in insulin signal transduction are remarkably similar
in all insulin-responsive cells. The diversity of physiological
insulin responses in different cell types largely owes to dis-
tinct distal effectors. The cell-autonomous effects of insulin
in skeletal muscle, liver, and WAT, with an emphasis on
signal transduction events linked to physiological regula-
tion of metabolic fluxes, will be explored in section II.

In addition to these direct effects, insulin also exerts impor-
tant indirect effects on target tissues. Because of the inte-
grated, context-specific nature of these indirect effects, they
are difficult to model in cultured cells and are consequently
less well understood than direct, cell-autonomous effects of
insulin. An example of indirect insulin action is the effect of
insulin suppression of WAT lipolysis to decrease hepatic
acetyl-CoA content, in turn allosterically decreasing pyru-
vate carboxylase activity. This mechanism, together with
suppression of glycerol turnover, enables insulin suppres-
sion of WAT lipolysis to suppress hepatic gluconeogenesis
(684, 903). Insulin suppression of glucagon secretion
through paracrine signaling in the pancreatic islet and insu-

lin action in the central nervous system (CNS) represent

other important pathways of indirect insulin action. These

physiological processes will be examined in section III.

When higher circulating insulin levels are necessary to

achieve the integrated glucose-lowering response described

above, a subject is considered insulin resistant. A variety of

clinical entities–prediabetes, lipodystrophy (642), polycys-

tic ovarian syndrome (202), nonalcoholic fatty liver disease

(520)–are accompanied by increased fasting plasma insulin

concentrations. This increased work load for the endocrine

pancreas, and consequent �-cell decompensation, is a major

mechanism for the development of overt T2D (380, 389,

750). However, the importance of insulin resistance in the

pathogenesis of T2D is highlighted by prospective human

studies that have revealed insulin resistance as the best pre-

dictor of future T2D diagnosis (481, 884). Because insulin

action serves different functions in different cell types, insu-

lin resistance has diverse functional ramifications in the var-

ious insulin target tissues. The cellular and molecular phys-

iology of insulin resistance will be explored in section IV,

with special attention to specific molecular sites of block-

ade, contributions of indirect insulin action, and the pro-

posed entity of pathway-selective hepatic insulin resistance,

wherein some signaling pathways downstream of the insu-

lin receptor appear to retain insulin responsiveness while

others manifest insulin resistance (99, 921).

Having described the phenomenon of insulin resistance in

section IV, we proceed to examine its mechanistic basis.

Mechanisms of insulin resistance are most helpfully catego-

rized using the molecular mediators, pathways, and net-

works involved. The remainder of this review examines the

experimental support for several proposed mechanisms of

cellular insulin resistance using this paradigm.

Several lipid moieties, including diacylglycerol (DAG), cer-

amides, and acylcarnitines, have been implicated in the

pathogenesis of liver and skeletal muscle insulin resistance

(127, 561, 724). The mechanistic pathways elucidated,

with varying levels of experimental support, largely run

parallel to one another such that the involvement of one

mediator does not preclude the involvement of another. The

putative mediators, pathways, and networks involved in

lipid-induced liver and muscle insulin resistance are dis-

cussed in section V.

A substantial literature describes cellular mechanisms for

insulin resistance that are thought to be independent of

lipotoxicity. These include endoplasmic reticulum stress

and the unfolded protein response (481), reactive oxygen

intermediates acting in various subcellular compartments

(37), and substrate competition between glucose and fatty

acids (397, 677). Section VI examines the experimental ev-

idence for involvement of each of these pathways in typical
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obesity-associated insulin resistance, with consideration of
their role in an integrated physiological framework.

Finally, increasing recognition of the integrated nature of
metabolic physiology has sparked investigation of mecha-
nisms of insulin resistance that involve crosstalk between
insulin-responsive tissues. Inflammatory signaling has
emerged as a key paracrine/endocrine driver of insulin re-
sistance; for example, activated adipose tissue macrophages
have been strongly linked to metabolic dysfunction (331,
446, 594). The mechanisms by which inflammation pro-
motes insulin resistance are under intense investigation. Ad-
ditionally, the last two decades have yielded the identifica-
tion of dozens of endogenous circulating bioactive peptide
hormones with putative effects on insulin sensitivity and
have also revealed that circulating branched-chain amino
acids may be a predictive biomarker of insulin resistance
(577). Rather than providing a catalog entry for each of
these circulating factors, section VII focuses on those with
established mechanistic links to cellular mechanisms of in-
sulin action and resistance: retinol binding protein-4
(RBP4), adiponectin, fetuin-A, and fibroblast growth factor
21 (FGF21).

In offering this review, we hope that our comprehensive
treatment of both insulin action and inaction presents a
unified framework for understanding the physiology of this
critically important signaling axis in health and disease and
that it provides context for future discoveries that will fa-
cilitate the prevention and treatment of T2D. We attempt to
develop such a unified summary in section VIII.

II. DIRECT INSULIN ACTION

A. Proximal Insulin Signaling: The Insulin
Receptor and Its Direct Substrates

Insulin exerts all of its known physiological effects by bind-
ing to the insulin receptor (INSR) on the plasma membrane
of target cells (297). INSR is a heterotetrameric receptor
tyrosine kinase formed from two extracellular � subunits,
which bind insulin, and two membrane-spanning � sub-
units, each of which contains a tyrosine kinase domain
(343). There are two INSR isoforms, A and B, but the B
isoform is much more specific for insulin; is the primary
isoform expressed in differentiated liver, muscle, and WAT;
and is thus thought to mediate most metabolic effects of
insulin (44). The A isoform, differentiated by the splicing
out of exon 11, is expressed highly in fetal development,
when its high affinity for IGF-2 is particularly useful (44).
INSR has two insulin binding sites but exhibits negative
cooperativity, meaning that insulin binding at one site de-
creases insulin binding affinity in the other site (186). Thus
available evidence indicates that at physiological concentra-
tions, one insulin molecule binds and activates one INSR

(186, 343). The induced conformational change in the �

subunit relieves cis-autoinhibition in the kinase activation

loop and permits trans-autophosphorylation of the activa-

tion loop tyrosines Tyr1162, Tyr1158, and Tyr1163, in that

order (344, 889). The � subunit, thus activated by tris-
phosphorylation, undergoes further tyrosine phosphoryla-

tion on residues including Tyr972 in the juxtamembrane

region; these additional events are important for recruit-

ment of INSR substrates (941). Signaling events down-

stream of INSR activation can be grossly functionally di-

vided into mitogenic and metabolic signals. The mitogenic

signals primarily involve activation of the mitogen-acti-

vated protein kinase (MAPK) pathway common to many

receptor tyrosine kinases; this signaling axis has been re-

viewed extensively (41, 400, 535, 616). The insulin concen-

trations necessary to stimulate metabolic responses are

lower than those needed for mitogenic responses; this rela-

tionship is reversed for the IGF-1 receptor (41). This review

focuses on the INSR-activated pathways that regulate me-

tabolism.

In all cell types, activated INSR initiates downstream met-

abolic signaling by first recruiting phosphotyrosine-binding

scaffold proteins, which in turn activate downstream effec-

tors (FIGURE 1) (826). This is in contrast to many other

receptor tyrosine kinases, which phosphorylate cytoplasmic

substrates directly. The recruitment of diverse phosphoty-

rosine-binding proteins to INSR permits early ramification

of insulin signaling to activate multiple functional modules.

INSR can engage several phosphotyrosine-binding pro-

teins. SHC interacts through its phosphotyrosine-binding

(PTB) domain with INSR pTyr972 (343). SH2B1, SH2B2/

APS, GRB10, and GRB14 interact through their Src homol-

ogy 2 (SH2) domains with the activated, tris-phosphory-

lated INSR activation loop (190, 343). These substrates can

serve critical regulatory functions (190, 343). For example,

GRB10 phosphorylation and stabilization by mTORC1,

which is itself activated by insulin signaling, provides feed-

back inhibition of INSR activity (339). Other INSR sub-

strates, such as GRB2 and SHC, are involved in the mito-

genic arm of insulin signaling (41), while SH2B2/APS helps

to initiate the metabolic insulin response, at least in some

cell types (471). Attenuation of this proximal phosphoty-

rosine-based insulin signaling is carried out in part by re-

ceptor internalization and dephosphorylation. One key reg-

ulator of INSR internalization is CEACAM1, which is itself

an INSR substrate (568, 660). INSR dephosphorylation is

performed by protein tyrosine phosphatases (PTPases), es-

pecially PTP1B. However, this attenuation likely occurs

with a time delay, after INSR internalization (808). Imme-

diately after activation, INSR inhibits PTP1B activity by

activating NAD(P)H oxidase 4 (NOX4). NOX4-derived

H2O2 in turn inhibits PTP1B activity, providing feedfor-

ward amplification in the early phase of insulin signaling

(515, 921).
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Although the aforementioned INSR substrates play impor-
tant and incompletely understood roles, the best-described
class of INSR scaffolds is the insulin receptor substrate
(IRS) family. Although there are six IRS isoforms (IRS1–6),
IRS1 and IRS2 are thought to mediate most of the meta-
bolic effects of INSR activation; either muscle-specific or
liver-specific deletion of both Irs1 and Irs2 in mice pheno-
copies Insr deletion in those tissues (83, 196, 498). IRS
proteins have NH2-terminal pleckstrin homology (PH) and
PTB domains that target them to activated INSR, and their
long COOH-terminal tails are replete with tyrosine and
serine/threonine phosphorylation sites (900). After binding
of the IRS PTB domain to INSR pTyr972, INSR phosphor-
ylates multiple IRS tyrosine residues, which in turn recruit
downstream signaling effectors to propagate and amplify

the insulin response (343). The many (�70) COOH-termi-
nal serine/threonine phosphorylation sites of IRS proteins
affect IRS activity and protein stability, allowing them to
mediate feedback inhibition of insulin signaling, most
prominently by S6 kinase (S6K) (169, 554, 899). As we will
consider in later sections, IRS phosphorylation is also a
major mechanism by which several stimuli are thought to
cause insulin resistance.

Tyrosine-phosphorylated IRS proteins then recruit phos-
phoinositide-3-kinase (PI3K) heterodimers containing a
regulatory p85 subunit and a catalytic p110 subunit. Spe-
cifically, tyrosine-phosphorylated IRS YXXM motifs re-
cruit the SH2 domain of the PI3K regulatory subunit (826).
The five distinct PI3K regulatory subunit isoforms are en-
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FIGURE 1. Proximal insulin signaling. Upon insulin binding, the insulin receptor (INSR) autophosphorylates

and recruits diverse substrates. The two major arms of insulin signaling are mitogenic (initiated by GRB2 and

SHC) and metabolic [initiated by insulin receptor substrate (IRS) proteins and SH2B2/APS]. Insulin signaling is

also characterized by feedback mechanisms, both positive [GIV potentiation of phosphoinositide-3-kinase

(PI3K)-AKT signaling, and phosphatase inhibition by NAD(P)H oxidase 4 (NOX4)-derived H2O2] and negative

(stabilization and recruitment of GRB10 to the INSR, and activation of S6 kinase 1 (S6K1) to phosphorylate and

inhibit IRS proteins). Green circles and arrows represent activating events; red circles and arrows represent

inhibitory events.
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coded by three genes (Pik3r1, Pik3r2, and Pik3r3); there
are three PI3K catalytic subunit isoforms encoded by three
genes (Pik3ca, Pik3cb, Pik3cd). Not surprisingly, the com-
binations of PI3K heterodimer composition have compli-
cated investigations of isoform-specific functions. How-
ever, the critical importance of PI3K activity in insulin ac-
tion is well-established: pharmacological PI3K inhibition
abolishes insulin stimulation of glucose transport and DNA
synthesis, and various PI3K subunit knockout models gen-
erally support the classification of PI3K as an essential node
in insulin signaling (88, 128, 150, 240, 790, 826). PI3K
catalyzes the production of phosphatidylinositol-3,4,5-tris-
phosphate (PIP3) from phosphatidylinositol-4,5-bisphos-
phate (PIP2). The reverse reaction is catalyzed by phospha-
tase and tensin homolog deleted on chromosome 10
(PTEN), and PTEN activity is inhibited by insulin through
incompletely understood mechanisms that may involve
PTEN interaction with the PIP3-Rac exchanger 2 (P-REX2)
(319). This coordinated activation of PI3K and inhibition of
PTEN enables net accumulation of PIP3 to propagate and
amplify insulin signaling. PIP3 then recruits proteins with
PH domains to the plasma membrane, helping to colocalize
downstream signaling effectors. Two such effectors are the
phosphoinositide-dependent kinase 1 (PDK1) and AKT.
After binding to PIP3, AKT is activated by phosphorylation
in its activation loop (Thr308 in AKT1) by PDK1 (16, 800),
and in its hydrophobic motif (Ser473 in AKT1) by mecha-
nistic target of rapamycin complex 2 (mTORC2) (729).
Importantly, although AKT Ser473 phosphorylation is per-
haps the most commonly used readout of cellular insulin
action, the precise signaling cascade linking INSR activa-
tion to AKT Ser473 phosphorylation is unknown. mTORC2
phosphorylation of AKT Ser473 is partially IRS-indepen-
dent; insulin still stimulates AKT Ser473 phosphorylation in
mice lacking both IRS1 and IRS2, although to a lesser ex-
tent than normal (195). Activated AKT phosphorylates
many downstream substrates in diverse functional path-
ways, making it a key node in the ramification of insulin
signaling. The importance of AKT for normal insulin action
is highlighted by the identification of a partial loss-of-func-
tion mutation in AKT2 in ~1% of the Finnish population
that impairs insulin-stimulated glucose uptake in muscle
and adipose tissue and increases endogenous glucose pro-
duction (454). PI3K-AKT signaling is potentiated by INSR-
mediated tyrosine phosphorylation of the guanine ex-
change factor GIV/Girdin, providing feedforward amplifi-
cation to proximal insulin action (500, 514).

These proximal insulin signaling events–insulin receptor ac-
tivation and recruitment/phosphorylation of signaling pro-
teins, most prominently IRS, PI3K, and AKT isoforms–are
largely conserved in insulin target tissues and initiate the
insulin response at the plasma membrane. We now consider
key insulin-responsive cell types individually to better de-
scribe how specific downstream effectors produce tissue-
specific physiological responses.

B. Skeletal Muscle Insulin Signaling:
Effectors and Effects

Skeletal muscle is an energy-consuming tissue; any energy
the myocyte stores is mostly for its own later use with the
exception of 3-carbon units (lactate, alanine) generated by
glycolysis that are released by skeletal muscle and mostly
cycled to the liver. Insulin signals to skeletal muscle that
glucose is abundant; accordingly, the myocyte insulin sig-
naling cascade is specialized to promote glucose uptake and
net glycogen synthesis. The absolute requirement of the
myocellular insulin receptor for these processes was dem-
onstrated by hyperinsulinemic-euglycemic clamp studies of
muscle-specific INSR knockout (MIRKO) mice, which dis-
played impairments in insulin-stimulated muscle glucose
uptake and muscle glycogen synthesis (407). Muscle-spe-
cific knockout of Grb10 in mice, which results in loss of its
feedback inhibition on INSR as discussed previously, en-
hances myocellular insulin sensitivity and increases muscle
size (329). Although both IRS1 and IRS2 are expressed in
skeletal muscle, the primary INSR substrate in muscle ap-
pears to be IRS1. IRS1 knockdown, but not IRS2 knock-
down, causes defective insulin-stimulated glucose transport
in L6 rat myotubes and human primary myotubes (87, 340,
837). Additionally, isolated soleus muscles from Irs2�/�

mice have normal dose-dependent insulin stimulation of
glucose uptake (316). Irs2 may be important for insulin
control of lipid metabolism in the myocyte (87). Both of the
major isoforms of the PI3K catalytic subunit, p110� and
p110�, are expressed in skeletal muscle. Of the five PI3K
regulatory subunit splice isoforms, p85�, p85�, and p55�

are thought to be most relevant in skeletal muscle (826), as
mice with muscle-specific deletion of these isoforms have
impaired (although not abolished) insulin-stimulated glu-
cose uptake and glycogen synthesis (505). Increases in
membrane PIP3 content cause the membrane recruitment of
the PH domain-containing kinases PDK1 and AKT (471).
Both AKT1 and AKT2 are present in skeletal muscle, but
AKT2 appears to be more important for insulin-stimulated
glucose metabolism. RNA interference of Akt2 in primary
human myotubes abrogated insulin stimulation of glucose
uptake and glycogen synthesis, while Akt1 knockdown had
no effect on these parameters (87). In support of this para-
digm, Akt2�/� mice are severely glucose intolerant (141),
while Akt1�/� mice display normal glucose tolerance, al-
though a severe growth defect complicates metabolic phe-
notyping in Akt1�/� mice (142).

Perhaps the best studied functional effect of the myocellular
insulin signaling cascade is increased glucose transport ac-
tivity. This is accomplished through highly coordinated
translocation and fusion of the glucose transporter GLUT4,
packaged in GLUT4 storage vesicles (GSVs), to the plasma
membrane (471). Current understanding of this process in
muscle stands somewhat in contrast to that in adipocytes,
for which PI3K-dependent and PI3K-independent path-
ways have been described. Future research may identify
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essential PI3K-independent mechanisms for insulin-stimu-

lated muscle glucose uptake, but current evidence primarily

implicates PI3K-dependent control (505, 818). Unexpect-

edly, Pik3r1�/� mice displayed paradoxical increases in in-

sulin-stimulated glucose transport, but this effect likely

owed to compensation from other PI3K regulatory subunits

(833). Mice lacking both Pik3r1 and Pik3r2 in skeletal

muscle (Pik3r1 mKO Pik3r2�/� mice) exhibited impaired

insulin-stimulated glucose transport (505). The magnitude

of this impairment in Pik3r1 mKO Pik3r2�/� mice was

smaller than what would be expected if insulin-stimulated

glucose transport was entirely PI3K-dependent, and PI3K

activation per se may not be sufficient to cause GLUT4

translocation in L6 myotubes, suggesting that PI3K-inde-

pendent mechanisms may be operative (352, 471, 505).

However, the (incompletely specific) PI3K inhibitor wort-

mannin can completely abolish insulin-stimulated muscle

glucose uptake (274, 818). PI3K control of GLUT4 trans-

location is mediated through parallel signaling through

AKT and the Rho GTPase RAC1 and involves the coordi-

nated action of many proteins involved in GSV trafficking

and fusion (140, 471, 818).

AKT phosphorylates several proteins involved in myocellu-

lar glucose uptake. The best characterized of these AKT

substrates are the GTPase-activating protein (GAP) AKT

substrate of 160 kDa (AS160), also known as TBC1D4, and

the related GAP TBC1D1 (384, 727, 831). Phosphorylation

by AKT blocks TBC1D4/TBC1D1 inactivation of small

Rab GTPase protein switches that control vesicle traffick-

ing; the net effect is to promote GSV translocation (413).

RAB8, RAB10, and RAB14 have variously been implicated

as targets of TBC1D4/TBC1D1 (471). TBC1D4 Thr649 is a

physiologically important AKT substrate; mice homozy-

gous for a Thr649Ala knock-in mutation have impaired

insulin-stimulated myocellular GLUT4 translocation and

are glucose intolerant (131). The physiological relevance of

AS160 was further confirmed by the identification of a fam-

ily carrying a truncating mutation in TBC1D4 that resulted

in profound insulin resistance (178). Although TBC1D1 is

better characterized as an AMP-activated kinase (AMPK)

target than as an AKT target (831), mice with muscle-spe-

cific TBC1D1 deletion also have impaired insulin-stimu-

lated muscle glucose uptake (194). The relative physiologi-

cal importance of TBC1D4 versus TBC1D1 for insulin-

stimulated GSV translocation in human muscle remains

unclear and may vary by muscle fiber type (118, 540).

Germline deletion of both Tbc1d1 and Tbc1d4 in mice

totally abrogates insulin-stimulated muscle glucose uptake,

resulting in glucose intolerance more severe than in either

Tbc1d1�/� or Tbc1d4�/� single knockout mice (118). AKT

also phosphorylates target proteins involved in GSV mem-

brane targeting and fusion, but these processes are better

understood in adipocytes than myocytes and thus will be

discussed later. In general, AKT phosphorylation of

TBC1D1/TBC1D4 can be thought of as insulin “releasing
the brakes” on GLUT4 translocation (413).

The Rho GTPase RAC1 coordinates a second PI3K-depen-
dent signaling mechanism for insulin-stimulated glucose
uptake in skeletal muscle. RAC1 signaling promotes
GLUT4 translocation by inducing cortical actin reorganiza-
tion (47, 140, 818). Direct RAC1 targets include the p21-
associated kinase (PAK); insulin promotes the GTP-bound
form of RAC1, which stimulates PAK phosphorylation by
relieving PAK autoinhibition (140, 818). Muscle-specific
knockout of RAC1 severely impairs insulin-stimulated glu-
cose uptake despite preserved AKT activation (817), and
forced overexpression of constitutively active RAC1 in
muscle causes GLUT4 translocation even in the absence of
insulin stimulation (858). The specific mechanisms by
which RAC1-mediated cortical actin reorganization pro-
motes GLUT4 translocation are an area of continued inves-
tigation but may involve tethering of GSVs beneath the
plasma membrane and changes in membrane tension (413).

The glucose that enters the myocyte upon insulin stimula-
tion has two major possible fates: glycolysis or glycogen
synthesis. The principal pathway of insulin-stimulated glu-
cose disposal in both healthy and type 2 diabetic human
muscle is glycogen synthesis (~75%), consistent with the
general teleological role of insulin as an energy storage hor-
mone (182, 768). However, glucose oxidation also in-
creases as increased substrate availability drives glycolytic
flux; in fasting rat soleus muscle, insulin per se increases
relative glucose oxidation (VPDH/VTCA) from ~5 to ~60%,
the remainder reflecting fatty acid oxidation (D. Song, T.
Alves, R. Perry, and G. Shulman, unpublished data). Al-
though acute insulin-stimulated increases in skeletal muscle
glycolytic flux and glycogen synthesis are primarily a con-
sequence of increased glucose transport activity and subse-
quent allosteric regulation by glucose metabolites, insulin
independently regulates both glycolysis and glycogen syn-
thesis (152, 689, 769). Insulin positively regulates the tran-
scription of hexokinase II, the primary skeletal muscle iso-
form of the first glycolytic enzyme, thus providing relatively
slow, coarse control of glycolytic capacity (589).

In contrast, glycogen synthesis is subject to acute regulation
by insulin of both anabolic [glycogen synthase (GS)] and
catabolic [glycogen phosphorylase (GP)] fluxes (158). This
acute regulation occurs through both covalent modification
(insulin promotes the dephosphorylation of both GS and
GP) and allostery (by glucose-6-phosphate). We first con-
sider glycogen synthase, in 1960 the first enzyme shown to
be regulated by insulin (872). Phosphorylation-based GS
regulation by insulin occurs in part through AKT phosphor-
ylation and inactivation of glycogen synthase kinase 3
(GSK3) at Ser21 and Ser9 on the � and � isoforms, respec-
tively, of GSK3 (157, 171, 172, 214, 813). Thus inacti-
vated, GSK3 kinase activity toward GS is diminished; de-
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phosphorylated GS is in turn more active. Simultaneously,
insulin activation of protein phosphatase 1 (PP1) promotes
dephosphorylation of GS (578, 613). Because cells harness
the phosphatase activity of PP1 for many targets in diverse
pathways, specificity for GS is conferred by four glycogen-
targeting regulatory subunits of PP1 (578). These regula-
tory subunits contain binding domains for PP1, GS, and
glycogen and thus serve as metabolic scaffolds (374). In
skeletal muscle, GM is the most highly expressed regulatory
subunit; mice lacking GM display decreased muscle glyco-
gen stores (90, 185, 815). Insulin promotes PP1 targeting to
glycogen particles and increases PP1 activity towards GS,
but the specific molecular mechanisms responsible for this
activity are incompletely understood (374). Canonically,
the combination of inactive GSK3 and active PP1 promotes
the formation of active, dephosphorylated muscle GS, thus
facilitating glycogen synthesis (159). However, studies of
knock-in mice with GSK3�/� Ser21/Ser9 mutated to alanine,
thus rendering GSK3 insensitive to insulin, have cast serious
doubts on the importance of GSK3 in glycogen synthesis
(84, 85). These mice have normal insulin-stimulated glyco-
gen synthesis and normal muscle glycogen content (84).
Interestingly, mice with muscle glycogen synthase engi-
neered to be insensitive to allosteric activation by glucose-
6-phosphate displayed severely impaired insulin-stimulated
glycogen synthesis and lower muscle glycogen content (85).
These data suggest that the acute regulation of GS by insulin
occurs primarily through allosteric glucose-6-phosphate
control, thus functionally coupling insulin-stimulated glu-
cose uptake to insulin-stimulated glycogen synthesis. The
phosphorylation status of GS, then, serves to modulate the
enzyme’s affinity for glucose-6-phosphate. Dephosphory-
lated GS is more sensitive to glucose-6-phosphate allostery,
facilitating activation of insulin-stimulated glycogen syn-
thesis (85, 769).

However, increasing GS activity alone is insufficient for
insulin to promote net glycogenesis. Glycogen phosphory-
lase activity must simultaneously be reduced to prevent gly-
cogen cycling (640). On the catabolic side of glycogen me-
tabolism, glycogen phosphorylase activity is regulated by
insulin by largely similar mechanisms as GS: phosphoryla-
tion and allostery (97). In a classic mechanism, active phos-
phorylase kinase activates glycogen phosphorylase through
phosphorylation of Ser15; insulin promotes the dephos-
phorylation and inactivation of phosphorylase kinase, and
consequently the dephosphorylation and inactivation of
glycogen phosphorylase (433, 949). In addition, insulin tar-
geting of PP1 to the glycogen particle increases its activity
towards glycogen phosphorylase, dephosphorylating Ser15

and thereby decreasing phosphorylase activity (949, 951).
Both mechanisms thus enable insulin to decrease glycogen-
olysis and promote net glycogen synthesis. And just as with
glycogen synthase, allosteric control of phosphorylase
through inhibition by glucose-6-phosphate is a critical
mechanism for insulin control of glycogenolysis (97). Fu-

ture studies perturbing insulin regulation of glycogen phos-
phorylase, analogous to those that have been performed for
glycogen synthase, are needed to provide a fuller under-
standing of muscle glycogen metabolism in vivo.

Muscle insulin action is thus a tightly coordinated relay that
serves to promote glucose utilization and storage (FIGURE

2). While these physiological outcomes–glucose uptake and
glycogen synthesis–have long been appreciated, their mo-
lecular basis is still being elucidated. A bewildering array of
protein mediators have been implicated in insulin-stimu-
lated glucose uptake in particular, and so only a primer is
offered above. The study of muscle glycogen metabolism
has a storied history reaching back to the origins of bio-
chemistry; those investigators using modern tools to yield
new and surprising insights about its regulation are indeed
standing on the shoulders of giants.

C. Hepatic Insulin Signaling: Effectors and
Effects

Insulin from the endocrine pancreas is secreted into the
portal vein, so the liver is exposed to insulin concentrations
two- to threefold higher than those in the general circula-
tion (136). Portal venous insulin measurements, especially
in rodents, are difficult and infrequently performed, but
investigators studying hepatic insulin action by infusing in-
sulin peripherally must keep in mind that the increment in
plasma insulin concentration measured from a peripheral
site is not equal to the increment in portal vein insulin
concentration “seen” by the liver.

The diverse anabolic ramifications of insulin action are ex-
emplified by the hepatic insulin signaling cascade. Insulin
promotes the synthesis of all major classes of metabolic
macromolecules: glycogen, lipids, and proteins. Addition-
ally, insulin rapidly and potently reduces hepatic glucose
production (HGP) (136). Because increased fasting HGP
and insensitivity of this parameter to insulin are hallmarks
of T2D, measurement of insulin suppression of HGP is a
commonly reported physiological readout of hepatic insu-
lin sensitivity. However, insulin’s immediate suppression of
HGP has both direct and indirect components, as we will
explore here and in section III (105, 136, 504, 661, 704).
Because extrahepatic control of HGP is quantitatively sig-
nificant, the purest experimental readouts of direct hepato-
cellular insulin action are insulin-stimulated glycogen syn-
thesis, insulin-regulated transcripts, and phosphorylation
events within the insulin signaling cascade. It is with this
latter aspect of hepatic insulin action that we begin our
discussion, for it is these phosphorylation events that enable
insulin regulation of physiological processes such as gene
transcription and glycogen metabolism.

Hepatic insulin signaling begins, as in all cell types, with
INSR trans-autophosphorylation, activation, and recruit-
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ment of scaffold signaling proteins. The major IRS isoforms
expressed in hepatocytes are IRS1 and IRS2 (196). Various
genetic perturbations of hepatic Irs1 and Irs2 expression
have not clearly defined distinct roles for either isoform;
rather, available evidence suggests that Irs1 and Irs2 serve
functionally similar roles in liver (195, 196, 662, 827, 907).
Irs1 may play a larger role than Irs2 in normal glucose
homeostasis: liver-specific Irs1�/� mice have more pro-
nounced glucose intolerance than liver-specific Irs2�/� mice
(195) The mildly defective insulin signaling of Irs1�/� mice
was worsened considerably by concomitant liver-specific

Irs2 deletion, and liver-specific Irs2 deletion alone pro-
duced only mild glucose intolerance with preserved hepato-
cellular insulin signaling; absence of both isoforms was nec-
essary to produce a severe metabolic phenotype with
blunted insulin stimulation of PI3K and AKT activity and
marked fasting hyperglycemia (196). Similarly, acute short
hairpin RNA-mediated 70–80% knockdown of either Irs1
or Irs2 in mouse liver produced mild phenotypes, with no
impairment in downstream PI3K or AKT activity (827).
Only after co-deletion of Irs1 and Irs2 did mice manifest
impaired glucose tolerance and blunted insulin stimulation
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of PI3K and AKT activity (827). Attempts to assign prefer-
ential pathway control to hepatic IRS1 or IRS2 have yielded
inconsistent results (195, 827). However, it remains quite
possible that IRS1 and IRS2 perform at least partially dis-
tinct functions in hepatic insulin signaling; this hypothesis is
supported by 1) potent insulin regulation of Irs2, but not
Irs1, transcription in liver; and 2) the unique KRLB motif of
IRS2, which binds to the INSR tyrosine kinase domain and
may limit its activity (915, 950). The major PI3K catalytic
subunit in hepatocellular insulin signaling is p110�; liver-
specific deletion of this isoform severely impairs insulin-
stimulated PIP3 generation, AKT activation, and suppres-
sion of glucose production in liver (790).

The pathway diversification of hepatic insulin signaling ap-
pears to occur largely distal to AKT activation. AKT sub-
strates include GSK3 (regulating glycogen synthesis), the
transcription factor forkhead box O1 (FOXO1, regulating
gluconeogenic gene transcription), and multiple regulators
of mTORC1 activity, which in turn control a large anabolic
program upregulating lipogenic gene expression and pro-
tein synthesis (141, 504, 604). Although direct hepatocel-
lular insulin signaling for metabolic control may not be
entirely AKT-dependent, alternative pathways are yet to be
described (504). The considerable functional redundancy
between insulin signaling and nutrient sensing pathways,
especially mTOR signaling, has challenged attempts to
prove the existence of alternative insulin signaling path-
ways in hepatocytes (339, 504). With this in mind, we now
consider the aforementioned physiological branches of hep-
atocellular insulin signaling in turn.

The stimulation of net glycogen synthesis is a major, direct
physiological function of postprandial insulin on the hepa-
tocyte. In humans, half-maximal stimulation of net hepatic
glycogen synthetic rate under hyperglycemic, hypogluca-
gonemic conditions occurs at portal vein insulin concentra-
tions of 20–25 �U/ml (697). As in skeletal muscle, liver
glycogen synthesis is regulated through both phosphoryla-
tion and allostery, with allostery of critical importance
(702). Glucose transport in the hepatocyte is not insulin-
regulated, and therefore, insulin exerts less complete con-
trol over glycogen synthetic rates than in skeletal muscle
(440, 640). For example, hyperglycemia is sufficient to in-
activate liver glycogen phosphorylase by glucose allostery
and thereby promote net hepatic glycogen synthesis (109,
440, 640). Hyperglycemia also causes the translocation of
glucokinase from the nucleus to the cytoplasm, enabling
glucose-G6P flux (359). However, hepatic insulin signaling
through the INSR is required for normal glycogen synthesis;
rats with acute antisense oligonucleotide knockdown of he-
patic Insr have markedly decreased hepatic glycogen syn-
thesis under hyperglycemic conditions (R. J. Perry and G. I.
Shulman, unpublished observations). Insulin stimulation of
net hepatic glycogen synthesis may occur through several
mechanisms. Although glucose transport is not under insu-

lin control in liver, insulin still regulates glycogen synthase
(GYS2) allostery by G6P. GYS2 Arg582 is necessary for its
allosteric activation by G6P, and mice heterozygous for a
GYS2 R582A mutation displayed reduced hepatic glycogen
deposition in fasting-refeeding experiments (872a). Glu-
cokinase translocation is facilitated by insulin, and the Gck
gene is also under rapid and potent positive transcriptional
control by insulin (9, 295, 359, 360, 451, 504). Increased
glucokinase expression is critical for hepatic insulin action
not only because it increases G6P allostery at GYS2, but
because it controls hepatic glucose utilization and storage.
Metabolic control analysis has demonstrated that glucoki-
nase expression is a major site of rate control for glycogen
synthetic flux (9), and glucokinase activity also drives de
novo lipogenesis through substrate push (295). Interest-
ingly, humans with T2D have been reported to display de-
creased glucokinase expression; the extent of this transcrip-
tional repression was correlated with fasting glycemia
(294). AKT phosphorylation and inactivation of GSK3,
which favors dephosphorylation of GYS2, may also con-
tribute to insulin stimulation of GYS2 activity. However, in
mice lacking Akt1 and Akt2 in liver (AKT DLKO mice),
fasting-refeeding failed to stimulate net glycogen synthesis
despite paradoxically preserved stimulation of GSK3 phos-
phorylation, indicating that AKT is necessary and GSK3
phosphorylation is insufficient to drive net hepatic glycogen
synthesis (504). Interestingly, glucokinase expression was
minimal in AKT DLKO mice and unresponsive to insulin;
AKT DLKO mice also displayed decreased glucose-G6P
cycling (504). Insulin activation of GYS2 also involves ac-
tivation of PP1 activity; the critical regulatory phosphory-
lation site on GYS2 is Ser7 (90, 702). Mice overexpressing
GYS2 with S7A and S644A mutations had increased liver
glycogen in both fed and fasted conditions (703). Taken
together, these data point to the primacy of allosteric and
substrate control of net hepatic glycogen synthesis by glu-
cose metabolites, through both insulin-dependent and insu-
lin-independent mechanisms.

Insulin control of hepatic glycogen metabolism also in-
volves suppression of glycogenolytic flux. The mechanisms
involved are similar to those described above for muscle.
Liver phosphorylase is 79% sequence identical to muscle
phosphorylase in humans, and some modes of its regulation
are therefore similar. For example, phosphorylation of the
NH2-terminal Ser15 strongly activates phosphorylase activ-
ity, and insulin inhibition of phosphorylase kinase and ac-
tivation of protein phosphatase-1 are therefore key mecha-
nisms for insulin suppression of glycogenolysis (579, 682).
Insulin inactivation of phosphorylase can be mimicked by
expression of constitutively active AKT, indicating that ca-
nonical insulin signaling does contribute to suppression of
glycogenolysis (13). Control of glycogenolysis is also tightly
linked to control of glycogen synthesis: the liver-type glyco-
gen targeting subunit of PP1 (GL) is bound and inhibited by
active phosphorylase, a safeguard against simultaneous ac-
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tivation of phosphorylase and GYS2 (9, 15). However,
phosphorylase is also under potent allosteric control and, as
discussed above, glucose allostery is sufficient to inhibit
glycogenolysis. Liver phosphorylase, unlike the muscle iso-
form, is relatively insensitive to allostery by AMP or glu-
cose-6-phosphate (579). Rather, allosteric inhibition by
glucose itself is of particular regulatory importance for liver
phosphorylase (579, 682). Given the rapid, non-insulin-
regulated equilibration of glucose across the hepatocellular
plasma membrane, and the role of hepatic glycogenolysis in
maintaining euglycemia, glucose makes excellent teleologi-
cal sense as the main allosteric controller of liver phosphor-
ylase activity.

By these mechanisms and most likely by others that remain
to be elucidated, insulin and glucose work in concert to
regulate liver glycogen metabolism. Although physiological
data support a model in which hyperinsulinemia is neces-
sary and sufficient to increase liver glycogen synthetic flux,
hyperglycemia is necessary and sufficient to suppress liver
glycogenolysis, and both hyperinsulinemia and hyperglyce-
mia are necessary to promote net liver glycogen synthesis
(640), mechanistic investigations have revealed roles for
insulin and glucose in both glycogenolysis and glycogen
synthesis (78). In addition to the permissive role of insulin
in glycogen synthesis, mediated by phosphorylation-based
changes in enzyme activity, insulin also controls GS allos-
tery and substrate availability through transcriptional reg-
ulation of glucokinase. Because allostery and substrate
availability are central to the regulation of hepatic glycogen
metabolism (641), the ability of insulin to modulate glyco-
gen metabolic flux through protein phosphorylation, allos-
tery, and substrate availability renders it a powerful regu-
lator of net glycogen synthesis and thus of hepatic glucose
production.

Another key mechanism by which insulin responds to the
fed state is the transcriptional repression of gluconeogenic
genes, mediated most prominently by FOXO transcription
factors. FOXO1 is a particularly well-characterized AKT
target with important physiological functions in the hepa-
tocyte (103, 195, 484, 720, 857). AKT phosphorylates
three residues on FOXO1: Thr24, Ser256, and Ser319, al-
though other kinases can also target these sites (103, 857).
Phosphorylated FOXO1 is excluded from the nucleus, dis-
abling its transcription factor activity (103). Active, nuclear
FOXO1 binds the transcriptional coactivator peroxisome
proliferative activated receptor-� coactivator 1-� (PGC1�)
to coordinate a gluconeogenic transcriptional program in-
volving increased expression of glucose-6-phosphatase
(G6pc) and cytosolic phosphoenolpyruvate carboxykinase
(Pck1) (569, 664). Active FOXO1 also binds the co-repres-
sor SIN3A to decrease expression of glucokinase, further
favoring glucose export (451). The potency of the FOXO1
gluconeogenic transcriptional program has been high-
lighted by studies of mice with genetic defects in hepatic

FOXO1 regulation. Mice lacking hepatic FOXO1 display
fasting hypoglycemia and decreased HGP (526). Even a
40% reduction in hepatic Foxo1 mRNA expression in high-
fat-fed mice was sufficient to decrease basal HGP (720).
Triple knockout of Foxo1, Foxo3, and Foxo4 causes par-
ticularly severe fasting hypoglycemia (295, 296). Interest-
ingly, in several models of impaired proximal insulin signal-
ing with increased basal HGP and impaired insulin suppres-
sion of HGP, including liver-specific Irs1�/� Irs2�/� mice,
liver-specific Insr�/� mice, and liver-specific Akt1�/�

Akt2�/� mice, ablation of Foxo1 was sufficient to normal-
ize fasting HGP and resensitize HGP to insulin (195, 504,
603, 840). This remarkable phenotypic rescue likely reflects
the disastrous gluconeogenic consequences of unrestrained
FOXO1 activity in these models of total hepatic insulin
resistance, and more importantly points to the dispensabil-
ity of direct hepatic insulin action for insulin’s acute sup-
pression of gluconeogenesis in fasted rodents subjected to
hyperinsulinemia-euglycemia.

In addition to the FOXO transcription factors described
above, a transcriptional complex including the cAMP re-
sponse element binding protein (CREB), CREB binding
protein (CBP), and CREB-regulated transcription coactiva-
tor 2 (CRTC2) controls gluconeogenic gene expression in
an insulin-dependent manner (421). The CREB/CRTC2
and FOXO1/PGC1� modules appear to be nonredundant
and differentially regulated: the CREB/CRTC2 module has
been shown to be critical for gluconeogenic gene expression
in the first several hours of fasting, while the FOXO1/
PGC1� module is more critical during longer fasts (493).
Upregulation of PGC1� by CREB/CRTC2 may contribute
to this fascinating phenomenon (421). Just as FOXO1 is
regulated by phosphorylation-induced nuclear exclusion,
CRTC2 is phosphorylated at Ser171 by salt-inducible kinase
2 (SIK2) in response to insulin (188). CRTC2 phosphory-
lation promotes its export from the nucleus, leading to
polyubiquitination and degradation and thus disabling the
CRTC2 gluconeogenic program (188). Mice with severe
disruptions in this axis display altered glucose homeostasis:
CRTC2 knockout mice are hypoglycemic during fasting,
and mice overexpressing a constitutively active CRTC2 mu-
tant are hyperglycemic (321, 882).

The FOXO1/PGC1� and CREB/CRTC2 transcriptional
modules are well described and elegant mechanisms. Phar-
macological PGC1� inhibition has even been shown to re-
duce gluconeogenic gene expression, fasting glycemia, and
hepatic insulin sensitivity in obese high-fat-fed mice (755).
But the effect of these transcriptional modules on hepatic
gluconeogenesis in modern human daily life, where fasting
rarely exceeds 16 h in duration, has been proposed to be
relatively minor (419). For example, even 2 h of insulin
stimulation is insufficient to cause detectable decreases in
G6pc protein levels (620). Rather, computational models
indicate that nontranscriptional mechanisms exert high
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control over glucose metabolic fluxes (419). These include
changes in substrate availability, allostery, redox state, and
posttranslational modifications. As discussed above, insulin
control of hepatic glycogen metabolism by such mecha-
nisms is well described. Nontranscriptional insulin regula-
tion of hepatic gluconeogenesis also occurs but has received
less attention in recent years. As will be described later,
indirect control of hepatic gluconeogenesis through white
adipocyte lipolysis is critical to insulin’s acute suppression
of gluconeogenesis. However, insulin can also directly reg-
ulate hepatic gluconeogenesis by counteracting cAMP-in-
duced phosphorylation of phosphofructokinase-2/fructose-
2,6-bisphosphatase-2 (PFK-2/FBPase-2) Ser36; this dephos-
phorylation promotes FBPase-2 activity, decreasing
fructose-2,6-bisphosphate levels and thereby disinhibiting
the gluconeogenic enzyme FBPase-1 (691, 914). Interest-
ingly, PFK-2/FBPase-2 dephosphorylation may also inhibit
glucokinase by promoting its nuclear translocation (173).
This mechanism is likely most operative in states of high
glucagon/catecholamine tone, and its role in normal post-
prandial suppression of gluconeogenesis requires further
study.

As mentioned above, the acute suppression of HGP is one of
the most commonly employed physiological readouts of
hepatic insulin action (33, 54, 105, 112, 115, 484, 504,
722). The question of whether this effect is direct (i.e., hep-
atocyte-autonomous) or indirect has attracted considerable
attention (135, 136, 208, 472, 504, 620). A key methodogi-
cal consideration in this regard is the relative contributions
of glycogenolysis and gluconeogenesis to HGP. Hepatic gly-
cogen content decays exponentially with fasting duration
(implying that its derivative, the rate of net hepatic glyco-
genolysis, also decays exponentially with fasting), with
near-total depletion after 12 h in rats and 48 h in humans
(628, 704). In contrast, absolute rates of hepatic gluconeo-
genesis remain relatively constant during the first 48 h of the
fast, until substrate (i.e., lactate, alanine) limitation results
in decreased gluconeogenic flux (FIGURE 3) (628, 643, 704).
Since plasma glucose concentrations in a fasting subject
reflect HGP, an interesting implication of these observa-
tions is that the plasma glucose concentration (and, by ex-
tension, the plasma insulin concentration) during a fast is a
key systemic signal reflecting hepatic glycogen content (i.e.,
available carbohydrate reserves available for the CNS and
other obligate glucose-utilizing tissues). Because, as this and
subsequent sections explore, direct and indirect hepatic in-
sulin action have different effects on net hepatic glycogen-
olysis and gluconeogenesis, understanding the relative con-
tributions of these fluxes is critical to the design and inter-
pretation of experiments on this subject.

With this in mind, direct insulin suppression of net hepatic
glycogenolysis is certainly a physiologically important me-
diator of insulin suppression of HGP (208). Indeed, during
the first 22 h of a fast in humans, hepatic glycogenolysis

contributes an estimated ~40% of HGP (704). But in the
fasted, glycogen-depleted rodents often used in hyperinsu-
linemic-euglycemic clamp experiments, the primary source
of HGP is hepatic gluconeogenesis (620). Because insulin
suppresses hepatic gluconeogenesis within minutes, long
before any changes in gluconeogenic protein levels occur,
the transcriptional mechanisms described above cannot ac-
count for the acute suppression of hepatic gluconeogenesis
by insulin (218, 484, 620). Additionally, because multiple
genetic models of total hepatic insulin resistance suppress
HGP normally in response to insulin, the possible existence
of an alternative AKT-independent direct hepatocellular in-
sulin signaling pathway involved in acute gluconeogenic
suppression would be an insufficient physiological explana-
tion (105, 195, 504). Instead, insulin’s acute inhibition of
hepatic gluconeogenic flux appears to be a largely indirect
effect, mediated primarily through insulin suppression of
WAT lipolysis (54, 136, 620, 684). This mechanism will be
discussed in detail in section III; here, we merely wish to
emphasize the inadequacy of measurements of insulin sup-
pression of hepatic glucose production to specifically assess
direct hepatic insulin action in the fasted state.

Insulin also has direct hepatocellular effects on lipid metab-
olism. Most prominent among these effects is transcrip-
tional upregulation of several genes of de novo lipogenesis
(DNL), though increased triglyceride-rich lipoprotein clear-
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glucose concentrations reflect rates of hepatic glucose production

during a fast, the plasma glucose concentration is a systemic signal

of hepatic glycogen content during fasting. [Data from Rothman et
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ance and decreased very-low-density lipoprotein (VLDL)
export have also been reported (457). The overall effect is to
promote lipid storage in the hepatocyte and decrease the
availability of fatty acids for oxidation by other tissues.
Indeed, plasma triglyceride concentrations decrease precip-
itously within 15 min of insulin infusion, although in the
setting of a mixed meal, absorbed triglycerides will negate
this effect.

DNL, like gluconeogenesis, is under slow but potent tran-
scriptional control by a PI3K/AKT-dependent mechanism.
However, unlike gluconeogenesis, DNL is also acutely reg-
ulated by insulin-stimulated phosphorylation of lipogenic
enzymes. Although DNL flux has been estimated to only
account for ~25% of hepatic lipogenic flux (compared with
~60% from esterification of circulating fatty acids and 15%
from dietary lipids), insulin stimulation of DNL is consis-
tent with its overall anabolic effect (197).

The master transcriptional regulator of hepatic DNL is ste-
rol regulatory element binding protein 1c (SREBP-1c),
which promotes DNL by enhancing the transcription of
several lipogenic enzymes, notably acetyl-CoA carboxylase
1 (Acaca), fatty acid synthase (Fasn), and glycerol-3-phos-
phate acyltransferase 1 (Gpam) (215, 442). Liver-specific
overexpression of SREBP-1c is sufficient to cause hepatic
steatosis (368). Insulin acts on SREBP-1c primarily by up-
regulating its transcription, but insulin also promotes
SREBP-1c cleavage and nuclear translocation: the canoni-
cal mechanisms of SREBP activation (207, 330). These ef-
fects can be blocked by PI3K, AKT, or mTORC1 inhibition,
suggesting that those kinases lie upstream of SREBP-1c
(487). In particular, the observation that liver-specific
Akt2�/� mice do not develop hepatic steatosis even on a
leptin-deficient ob/ob background suggests that insulin reg-
ulation of lipid metabolism largely occurs downstream of
AKT (458). The mTORC1 substrate S6K is required for
SREBP-1c processing but not its transcriptional upregula-
tion (487, 604). It is important to note, however, that tran-
scriptional activation of the DNL program by insulin is
particularly slow: in one study of primary rat hepatocytes,
SREBP-1 was not detectable in nuclear extracts until 8 h
after insulin treatment (283). A faster transcriptional mech-
anism by which insulin increases DNL flux is induction of
glucokinase (163, 295), which increases lipogenic substrate
availability.

In addition to transcriptional upregulation of DNL, insulin
also acutely activates DNL flux by regulating the phosphor-
ylation of lipogenic enzymes, although the specific signal
transduction pathways involved are incompletely under-
stood. For example, ACC is rapidly activated in response to
insulin (909), likely through both dephosphorylation and
phosphorylation events (100). Insulin promotes the de-
phosphorylation of Ser79 (on ACC1) and Ser212 (on ACC2),
perhaps through inhibition of AMPK which normally phos-

phorylates these sites (845, 908). Knock-in mice with both
ACC1 Ser79 and ACC2 Ser212 mutated to alanine have con-
stitutively active hepatic ACC and consequent increased
hepatic lipogenesis, demonstrating the physiological impor-
tance of these sites (250). Insulin may also increase the
phosphorylation of other ACC residues, but it has not been
shown that these modifications alter ACC activity (305).
Insulin also regulates the phosphorylation of ATP citrate
lyase (ACLY). ACLY converts the tricarboxylic acid cycle
intermediate citrate to the lipogenic precursor acetyl CoA,
thereby linking glucose metabolism to DNL. Three ACLY
phosphorylation sites are insulin-responsive; Ser455 is an
AKT substrate, while Thr446 and Ser450 are GSK3 sub-
strates (57, 345). ACLY phosphorylation activates the en-
zyme by preventing its allosteric inhibition by citrate (658).
However, it is not clear that insulin serves to increase ACLY
activity (189). For example, ACLY Ser455 is also phosphor-
ylated by protein kinase A (PKA); PKA activity opposes
insulin action in most instances (658). Additionally, GSK3
activity is inhibited by insulin action, which is inconsistent
with a model in which insulin promotes ACLY phosphory-
lation to increase its activity. Thus the physiological role of
insulin-stimulated ACLY phosphorylation is uncertain.
Large phosphoproteomic data sets may reveal other insulin-
regulated phosphorylation events within the lipogenic path-
way; the challenge will be to determine which of these are
capable of altering lipogenic flux.

Thus far, we have considered how insulin regulates hepato-
cellular synthesis of two major classes of biological macro-
molecules: glycogen and lipids. We end our discussion with
a third macromolecule: proteins. Insulin regulation of pro-
tein synthesis is largely mediated by signaling into the mam-
malian target of rapamycin (mTOR) network. mTOR is a
large protein kinase which depending on its binding part-
ners can form two mutually exclusive functional com-
plexes, mTORC1 and mTORC2 (752). Both mTORC1 and
mTORC2 interact with the insulin signaling cascade, but
mTORC1 effects are better studied. Insulin-stimulated pro-
tein synthesis is mediated through mTOR in many insulin-
responsive cell types, including hepatocytes, adipocytes,
and myocytes, but we include it in our discussion of hepatic
insulin signaling because of the hepatocyte’s particularly
high rates of protein synthesis and because of mTORC1’s
role in modulating insulin-stimulated de novo lipogenesis
(discussed above).

Insulin activation of mTOR is highly integrated with the
PI3K-AKT pathway in a bidirectional manner. AKT activa-
tion of mTORC1 is incompletely understood but may in-
volve AKT phosphorylation and inactivation of tuberous
sclerosis complex 2 (TSC2) and/or proline-rich AKT sub-
strate of 40 kDa (PRAS40), inhibitors of mTORC1 activa-
tion (349, 866b). Activated mTORC1 phosphorylates com-
ponents of the translational machinery, including S6K and
the eukaryotic translation initiation factor binding proteins
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1 and 2 (4EBP1/2); the overall effect is to induce a broad
translational program characterized by transcripts with 5=

terminal oligopyrimidine (TOP) motifs (508a, 752, 839). In
addition to these downstream effects, mTORC1 signaling
also exerts negative feedback on proximal insulin signaling
by promoting S6K phosphorylation and destabilization of
IRS1 as well as phosphorylation and stabilization of the
adapter protein GRB10, which in turn binds and inhibits
INSR (339, 944). mTORC1 also regulates the synthesis of
non-protein macromolecules, including the phosphatidyl-
choline needed for VLDL-triglyceride secretion (665). Fi-
nally, mTOR signaling positively regulates AKT. mTORC2
phosphorylation of AKT Ser473 is probably the most com-
monly employed readout of cellular insulin signaling, al-
though it remains unclear precisely how mTORC2 is acti-
vated by insulin (453, 729). Ser473 phosphorylation is an
activating event that increases AKT kinase activity and may
alter its substrate specificity (16, 288, 362). Through these
well-described mechanisms and likely through as-yet-un-
identified ones, mTOR signaling affects all functional
branches of insulin signaling either through direct signal
propagation (as for protein synthesis) or indirect tuning (as
for its feedback on INSR, IRS1, and AKT). Importantly,
mTOR permits integration of other anabolic signals (e.g.,
amino acid availability) with insulin signaling (453).

As the above discussion demonstrates, hepatocellular insu-
lin signaling is a richly ramified cascade with links to all
branches of macronutrient anabolism (FIGURE 4). The prin-
cipal direct actions of insulin on liver are to stimulate gly-
cogen synthesis and to transcriptionally regulate gluconeo-
genesis, de novo lipogenesis, and protein anabolism. It is
unfortunate, then, that the most common readouts used to
experimentally interrogate insulin action in the liver are 1) a
partially indirect action of insulin on the hepatocyte (sup-
pression of hepatic glucose production) or 2) a phosphory-
lation event with multiple physiological inputs and indirect
insulin control but for which excellent commercial antibod-
ies are available (AKT Ser473). In section IV, we attempt to
synthesize what is known about hepatic insulin resistance
and what is known about hepatic insulin action to suggest
physiologically meaningful experimental strategies.

D. White Adipocyte Insulin Signaling:
Effectors and Effects

The white adipocyte is exquisitely sensitive to insulin in
vivo. The potency of insulin to control plasma nonesterified
fatty acid (NEFA) levels is critical to the maintenance of
euglycemia; suppression of lipolysis is an important physi-
ological function of insulin in WAT (620, 684). Suppression
of WAT lipolysis shows a steep dependence on plasma in-
sulin levels; the ED50 in humans is ~20 �U/mL (684). Be-
cause plasma insulin levels in healthy nondiabetic humans
range only from ~5 to 60 �U/mL (655, 684), physiological
insulin regulation of WAT lipolysis is able to access a much

larger portion of its dynamic range compared with insulin
regulation of whole-body glucose uptake, which has an
ED50 of ~60 �U/mL and only reaches maximal levels at
supraphysiological insulin concentrations of �200 �U/mL
(694). Stimulation of glucose transport is another main
function of insulin in the adipocyte, although WAT only
accounts for a small fraction of whole-body glucose dis-
posal (430). We now consider the effectors involved in in-
sulin regulation of lipolysis and glucose uptake in white
adipocytes (FIGURE 5).

Insulin suppression of plasma NEFA levels occurs through
rapid inhibition of triglyceride lipolysis in adipocytes. Insu-
lin is the most potent antilipolytic hormone and acts rap-
idly; rat plasma NEFA levels are suppressed by ~90%
within 5 min of raising insulin to postprandial levels (285,
477). This rapid action is facilitated by the short half-life of
plasma NEFA: 2–4 min (206). The best understood mech-
anisms for insulin suppression of lipolysis involve the atten-
uation or reversal of adrenergic signaling through cAMP
and protein kinase A (PKA) (203, 367). To understand
insulin regulation of WAT lipolysis, we therefore begin by
summarizing these cAMP/PKA-dependent mechanisms.
PKA phosphorylates two key proteins involved in WAT
lipolysis: hormone-sensitive lipase (HSL) and perilipin
(PLIN) (367, 869). HSL is phosphorylated on three COOH-
terminal serine residues (Ser563, Ser659, Ser660), causing its
translocation from the cytosol to the lipid droplet surface
(328, 820). The importance of HSL in the hormonal control
of WAT lipolysis was highlighted by the identification of a
human HSL frameshift mutation (14). Patients homozy-
gous for the mutation expressed no HSL and had severely
impaired control of lipolysis; both isoproterenol stimula-
tion and insulin suppression of lipolysis were markedly de-
fective (14, 947). Similarly, Hsl deletion in mice results in
severely impaired adrenergic stimulation of lipolysis (293,
557, 602). However, HSL serves primarily as a DAG lipase,
with adipose triglyceride lipase (ATGL) catalyzing the ini-
tial TAG hydrolysis (210, 946, 959). Complete hormonal
control of lipolytic rate also requires the lipid droplet-coat-
ing protein perilipin. Perilipins are abundant, and five PLIN
isoforms perform tissue-specific functions (93). PLIN1 is
highly expressed in white adipocytes and is phosphorylated
by PKA at several serine residues (93, 531, 946). The precise
functions of PLIN phosphorylation in lipolytic control are
not fully understood, but are thought to involve at least
three major mechanisms. First, PLIN phosphorylation de-
creases its affinity for the ATGL cofactor CGI-58, enabling
CGI-58 to bind ATGL and increase ATGL activity ~20-fold
(279, 946). Second, PLIN phosphorylation is important for
the full activation of HSL at the lipid droplet surface (546,
820). Third, PLIN phosphorylation has been shown to in-
crease the lipid droplet surface area-to-volume ratio by
stimulating budding of lipid microvesicles; this may in-
crease lipase access to substrate but requires prolonged ex-
posure to adrenergic stimulation and thus is likely not in-

INSULIN ACTION AND INSULIN RESISTANCE

2145Physiol Rev • VOL 98 • OCTOBER 2018 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (106.051.226.007) on August 8, 2022.



volved in the acute lipolytic response (521). Plin1�/� mice
have elevated basal lipolysis that is unresponsive to adren-
ergic stimulation, highlighting that PLIN is not merely a
passive barrier to lipase access but rather an active control-
ler of stimulated lipolysis (522, 713, 828). Further work is
needed to fully understand the mechanisms by which PLIN
orchestrates lipolysis; it is possible that PLIN scaffolds a
large interactome of lipases and cofactors to coordinate and
amplify the lipolytic response to adrenergic stimulation.

Insulin acts largely through phosphodiesterase 3B (PDE3B)
to suppress lipolysis. PDE3B degrades cAMP to attenuate

pro-lipolytic PKA signaling toward HSL and PLIN (147,
367, 670, 781). Stimulated lipolysis in adipocytes lacking
Pde3b is not suppressed by insulin, and Pde3b�/� mice have
impaired suppression of plasma NEFA levels during glucose
tolerance tests (147). Interestingly, the mechanisms for
PDE3B activation by insulin are incompletely defined.
PDE3B Ser273 is activated through phosphorylation by
AKT in a 14-3-3 protein-dependent manner after insulin
stimulation (411, 483, 598, 701). However, AKT does not
seem to be necessary for insulin suppression of lipolysis;
Akt2�/� mice suppress lipolysis normally in response to
feeding and near-normally during insulin tolerance tests
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and hyperinsulinemic-euglycemic clamps (423), and phar-
macological AKT inhibitors do not abolish insulin suppres-
sion of lipolysis in cultured adipocytes (192). Additionally,
the AKT phosphorylation site on PDE3B, Ser273, is dispens-
able for insulin suppression of lipolysis in cultured adi-
pocytes (192). Several other PDE3B serine residues, includ-
ing Ser296, are also phosphorylated; the functional impor-
tance of these events is uncertain though Ser296, a PKA
substrate, has also been shown to be unnecessary for insulin
suppression of lipolysis in vitro (192, 483, 671). Rather

than regulating PDE3B activity by modulating its phos-
phorylation, an emerging paradigm posits that insulin pri-
marily activates PDE3B by promoting the formation of sig-
naling complexes or “signalosomes” (11, 192).

Despite strong evidence that insulin activation of PDE3B
mediates the attenuation of cAMP/PKA-mediated lipolysis
(743), it is not clear whether this mechanism–extinguishing
adrenergic input–is necessary and sufficient to explain insu-
lin suppression of WAT lipolysis under all physiological
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conditions. In particular, this mechanism may be less im-
portant in situations of low adrenergic tone. For example,
insulin causes dephosphorylation of HSL even in the ab-
sence of detectable PKA activity, implying that insulin stim-
ulates HSL phosphatase activity (804). Protein phosphatase
2A (PP2A) appears to be the chief mediator of this effect,
although other phosphatases also act on HSL; the full mech-
anism remains obscure (911). Insulin also appears to have
PI3K-dependent but AKT-independent effects, such as the
dephosphorylation of perilipin (146, 209). In contrast to
HSL, protein phosphatase 1 (PP1) has been identified as the
main perilipin phosphatase in adipocytes; PP1 regulatory
subunit phosphorylation and activity both increase in re-
sponse to insulin (43, 151).

In summary, although the mechanisms by which insulin
suppresses lipolysis are not understood in full detail, a func-
tional model in which insulin both attenuates adrenergic
kinase activity through PDE3B activation and actively de-
phosphorylates lipolytic regulatory proteins through pro-
tein phosphatase activation may be sufficient to account for
experimental observations. A picture of the cellular physi-
ology of WAT lipolysis is emerging in which hormone-
stimulated assembly of lipolytic or antilipolytic complexes
at the lipid droplet defines the net direction of lipolysis (11,
192). Ongoing investigation will undoubtedly define the
relevant mediators and interactions in fuller detail (54, 620,
684).

Just as net hepatic glycogen storage depends on the balance
between glycogenolysis and glycogen synthesis, net adipose
lipolysis is the sum of fluxes from lipolysis and re-esterifi-
cation of liberated fatty acids (474). Re-esterification can
act on fatty acids originating from within the adipocyte or
from the circulation (447). During fasting, almost no adi-
pocyte re-esterification occurs, but glucose infusion induces
substantial re-esterification (165). Additionally, under-re-
placement of insulin in type 1 diabetics impairs the post-
prandial storage of dietary fatty acids; these findings suggest
a role for insulin in promoting adipose fatty acid esterifica-
tion (475). Insulin-stimulated glucose uptake provides a
source of glycerol-3-phosphate to which fatty acids can be
esterified, and insulin activates lipoprotein lipase activity in
adipose tissue endothelium (225, 267). Furthermore, insu-
lin promotes the translocation of fatty acid transport pro-
teins FATP1 and FATP4 in 3T3-L1 adipocytes (794). How-
ever, in healthy adults, insulin did not stimulate systemi-
cally derived fatty acid esterification to a greater extent than
could be achieved by niacin suppression of lipolysis (17).
Paired with the observation that rates of re-esterification of
fatty acids liberated within the adipocyte are not dependent
on insulin (110), a reasonable interpretation is that rates of
adipocyte fatty acid esterification are more dependent on
substrate availability and concentration gradients than on
acute insulin stimulation of a pro-esterification enzymatic
activity. Insulin has other pro-lipogenic functions in the

adipocyte; it activates SREBP-1c and its lipogenic transcrip-
tional program just as it does in hepatocytes (398). How-
ever, de novo lipogenesis accounts for a very small fraction
of adipocyte lipogenesis; esterification of preformed fatty
acids is the predominant lipogenic pathway (474). Insulin
also stimulates adipogenesis through the transcription fac-
tor peroxisome proliferator-activated receptor-� (PPAR�)
(693).

Insulin regulation of cellular glucose uptake has been well
studied in cultured 3T3-L1 adipocytes. While these cells
derive from a fibroblast line and may not fully recapitulate
all features of bona fide white adipocytes, their ease in ma-
nipulation has revealed much about the molecular media-
tors of insulin signaling (73, 282). Additionally, the study of
insulin-stimulated glucose uptake has been facilitated by
the large and productive scientific community investigating
vesicle trafficking. The seed planted by the 1980 discovery
that insulin stimulates the translocation of a glucose trans-
porting activity to the plasma membrane has blossomed
into a fruitful tree with branches sprouting to describe each
step of the process, from GSV budding to transport to teth-
ering to docking to fusion, in molecular detail (73, 174,
814). In adipocytes, GLUT4 translocation involves many
but not all of the same effectors discussed above for myo-
cellular glucose uptake. We now briefly consider the molec-
ular mediators of insulin-stimulated glucose uptake in the
adipocyte, though interested readers are referred to several
excellent reviews for more detail on this subject (47, 73,
276, 365, 413, 471).

Insulin-stimulated glucose uptake in the adipocyte, as in
muscle, is critically dependent on the IRS1-PI3K-AKT axis.
Antisense knockdown of IRS1 severely impairs insulin-
stimulated glucose uptake in primary rat adipocytes (666).
IRS2 also participates in adipocyte insulin signaling; IRS2
Ser388 phosphorylation by insulin-activated cyclin-depen-
dent kinase 4 (CDK4) may be a positive feedback mecha-
nism maintaining adipocyte insulin signaling (448). The
importance of PI3K activation in adipocyte insulin action is
highlighted by studies of mice with inducible deletion of the
PIP3 phosphatase PTEN in mature adipocytes; these mice
have profoundly enhanced insulin sensitivity even on a reg-
ular chow diet (555). Synthetic or optogenetic activation of
PI3K or AKT2 is sufficient to increase glucose uptake in
3T3-L1 adipocytes, and loss of Tbc1d4 (AS160) in mice
completely abrogates insulin-stimulated adipocyte glucose
uptake (118, 581, 930). The AS160-related Rab GAP
TBC1D1, although important in skeletal muscle, is ex-
pressed at low levels in adipose tissue, and Tbc1d1�/� mice
have normal insulin-stimulated glucose uptake (118). The
major AS160 substrate in the adipocyte (i.e., the Rab GTP-
ase that AS160 maintains in the inactive GDP-bound state)
is thought to be RAB10, which regulates GSV exocytosis
(94, 726). The related TBC1D13-RAB35 pair also supports
GLUT4 trafficking to the plasma membrane, as may several
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other Rabs (179, 365). Another GAP-GTPase axis involv-
ing the GAP complex RGC1/2 and the GTPase RalA also
participates in insulin-stimulated targeting of GSVs to the
adipocyte plasma membrane; RGC2 is an AKT substrate
(132, 133).

Beyond regulating vesicle trafficking through GAP-Rab in-
teractions, AKT also promotes GLUT4 translocation in the
adipocyte by phosphorylating targets involved in vesicle
tethering, docking, and fusion. One such substrate is
SYNIP, which when phosphorylated dissociates from the
t-SNARE syntaxin-4 to enable GSV docking and fusion at
the plasma membrane (544, 931). CDP138 is another AKT
substrate involved in GSV fusion, although its precise func-
tion remains incompletely defined (926). Finally, the motor
protein myosin 5A is an AKT substrate that aids in GLUT4
navigation of the cortical actin network to reach the plasma
membrane (939). The continued identification of novel
AKT substrates involved in GSV trafficking suggests that
current understanding of PI3K-dependent GLUT4 translo-
cation is incomplete but solidifies the role of AKT as its
master controller, with input to many effectors in all phases
of the process.

Although the Rho-family GTPase RAC1 does not appear as
critical for insulin-stimulated GLUT4 trafficking in the adi-
pocyte as it is in the skeletal myocyte, another Rho GTPase,
TC10�, has been identified as an AKT-independent media-
tor in the adipocyte (732). TC10� is activated upon insulin
stimulation, and its knockdown by siRNA results in im-
paired GLUT4 translocation and decreased insulin-stimu-
lated glucose uptake (119). By binding EXO70 in the exo-
cyst complex, TC10 promotes tethering of GSVs at the
plasma membrane (350). Additionally, TC10 acts through
the protein PIST to promote the proteolytic cleavage of
TUG, a protein tether that sequesters GSVs intracellularly
at the Golgi network (47, 73–75). TUG cleavage thus en-
ables the mobilization of GSVs to the plasma membrane
upon insulin stimulation (943). An additional AKT-inde-
pendent pathway for insulin-stimulated glucose uptake in
adipocytes involves direct INSR tyrosine phosphorylation
of MUNC18C, which modulates GSV fusion at the plasma
membrane through interactions with SNAREs (369).

The pathways described in this section controlling adi-
pocyte glucose uptake and the pathways described above
for muscle glucose uptake overlap to a significant extent.
Mechanisms with strong evidence in 3T3-L1 adipocytes but
weaker evidence in myocytes have been the focus of this
section. It is important to note that a large subset of the
aforementioned pathways (e.g., AKT/TBC1D4 signaling,
TUG cleavage) is known to be operative in both adipocytes
and myocytes. Furthermore, other tissues which exhibit in-
sulin-stimulated glucose uptake, such as cardiac muscle and
brown adipose tissue, likely employ a subset of these mo-
lecular mechanisms (342, 776, 777).

And as we will examine next, adipocyte insulin action has
ramifications beyond fat, potently controlling hepatic glu-
coneogenesis.

III. INDIRECT INSULIN ACTION

A. Physiological Relevance of Indirect Insulin
Action

Insulin action evolved not in an isolated, homogeneous cel-
lular population but rather in the context of complex mul-
ticellular organisms with specialized cell types. It is not
surprising, then, that several critical elements of whole-
body insulin action are not cell-autonomous: they require
tissue crosstalk. Because these phenomena are difficult to
model in cultured cells and by definition cannot be modeled
in a homogeneous, isolated cell population, progress in un-
derstanding their molecular basis has lagged behind prog-
ress in the study of direct insulin action. However, the in-
direct effects of insulin make quantitatively significant con-
tributions to overall tissue insulin action; in some cases,
indirect effects predominate over direct effects (6, 620,
686). Indirect insulin action thus cannot be ignored in stud-
ies of intact organisms (841). A particularly well-studied
example involves insulin’s effect to suppress hepatic gluco-
neogenesis by inhibiting lipolysis in the adipose tissue (6,
54, 89, 135, 136, 620, 684, 686, 774). Several other indi-
rect actions of insulin have been demonstrated. For exam-
ple, insulin action in pancreatic �-cells strengthens the inte-
grated insulin response by suppressing glucagon secretion,
and a sizable literature has emerged implicating CNS insu-
lin action in peripheral metabolic control. Because the scope
of this review encompasses primarily the peripheral insulin-
responsive tissues rather than the endocrine pancreas or the
CNS, and because excellent recent reviews on these latter
topics are available (2, 201, 307, 392, 409, 444, 459, 652,
749, 863), we focus this section on the insulin-adipocyte-
hepatocyte axis and its control of hepatic glucose produc-
tion and only briefly review these other important indirect
actions of insulin.

B. The Adipocyte-Hepatocyte Axis: Lipolytic
Control of Hepatic Gluconeogenesis

It has long been appreciated that fatty acid substrate avail-
ability can regulate hepatic glucose production. Using per-
fused, glycogen-depleted rat liver, several groups showed in
the 1960s that oleic acid oxidation increased gluconeogen-
esis from alanine or lactate (315, 835, 903, 905, 906), al-
though this was controversial (217). Because of the require-
ment for gluconeogenic substrate for fatty acid activation of
gluconeogenesis, and because increases in mitochondrial
acetyl CoA content were observed, these workers proposed
that allosteric activation of pyruvate carboxylase (PC) by
acetyl CoA mediated the stimulatory effect of fatty acid
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oxidation on hepatic gluconeogenesis (7, 434, 864, 902,
903). However, methodological limitations stemming from
acetyl-CoA’s low hepatocellular concentrations and rapid
degradation ex vivo thwarted accurate measurement in
liver samples. Furthermore, studies in isolated hepatocytes
were unable to demonstrate any direct effect of insulin on
PC activity (138). But in vitro liver preparations do not
enable studies of the effect of insulin to control fatty acid
availability through adipose tissue lipolysis. In vivo evi-
dence for an indirect effect of insulin on HGP can be traced
to the 1966 report that in pancreatectomized dogs, inhibit-
ing lipolysis with nicotinic acid decreased both plasma
NEFA levels and HGP (615). Twenty years later, it was
reported that a low-dose insulin infusion which increased
peripheral but not portal insulin levels and did not alter
glucagon was nevertheless effective in suppressing HGP in
humans, pointing to key extrahepatic effects of insulin on
HGP suppression (661). However, demonstrating the rele-
vance of the lipolysis-acetyl CoA-PC-HGP axis conclusively
in vivo was complicated by the confounding effects of
NEFA to increase insulin secretion and decrease glucagon
secretion, as well as methodological limitations including
the measurement of hepatic acetyl-CoA content and rates of
hepatic pyruvate carboxylase flux (229). Additionally, li-
polysis releases glycerol, which is converted to glucose at a
redox-modulated but largely substrate-dependent rate (34,
511, 620). Skilled use of the somatostatin pancreatic clamp,
better measurements of portal versus peripheral hormone
concentrations, and the development of tracer methods to
measure fatty acid and glycerol turnover eventually yielded
insights into the physiological relevance of these mecha-
nisms. Several groups subsequently reported that the effect
of insulin to suppress HGP was partially mediated by its
suppression of plasma NEFA levels (6, 476, 686, 774).
Bergman and co-workers (686) hypothesized that this effect
of NEFA to modulate HGP could be attributed to NEFA
modulation of transendothelial insulin transport. Particu-
larly convincing evidence for NEFA modulation of HGP
came from work in fasted dogs, in which NEFA infusion
during hyperinsulinemic-euglycemic pancreatic clamps to-
tally prevented insulin suppression of both plasma NEFA
levels and HGP. Variation in the magnitude of this effect in
other studies can partially be explained by some combina-
tion of species differences, incomplete control of portal and
peripheral insulin and glucagon, and the direct effect of
insulin to suppress net hepatic glycogenolysis; as discussed
in section II, glycogenolysis contributes a highly variable
fraction of HGP depending on species and fasting duration
(136, 428, 476, 477, 773). Recently, using novel liquid
chromatography-tandem mass spectrometry methods to as-
sess hepatic acetyl-CoA content and rates of hepatic pyru-
vate carboxylase flux in vivo, Perry and co-workers (620,
630) tested the hypothesis that insulin acutely suppresses
hepatic gluconeogenesis by suppressing WAT lipolysis and
hepatic acetyl CoA content and hepatic pyruvate carboxy-
lase activity in free-ranging rats. During hyperinsulinemic-

euglycemic clamps, insulin was shown to rapidly decrease
palmitate and glycerol turnover (i.e., lipolysis), hepatic
acetyl CoA content, hepatic pyruvate carboxylase flux, and
hepatic HGP in tight temporal alignment (620). Preventing
this decrease in hepatic acetyl CoA by acetate infusion,
while also replacing glycerol to match basal turnover rates,
completely abrogated insulin suppression of hepatic pyru-
vate carboxylase flux and HGP (620). Importantly, these
studies were performed in fasted rats with glycogen-de-
pleted livers reliant on gluconeogenesis for virtually 100%
of HGP.

Studies of genetically modified rodents also support a key
role for the adipocyte-hepatocyte axis in insulin suppres-
sion of HGP. Studies of mice with liver-specific ablation of
Akt1, Akt2, and Foxo1 (TLKO mice) offer particularly
strong evidence for this mechanism (504, 620, 842). TLKO
mice, despite lacking three critical effectors of the hepato-
cellular insulin response, suppressed hepatic acetyl CoA
and HGP normally in hyperinsulinemic-euglycemic clamp
studies (504). Neither vagotomy nor glucagon blockade
altered this phenotype (842). However, when the effects of
insulin suppression of WAT lipolysis to decrease hepatic
acetyl CoA content and glycerol flux to liver were prevented
by infusions of acetate and glycerol, both TLKO and wild-
type mice were unable to decrease pyruvate carboxylase
flux and hepatic gluconeogenesis in response to insulin
(620). In a separate study, infusion of Intralipid and heparin
during a clamp to maintain plasma NEFA concentrations at
their basal levels prevented insulin suppression of HGP in
TLKO mice, although not in wild-type mice (842). Simi-
larly, rats with antisense oligonucleotide-mediated Insr ab-
lation in liver and WAT were only able to suppress HGP in
hyperinsulinemic-euglycemic clamp studies when adipose
insulin action was functionally restored using the ATGL
inhibitor atglistatin (620). These studies of rodents lacking
canonical hepatocellular insulin signaling provide strong
evidence that hepatic gluconeogenesis is controlled inde-
pendently of direct hepatocellular insulin action (620).
Rather, these data support a model wherein insulin regula-
tion of hepatic gluconeogenesis is mostly dependent on
WAT lipolysis through acetyl CoA allostery and glycerol
substrate availability (620). This paradigm also explains the
surprising reports that 1) whole-body Insr knockout mice
failed to regain intact insulin suppression of HGP when Insr
expression was transgenically rescued in liver, and 2) acute
liver-specific Insr ablation failed to impair insulin suppres-
sion of HGP (105, 592). Modifying lipolysis at the level of
the adipocyte can also affect insulin suppression of HGP.
Mice lacking Atgl in adipose tissue displayed decreased
fatty acid turnover, which was associated with decreased
hepatic acetyl CoA and improved HGP suppression com-
pared with wild-type controls (12, 620). Finally, the insulin
response in Pde3b�/� mice was characterized by failure to
suppress plasma NEFA levels and a corresponding impair-
ment in HGP suppression, although these mice also devel-
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oped hepatocellular insulin signaling defects (147). Taken
together, available evidence supports the hypothesis that
insulin’s acute suppression of hepatic gluconeogenesis in-
volves suppression of WAT lipolysis, which decreases both
conversion of glycerol to glucose and acetyl CoA activation
of pyruvate carboxylase.

Unraveling the relative importance of direct versus indirect
effects of insulin on HGP still requires further investigation,
particularly because these relative contributions are likely
to vary significantly in different physiological and patho-
physiological conditions. However, a useful simplification
is to conceive of glycogenolytic contributions to HGP as
controlled by direct hepatic insulin action and gluconeo-
genic contributions to HGP as controlled by indirect insulin
action, largely through effects on WAT lipolysis (FIGURE 6).
Accordingly, the direct effects of insulin on HGP will pre-
dominate in a glycogen-replete (fed) liver, whereas the in-
direct effects of insulin on HGP will predominate in a gly-
cogen-depleted (fasted) liver. This hypothesis might explain
the discordant literature on this topic, emphasizing the im-
portance of species differences. Humans and dogs break
down their hepatic glycogen stores more slowly than ro-
dents; therefore, direct effects of insulin on hepatic glucose
metabolism might be expected to predominate following an
overnight fast. In contrast, rats and mice are almost totally
devoid of hepatic glycogen following an overnight fast;
therefore, indirect effects of insulin on hepatic glucose me-
tabolism would be expected to dominate under these con-
ditions. The quantitative significance of this latter effect in
humans remains to be further explored, but it is interesting
to note that the increased HGP of poorly controlled type 2
diabetic humans is accounted for entirely by increases in
hepatic gluconeogenesis rather than net hepatic glycogen-
olysis (513, 704). The link between increased NEFA levels
and hyperglycemia in T2D has long been appreciated; it is
hoped that increasing mechanistic evidence for their causal
linkage will spur therapeutic innovation targeting WAT li-
polysis.

C. Insulin Suppression of Glucagon
Secretion

Glucagon action is important for normal glucose homeo-
stasis (871), and given its potent anti-insulin effects on the
liver in particular, it is not surprising that an elegant and
tightly controlled reciprocal paracrine regulatory system
has evolved to favor either insulin or glucagon secretion,
but not both, in any given metabolic state (863). It was
shown in 1970 that insulin-deficient diabetes was a state of
relative hyperglucagonemia and �-cell hyperresponsiveness
to the glucagon secretagogue arginine (861), and subse-
quent studies confirmed that insulin acts in a paracrine
manner to suppress glucagon release from the islet (29, 280,
523, 890). Insulin per se is sufficient to suppress glucagon
levels during euglycemia and hypoglycemia in humans with

type 1 diabetes (T1D), and fasting glucagon levels are cor-
related with insulin resistance in nondiabetic humans (164,
223, 756). Mice lacking the insulin receptor in �-cells pro-
vided direct genetic evidence for this mechanism; these mice
exhibited hyperglucagonemia in the fed state and during
insulin tolerance tests (393). The mechanism for insulin
suppression of �-cell glucagon secretion is incompletely elu-
cidated but has been shown to involve PI3K activity and
phosphodiesterase-mediated degradation of cAMP (213,
683). Overall, the importance of glucagon in insulin action
and diabetes is underappreciated (862); the inability of mice
lacking the glucagon receptor to develop diabetes upon
�-cell destruction is only one of many striking illustrations
of this (468).

D. Peripheral Effects of CNS Insulin Action

A role for the CNS in the regulation of glucose metabolism
has been appreciated since the 1850s (55), but the subject
has experienced a renaissance in the past 20 yr (444). Insu-
lin is transcytosed across the blood-brain barrier (40) and
both neurons and glial cells express insulin receptors (652).
A major function of insulin in the brain is the suppression of
appetite (48, 912). Neuron-specific Insr deletion predis-
poses mice to diet-induced obesity and concomitant hepatic
insulin resistance, likely through appetite modulation
(104). Neuron-specific rescue of Insr expression in whole-
body Insr�/� mice extends lifespan from a few days to a few
weeks, although the rescued mice still develop profound
diabetes, indicating that the full beneficial effects of brain
insulin action require intact peripheral insulin receptors
(591). Indeed, CNS signaling has been demonstrated to reg-
ulate hepatic insulin action through mechanisms indepen-
dent of energy balance. The 2002 finding that intracerebro-
ventricular insulin administration was sufficient to suppress
hepatic glucose production in rodents (after a �1 h time
delay) (588) spurred further investigation in the field. Sub-
sequently, insulin action in certain hypothalamic nuclei was
reported to potently suppress hepatic glucose production
(588, 653), promote muscle glucose uptake (415), suppress
adipose tissue lipolysis (415, 737), and suppress glucagon
secretion (612) in rodents. Nasal insulin administration,
which disproportionately increases cerebrospinal fluid insu-
lin concentrations, has been shown to enhance insulin sup-
pression of hepatic glucose production in hyperinsulinemic-
euglycemic clamp studies in lean humans (308). However, a
physiological increase in brain insulin levels per se is insuf-
ficient to alter hepatic glucose production in dogs (208,
675). The mechanisms linking brain and peripheral insulin
action are elusive, but likely involve sympathetic and para-
sympathetic outflow and possibly the hypothalamus-pitu-
itary-adrenal (HPA) axis. For example, hepatic vagotomy
was shown in one study to block the effects of CNS insulin
on HGP (653), although the normal hepatic glucose metab-
olism of mice lacking hepatic muscarinic acetylcholine re-
ceptors (480) and the normal hepatic insulin action of de-
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nervated rodent liver (551) and transplanted human liver
(which remains denervated for at least 2 yr postoperatively)
(744) challenges this hypothesis (673). Other important
concerns have been raised challenging the physiological
generalizability of much of the experimental work in this
field. These include the unphysiological dose and route of
administration of intracerebroventricular insulin, failure to
preserve the physiological ~3:1 portal-peripheral insulin
gradient and consequent overemphasis of extrahepatic in-
sulin action, failure to control glucagon levels between ex-
perimental groups, and species differences in the sources
and control of hepatic glucose production between rodents
and larger mammals (673). An elegant attempt to address
these concerns utilized the somatostatin pancreatic clamp
with basal glucagon replacement and portal vein insulin
infusion in conscious dogs; the PI3K inhibitor LY249002
was infused intracerebroventricularly to assess the contri-
bution of brain insulin action to the peripheral effects of
physiological hyperinsulinemia (674). The experiments re-
vealed no effect of acute brain insulin signaling inhibition
on insulin suppression of hepatic glucose production or
insulin-stimulated whole-body glucose uptake, but did re-
veal a modest blunting in the induction of hepatic glucoki-
nase expression, of unclear physiological significance (674).
Whether chronic brain insulin action or brain insulin resis-
tance significantly affects peripheral insulin action is an
open question (444).

Aside from serving as a direct site of insulin action, the brain
is also a site of signal integration for various peripherally
secreted hormones. Of these, leptin has been of particular
interest as a centrally acting adipokine with pleiotropic ef-
fects on energy balance and metabolism (537, 626). The
mechanisms of leptin action are many and are reviewed
elsewhere (166, 236, 537, 565, 626), but one mechanism
that links directly to the adipocyte-hepatocyte axis dis-
cussed previously pertains to leptin’s role in starvation and
diabetic ketoacidosis (623, 628). In rats with these condi-
tions, plasma leptin concentrations are low and the HPA
axis is activated with resultant corticosteroid-driven WAT
lipolysis, ketogenesis, and hepatic gluconeogenesis; physio-
logical replacement of leptin suppresses the HPA axis and
prevents these effects. In this way, leptin participates in the
control of substrate switching from glucose to fatty acids
during starvation, an effect previously thought to be chiefly
mediated by insulinopenia. Interestingly, leptin displays a
hormetic effect; at low concentrations, it suppresses HPA
axis-driven lipolysis, but at high concentrations, it pro-
motes catecholamine-driven WAT lipolysis (628). A second
key mechanism that contributes heavily to the antidiabetic
effect of chronic leptin therapy in T1D is leptin suppression
of glucagon secretion, which can be achieved through either
peripheral or CNS leptin administration (249, 877). The
fascinating observation that either chronic leptin treatment
or insulin are sufficient to reverse the hyperglucagonemia,
hyperglycemia, and ketoacidosis of florid T1D has ad-

vanced the hypothesis that the symptoms of diabetes are
best conceptualized as consequences of glucagon excess
rather than of insulin deficiency (862). Importantly, how-
ever, leptin reverses hyperglycemic diabetic ketoacidosis be-
fore correction of hyperglucagonemia; this acute effect oc-
curs by suppression of HPA axis-driven WAT lipolysis
(630).

Several experiments have also suggested that a gut-brain-
liver axis regulates hepatic glucose metabolism in rodents.
The gut is an endocrine organ in its own right, with en-
teroendocrine cells that produce hormones including ghre-
lin, incretins, FGF19, and cholecystokinin (CCK) (409).
FGF19 (also known as FGF15 in rodents) is secreted by the
distal small bowel in response to bile acid sensing and, in
addition to its originally defined role in the enterohepatic
control of bile acid synthesis, acts centrally to enhance glu-
cose tolerance by suppression of the HPA axis in rodents
(410, 556, 622). The gut microbiome may also participate
in CNS control of peripheral insulin action; in rats, micro-
bially produced acetate was shown to enhance glucose-
stimulated insulin secretion through direct activation of the
parasympathetic nervous system (624). It is unknown
whether this mechanism is operative in humans. Direct nu-
trient sensing is another proposed mechanism by which the
gut might prompt CNS regulation of peripheral metabo-
lism. Duodenal fatty acid esterification has been shown in
rats to act through parasympathetic activation to suppress
hepatic glucose production upon upper intestinal lipid de-
livery (879), but similar experiments in humans (low-dose
duodenal lipid infusion under pancreatic clamp conditions)
revealed no effect of duodenal lipid on plasma glucose or
hepatic glucose production (925). In contrast, a role for
duodenal lipid delivery in suppressing food intake through
CCK secretion is uncontroversial (529). The complexity of
these integrated physiological mechanisms uncovered in ro-
dents requires careful confirmation in humans, but further
work on gut-brain signaling pathways is likely to yield con-
tinued insights into therapeutically relevant areas such as
mechanisms of bariatric surgery efficacy and incretin phys-
iology (201).

IV. PATHOPHYSIOLOGY OF INSULIN
RESISTANCE

A. What Is Insulin Resistance?

The notion of insulin resistance can be traced to the obser-
vations of Himsworth (317), who noted that concurrent
injection of glucose and insulin in diabetic patients pro-
duced one of two outcomes. Some diabetics responded to
the challenge with stable or decreased blood glucose; these
were termed insulin-sensitive. In others, the challenge in-
creased blood glucose markedly; these were considered in-
sulin-insensitive. We now appreciate that these latter pa-
tients typify the insulin resistance of the metabolic syn-

INSULIN ACTION AND INSULIN RESISTANCE

2153Physiol Rev • VOL 98 • OCTOBER 2018 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (106.051.226.007) on August 8, 2022.

https://www.ncbi.nlm.nih.gov/nuccore/1257710161


drome: at a normal plasma insulin level, target tissues are
unable to mount a normal coordinated glucose-lowering
response involving suppression of endogenous glucose pro-
duction, suppression of lipolysis, cellular uptake of avail-
able plasma glucose, and net glycogen synthesis (377, 378,
381, 595, 684). This insulin resistance necessitates in-
creased insulin secretion to compensate, so fasting plasma
insulin levels increase (176, 380). The real-time feedback
circuit linking insulin sensitivity and insulin secretion com-
plicates the “chicken-egg” problem of identifying the pri-
mary defect; what is clear is that defects in both insulin
target tissues and �-cells are required for the development
of fasting hyperglycemia and T2D (380). A diverse cadre of
bioactive factors is capable of impairing insulin sensitivity,
as is chronic hyperinsulinemia per se (595, 724). Although
these defects in tissue insulin action are readily reversible
(even in patients with T2D) by weight loss and hypocaloric
regimens, continuous overnutrition in the setting of insulin
resistance creates a vicious cycle of hyperinsulinemia and
insulin resistance that culminates in eventual �-cell failure,
likely due to glucose and lipid toxicity and other factors
leading to overt T2D (380, 637).

The integrated physiology of insulin resistance owes to de-
fective insulin action at target cells. Attempts to localize the
defect in cellular insulin action have been driven by the
identification of new effectors. In the 1970s and early
1980s, when INSR was the only known molecular effector
of insulin action, several groups used insulin dose-response
curves and 125I-insulin binding studies to relate surface
INSR content to physiological insulin action and resistance
(26, 272, 378, 417, 420, 595, 787). The central question at
the time was whether insulin resistance owed to “receptor
defects” (i.e., decreased INSR expression at the cell surface)
or “postreceptor defects” (i.e., impaired signal transduc-

tion) (FIGURE 7) (417, 595). Receptor defects were identi-
fied in obese and diabetic rodents and humans, in adi-
pocytes as well as in other cell types (26, 272, 379, 418,
786, 787). Compensatory downregulation of surface INSR
content in the face of sustained hyperinsulinemia is likely to
partially explain the phenomenon, although mechanisms
for active regulation of surface INSR expression and dys-
regulation in insulin resistance are beginning to emerge. For
example, the ubiquitin ligase MARCH1 ubiquitinates
INSR to decrease the number of receptors at the cell surface
(566). MARCH1 is transcriptionally regulated through
FOXO1, and MARCH1 expression is increased in WAT
from obese mice and humans, consistent with insulin resis-
tance to FOXO1 inhibition (566). The effect of decreasing
surface INSR expression on insulin action is a right-shift of
the insulin dose-response curve; because cells have spare
receptors, no decrease in maximal response is observed un-
less the cell surface INSR content drops below 5–10% of
normal (378).

When the insulin resistance of human T2D was shown to
involve both a right-shifted dose-response curve and a de-
creased maximal insulin response with respect to whole-
body glucose uptake despite �90% loss of surface receptor
content, it was inferred that both receptor and “postrecep-
tor” defects contribute to insulin resistance (417, 595). As a
result, the hypothesis that decreased insulin receptor bind-
ing accounts for typical obesity-associated insulin resis-
tance has long since given way to a model in which insulin
signal transduction defects are central (35). Additionally,
the signal transduction (postreceptor) defects of typical
obesity-associated insulin resistance have long been appre-
ciated to involve the insulin receptor itself in addition to
postreceptor effectors, confusing the semantics of “recep-
tor” versus “postreceptor” defects (77, 247, 595, 821).
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FIGURE 7. Insulin resistance in dose-response curves. A: in a hypothetical cell with decreased surface insulin

receptor (INSR) content, the dose-response curve is right-shifted but the maximal biological response is not

decreased unless �90% of surface receptors are lost. B: in a cell with an insulin signal transduction

(“post-receptor”) defect, or a combined receptor/post-receptor defect, both a right shift and decreased

maximal response are observed. The right graph typifies human obesity-associated insulin resistance in

muscle, liver, and adipose tissues.
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Nearly all mechanistic work in this field in the last 30 yr,
after the discovery that the INSR is a tyrosine kinase (390,
391), has focused on identifying defects in insulin signal
transduction. Nevertheless, it is clear that both decreased
surface INSR content and impaired insulin signal transduc-
tion contribute to typical obesity-associated insulin resis-
tance.

Although distinguishing insulin “resistance,” an increase
in insulin EC50, from decreased insulin “responsiveness,”
a decreased maximal effect, can be useful (378), it is no
longer common practice in the field. Properly distinguish-
ing insulin resistance from responsiveness requires the
construction of insulin dose-response curves, which can
be cumbersome for in vivo studies. Insulin resistance in
the commonly used sense, and therefore throughout the
remainder of this review, is thus defined as an insulin
dose-response curve with increased EC50, with or with-
out decreased maximal response. Importantly, insulin re-
sistance is not a binary switching-off of insulin signaling.
For this reason, hyperinsulinemia is an effective compen-
satory mechanism that preserves insulin action in mild
and moderate insulin resistance. Because insulin resis-
tance displays tissue-specific functional consequences,
we now consider the particular nature of insulin resis-
tance in skeletal muscle, liver, and WAT, with attention
to which signaling effectors and which physiological
functions are impaired in typical obesity-associated insu-
lin resistance.

B. Pathophysiology of Skeletal Muscle
Insulin Resistance

The principal function of insulin in the skeletal muscle is to
promote cellular glucose uptake, a process controlled by
GLUT4 translocation. Insulin-stimulated muscle glucose
uptake is highly susceptible to insulin resistance and is in-
deed a principal component of typical obesity-associated
insulin resistance and T2D (182, 767). Because skeletal
muscle is a major site of insulin-stimulated glucose dis-
posal (70 – 80% during a hyperinsulinemic euglycemic
clamp, although only 25–30% in the postprandial state
where glucose appearance site, glucose concentrations,
and tissue glucose demand all differ from the clamped
state), muscle insulin resistance has a large effect on
whole body glucose turnover (182, 428). Insulin stimu-
lation of glycogen synthesis and glycolysis both require
intact insulin-stimulated glucose uptake to furnish sub-
strate, so these effects also become resistant to insulin
action (152, 768).

The mechanisms for insulin resistance to muscle glucose
disposal have been the subject of extensive investigation
(FIGURE 8). Early work suggested that nonoxidative glucose
metabolism (i.e., glycogen synthesis) was the major fate of
myocellular glucose, and this was later directly confirmed in

humans using 13C magnetic resonance spectroscopy (MRS)
(58, 180, 768). The demonstration that insulin-stimulated
muscle glycogen synthesis was markedly (~50%) impaired
both in patients with T2D and in lean, healthy insulin-
resistant offspring of patients with T2D provided a func-
tional description of muscle insulin resistance, but did not
localize the site of blockade (633, 768). Although many
other studies demonstrated decreased glucose transport
in insulin-resistant and T2D muscle, these results simi-
larly could have resulted from primary blockade at the
level of glycogen synthetic activity, hexokinase activity,
or glucose transport, “backing up” the system with the
final effect of decreasing glucose transport (193, 255,
767). Eventually, 13C and 31P MRS measurements of
intracellular glucose and G6P concentrations revealed
that the major rate-controlling step responsible for re-
duced insulin-stimulated muscle glycogen synthesis in di-
abetic patients was indeed glucose transport (152, 285,
633, 698). These physiological studies complemented
cell biological observations that insulin potently con-
trolled myocellular GLUT4 translocation to the plasma
membrane and t-tubules and that this translocation was
defective in human insulin resistance (258, 651, 881).
Together, these studies focused the problem of muscle
insulin resistance: the defect(s) impinge upon the signal
transduction cascade linking insulin-INSR binding and
GLUT4 translocation.

Skeletal muscle insulin resistance is traceable to defects at
the most proximal levels of insulin signaling: INSR, IRS1,
PI3K, and AKT activity. Early work revealed defective
INSR tyrosine kinase activity in purified INSR from the
skeletal muscle of obese mice; this provided the first dem-
onstration of impaired intracellular insulin signaling and
validated the prediction that surface insulin receptor down-
regulation was not the only defect in obesity-associated in-
sulin resistance (417, 470, 595). This observation was later
extended to obese and diabetic humans, in which two INSR
defects were present: decreased surface INSR content and
decreased INSR kinase (IRK) activity from purified recep-
tors (117). Decreased IRK activity was also observed in
skeletal muscle from diabetic rats, women with gestational
diabetes, and young lean relatives of patients with T2D (66,
107, 301). However, IRK activity is now rarely measured
from tissue samples. Instead, INSR activation is most often
assessed by phosphotyrosine immunoblotting. This experi-
ment is technically easier but does not directly assess INSR
signaling; the multiplicity of tyrosine phosphorylation sites
on INSR also complicates the relationship between these
parameters (83, 117, 248, 470). Defective IRK activity is
also suggested by the decrease in IRS1 tyrosine phosphor-
ylation consistently observed in insulin-resistant skeletal
muscle (175, 248, 285, 436, 942). Blunted insulin stim-
ulation of IRS1-associated PI3K activity is also reproduc-
ibly observed in muscle insulin resistance, whether in-
duced acutely or chronically (175, 198, 285, 441, 942).
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Interestingly, skeletal muscle from obese or type 2 dia-
betic humans does not develop insulin resistance to mi-
togenic signaling through MAPK (175). Although im-
paired insulin activation of other distal effectors, includ-
ing AKT, is often seen in muscle insulin resistance, the
simultaneous presence of proximal insulin signaling de-
fects makes it difficult to determine whether these distal
defects have an independent origin or are merely second-
ary to proximal defects. While it is likely that insulin

resistance involves dysregulation of multiple signaling
effectors, it is also possible that proximal signaling de-
fects are sufficient to account for the entire impairment in
insulin stimulation of glucose uptake seen in obesity-
associated insulin resistance. Advances in computational
modeling of signal transduction pathways will enable
deconvolution of the relative contributions of specific
signaling defects to the final functional defect of impaired
insulin-stimulated glucose uptake (81, 402, 745).
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C. Pathophysiology of Hepatic Insulin
Resistance

As discussed in section II, hepatic insulin action affects the
metabolism of all macronutrients. It has both acute and
chronic, and both direct and indirect, components. Here we
consider insulin regulation of glucose and lipid metabolism
in the liver, with attention to which processes become resis-
tant in obesity and T2D.

Insulin, in combination with adequate substrate supply, or-
chestrates a switch from net glucose production to net glu-
cose uptake in the liver. This involves the coordinated sup-
pression of gluconeogenesis and glycogenolysis, and the
activation of glycogen synthesis. Suppression of gluconeo-
genesis can be divided into acute and chronic processes,
with very different mechanisms. The acute suppression of
hepatic gluconeogenesis (within 10 min of insulin stimula-
tion in the rat) appears to be primarily mediated by extra-
hepatic insulin action (6, 208, 620, 686, 774). Suppression
of lipolysis in adipose tissue reduces fatty acid delivery to
liver, which in turn reduces hepatic �-oxidative flux. As a
result, hepatic acetyl CoA levels are reduced, allosterically
decreasing PC activity. Together with the decreased glyc-
erol turnover caused by suppression of lipolysis, gluconeo-
genic flux is diminished (620). This mechanism has impli-
cations for the use of impaired insulin suppression of HGP
as a surrogate for hepatic insulin resistance. In glycogen-
depleted livers where gluconeogenesis accounts for most of
HGP, impaired insulin suppression of HGP may signal ad-
ipose insulin resistance rather than hepatic insulin resis-
tance. This paradigm reconciles the many surprising genet-
ically modified rodent models in which severe perturbations
in hepatic insulin signaling do not predict insulin’s ability to
suppress HGP during hyperinsulinemic-euglycemic clamp
studies (105, 135, 504, 592, 603, 620, 840). The most
striking studies of this phenomenon have ablated the he-
patic insulin receptor by either conventional gene targeting
or antisense oligonucleotide treatment. Liver-specific
Insr�/� (LIRKO) mice totally lack hepatocellular insulin
signaling and are severely glucose intolerant; they do not
suppress HGP in hyperinsulinemic-euglycemic clamp stud-
ies (234, 539). However, this defect can be totally rescued:
not by replacing the hepatic INSR, but by concomitantly
ablating hepatic Foxo1 to correct the unrestrained gluco-
neogenic enzyme expression (and glucokinase repression)
produced by constitutive FOXO1 activation in LIRKO
mice (592, 603, 840). Similarly, antisense oligonucleotide
ablation of INSR in liver and WAT prevents insulin sup-
pression of HGP in rats, but this defect is rescued by simu-
lating WAT insulin action with the lipolysis inhibitor atg-
listatin (620). Both models of hepatic INSR ablation disso-
ciate the hepatocellular insulin signaling pathway from
normal insulin suppression of gluconeogenesis, suggesting
that measurements of HGP suppression should be used with
caution as readouts of hepatic insulin resistance.

Rates of hepatic gluconeogenesis are increased in T2D and
are the proximate cause of the fasting hyperglycemia that
defines the disease (259, 346, 513). But because gluconeo-
genesis is regulated by diverse mechanisms (e.g., allostery,
redox, substrate-driven, transcriptional, posttranslational)
(647), it does not necessarily follow that insulin’s direct
hepatocellular effects on gluconeogenesis are dysregulated
in T2D. The chronic suppression of gluconeogenesis by in-
sulin, better observed in fasting-refeeding studies than acute
insulin stimulation studies, is a direct hepatocellular effect
mediated by inhibition of the FOXO transcription factors,
especially FOXO1. Does increased FOXO1 activity have
any role in the increased hepatic gluconeogenesis of T2D?
FOXO1 mRNA expression and nuclear localization (a sur-
rogate for activity) have been reported to be increased in
humans with nonalcoholic steatohepatitis, correlated with
the homeostatic model assessment of insulin resistance
(HOMA-IR) score (866). Additionally, as discussed above,
ablation of the hepatic insulin receptor is associated with
unrestrained FOXO1 activity, which is necessary and suf-
ficient to drive pathological gluconeogenesis (603, 840).
This phenotype is also seen in mice with severe hepatic
insulin resistance owing to ablation of hepatic Irs1 and Irs2,
in which concomitant Foxo1 deletion normalizes glucose
tolerance (195). Furthermore, antisense oligonucleotide
knockdown of FOXO1 in liver and WAT improves hepatic
insulin action in chronically fat-fed mice (720). Mouse
models of profound hepatic insulin resistance, such as
ob/ob and lipodystrophic mice, display increased G6pc ex-
pression suggestive of increased FOXO1 activity (764).
However, the hepatic insulin resistance of both short-dura-
tion (5 day) and medium-duration (4 wk) fat-fed rats is not
accompanied by alterations in gluconeogenic enzyme con-
tent, arguing against a role for FOXO1-driven gluconeo-
genic gene transcription in genetically normal rodents (620,
629). Furthermore, reducing hepatic Pck1 expression by
�90% in mice caused only a modest ~40% reduction in
gluconeogenic flux, suggesting that oscillations in Pck1 ex-
pression exert limited control over gluconeogenesis (108).
Finally, a study of humans with T2D found no increase in
the hepatic expression of FOXO1 targets G6pc and Pck1,
despite fasting hyperglycemia (719). In summary, it is clear
that if totally and chronically derepressed, FOXO1 can
drive pathological gluconeogenesis in rodents, but there is
no strong evidence that this is an operative mechanism for
fasting hyperglycemia in typical human hepatic insulin re-
sistance. The multifaceted control of hepatic gluconeogen-
esis means that modest transcriptionally mediated increases
in “gluconeogenic capacity” may not be sufficient to drive
gluconeogenesis in genetically normal subjects. Further
studies are needed to adequately describe the relative con-
tribution of FOXO1 dysregulation to the increased hepatic
gluconeogenesis of humans with T2D.

Insulin suppression of hepatic glycogenolysis and stimula-
tion of glycogenesis is a direct effect that requires intact
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hepatocellular insulin action as discussed in section II. The
question of whether insulin control of hepatic glycogen me-
tabolism becomes resistant in diabetes is confounded by the
potent allosteric control of GS and phosphorylase by G6P
and glucose, and by the insulin-independent transport of
glucose across the hepatocellular plasma membrane by
GLUT2. Likely owing to this, some studies disagree on the
contribution of defective hepatic glycogen metabolic regu-
lation to hepatic insulin resistance and T2D. For example,
in hyperinsulinemic-euglycemic clamp studies of streptozo-
tocin-induced diabetic rats, insulin-stimulated hepatic GS
activity was not impaired, while similar studies in 3-day
high-fat-fed rats found impairments (439, 721). However,
the bulk of available data suggest that hepatic insulin resis-
tance is accompanied by defective hepatic glycogen metab-
olism. In humans, MRS measurements of hepatic glycogen
content revealed that T2D was associated with lower 4-h
postprandial glycogen content, suggesting a defect in glyco-
gen synthesis (513). Subjects with T2D were further found
to display lower fasting hepatic glycogen content as well as
diminished glycogen synthesis under both postprandial and
hyperinsulinemic-hyperglycemic clamp conditions (437).
Furthermore, glycogenolysis was found to be decreased and
incompletely suppressed by insulin in people with T2D (38,
69, 513). The picture of daily hepatic glycogen metabolism
in T2D is thus one of decreased amplitude, in which damp-
ened insulin control of both glycogen synthesis and mobili-
zation lead to relatively static hepatic glycogen content in-
stead of the large oscillations characteristic of normal feed-
ing and fasting. This likely owes to impaired insulin action
on both posttranslational modifications of the glycogen
synthetic machinery, transcriptional regulation of glucoki-
nase activity, and translocation from the nucleus to the
cytoplasm.

Just as understanding acute hepatic insulin action on
glucose metabolism requires separating the direct hepa-
tocellular effects on glycogen metabolism from the
largely indirect metabolite-mediated effects on gluconeo-
genesis, understanding hepatic insulin resistance requires
distinguishing these components from one another (647).
True hepatic insulin resistance should impair insulin-
stimulated glycogen synthesis, shifting the insulin dose-
response curve for this function rightward and possibly
decreasing its maximum. But isolated hepatic insulin re-
sistance would not be expected to block the ability of
insulin to suppress gluconeogenesis, because insulin sup-
pression of gluconeogenesis has a large indirect compo-
nent. This prediction has been borne out dramatically in
multiple rodent models of ablated hepatocellular insulin
signaling as discussed above.

D. Selective Hepatic Insulin Resistance

In addition to glucose handling, liver insulin action also
powerfully controls lipid metabolism, largely through

SREBP-1c. If insulin normally promotes net hepatic lipo-
genesis, insulin-resistant subjects might be expected to dis-
play decreased lipogenesis. This is indeed the case in models
of genetic total hepatic insulin resistance (i.e., ablation of
the hepatic insulin receptor), which display decreased
plasma triglycerides and decreased hepatic DNL (60, 868).
But hepatic insulin resistance in genetically normal rodents
and humans is highly associated with hepatic steatosis; net
lipogenesis is consistently elevated in insulin-resistant
livers. This phenomenon has been termed “selective he-
patic insulin resistance” (99) or “pathway-selective insu-
lin resistance and responsiveness” (920), with propo-
nents of these models arguing that “insulin-resistant”
liver is in fact only resistant to glucose handling (i.e., the
FOXO transcriptional program), not to lipid handling
(i.e., the SREBP-1c transcriptional program) (764). Ef-
forts to mechanistically rationalize selective hepatic insu-
lin resistance have focused on potential insulin signaling
bifurcations that would enable the lipid-handling arm of
insulin signaling to remain intact while the glucose-
handling arm becomes resistant. Early reports suggesting
that hepatic IRS1 might be more responsible for glucose
handling while IRS2 regulated lipid handling have not
been corroborated by subsequent investigations (195,
196, 443, 662, 827). Yet another alternative hypothesis
has focused on potential differences in substrate specific-
ity for singly phosphorylated (pThr308) versus doubly
phosphorylated (pThr308, pSer473) AKT (487, 920, 921).
Ser473 phosphorylation, in the hydrophobic motif of
AKT, may enable activity toward some AKT substrates
(e.g., the NH2-terminal FOXO site) while AKT activity
toward other substrates (e.g., GSK3�, TSC2) may only
require Thr308 phosphorylation by PDK1 (288, 362). Be-
cause some models of hepatic insulin resistance, like the
db/db mouse, appear to display preserved insulin stimu-
lation of Thr308 but not Ser473, this is an intriguing hy-
pothesis (921). However, direct experimental support is
thus far lacking and the mulitiplicity of nutrient-sensitive
inputs into AKT Ser473 phosphorylation confounds easy
interpretation. A final possible mechanism for continued
insulin activation of SREBP-1c despite FOXO1 unre-
sponsiveness in hepatic insulin resistance is that these
pathways have different intrinsic sensitivities to insulin.
In support of this model, fourfold higher concentrations
of an INSR inhibitor are necessary to cause resistance to
SREBP-1c activation than resistance to FOXO1 inactiva-
tion (162).

A unifying hypothesis for the supposed paradox of path-
way-selective hepatic insulin resistance has been elusive in
part because of the many branch points involved in insulin
signaling and the involvement of some effectors, such as
AKT and FOXO1, in both glucose and lipid handling (99,
457). However, a possible resolution to the paradox is that
hepatic insulin resistance is not selective, but chronic
overnutrition activates several insulin-independent driv-
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ers of lipogenesis. First, substrate-push re-esterification
of circulating fatty acids, facilitated by adipose insulin
resistance, is likely a major source of liver triglyceride in
nonalcoholic fatty liver disease (NAFLD). Evidence for a
role of fatty acid re-esterification in NAFLD includes the
recent demonstration that an increase in plasma fatty
acids, independent of hepatic insulin signaling or tran-
scriptional effects, is fully sufficient to drive hepatic tri-
glyceride accumulation by re-esterification through a
substrate push mechanism (868). Of note, re-esterifica-
tion, rather than DNL, is the primary lipogenic flux in
insulin-resistant humans (197). Second, upregulation of
the DNL transcriptional program does not require insu-
lin. Nutrient induction of the DNL program involves
both the carbohydrate response element binding protein
(ChREBP; stimulated by glucose) (657) and SREBP-1c
(stimulated by amino acid activation of mTORC1) (487).
Fructose is also a particularly potent stimulator of lipo-
genesis, acting through multiple mechanisms including
substrate push acutely and activation of both ChREBP
and SREBP-1c chronically (311, 718). Because insulin
resistance is often accompanied by nutrient oversupply,
activation of these nutrient-sensitive pathways is an at-
tractive explanation for the coexistence of hepatic steato-
sis and hepatic insulin resistance. In this conception, al-
though hepatic insulin resistance blunts the effect of in-
sulin per se on SREBP-1c, alternative nutrient-sensitive
pathways are sufficient to drive lipogenesis. This mecha-
nism explains the increased DNL that has been observed
in humans with NAFLD (347, 449, 868). Interestingly,
de novo lipogenic flux has been found to be decreased in
high-fat-fed rats, consistent with this pathway becoming
insulin resistant rather than remaining insulin sensitive
(184, 200, 868). Importantly, fat feeding would not be
expected to strongly activate the alternative nutrient-sen-
sitive drivers of the DNL program (ChREBP, mTORC1).
It is also useful to bear in mind that insulin resistance is
merely a shifted insulin dose-response curve; the portal
hyperinsulinemia that accompanies peripheral insulin re-
sistance is capable of activating SREBP-1c, perhaps even
to normal levels given the exquisite sensitivity of this
pathway to insulin (162). Given these considerations–
insulin-independent esterification of circulating fatty ac-
ids, nutrient activation of DNL transcriptional pro-
grams, and hyperinsulinemia–it may be unnecessary to
invoke the paradox of selective hepatic insulin resistance
to understand how insulin resistant humans develop
NAFLD (FIGURE 9).

Pathway-selective hepatic insulin resistance is also diffi-
cult to reconcile with the finding of impaired proximal
insulin signaling in several models of liver insulin resis-
tance. In the late 1980s, defects in IRK activity were
appreciated in liver samples from high-fat-fed rats (886)
and humans with T2D (116). Decreased IRK activity and
IRS2 tyrosine phosphorylation were also observed in in-

sulin-resistant livers of rats fed a 3-day high-fat diet
(722). These lines of evidence argue that the primary
defect in hepatic insulin resistance is not in a downstream
“branch point” effector but rather in the insulin receptor:
the most proximal and powerful locus of control in insu-
lin action.

A final important and INSR-related component of hepatic
insulin resistance is decreased hepatic insulin clearance (80,
222, 650). Although the molecular determinants of this
phenomenon are incompletely understood, the reduced cell
surface INSR content observed in insulin-resistant hepato-
cytes (116, 787) may involve regulators of the surface INSR
pool including CEACAM1 (660), MARCH1 (566), CHIP
(830), and p31comet (145). Regardless of mechanism, the net
effect of decreased hepatic insulin clearance is to promote
hyperinsulinemia. The fasting plasma insulin concentration
is thus often used as a general readout of hepatic insulin
sensitivity in algorithms such as the HOMA-IR and the
quantitative insulin sensitivity check index (QUICK-I), with
the obvious caveats that �-cell function and peripheral in-
sulin sensitivity also provide input to the plasma glucose-
insulin circuit.

In summary, insulin resistance in liver is traceable to
defects at the level of the insulin receptor and therefore
probably affects all arms of hepatocellular insulin signal-
ing. The variable functional impact of hepatic insulin
resistance in different signaling arms is not surprising
given the varied and complex inputs to each arm. The
most popular physiological readouts of hepatic insulin
resistance, suppression of HGP and fasting plasma insu-
lin, have both direct and indirect components and are
therefore imperfect assessments of hepatocellular insulin
action. Yet these readouts will, and should, continue to
be used widely, especially in human studies, because 1)
they can be determined noninvasively and 2) they give a
useful integrated picture of the direct and indirect com-
ponents of hepatic insulin action. Accurate measurement
of hepatic insulin resistance is best performed using mul-
tiple complementary readouts, summarized in TABLE 1.
The use of readouts with no indirect component is pref-
erable if the investigator seeks to make claims about hep-
atocellular insulin action per se. Although these readouts
can be used to determine the degree and nature of hepatic
insulin resistance, they offer only limited insight into
causative factors. Experimental considerations are dis-
cussed in section IVF.

E. Pathophysiology of Adipose Insulin
Resistance

Interest in adipocyte insulin resistance has seen a resur-
gence in recent years as investigators unravel the spectac-
ular complexity of adipose tissue as both nutrient sink
and endocrine organ (735). As with muscle and liver,
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adipose insulin receptor tyrosine kinase activity is dimin-
ished in humans with T2D (246, 247). This defect, paired
with decreased plasma membrane insulin receptor con-
tent (378, 379, 418, 595, 786), may be sufficient from a
signaling perspective to account for the manifestations of

adipose insulin resistance. Indeed, weight loss corrects
both adipose insulin resistance and defective adipocyte
IRK activity (247). Unfortunately, however, the mecha-
nistic basis for these adipocyte insulin receptor defects
remains largely obscure.
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The adipocyte performs insulin-stimulated glucose up-
take; as in skeletal muscle, this function becomes resis-
tant in obesity and T2D (377). However, WAT is not a
quantitatively significant site of insulin-stimulated glu-
cose disposal, accounting for �5% of an oral glucose
load in humans (363, 428). Despite this, adipose-specific
deletion of GLUT4 in mice results in liver and skeletal
muscle insulin resistance without altering adiposity or
body weight (1), pointing to indirect, physiologically sig-
nificant consequences of insulin resistance to glucose up-
take in adipocytes (725). The global insulin-sensitizing
effects of adipocyte glucose uptake may partially be me-
diated through glucose activation of ChREBP. ChREBP
activation promotes lipogenic gene expression, enabling
adipose tissue to serve as a nutrient sink which in turn
decreases substrate delivery to liver and muscle (310).
Adipocyte glucose uptake also generates glycerol-3-phos-

phate for fatty acid esterification, facilitating eutopic
lipid storage in WAT and decreasing lipid delivery to
liver and muscle. Alternatively, the link between adipose
GLUT4 expression and global insulin sensitivity has also
been ascribed to adipokines such as retinol binding pro-
tein 4 (RBP4; see sect. VII) (935) and to altered expres-
sion of nicotinamide N-methyltransferase (432).

Physiologically, an extremely significant function of WAT
insulin action is the suppression of lipolysis. As discussed in
section II, adipose lipolysis is exquisitely sensitive to insulin.
The suppressive effect is rapid (~10 min) in rodents and
humans (620). Because the major source of plasma NEFA is
adipose tissue, because lipolytic substrate release is a critical
regulator of hepatic gluconeogenesis on a minute-to-minute
basis, and because increased gluconeogenesis is a key driver
of the fasting hyperglycemia that defines T2D, resistance to

FIGURE 9. Mechanisms for the development of nonalcoholic fatty liver disease (NAFLD) despite hepatic insulin resistance. A: insulin normally

activates de novo lipogenesis through sterol regulatory element binding protein 1c (SREBP-1c). B: the seemingly paradoxical coexistence of

NAFLD and hepatic insulin resistance has spawned the hypothesis of selective hepatic insulin resistance, wherein insulin activation of lipogenesis

is preserved despite impaired insulin regulation of glucose metabolism. However, hepatic de novo lipogenesis has multiple inputs, including

ChREBP and mTORC1/SREBP-1c, both of which are activated in states of chronic overnutrition. Additionally, the primary pathway for hepatic

triglyceride synthesis is re-esterification of preformed fatty acids, which are readily available in states of chronic overnutrition owing both to

dietary supply and to adipose insulin resistance. Even if insulin receptor (INSR) activation of SREBP-1c is impaired by hepatic insulin resistance,

these other inputs are likely capable of supporting the lipogenic fluxes that lead to NAFLD. NEFA, nonesterified fatty acid; WAT, white adipose

tissue.

Table 1. Readouts of hepatic insulin resistance

Readout
Change in Insulin

Resistance Direct/Indirect Acute/Chronic Notes

Activation of net hepatic glycogen
synthesis

2 Direct Acute Requires both hyperinsulinemia
and hyperglycemia.

Suppression of hepatic
gluconeogenesis

2 Indirect Acute Related to suppression of WAT
lipolysis leading to decreased
NEFA and glycerol turnover
and hepatic acetyl-CoA
content. There may also be
a small direct effect of insulin
by suppression of
intrahepatic lipolysis.

Suppression of hepatic glucose
production

2 Direct and
indirect

Acute Variable contributions of
gluconeogenesis and
glycogenolysis depending on
species and fasting duration.

INSR Tyr phosphorylation and IRK
activity

2 Direct Acute

IRS Tyr phosphorylation 2 Direct Acute

AKT Ser/Thr phosphorylation 2 Direct Acute Multiple inputs to Ser473

phosphorylation.

Gluconeogenic gene expression 1 Direct Chronic Especially G6pc, Pck1.

De novo lipogenesis 2 Direct Chronic Multiple inputs including
mTORC1, ChREBP.

Fasting plasma insulin 1 Direct and
indirect

Chronic Crude surrogate of hepatic
insulin resistance, useful in
large epidemiologic studies.

INSR, insulin receptor; IRK, INSR kinase; IRS, insulin receptor substrate; WAT, white adipose tissue; NEFA, nonesterified fatty acid.
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insulin’s antilipolytic effects in the adipocyte is of immense
pathophysiological importance.

If adipocyte insulin resistance impairs suppression of lipol-
ysis, one might expect that plasma NEFA concentrations
would be elevated in T2D. In poorly controlled T2D, this is
indeed the case; multiple studies have observed significantly
increased plasma NEFA concentrations in patients with
poorly controlled T2D compared with lean nondiabetic
controls (134, 245, 266, 685, 816). In lean, healthy rela-
tives of patients with T2D, postprandial suppression of
plasma NEFA concentrations is impaired (31). Moreover,
increased plasma NEFA concentrations predict incident
T2D (121, 611). The extent of the increase in plasma NEFA
is much more modest and sometimes nonexistent in patients
with well-controlled T2D (245, 286, 685, 816). Yet these
concentration measurements belie much larger differences
in the more physiologically relevant parameter: flux. Under
hyperinsulinemic-euglycemic clamp conditions, plasma
NEFA turnover was in relative terms much more elevated
than plasma NEFA concentration in T2D patients com-
pared with controls (286). Fasting glycerol turnover is also
increased in T2D, as is the rate of gluconeogenesis from
glycerol (586, 663). Furthermore, in patients undergoing
bariatric surgery, decreases in basal lipolysis correlate with
improvements in HOMA-IR (265). Importantly, obesity
per se is not correlated with plasma NEFA concentration in
humans, indicating that a functional defect (i.e., adipocyte
insulin resistance), rather than a simple mass effect, medi-
ates the increased plasma NEFA of T2D (388). Consistent
with this interpretation of adipose insulin resistance, insulin
suppression of lipolytic flux as measured by glycerol turn-
over is impaired in obese insulin-resistant human adoles-
cents, in diabetic humans, and in first degree relatives of
type 2 diabetic humans (263, 309, 370, 696). Adipose in-
sulin resistance, assessed as the product of fasting plasma
insulin and fasting plasma NEFA concentrations, increased
continuously in the progression from normal glucose toler-
ance to impaired glucose tolerance to T2D in a cohort of
over 300 subjects, suggesting that adipose insulin resistance
contributes to the pathogenesis of T2D (261). Using the
product of fasting plasma insulin and plasma NEFA con-
centrations as a practical index of adipose insulin resistance
was recently validated against the multistep pancreatic
clamp (789).

Whether insulin resistance to suppression of adipose lipol-
ysis involves primarily increased lipolysis per se, decreased
re-esterification of fatty acids, or both is not settled. A pro-
vocative study using [14C]palmitate to trace and model fatty
acid kinetics during a hyperinsulinemic-euglycemic clamp
concluded that net lipolysis was not different between lean
and obese T2D subjects, but that the obese T2D subjects
exhibited higher rates of fatty acid escape from tissue up-
take, and that this latter finding accounted for the defect in
insulin suppression of plasma NEFA levels in the diabetics

(692). Along these lines, a study of obese nondiabetic and

T2D subjects found that plasma glycerol and NEFA levels

were similar between groups during an oral glucose toler-

ance test, and that ex vivo suppression of isoproterenol-

stimulated lipolysis was similar between groups, but that

expression of the fatty acid transporter FABP4 was de-

creased in T2D; the investigators concluded that lipid stor-

age rather than lipolysis was subject to insulin resistance

(618).

Just as glycogen metabolism in the insulin-resistant liver

exhibits a decreased amplitude in its net magnitude during

both fasting and feeding, so there is evidence that insulin-

resistant adipose tissue exhibits an inability to maximally

stimulate lipolysis during fasting and maximally promote

lipid storage during feeding. A multiple meal-ingestion

study of lean healthy men compared with men with abdom-

inal obesity highlighted this phenomenon: the direction of

net fatty acid flux across the adipose tissue capillary bed

favored release during fasting and favored storage post-

prandially, and in both cases was smaller in magnitude in

the obese men (536). The net effect was a significant decre-

ment in the percentage of ingested fat properly stored in

WAT in the obese subjects, presumably facilitating lipid

storage in nonadipose tissues.

Interestingly, in contrast to skeletal muscle and liver, the

specific molecular defects mediating adipocyte insulin re-

sistance are largely uncharacterized. Rather, most prog-

ress in understanding the pathogenesis of adipocyte insu-

lin resistance has focused on autocrine or paracrine in-

flammatory cytokines which may impair insulin signaling

(27, 289). These mechanisms are considered in detail in

section VII. Yet resistance to insulin suppression of adi-

pose lipolysis is evident after only 3 days of high-fat

feeding in rats (722)– before significant inflammation de-

velops–suggesting that noninflammatory mechanisms are

likely responsible for the initial defects in adipocyte in-

sulin resistance.

The specific roles of proteins involved in lipolysis–ATGL,

HSL, PLIN, FSP27–in adipocyte insulin resistance are un-

clear. But impaired suppression of net adipose lipolysis

could also result from defective NEFA esterification. In-

deed, one interesting potential mechanism for insulin resis-

tance to suppression of lipolysis involves NEFA esterifica-

tion and offers a mechanistic link to insulin-resistant glu-

cose uptake. Insulin-stimulated glucose uptake promotes

glycolysis, producing the three-carbon precursors that can

yield glycerol-3-phosphate. Glycerol-3-phosphate is in turn

required for fatty acid esterification and proper insulin-

stimulated lipid storage (474). Insulin resistance to glucose

uptake might by this mechanism prevent the adipocyte from

switching from net lipid export to net lipid storage upon

insulin stimulation.
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In this way, the exquisite sensitivity of the white adi-

pocyte to insulin may be a double-edged sword. This

sensitivity enables agile and appropriate postprandial nu-

trient storage. Yet the status of WAT as “first responder”

to nutritional oversupply may render it vulnerable to

nutrient stress-induced insulin resistance. Even modest

adipocyte insulin resistance will, due to the steepness of

the insulin dose-response curve for lipolytic suppression,

increase fatty acid delivery to liver and skeletal muscle

and thereby promote insulin resistance in those tissues

(see sect. V). The absolute importance of WAT insulin

action for whole-body glucose homeostasis is powerfully

demonstrated by the extreme, but reversible, insulin re-

sistance of lipodystrophy (79, 406, 642, 714, 785). Far

from being an inert storage depot, WAT may in fact be

the linchpin of whole-body insulin sensitivity and resis-

tance.

F. Integrated Physiology of Insulin
Resistance and Experimental
Considerations

Because insulin action and resistance are best understood in
this integrated physiological context, experimental meth-
ods assessing insulin action require careful design and inter-
pretation (18). The Himsworth “glucose-insulin tolerance
test” described above (317) highlights a critical consider-
ation in experimental tests of insulin action. To directly
measure insulin resistance, the investigator needs to care-
fully distinguish insulin action and insulin secretion. This
distinction is easily illustrated by the standard glucose tol-
erance test (GTT) (23, 33, 534). FIGURE 10 shows hypothet-
ical results of an intraperitoneal GTT performed with mice
fed a regular chow diet, mice fed a high-fat diet (HFD) for 8
wk, and nonobese diabetic (NOD) mice, a model of auto-
immune insulitis, studied after the onset of insulitis but
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FIGURE 10. Interpretation of glucose tolerance tests requires measurement of plasma insulin concentra-

tions. A: diet-induced obese and prediabetic nonobese diabetic (NOD) mice both display glucose intolerance

compared with lean chow-fed control mice, but the causes differ. The diet-induced obese mice mount a normal

or even heightened insulin secretory response but are hyperglycemic owing to insulin resistance. The predia-

betic NOD mice are glucose intolerant owing to defective insulin secretion. B: improved glucose tolerance can

similarly result from increased insulin sensitivity [fibroblast growth factor 21 (FGF21)-treated mice] or from

increased insulin secretion (sulfonylurea-treated mice).
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before the development of overt type 1 diabetes (358, 361).
Although plasma glucose excursions are increased in both
HFD-fed mice and NOD mice, examination of the plasma
insulin time course reveals that the impaired glucose toler-
ance of the NOD mice represents �-cell dysfunction, not
impaired insulin action. Conversely, the HFD-fed mice ex-
hibit increased insulin levels accompanying their hypergly-
cemia, indicating that the primary cause of their impaired
glucose tolerance is insulin resistance. Importantly, im-
proved glucose tolerance can similarly be the result of either
exaggerated insulin secretion or hypersensitivity to insulin
action. The former situation can be modeled by treatment
with an insulin secretagogue such as a sulfonylurea (688),
and the latter by treatment with an insulin-sensitizing agent
such as FGF21 (112, 401). In a prescient observation, Him-
sworth noted in his classic study (317) that for essentially
the reasons outlined above, a glucose challenge without
exogenous insulin would be insufficient to distinguish the
two types of diabetics. In the modern setting, this ambiguity
can be experimentally sidestepped by employing the hyper-
insulinemic-euglycemic clamp method developed by Andres
(33, 534). This technique largely negates insulin secretion
differences by matching insulin levels among study subjects.
At a constant, elevated insulin concentration, the glucose
infusion rate needed to maintain euglycemia reflects whole-
body insulin sensitivity (181). When combined with infu-
sions of isotopically labeled glucose and glucose analogs to
trace whole-body glucose turnover, endogenous glucose
production (EGP), and tissue-specific glucose uptake, the
hyperinsulinemic-euglycemic clamp represents the most
powerful in vivo experimental assessment of insulin action
in target tissues and is therefore widely used both in humans
and animal models (33, 534, 760).

Although accurate and useful, EGP measurements in hyper-
insulinemic-euglycemic clamp studies have limitations. For
one, although often assumed to be identical to HGP, EGP
reflects the rate of appearance of glucose in the plasma from
all sources, which in fasted subjects also includes a small
contribution from renal gluconeogenesis. Furthermore,
measurements of insulin suppression of EGP cannot distin-
guish between direct effects of insulin on liver glycogen
synthesis and indirect effects of insulin on hepatic gluconeo-
genesis. Glycogen synthetic flux in liver, although perhaps a
better readout of direct hepatic insulin action than EGP
suppression, is more difficult to assess in vivo because, as
discussed in section II, hepatic glycogen metabolism is ex-
quisitely sensitive to glucose availability. Hyperglycemia,
tightly matched between subjects, is necessary to accurately
compare insulin stimulation of glycogen synthesis between
experimental groups (640). Simple measurements of liver
glycogen content after insulin stimulation require extensive
fasting to minimize basal glycogen content; these extended
fasts are often undesirable in rodents because they do not
represent a normal physiological state (32, 33, 534). One
method that has been successfully used to circumvent the

problem of highly variable basal hepatic glycogen content is
measurement of uniformly labeled 13C-glucose incorpora-
tion into hepatic glycogen during hyperinsulinemic-hyper-
glycemic clamps. Knowledge of the m�6 mole fraction in
both liver glycogen and plasma glucose, and of the total
hepatic glycogen concentration, permits calculation of the
absolute rate of glycogen deposition via the direct pathway
during the infusion (153, 645). Measurement of the dilution
in the m�6 mole fraction from plasma glucose to hepatic
UDP-glucose reveals the relative contributions of direct and
indirect pathways to glycogen synthesis (645). Knowledge
of both the absolute rate of direct pathway glycogen syn-
thesis and the percent contribution of the direct pathway to
total glycogen synthetic flux enables calculation of the total
glycogen synthetic rate during a hyperinsulinemic-hyper-
glycemic clamp. In humans, noninvasive MRS approaches
have been used to measure both glycogen synthetic and
glycogenolytic fluxes (640, 641, 704, 832). However, it
must be emphasized that insulin merely plays a permissive
role in regulating hepatic glycogen synthesis; the key driver
is the plasma (portal vein) glucose concentration. Without
careful matching of the portal vein glucose concentration in
all subjects, assessing the effect of insulin per se on hepatic
glycogen metabolism is difficult.

Effective methods for in vivo assessment of insulin control
of lipid metabolism are also available. Insulin suppression
of lipolysis can be traced during hyperinsulinemic-euglyce-
mic clamp studies using labeled palmitate and glycerol
(620, 910). Insulin control of hepatic de novo lipogenesis
is a transcriptionally mediated effect and therefore can-
not be assessed in acute infusion studies, but effective
tracer methods, such as deuterated water supplementa-
tion, enable measurement of DNL over a period of sev-
eral days and reveal decreased DNL in insulin-resistant
models (868, 910). A commonly employed protocol to
measure insulin upregulation of the lipogenic transcrip-
tional program is fasting (e.g., 24 h)–refeeding (e.g., 6 h).
It is important to note, however, that insulin is not the
only relevant variable in such studies; nutrient activation
of mTOR is a major consideration as are changes in other
hormones (452, 764).

One commonality of the various methods outlined above
and in FIGURE 11 is the use of isotopic tracers to calculate
flux through metabolic pathways. Although tracer studies
are generally more resource-intensive than metabolite con-
centration studies, they are also likely to provide more rel-
evant assessments of insulin action. Although advances in
metabolomics have facilitated hypothesis generation
through rapid, accurate, and automated measurement of
hundreds of metabolites, insulin acts by modifying meta-
bolic fluxes. These changes in flux may favor the accumu-
lation or diminution of specific metabolites, but concen-
tration differences are always a consequence of flux dif-
ferences. It is ultimately flux measurements that have
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yielded and will continue to yield the most potent mech-
anistic insights to the integrated physiology of metabo-
lism.

G. Insulin Resistance: The “What” and the
“Why”

Section IV has attempted to describe the central charac-
teristics of insulin resistance in the skeletal muscle, liver,
and WAT, focusing on the effectors of insulin signaling
and the direct metabolic effects of insulin that become
insulin resistant. There are certainly more pathophysio-
logical attributes of insulin-resistant tissue than are de-

scribed here; insulin signaling interfaces with diverse cel-

lular functions, and myriad signaling pathways have

been identified as altered in insulin resistance. Addition-

ally, each of the more than 20 well-characterized animal

models of obesity and T2D exhibits a distinct pathophys-

iology of its metabolic disease that has some overlap with

human obesity-associated T2D but certainly fails to re-

capitulate all aspects of the human disease it attempts to

model (412).

A challenge for investigators studying a process with such

protean manifestations as insulin resistance is to distinguish

cause from effect, primary defect from secondary conse-
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FIGURE 11. Isotope tracer methods to assess insulin resistance in vivo. Six example methods are illustrated.

The experimental protocol and mode of tracer delivery are italicized, the tracer is bolded, and the effect of

insulin resistance is at bottom right. A: several glucose isotopomers can be used to trace whole-body glucose

turnover, Rd. During a hyperinsulinemic-euglycemic clamp, where Rd and the glucose infusion rate F are both

known, endogenous glucose production can be calculated by subtracting F from Rd. Insulin suppression of

endogenous glucose production is impaired in insulin-resistant subjects. B: under hyperinsulinemic-euglycemic

clamp conditions, 70–80% of Rd is accounted for by skeletal muscle glucose uptake, so skeletal muscle insulin

resistance is often accompanied by decreased Rd. C: the nonmetabolizable glucose analogue 2-deoxyglucose

(2-DG) is phosphorylated and trapped inside tissues which lack glucose-6-phosphatase (e.g., skeletal muscle

and adipose tissue, but not liver). Tissue 2-DG-6-phosphate levels can thus be used to estimate insulin-

stimulated glucose uptake, which is decreased in insulin resistance. D: the negligible natural abundance of

m�6 glucose makes [U-13C]glucose a useful tracer of hepatic glycogen synthesis, which is decreased in

hepatic insulin resistance. To stimulate net hepatic glycogen synthesis, both hyperinsulinemia and hyperglyce-

mia are necessary. E: the incorporation of deuterated or tritiated water into hepatic palmitate yields a

measurement of hepatic de novo lipogenesis (DNL) but requires several days of administration to reach

isotopic steady state. DNL is decreased in some models of insulin resistance, such as the high-fat-fed rodent.

Because insulin regulation of DNL is a slow, transcriptionally mediated process, this method is compatible with

the physiology being studied. F: several palmitate and glycerol tracers, including [U-13C]palmitate and

[1,1,2,3,3-2H]glycerol, can be used to trace lipolysis. Insulin suppression of lipolysis from white adipose tissue

is impaired in adipose insulin resistance. Notably, Ra glycerol under fasting conditions is likely a more accurate

measure of lipolysis than Ra palmitate, because palmitate can be re-esterified within the adipocyte.
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quence. In sections V–VII, we review efforts to pinpoint the
initial insults responsible for the impairments in insulin ac-
tion described in this section. It is not enough for investiga-
tors to identify candidate genes or metabolites whose activ-
ity or levels are altered in the insulin-resistant state. Pertur-
bations assessing whether a candidate mediator is
necessary, sufficient, or both necessary and sufficient for
insulin resistance are required to infer causality. Human
studies are also required to interrogate whether a candidate
pathway is operative in typical obesity-associated human
insulin resistance and thus might be a viable therapeutic
target. In rodent studies, approaches seeking to identify the
earliest defects in insulin action in response to overnutrition
are the most likely to yield insights into the mechanistic
basis of insulin resistance (548, 721, 854); efforts to char-
acterize the myriad derangements of chronic metabolic dis-
ease may yield therapeutic targets but are unlikely to eluci-
date the root cause of cellular insulin resistance (788). It is
important to acknowledge that a defect which is a second-
ary consequence of insulin resistance may nonetheless fur-
ther exacerbate insulin resistance and therefore be a viable
therapeutic target. Here, however, we focus primarily on
efforts to define the primary insult(s) of insulin resistance;
the underlying assumption is that if these primary defects
can be identified and ameliorated, then all secondary con-
sequences will be prevented. We begin by reviewing the
oldest and most extensively investigated hypothesis of insu-
lin resistance: defective insulin action as a direct conse-
quence of altered lipid metabolic fluxes.

V. LIPID-INDUCED INSULIN RESISTANCE

A. Introduction to Lipid-Induced Insulin
Resistance

The phenomenon of lipid-induced insulin resistance was
perhaps first described in a 1941 report describing insensi-
tivity to insulin-induced hypoglycemia after intravenous
lipid infusion in rabbits (940). In the early 1960s, a series of
reports linked elevated NEFA or ketone body levels to im-
paired insulin-stimulated glucose uptake (257, 677, 765,
904). These findings were synthesized by Randle and co-
workers (677–679), who proposed a glucose-fatty acid cy-
cle controlling oxidative substrate selection in skeletal and
cardiac muscle. The glucose-fatty acid cycle hypothesis pos-
ited that oxidative substrate selection followed a reciprocal
relationship controlled by substrate supply: fatty acid avail-
ability promotes fat oxidation while inhibiting glucose ox-
idation, and vice versa (676). The proposed mechanisms
were allosteric in nature: increased fat oxidation drives ac-
cumulation of mitochondrial acetyl CoA and NADH,
which inhibit PDH to limit entry of pyruvate into the mito-
chondrion for oxidation. Increased cytoplasmic citrate
would also slow glycolytic flux through allosteric feedback
inhibition of phosphofructokinase-1. The resultant increase

in glucose-6-phosphate would in turn allosterically inhibit
hexokinase and lead to an increase in intramyocellular glu-
cose concentration.

The Randle glucose-fatty acid cycle has been extensively
studied using the most straightforward and popular exper-
imental model of lipid-induced insulin resistance: the acute
lipid infusion. Such studies typically use a 20% triglyceride
emulsion with heparin added to activate lipoprotein lipase
and further raise plasma NEFA concentrations. These infu-
sions effectively induce insulin resistance to muscle glucose
uptake–though only after several hours of infusion–and af-
ford the experimenter full control over the duration and
extent of lipid exposure (68, 198, 229, 285, 464, 698, 836).
Although this technique can be used to achieve supraphysi-
ologic plasma NEFA concentrations of 2 meq/l or greater,
even infusions targeting high physiological concentrations
such as 0.75 meq/l are able to impair insulin-stimulated
glucose uptake (68). The acute lipid infusion is an attractive
experimental model for investigating mechanisms of lipid-
induced insulin resistance in large part because it circum-
vents the confounding physiological compensations seen in
models of chronic dietary lipid-induced insulin resistance–
basal hyperinsulinemia, inflammation, altered body com-
position.

MRS studies of skeletal muscle glucose metabolism during
acute lipid infusions have enabled in vivo testing of the
Randle hypothesis (FIGURE 12). Specifically, MRS measure-
ments of intramyocellular glucose-6-phosphate (G6P) and
glucose concentrations, as well as glycolytic and glycogen
synthetic rates, directly tested the Randle prediction that
lipid oxidation would decrease glycolytic flux and increase
G6P concentrations. These studies revealed that contrary to
the increases predicted by the Randle hypothesis, G6P and
glucose levels actually decreased in acute lipid-induced in-
sulin resistance (198, 698). Glycolysis and glycogen synthe-
sis also decreased, but this owed to impaired glucose trans-
port rather than Randle allostery (198, 698). These findings
dovetailed with the elucidation of the molecular mecha-
nisms connecting insulin receptor activation to GLUT4
translocation and observations that GLUT4 translocation
and glucose transport were defective in insulin resistance
and T2D (152, 258, 633, 847). A key implication for future
mechanistic studies of lipid-induced muscle insulin resis-
tance was the requirement that they link lipid exposure to
inhibition of insulin signaling.

Other in vivo models have challenged the relevance of the
glucose-fatty acid cycle to lipid-induced insulin resistance.
For example, mice lacking Pdk2 and Pdk4 (Pdk2/4 DKO)
have constitutively dephosphorylated, active PDH in skele-
tal muscle and therefore preferentially oxidize glucose in an
inflexible manner (669). The glucose-fatty acid cycle is thus
inoperative in Pdk2/4 DKO mice. However, these mice de-
velop profound muscle insulin resistance associated with
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increased intramyocellular lipid, implying that the glucose-
fatty acid cycle is not necessary for lipid-induced muscle
insulin resistance (669).

Overall, available evidence indicates that the glucose-fatty
acid cycle accounts neither for the pronounced impairment
in insulin-stimulated muscle glucose uptake that develops
after several hours of lipid infusion (68, 71, 698), nor for
the insulin resistance of human obesity/T2D. However, the
glucose-fatty acid cycle is undoubtedly nevertheless a phys-
iologically relevant process for controlling oxidative sub-
strate selection (244). For example, in the first 3 h of an
acute lipid infusion, before profound insulin resistance de-
velops, intramyocellular G6P concentrations are increased
and glycolytic flux is decreased, matching the predictions of
the Randle hypothesis (372, 373). The allosteric mecha-
nisms proposed by Randle are likely sufficient to explain
this phenomenon. The reciprocal control mechanism–inhi-
bition of fatty acid oxidation by glucose through malonyl
CoA inhibition of carnitine palmitoyltransferase-1–high-
lights the integrated nature of this substrate-selection circuit
(533). The glucose-fatty acid cycle can thus be thought of as
a cell-autonomous response to whole-body control of sub-
strate availability, enabling efficient oxidation of glucose in
the fed state and fatty acids in the fasted state.

The broad relevance of the lipid infusion model of muscle
insulin resistance is highlighted by the well-established as-
sociation between increased plasma NEFA turnover and
insulin resistance in humans (134, 245, 266, 632, 684, 685,
816). However, the increment in plasma NEFA turnover
and/or concentrations observed in human insulin resistance
are modest (632). In addition to often achieving supraphysi-
ological NEFA concentrations, the acute intravenous lipid
exposure fails to accurately model obesity-associated insu-
lin resistance in several other obvious ways: the lipid expo-
sure is acute rather than chronic, the lipid delivery is intra-
venous rather than enteral or from liver/adipose tissue, and
plasma fatty acid concentrations are static rather than dy-
namic. As a result, the acute lipid exposure is typically only
employed in direct mechanistic investigations of lipid-in-
duced insulin resistance. Most studies testing the effect of a
given experimental perturbation on tissue insulin sensitivity
appropriately use chronic interventions.

The most popular model of typical, obesity-associated, lip-
id-induced insulin resistance is the high-fat-fed rodent.
While mouse and rat strains significantly differ in their sus-
ceptibility to diet-induced obesity and insulin resistance,
susceptible strains such as the C57BL/6J mouse and the
Sprague-Dawley rat provide tractable model systems (239,
548, 898). However, although these rodent strains may
broadly mimic humans in their susceptibility to obesity,
there are several key physiological differences to bear in
mind when interpreting studies of fat-fed rodents (428). For
example, short-term fat feeding protocols in rodents can

produce marked hepatic lipid accumulation and conse-
quent hepatic insulin resistance without appreciable skele-
tal muscle insulin resistance (721, 722, 854), but in humans
with the metabolic syndrome skeletal muscle insulin resis-
tance is thought to precede hepatic insulin resistance (182,
639, 725). The remarkable propensity for some mouse
strains to develop obesity and glucose intolerance with
high-fat feeding while others remain lean and metabolically
healthy highlights the integrated nature of glucose homeo-
stasis, with energy expenditure, pancreatic function, and
tissue insulin sensitivity all serving important roles in gen-
erating the phenotype (428). Some commonly used rodent
models of diet-induced obesity, including the ob/ob and
db/db mice and the Zucker fa/fa rat, leverage naturally oc-
curring mutations in the leptin satiety axis to achieve
marked hyperphagia and consequent obesity. These models
can be useful, but must be interpreted with the knowledge
that leptin is far more than simply a satiety switch (341,
801) and that the consequences of the mutation are protean.
Additionally, the hyperphagic rodent models are typically
studied as morbidly obese adults, long after the develop-
ment of insulin resistance. Their phenotype thus renders
them unsuitable for studies attempting to define the initial
insult(s) of insulin resistance. For such studies, the high-fat-
fed rodent is useful because it can be maintained with a
normal body composition and metabolic phenotype until
the experimental challenge is begun. However, both the
high-fat-fed rodent and the genetically hyperphagic rodent
share one key phenotypic similarity with human obesity-
associated insulin resistance: increased ectopic lipid deposi-
tion in liver and skeletal muscle. The ectopic lipid hypoth-
esis of liver and muscle insulin resistance is described below
and in FIGURE 13.

One of the most reproducible associations in human insulin
resistance is with intrahepatic triglyceride (IHTG) (96,
627). NAFLD, defined as increased IHTG without exces-
sive alcohol intake, is the most common liver disease in
industrialized nations (870). Approximately two-thirds of
obese people, and nearly all obese people with T2D, have
NAFLD (45, 772, 843, 883). Similarly, IHTG is an excep-
tionally strong predictor of insulin resistance (106, 422,
520, 728). Causal evidence for a role of IHTG in hepatic
insulin resistance derives from both human and rodent
studies. In diabetic humans, decreasing IHTG content by
modest weight loss normalizes insulin suppression of he-
patic glucose production and fasting glycemia without sig-
nificant peripheral effects (637). Although visceral fat has
been proposed to contribute to hepatic insulin resistance, it
is more likely a good biomarker for IHTG (260); IHTG is a
much stronger predictor of hepatic insulin resistance and
surgical removal of omental fat without concomitant reduc-
tion in IHTG does not correct hepatic insulin resistance
(220, 221). Furthermore, lipodystrophic individuals have
profound increases in IHTG, which is associated with se-
vere hepatic insulin resistance in the absence of any visceral
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fat (536). Visceral fat is also a quantitatively small contrib-
utor to whole-body fatty acid turnover (388). In people
with NAFLD but without T2D, ameliorating NAFLD de-
creases T2D risk even after controlling for changes in
weight (933). Even a single oral fat bolus in humans is
sufficient to increase IHTG and impair hepatic insulin sen-
sitivity (313).

A corollary proposition of the finding that IHTG, not adi-
pose tissue mass, predicts insulin resistance is that redistri-
bution of fat from liver to WAT should correct insulin re-
sistance. Indeed, numerous models support this proposi-
tion. In severely insulin-resistant lipodystrophic A-ZIP/F-1
mice, transplantation of WAT normalizes liver insulin ac-
tion associated with marked decreases in IHTG and in-
tramyocellular lipid (262, 406). Lipodystrophic humans
with severe NAFLD and hepatic insulin resistance, as well
as lipodystrophic mice, achieve massive reductions in IHTG
and normalization of hepatic insulin action when treated
with leptin (79, 642, 763). This “redistribution” hypothesis
extends beyond models of lipodystrophy. Mice with en-
hanced adipocyte insulin sensitivity owing to inducible Pten
deletion accumulate fat in adipose tissue rather than liver
when fed a high-fat diet and are totally protected from
diet-induced hepatic insulin resistance (555). Adipose-spe-
cific overexpression of Pck1 (PEPCK) in mice facilitates
glyceroneogenesis and re-esterification of fatty acids within
the adipocyte, decreasing plasma NEFA levels; conse-
quently, these mice are obese but insulin-sensitive in liver

and skeletal muscle (242). Redistribution of fat has also
been proposed to mediate the insulin-sensitizing effects of
the thiazolidinedione class of antidiabetic drugs, which pro-
mote adipogenesis through activation of PPAR� (723). Per-
haps most impressively, adiponectin overexpression in lep-
tin-deficient ob/ob mice (Ad Tg ob/ob) results in massive
redistribution of fat such that the Ad Tg ob/ob mice weigh
up to twice as much as obese ob/ob controls yet display
reduced IHTG (408). Remarkably, these enormous mice
display fasting glucose and insulin levels similar to lean
chow-fed mice and have normal insulin sensitivity (408). In
a dramatic example of reverse redistribution, adipose-spe-
cific re-expression of the leptin receptor in db/db mice pre-
vents obesity but results in IHTG accumulation, hyperinsu-
linemia, and the development of diabetes at 4 wk of age,
compared with 14 wk in the db/db controls (878).

A variety of interventional models support the hypothesis
that IHTG is casually related to hepatic insulin resistance.
Mice ectopically expressing malonyl CoA decarboxylase
in liver are protected from hepatic lipid accumulation upon
high-fat feeding, associated with preserved hepatic insulin
sensitivity (24). Similar phenotypes have been observed in
mouse models as diverse as estrogen-treated ovariectomized
female mice (111) and mice treated with FGF21 (112). Two
independent studies have reported that overexpression of
the triacylglycerol hydrolase CES2 in db/db or high-fat-fed
mice reduced IHTG in conjunction with improved glucose
tolerance (495, 705). Furthermore, mice with liver-specific
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overexpression of SREBP-1c display liver-specific triglycer-
ide accumulation and liver-specific insulin resistance (368).
Perhaps the most direct tests of the relationship between
IHTG and hepatic insulin action in vivo have been carried
out using the mitochondrial protonophore 2,4-dinitrophe-
nol (DNP) to rapidly decrease IHTG stores. In rats with
isolated hepatic insulin resistance produced by short-term
fat feeding, DNP treatment normalizes both IHTG and he-
patic insulin action (721). The latter result has been ex-
tended using pharmacologically distinct forms of DNP to
show drastic improvements in both IHTG and hepatic in-
sulin action in more extreme forms of hepatic insulin resis-
tance including the streptozotocin-induced diabetic rat, the
Zucker diabetic fatty rat, lipodystrophic mice (3), and rats
fed a methionine/choline-deficient diet to induce nonalco-
holic steatohepatitis (621, 629).

Lipoprotein lipase (LpL) acts locally at target tissues to
release fatty acids from circulating triglycerides for tissue
uptake. Experiments modulating LpL activity have enabled
instructive testing of the hypothesis that hepatic lipid accu-
mulation is causally linked to hepatic insulin resistance.
Although LpL is not endogenously expressed in liver, he-
patic overexpression of LpL is sufficient to increase IHTG
and cause liver-specific insulin resistance (404). Antisense
oligonucleotide inhibition of the adipose-derived LpL in-
hibitor angiopoietin-like 8 (Angptl8) or adipose-specific de-
letion of the LpL inhibitor angiopoietin-like 4 (Angptl4) in
rodents facilitates WAT lipid uptake and prevents IHTG
accumulation and hepatic insulin resistance (28, 867). An-
tisense oligonucleotide inhibition of the LpL activator
ApoA5 in mice generates an interesting phenotype in which
plasma triglycerides are threefold elevated compared with
controls but IHTG is decreased and hepatic insulin action is
preserved upon high-fat feeding (113). In lean South Asian
men, a common variant in the gene encoding apolipopro-
tein C3 (APOC3), also an LpL inhibitor, results in higher
plasma ApoC3 levels, hypertriglyceridemia, and predis-
poses them to increased IHTG, and hepatic insulin resis-
tance at a relatively low body mass index (638). Similarly,
mice overexpressing apolipoprotein C3 (ApoC3 Tg mice)
have similar body composition to wild-type controls but
display increased hepatic triglyceride and hepatic insulin
resistance (462).

Despite this preponderance of data from both human and
rodent studies supporting a causal link between IHTG and
hepatic insulin resistance, several intriguing studies have
dissociated the two (224). In humans, the common
PNPLA3 I148M mutant allele is strongly associated with
IHTG, but studies disagree with respect to whether the
polymorphism is associated with insulin resistance (386,
607, 700, 875). Mice homozygous for a knockin I148M
allele displayed normal glucose tolerance despite increased
IHTG on a high-sucrose diet, although hepatic insulin ac-
tion was not directly assessed (778). Interestingly, the

Pnpla3I148M knockin mice did not develop worsened he-
patic steatosis on a high-fat diet compared with wild-type
controls and accordingly displayed similar glycemia, fasting
insulin, and glucose (in)tolerance (778). Other rodent mod-
els have challenged the IHTG-hepatic insulin resistance
connection as well. Various mice with liver-specific disrup-
tions in insulin signaling display, by definition, insulin re-
sistance, yet do not develop fatty liver; this dissociation does
not, however, pose a logical challenge to the hypothesis that
IHTG causes hepatic insulin resistance (811). Several other
mice with defects in hepatic fatty acid oxidation accumulate
IHTG yet are hypoglycemic upon fasting with high insulin
sensitivity and glucose tolerance; these models highlight the
well-established role of fatty acid oxidation in supporting
gluconeogenesis which confounds metabolic phenotyping
(216, 399, 587). The same problem of physiological con-
founding applies to mice with defects in gluconeogenesis,
which have a similar phenotype (273, 563, 829, 882, 952).
A particularly interesting mouse model that also dissociates
IHTG from hepatic insulin resistance is the liver-specific
Scap�/� mouse (550). The SCAP protein is required for
SREBP processing; Scap ablation blocks the SREBP lipo-
genic program (550). Scap deletion in ob/ob mice normal-
ized IHTG but only slightly improved fasting glucose and
insulin concentrations (550). When Scap was inducibly de-
leted in liver followed by 16 wk of high-fat feeding, IHTG
did not increase during the HFD but fasting glucose and
insulin levels were similar to those in wild-type fat-fed con-
trols (550). Although hepatic insulin action was not directly
assessed, these models are provocative and indicate that in
the setting of chronic overnutrition, reversal or prevention
of hepatic lipid accumulation is likely not sufficient to over-
come the many other forms of metabolic dysregulation–
especially, perhaps, adipose insulin resistance and excess
lipolysis–that accompany such states.

The link between skeletal muscle lipid accumulation and
insulin resistance is more complex and controversial than in
liver. In the late 1990s, pioneering 1H-MRS studies revealed
that in normal-weight, nondiabetic humans, intramyocellu-
lar lipid (IMCL) was an extremely strong predictor of insu-
lin sensitivity during hyperinsulinemic euglycemic clamps,
stronger even than plasma NEFA concentration (438). In
nondiabetic Pima Indians, muscle triglyceride, but not body
mass index, was negatively correlated with whole-body glu-
cose uptake (610). Additionally, the correction of muscle
insulin resistance–in lipodystrophic A-ZIP/F-1 mice by
WAT transplantation or in lipodystrophic humans by
leptin treatment–is associated with marked decreases in
muscle triglyceride (406, 642). In addition, mice lacking
LpL selectively in skeletal muscle (and thus unable to use
plasma triglycerides as fuel) are protected from muscle
insulin resistance (876). In the converse experiment, mice
overexpressing LpL selectively in skeletal muscle display
increased IMCL and develop skeletal muscle insulin re-
sistance (404). However, assigning a causal role to IMCL
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in muscle insulin resistance is complicated by the long-ap-
preciated “athlete’s paradox,” wherein highly trained, in-
sulin-sensitive endurance athletes display IMCL levels
greater than or equal to levels observed in people with T2D
(275, 488, 560). Although the pathways by which T2D and
endurance athletes develop increased IMCL stores differ
markedly, the athlete’s paradox provides evidence against a
causal role for stored triglyceride in the pathogenesis of
muscle insulin resistance (866e).

The proposition that lipid accumulation in nonadipose tis-
sues is causally associated with insulin resistance in those
tissues is known as the ectopic lipid hypothesis of insulin
resistance. Although, as discussed below, the ectopic lipid
hypothesis implicates tissue- and cell-autonomous pro-
cesses in nonadipose tissues, adipose tissue also plays a
central role in ectopic lipid-induced insulin resistance. If all
excess energy could be stored in WAT, ectopic lipid-in-
duced insulin resistance could not develop. The transgenic
adiponectin-overexpressing ob/ob mouse discussed above,
which weighs up to twice as much as the obese ob/ob mouse
yet retains normal glucose tolerance, is a dramatic example
of this principle (408). Indirect human genetic evidence for
the ectopic lipid hypothesis includes the strong association
of genomic variants limiting peripheral adipose storage ca-
pacity with insulin resistance as assessed by multiple param-
eters including fasting insulin, euglycemic clamp data, and
glucose tolerance testing (501).

Recognizing that stored triglyceride per se was unlikely to
directly impair cellular insulin action, researchers have long
sought to identify lipid moieties that could mechanistically
link lipid accumulation and insulin resistance (766). We
now examine the three such lipid classes that have received
the most attention: diacylglycerol, ceramides, and acylcar-
nitines.

B. The DAG-Novel Protein Kinase C Axis and
Insulin Resistance

Early work linking DAG to insulin resistance preceded the
development of the MRS methods that linked intracellular
lipid content to insulin resistance. Rather, these initial in-
vestigations derived from the observation that phorbol es-
ters, tumorigenic analogues of sn-1,2-DAG, caused insulin
resistance in vitro and in vivo (821, 822, 866c). This obser-
vation prompted measurements of DAG in muscle, heart,
and liver, which revealed increases in all tissues in obese or
diabetic rats (593, 852). As the penultimate intermediate in
triacylglycerol (TAG) synthesis, DAG levels track with
TAG levels in muscle and liver from nearly all rodent and
human models with intact lipid handling (112, 113, 445,
621, 627, 629, 669, 724, 767). As a consequence, the asso-
ciations between IMCL/muscle insulin resistance and
IHTG/hepatic insulin resistance discussed above are also
associations between DAG and insulin resistance. To

date, five human studies have observed significant posi-

tive correlations between hepatic DAG and hepatic insu-

lin resistance, as measured by either HOMA-IR (445,

506, 705) or suppression of HGP during hyperinsuline-

mic-euglycemic clamp studies (512, 834).

Because DAG was known to be a bioactive signaling lipid,

requisite for activation of protein kinase C (PKC), attention

soon turned to the potential role of PKC activity in insulin

resistance. However, early work in this field was hampered

by incomplete knowledge of the several classes and iso-

forms of PKC present in mammalian cells, as well as by

highly nonspecific pharmacological inhibitors. As a result,

literature in this field from the 1980s and early 1990s con-

tains contradictory reports describing both stimulatory and

inhibitory effects of PKCs on insulin action (160, 353–355,

387, 558, 866c).

Advances in molecular biology and careful biochemical

characterization gradually facilitated the separation of

PKCs into three major classes: conventional PKCs (cPKC;

isoforms �, �, �) require both Ca2� and DAG for full acti-

vation, novel PKCs (nPKC; isoforms �, �, �, 	) require only

DAG, and atypical PKCs (aPKC; isoforms 
, �, �) require

neither Ca2� nor DAG (799). Conventional PKC isoforms

are activated rapidly and participate largely in phospho-

lipase C-mediated signaling, which produces the parallel

spikes in Ca2� and DAG necessary for full cPKC activation

(580, 799). In contrast, nPKCs display a slow, sustained

activation by DAG, a consequence of a single W/Y amino

acid replacement in the DAG-binding C1 domains of

nPKCs versus cPKCs that lends nPKCs twofold greater af-

finity for DAG (199). This property appears a priori to

position nPKCs as the most suitable PKC isoforms to me-

diate the insulin resistance of chronic cellular lipid accumu-

lation.

Indeed, activation of nPKCs has been consistently observed

in insulin-resistant skeletal muscle and liver. Skeletal muscle

from high-fat-fed rats displayed translocation of PKC� and

PKC�, but not PKC� or PKC
; this study was also notable

for identifying a positive linear relationship between muscle

TAG and DAG content and PKC� translocation (739).

Skeletal muscle PKC� and PKC� translocation were subse-

quently measured in obese, insulin-resistant, and/or dia-

betic rat muscle by several groups and found to be increased

in some (285, 348, 356, 456, 667), but not all (357), mod-

els. In human studies, PKC� (819) and PKC� (619) trans-

location have both been found to be increased in T2D mus-

cle compared with lean controls. Efforts to identify and

characterize PKC isoforms involved in hepatic insulin resis-

tance revealed a somewhat different picture than in muscle.

PKC� is not significantly expressed in hepatocytes, so inves-

tigators pursued other isoforms. Early work in obese people

with T2D and Zucker diabetic fatty rats revealed increases
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in membrane-associated PKC� and PKC
 compared with

lean controls (161). Intralipid-heparin infusions in the rat

were reported to increase PKC� translocation in liver, al-

though translocation of other PKC isoforms was not re-

ported (450). In 2004, Samuel et al., using the 3-day high-

fat-fed rat as a model of acute hepatic insulin resistance,

measured translocation of all PKC isoforms highly ex-

pressed in liver–�, �, �, �, and 
–and found that only PKC�

translocation was increased in this model (721). Hepatic

PKC� translocation has subsequently been observed in doz-

ens of high-fat-fed rodent models (646). The finding of iso-

lated PKC� activation was later replicated in liver biopsies

from obese humans (445). Interestingly, PKC� transloca-

tion was strongly correlated with both hepatocellular DAG

content and insulin resistance as assessed by HOMA-IR, the

only PKC isoform of six tested to show this relationship

(445). However, increased mRNA expression of both PKC�

and PKC� has also been reported in obese human liver (59).

One approach to determine whether nPKCs cause tissue

insulin resistance has relied on correlation, demonstrating

that upon an intervention, changes in insulin sensitivity

track with changes in nPKC translocation. Treatment of

fat-fed rats with the thiazolidinedione insulin sensitizer

rosiglitazone decreased muscle DAG content, and nPKC

translocation decreased in parallel (742). Similarly, feeding

a single low-fat meal to chronically high-fat-fed rats de-

creased PKC� (and not PKC�) translocation in muscle and

normalized insulin-stimulated muscle glucose uptake (46).

Intermittent fasting in diabetes-prone NZO mice prevented

the development of hyperglycemia, associated with reduced

skeletal muscle DAG, reduced hepatic DAG, and reduced

PKC� activation compared with ad lib-fed controls (39).

The acute muscle insulin resistance of lipid/heparin infusion

has also been a productive model system for this line of

inquiry. A salient and highly reproducible feature of acute

lipid-induced muscle insulin resistance is that it requires a

time delay of 3–5 h to take effect (71, 942). In one study,

acute lipid infusion impaired insulin signaling and glucose

uptake in muscle in temporal parallel with marked translo-

cation of PKC�, but not PKC� (285). In another, the 4–5 h

of lipid infusion needed to induce insulin resistance corre-

lated with peaks in intramyocellular long-chain acyl CoA,

DAG content, and PKC� activation, but not with ceramide

or triglyceride content (942).

Studies investigating the dynamic reciprocal relationship

between nPKC translocation and insulin sensitivity have

also been pursued in humans. Acute lipid administered ei-

ther orally or parenterally reduced insulin-stimulated mus-

cle glucose uptake and was accompanied by increased

PKC� translocation in muscle (585, 819). The delayed and

transient rise in myocellular DAG during acute lipid infu-

sions observed in rodents has also been observed in humans

(819).

These correlative studies provided strong impetus for fur-
ther testing of the DAG/nPKC hypothesis using the power
of rodent genetic manipulation. Many such models have
been used to this end, with somewhat varying results. These
can broadly be divided into models testing the necessity
and/or sufficiency of DAG for lipid-induced insulin resis-
tance and models testing the necessity and/or sufficiency of
nPKCs for lipid-induced insulin resistance. We now con-
sider these two major categories sequentially.

In the Kennedy pathway, the major route for triacylglycerol
synthesis in liver and muscle, fatty acyl-CoA moieties are
sequentially added to sn-glycerol-3-phosphate to form first
lysophosphatidic acid via glycerol-3-phosphate acyltrans-
ferase (GPAT) and then phosphatidic acid via acylglycero-
phosphate acyltransferase (AGPAT). The phosphate at the
3-position is removed by phosphatidic acid phosphatase
(PAP, also known as lipin) to yield sn-1,2-diacylglycerol
(DAG), which is finally acylated by diacylglycerol acyl-
transferase (DGAT) to produce triacylglycerol (TAG). This
pathway provided a logical launching point to test the DAG
hypothesis of cellular insulin resistance by genetic modifi-
cation. Mice lacking mitochondrial GPAT (mtGPAT), a
key hepatic GPAT, displayed increased fatty acyl-CoA lev-
els and decreased hepatic DAG and TAG levels after high-
fat feeding, as predicted (575). The decrease in hepatic DAG
was accompanied by decreased PKC� translocation (575).
Consistent with the DAG/nPKC hypothesis, mtGPAT�/�

mice were protected from HFD-induced hepatic insulin re-
sistance as demonstrated both by enhanced HGP suppres-
sion during hyperinsulinemic-euglycemic clamp studies and
by increased hepatic insulin signaling: IRS2-associated
PI3K activity and AKT activity (575). Similarly, mice with
adenoviral hepatic overexpression of mtGPAT displayed
increased hepatic DAG, PKC� translocation, and hepatic
insulin resistance (567). Whole-body deletion of either
AGPAT2 or lipin-1 causes profound lipodystrophy in mice
and humans, confounding efforts to test the DAG/nPKC
hypothesis with these models (170, 634). Analysis of mice
with germline deletion of the major hepatic lipin, lipin-2, is
also confounded by compensatory lipin-1 upregulation
(205). However, acute shRNA-mediated lipin-1 or lipin-2
knockdown in HFD-fed mice improves glucose tolerance
and decreases hepatic DAG and TAG content (707, 708).
Similarly, acute adenoviral lipin-2 overexpression in liver is
sufficient to impair glucose tolerance, associated with in-
creased hepatic DAG and TAG (708). Mice overexpressing
lipin-1 in skeletal muscle develop profound obesity and in-
sulin resistance, although the cellular mechanisms respon-
sible in this model were not completely defined (649). Fi-
nally, several genetic perturbations of DGAT in mice have
yielded somewhat conflicting results. Mice overexpressing
DGAT1 in skeletal muscle display the expected increase in
myocellular TAG and decrease in myocellular DAG and are
protected from HFD-induced insulin resistance (491). Al-
though Dgat1�/� mice are unexpectedly protected from
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HFD-induced obesity and insulin resistance, this may owe
to increased energy expenditure; isolated lipid-treated so-
leus muscles from Dgat1�/� mice displayed blunted insulin-
stimulated 2-deoxyglucose uptake, consistent with the
DAG/nPKC hypothesis (491, 782). DGAT2 perturbations
also yield complex phenotypes. Muscle-specific DGAT2-
overexpressing mice exhibit decreased DAG (only in rela-
tively insulin-insensitive glycolytic muscle fibers, however)
and surprisingly display modest glucose intolerance, asso-
ciated with increased ceramide content (473). In contrast,
mice overexpressing DGAT2 in liver exhibit increases in
both TAG and, unexpectedly, DAG content (371, 547).
These mice have increased hepatic PKC� translocation and
develop severe hepatic insulin resistance, as evidenced by
profoundly impaired HGP suppression during hyperinsu-
linemic-euglycemic clamp studies (371). Although one of
the two studies performed on the liver-specific DGAT2-
overexpressing mice did not observe differences in clamp
EGP between the transgenic mice and wild-type controls,
interpretation of those experiments is difficult because both
the control and the transgenic mice displayed clamp EGP
rates consistent with hepatic insulin resistance (547). Con-
sistent with this, high-fat-fed rats with antisense oligonucle-
otide-mediated hepatic knockdown of DGAT2 displayed
decreases in liver DAG and PKC� translocation associated
with improved hepatic insulin sensitivity (144). Although
not part of the Kennedy pathway, monoacylglycerol acyl-
transferases (MGAT) are another lipogenic source of DAG.
Mgat1 was found to be a PPAR�-regulated driver of hepatic
steatosis; Mgat1 knockdown by adenoviral shRNA or an-
tisense oligonucleotide decreased hepatosteatosis and im-
proved glucose tolerance in HFD-fed mice (466, 791).
However, a second study using the MGAT1 ASO found
that the improved glucose tolerance was not accompanied
by decreased IHTG in HFD-fed or ob/ob mice but unex-
pectedly was accompanied by increased DAG (298). Al-
though the PKC� membrane/cytosol ratio was not formally
determined in this study, membrane PKC� content was de-
creased by MGAT1 ASO, suggesting that while total he-
patic DAG was increased, the DAG pool available for PKC�

activation was not (298). Interestingly, rates of de novo
lipogenesis were decreased in the MGAT1 ASO-treated
mice despite increased DAG levels, suggesting that lipo-
genic flux may be more important than steady-state DAG
levels in mediating insulin resistance (791). In summary,
mouse models perturbing the lipogenic pathway (FIGURE

14) are frequently complicated by unexpected physiological
compensations but are nevertheless generally consistent
with the DAG/nPKC hypothesis of lipid-induced insulin
resistance.

Several other models of genetically altered lipid metabolism
address the DAG/nPKC hypothesis. Mice lacking the fatty
acid elongase Elovl6 were susceptible to hepatosteaosis
when fed a HFD, but did not display increased hepatic DAG
or PKC� translocation and were protected from HFD-in-

duced hepatic insulin resistance (527). Perturbations in di-
acylglycerol kinase (DAGK), which converts DAG to PA
(the reverse reaction of lipin), have also been studied. There
are 10 mammalian DAGK isoforms, with different sub-
strate specificities, tissue expression profiles, and subcellu-
lar localizations, and data regarding their roles in lipid me-
tabolism and insulin resistance are only beginning to
emerge (50, 517, 518, 571, 573). DAGK� was found to be
decreased in subjects with T2D, and Dgkd�/� mice dis-
played increased myocellular DAG and impaired muscle
insulin signaling and insulin-stimulated glucose uptake
(137). Additionally, DAGK
 knockdown impaired insulin-
stimulated GLUT4 translocation in 3T3-L1 adipocytes
(492). Curiously, DAGK
 knockout mice exhibited im-
provements in muscle insulin sensitivity on a HFD despite
elevated muscle DAG, but these mice also suffered from
growth defects, reduced adiposity, and altered fuel selec-
tion, complicating interpretation of their phenotype (50).
The physiological consequences of DAGK� ablation are
also uncertain, with one group reporting protection from,
and another reporting increased susceptibility to, HFD-in-
duced glucose intolerance (518, 571).

Mice with genetic perturbations in triglyceride lipolysis
have yielded diverse and fascinating phenotypes. Overex-
pression of a TAG hydrolase, carboxylesterase 2 (CES2),
reduced hepatic DAG in high-fat-fed mice in association
with improved glucose tolerance (705). Adipose-specific
Atgl�/� mice provide another example of a model consis-
tent with the DAG hypothesis; these mice displayed blunted
adipose fatty acid oxidation and decreased hepatocellular
DAG, accompanied by improved insulin suppression of he-
patic glucose production during hyperinsulinemic euglyce-
mic clamps (12). Similarly, adenoviral overexpression of
Atgl in HFD-fed mouse liver reduced hepatic DAG and
improved hepatic insulin signaling (855). Liver-specific
Atgl�/� mice develop profound hepatosteatosis but display
normal glucose and insulin tolerance, consistent with the
hypothesis that IHTG per se does not induce hepatic insulin
resistance (916). Similarly, mice treated with an adenovi-
rally delivered shRNA targeting Atgl for 12 wk developed
increased hepatic TAG and DAG but maintained normal
glucose tolerance and displayed lower fasting glycemia than
controls (597). These phenotypes likely reflect the impor-
tance of intrahepatic lipolysis for gluconeogenic support
(e.g., through glycerol entry into gluconeogenesis and acetyl
CoA activation of PC).

Together, at least two dozen rodent studies in which a ge-
netic or pharmacological intervention was used to alter he-
patic insulin action have observed an inverse relationship
between hepatic DAG content and hepatic insulin sensitiv-
ity (646). Yet in addition to those discussed above (298,
547, 597), several other genetically modified mouse models
have also yielded phenotypes that appear to dissociate DAG
accumulation from hepatic insulin resistance, engendering
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skepticism toward the DAG-PKC hypothesis of lipid-in-
duced insulin resistance (20, 231). Mice overexpressing
ChREBP predictably displayed upregulation of several lipo-
genic genes and developed hepatic steatosis with increased
hepatic DAG (49). Yet the ChREBP-overexpressing mice
had normal glucose and insulin tolerance on regular chow
diet and were even protected from HFD-induced defects in
glucose tolerance and hepatic insulin signaling (49). Al-
though PKC� activation was not determined in this study, it
challenges the sufficiency of lipogenic DAG accumulation
for hepatic insulin resistance and points to potential benefits
of expedient lipid storage (496). Another important mouse
model inconsistent with the DAG hypothesis of hepatic in-
sulin resistance is the liver-specific microsomal triglyceride
transfer protein (Mttp) knockout mouse (543). These mice
have a defect in very-low-density lipoprotein (VLDL) secre-
tion and accordingly accumulate hepatic lipids, including
DAG, ceramides, and TAG, despite normal body weight
and adipose tissue mass (543). Despite hepatic lipid accu-
mulation, the liver-specific Mttp�/� mice displayed normal
hepatic insulin sensitivity during hyperinsulinemic-euglyce-
mic clamp studies (543). PKC� activation was not assessed
in these mice, and their normal adiposity suggests that in-
direct hepatic insulin action (mediated by suppression of
adipose lipolysis) was likely intact; this may account for the
normal suppression of hepatic glucose production observed
during clamps (543). Another provocative model is the liv-
er-specific Hdac3�/� mouse, which develops a distinctive
hepatosteatosis characterized by very small lipid droplets
and a reduced acyl CoA pool, and displays decreased fasting
insulin, improved glucose tolerance, and improved insulin
tolerance on regular chow diet (812). Here, although he-
patic DAG was increased severalfold on regular chow,
PKC� activation was not observed in the Hdac3�/� mice,
another example in which discordance between hepatic lip-
ids and hepatic insulin action is accompanied by concor-
dance between hepatic PKC� activation and hepatic insulin
action (812).

A prominent challenge to the DAG/nPKC hypothesis that
led to an important advance in the field came from mice
with antisense oligonucleotide knockdown of the ATGL
coactivator CGI-58. These mice manifest profound hepa-
tosteatosis and increased hepatic DAG content, yet retain
normal hepatic insulin signaling and suppress hepatic glu-
cose production normally during hyperinsulinemic euglyce-
mic clamps (98, 115). Although one explanation for these
data is that increased DAG is insufficient to induce hepatic
insulin resistance, more nuanced interpretations are also
possible. For example, PKC� was observed to translocate to
the lipid droplet in CGI-58 ASO-treated mice, rather than
to the membrane-associated fraction as typically observed
in lipid-induced insulin resistance (115). It is possible that
preferential lipid droplet DAG/nPKC activity constitutes a
sequestration of PKC� away from the compartments in-
volved in insulin receptor trafficking and signaling, such as

the secretory apparatus and the plasma membrane. A sim-
ilar phenotype in mice with adenoviral hepatic overexpres-
sion of perilipin 5, characterized by increased hepatic TAG
and DAG with preserved hepatic insulin sensitivity, may
involve a similar mechanism (848). As a result of increasing
recognition of the importance of DAG localization, it has
become standard practice in recent years to measure DAG
levels in multiple subcellular compartments.

Another way to subdivide cellular DAG is by acyl chain
composition: length and saturation. In vitro, different DAG
species may activate PKC isoforms with modestly different
potencies, although no clear molecular basis for such differ-
ences has been identified (510). In vivo, various studies have
observed positive, negative, or no association between the
degree of acyl group saturation and insulin resistance (21,
53, 819, 866d). DAG composition is largely a function of
circulating fatty acid availability, which may limit the utility
of studies done using acute lipid infusions or synthetic ro-
dent HFDs to address this question. Careful correction for
multiple comparisons is also essential for studies in which
correlation coefficients are calculated for many lipid spe-
cies.

A final important distinction to consider pertains to DAG
stereoisomers. DAG exists as one of three stereoisomers:
sn-1,2, sn-2,3, or sn-1,3 depending on the placement of the
two fatty acyl chains along the three-carbon glycerol back-
bone. Only sn-1,2-DAG is capable of activating PKC iso-
forms (680). This stereospecificity has important physiolog-
ical implications. The lipolytic enzyme ATGL preferentially
generates sn-1,3-DAG rather than the PKC-activating sn-
1,2-DAG, arguing against intracellular lipolysis as a driver
of nPKC-mediated cellular insulin resistance (210). The rel-
evance of DAG stereoisomers in lipolysis is also highlighted
by studies of HSL knockout mice, which displayed in-
creased insulin-stimulated glucose uptake despite increased
muscle sn-1,3-DAG content; sn-1,2-DAG content was un-
affected by HSL loss (754). It is plausible that lipogenic
DAG flux, rather than lipolytic DAG flux, drives DAG/
nPKC-mediated insulin resistance. Interestingly, mRNA ex-
pression of Dgat2 is decreased in the insulin-sensitive stea-
totic livers of mice with liver-specific deletion of either Atgl
or CGI-58 as well as in CGI-58 ASO-treated mice, suggest-
ing antilipogenic compensation (98, 290, 916). Stereoiso-
mer-specific DAG measurements are not frequently re-
ported, and spontaneous acyl migration tends to convert
sn-1,2- to sn-1,3-DAG during sample preparation. How-
ever, a recent study reported muscle DAG concentrations
subdivided by stereoisomer, compartment, and species in a
human cohort that included athletes, lean controls, obese
subjects, and subjects with T2D (619). These workers
found increased total sn-1,2-DAG in T2D subjects com-
pared with lean controls in the total cellular lysate and the
sarcolemmal fraction, but not in the mitochondrial/ER, nu-
clear, or cytosolic fractions (619). In related experiments,
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Pesta et al. have found that insulin-sensitive athletes have
reduced PKC� translocation in muscle compared with
obese insulin-resistant subjects, suggesting that differences
in the compartmentation and/or stereoisomer distribution
of DAGs may account for differences in muscle insulin sen-
sitivity between these populations despite similar increases
in total muscle TAG and DAG content (D. Pesta, D. Zhang,
G. Shulman, M. Roden, unpublished results). Further
work, both in methodological refinement and standardiza-
tion, and in data collection across multiple populations, will
likely emerge in this area.

It is also important to recognize that changes in the DAG/
nPKC axis measured in all models must be interpreted with
caution because the practical methods currently available
for quantitating DAG levels and nPKC activation are rela-
tively crude, lacking organellar spatial resolution and any
temporal resolution. For example, the “membrane” or
“particulate” fraction typically used to interrogate DAG
compartmentation or PKC translocation contains plasma
membrane, mitochondrial membranes, endoplasmic reticu-
lum, Golgi membranes, and other endomembranes (115).
The investigator typically cannot be certain that the pattern
of DAG/nPKC perturbation in a given mouse model corre-
sponds to the pattern observed in typical human insulin
resistance. It is also not certain that the relevant compart-
ment for DAG/PKC axis activation is the plasma mem-
brane, although this is widely assumed. The DAG-PKC�

interaction has been shown in 3T3 fibroblasts to occur pri-
marily at the Golgi, where its anchoring protein RACK2 is
localized (469, 648). A single tryptophan residue in the
DAG-binding C1 domain of nPKCs also appears to facili-
tate targeting to the Golgi (199). Although Golgi mem-
branes are a component of the “membrane” fraction typi-
cally employed to interrogate the DAG/PKC axis, no studies
have specifically examined DAG/nPKC axis activation at
the Golgi in cellular insulin resistance. Formation of sn-1,2-
DAG is best studied in other organelles: at the plasma mem-
brane by phospholipase C cleavage of phosphatidylinositol
4,5-bisphophate (a major mechanism for activation of clas-
sical PKC isoforms such as PKC�, �1, �2, and �), and in the
endoplasmic reticulum by phosphatidic acid phosphatase in
the Kennedy pathway or by MGAT activity (211). How-
ever, sn-1,2-DAG is also present in the Golgi, where it sig-
nals in membrane protein trafficking (36, 730). Addition-
ally, RACK2 is a component of the coatomer complex that
mediates vesicle trafficking between the ER and Golgi, high-
lighting the extensive crosstalk between these structures
(648). Overall, given what is known about how different
DAG moieties may participate in insulin resistance, a rea-
sonable refinement of the initial hypothesis that DAGs ac-
tivate nPKC isoforms may be that lipogenic sn-1,2-DAGs
act at the Golgi to activate nPKC isoforms (FIGURE 15).

Having considered several models designed to examine the
role of DAG in insulin resistance, we now turn our attention

to models generated to genetically test the role of nPKC
activation in lipid-induced insulin resistance. The first such
model reported was a mouse ectopically expressing a dom-
inant-negative, kinase-dead PKC� specifically in skeletal
muscle (753). Unexpectedly, these mice developed age-as-
sociated obesity accompanied by glucose intolerance and
impaired muscle insulin signaling (753). Similarly, whole-
body PKC� knockout mice were more susceptible to HFD-
induced obesity and insulin resistance owing to decreased
physical activity and energy expenditure (256). However,
when subjected to the simplest test of lipid-induced insulin
resistance–the acute lipid infusion–the PKC� knockout
mice were completely protected from skeletal muscle insu-
lin resistance (405). PKC� overexpression is also sufficient
to cause insulin resistance in cultured myocytes (292).
These disparate results suggest that in addition to a possible
pathophysiological role in lipid-induced insulin resistance,
PKC� may have an as-yet-undetermined physiological role
in normal skeletal muscle insulin action and/or energy bal-
ance. They also indicate that while PKC� is likely involved
in lipid-induced insulin resistance, it is not totally necessary
for obesity-associated muscle insulin resistance.

The role of PKC� in lipid-induced insulin resistance has also
been tested genetically. Antisense oligonucleotide knock-
down of PKC� specifically in liver and WAT protects rats
from hepatic insulin resistance when fed a 3-day HFD
(722). Additionally, whole-body PKC� knockout mice are
totally protected from glucose intolerance when fed a 1-wk
HFD despite increased liver TAG and DAG content (668).
With longer durations of high-fat feeding in PKC� knock-
out mice, assessment of the liver phenotype is confounded
by improvements in �-cell function, but the improvements
in glucose tolerance persist (741). Thus available genetic
models are consistent with a role for PKC� in the patho-
physiology of lipid-induced hepatic insulin resistance.

The contribution of PKC� activation to lipid-induced insu-
lin resistance is incompletely understood. PKC� transloca-
tion has been observed in the lipid-infused rat liver (450),
and mouse models also support a deleterious role for this
nPKC in liver insulin action. PKC� knockout mice, whether
whole body or liver specific, have diminished transcrip-
tional programs for gluconeogenesis and lipogenesis and
displayed improved hepatic insulin signaling, while mice
adenovirally overexpressing PKC� in liver are glucose intol-
erant (59). However, neither humans with NAFLD nor
3-day high-fat-fed rats display increased hepatic PKC�

translocation, challenging the physiological relevance of
these observations (445, 721). The decreased lipogenic ca-
pacity of PKC� knockout mice may in turn decrease DAG/
PKC� axis activation, directly mediating the observed im-
provements in hepatic insulin action. The role of PKC� in
skeletal muscle insulin resistance is complex. In vitro work
has suggested that PKC� activation may actually enhance
myocellular insulin action (91, 92). However, this hypoth-
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esis is not supported by in vivo data. In skeletal muscle of
young mice, PKC� expression is low and, interestingly, de-
creases with fat feeding (482). Accordingly, muscle-specific
PKC� deletion (M-PKC�KO mice) does not confer protec-
tion from HFD-induced muscle insulin resistance in young
mice (482). However, skeletal muscle PKC� expression in-
creases with age, and old M-PKC�KO mice display protec-
tion from age-related glucose intolerance (482). Under-
standing the potential role of PKC� in lipid-induced insulin
resistance will thus require further study.

Although these genetic models have provided important
clues to the tissue-specific roles of various nPKCs in lipid-
induced insulin resistance, establishing the pathophysiolog-
ical significance of the DAG/nPKC axis necessitates eluci-

dating the molecular mechanisms by which activated
nPKCs impair insulin action. If the DAG/nPKC axis medi-
ates lipid-induced insulin resistance, the most straightfor-
ward mechanism would be direct serine/threonine phos-
phorylation of insulin signaling mediators. This hypothesis
has been long pursued, but conclusive evidence linking spe-
cific serine/threonine phosphorylation sites to lipid-induced
insulin resistance has only recently begun to emerge.

Early work investigating PKC inhibition of insulin signaling
employed phorbol esters, especially phorbol-12-myristate-
13-acetate (PMA) [also known as 12-O-tetradecanoylphor-
bol-13-acetate (TPA)]. Phorbol esters were first observed to
decrease INSR tyrosine phosphorylation and insulin-stim-
ulated glycogen synthesis in 1984 (822). This inhibition was
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associated with serine and threonine phosphorylation of
INSR and was reversed by alkaline phosphatase treatment
(821, 822). These lines of evidence, together with the 1986
demonstration that purified PKC preparations (albeit with
Ca2�-dependent activity) could phosphorylate purified
INSR (77), suggested that PKC could directly inhibit IRK
activity. The search for specific sites of serine and threonine
phosphorylation on INSR yielded several candidates,
mostly in the relatively unstructured COOH-terminal tail
of the receptor. These sites included Thr1348 (478), Ser1327

(156), Ser1305/Ser1306 (479), Ser1006 (802), and Ser1035/
Ser1037 (489, 802). However, phorbol esters are nonspecific
activators of multiple PKC isoforms, and most of the above
studies used either phorbol esters or cPKC isoforms such as
PKC� or PKC�II. Despite careful study, these candidate
sites have ultimately not been implicated in insulin resis-
tance in vivo (82, 394, 564). One possible exception to this
paradigm is Ser994, which is an in vitro substrate of PKC�,
�, and 
 isoforms as well as TANK-binding kinase 1; he-
patic INSR Ser994 phosphorylation has been shown to in-
crease in the basal state in several rodent models of obesity-
associated insulin resistance (155, 559, 802). However,
mechanistic insight to the role of Ser994 phosphorylation in
INSR kinase activity is lacking.

With the observations that PKC� activation was involved in
lipid-induced skeletal muscle insulin resistance and that
PKC� was involved in lipid-induced hepatic insulin resis-
tance, mechanistic investigations turned to these specific
isoforms. In 2004, in vitro kinase assays and cell-based
experiments identified IRS1 Ser1101 as a PKC� substrate in
myocytes (494). IRS1 Ser1101 is phosphorylated within 15
min of insulin stimulation and impairs IRS1 tyrosine phos-
phorylation, suggesting that it may act in an acute negative
feedback circuit to attenuate insulin action (494). Increased
IRS1 Ser1101 phosphorylation in muscle has been reported
in acutely lipid-infused humans, associated with the devel-
opment of muscle insulin resistance (819). However, other
stimuli, including PMA, tumor necrosis factor (TNF)-�,
arachidonic acid, and oleic acid, were also observed to in-
crease IRS1 Ser1101 phosphorylation (494). In addition, the
amino acid-activated kinase S6 kinase 1 (S6K1) was later
shown to phosphorylate IRS1 Ser1101 in response to nutri-
ent status, suggesting complex and integrated regulation of
this functionally important phosphorylation site (846).
IRS1 can be phosphorylated on more than 50 serine/threo-
nine sites, most of which are dynamically regulated by in-
sulin and other metabolic stimuli; the structural basis by
which a given serine/threonine phosphorylation event may
impair IRS1 tyrosine phosphorylation is largely unknown
(169, 300). The difficulty of assigning causal roles to spe-
cific IRS phosphorylation sites in insulin sensitivity or resis-
tance is typified by the case of IRS1 Ser307, long considered
a marker for inflammation-induced insulin resistance
through the c-Jun NH2-terminal kinase (JNK; see sect. VII)
(465). Despite extensive evidence suggesting that IRS1

Ser307 phosphorylation mediates insulin resistance, mice
homozygous for a Ser307Ala mutation surprisingly were
more, not less, susceptible to diet-induced insulin resistance
(167). Similarly, alanine knock-in mice for another well-
studied IRS1 phosphorylation site, Ser302, displayed no de-
fects in muscle insulin action (168). The bewildering com-
plexity of IRS1 serine/threonine phosphorylation seems to
cast doubt on the hypothesis that single IRS phosphoryla-
tion sites can exhibit on/off control over IRS signaling in-
tensity; rather, a more viable model treats IRS phosphory-
lation events as signaling modulators that serve individually
minor but collectively major roles in attenuating and/or
inhibiting IRS signaling (169). Although the specific impor-
tance of PKC� phosphorylation of IRS1 Ser1101 is uncer-
tain, there have been reports of other potential mediators of
PKC�-induced muscle insulin resistance. PKC� has been
reported to phosphorylate phosphoinositide-dependent ki-
nase 1 (PDK1) Ser504 and Ser532 in palmitate-treated myo-
tubes, with these phosphorylation events associated with
impaired PDK1-mediated Akt Thr308 phosphorylation
(873). A final intriguing PKC� target is the guanine ex-
change factor GIV/Girdin, which interacts with INSR,
IRS1, and PI3K and is required for insulin-stimulated glu-
cose uptake (514); PKC� inhibits GIV through Ser1689

phosphorylation, decreasing PI3K-AKT signaling (500).
GIV was shown to be necessary for palmitate-induced insu-
lin resistance to glucose uptake in L6 myotubes, expression
of a phosphomimetic Ser1689Asp GIV mutant was suffi-
cient to abolish insulin-stimulated glucose uptake in L6
myotubes, and GIV Ser1689 phosphorylation was pro-
foundly decreased by pioglitazone treatment in women
with polycystic ovarian syndrome (514). Though promis-
ing, a full understanding of the physiological significance of
this phosphorylation event requires future study, and still
other PKC� substrates within the proximal insulin signaling
cascade may yet be uncovered.

Efforts to understand the mechanistic link between PKC�

and hepatic insulin resistance have also yielded interesting
results. Because the signaling defects of hepatic insulin re-
sistance can be traced as far proximally as IRK activity
(116, 155, 161, 722), direct inhibition of IRK activity by
PKC� was hypothesized. PKC� was shown to coimmuno-
precipitate with INSR� in liver, suggesting direct interac-
tion (722). Furthermore, recombinant PKC� dose-depend-
ently inhibited recombinant IRK activity in vitro, and he-
patic INSR immunoprecipitated from rats treated with an
antisense oligonucleotide (ASO) targeting PKC� displayed
complete protection from HFD-induced impairments in
IRK activity (722). However, the mechanistic basis of PKC�

inhibition of IRK activity was unknown until recently.
Phosphopeptide mass spectrometry of in vitro PKC�/IRK
kinase assays revealed a novel phosphorylation site within
the IRK activation loop, Thr1160 (645). This threonine is
conserved in metazoans as distantly related as Drosophila,
and its phosphorylation is predicted to disrupt the normal
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configuration of the active IRK through steric hindrance
and electrostatic repulsion (645). Indeed, phosphomimetic
Thr1160Glu mutation produces a nearly kinase-dead INSR
(645). Conversely, Thr1160Ala mutation abolished IRK
inhibition by PKC� in vitro (645). InsrT1150A knock-in
mice were protected from HFD-induced hepatic insulin
resistance, indicating that Thr1160 phosphorylation is a
physiologically relevant mechanism for lipid-induced he-
patic insulin resistance (645). These studies support a
model of lipid-induced hepatic insulin resistance wherein
activation of the DAG/PKC� axis promotes direct inhib-
itory phosphorylation of INSR Thr1160

(FIGURE 16). Im-
portantly, although this defect localizes to the insulin
receptor, it is not a decrease in receptor number and is
therefore best classified as a post-receptor defect, shifting
the insulin dose-response curve rightward and down-
ward. Yet for a significant portion of this shifted insulin
dose-response curve, DAG/PKC�/INSR-mediated he-
patic insulin resistance can be overcome by the portal
hyperinsulinemia that often accompanies mild-moderate
insulin resistance. This concept should apply to both in-
sulin-stimulated hepatic glycogen synthesis and insulin-
stimulated de novo lipogenesis as discussed in section IV.
Although this model is sufficient to account for the sig-
naling patterns typically observed in hepatic insulin re-
sistance (e.g., activation of PKC�, inhibition of IRK, and
all downstream effectors), it is nevertheless likely that
additional PKC�-dependent or -independent mechanisms
for lipid-induced hepatic insulin resistance are operative.

Together, these studies have both shed light and cast doubt
upon the DAG/nPKC hypothesis, enabling it to become
more focused and specific. Genetic and pharmacological

manipulations have yielded strong evidence for a causal role
of DAG/nPKC axis activation in lipid-induced insulin resis-
tance, while correlative studies in “wild-type” rodents and
humans suggest physiological relevance. The era of the ge-
netically modified mouse has both bolstered and challenged
the hypothesis, but with the ever-present caveat of unphys-
iological compensations. The application of advanced cell
biology and analytical chemistry, especially in cells and tis-
sues with intact lipid handling pathways, will be necessary
to drive further progress in understanding if, when, where,
and how diacylglycerols activate nPKCs to impair insulin
signaling.

C. Ceramides and Insulin Resistance

The sphingolipids, which derive from the condensation of
serine and, primarily, palmitoyl CoA, encompass hundreds
of distinct lipid species (325). Initial suggestions that sph-
ingolipids might interact with insulin action came from in
vitro reports that sphinganine and sphingosine blocked in-
sulin-stimulated 2-deoxyglucose uptake in 3T3-L1 fibro-
blasts (574). Sphingosine was also shown to impair maxi-
mal insulin-stimulated glucose uptake and lipogenesis in
cultured adipocytes (695, 779). Early studies of ceramides,
produced by the covalent addition of a fatty acyl group to
sphingosine, used short-chain (C2, C6) cell-permeable cer-
amides, often at supraphysiological concentrations. These
studies largely agreed that adding ceramide to the culture
medium inhibited insulin action, but reported different sites
of blockade. Some groups reported inhibition of INSR ty-
rosine kinase activity by ceramides (385, 617), while others
found no impairment in proximal insulin signaling (574,
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740, 809, 874, 956). The 1998 reports that C2-ceramides

inhibited insulin action at the level of AKT–distal to INSR-

IRS-PI3K activation–were particularly influential in guiding

consensus for the mechanism of ceramide-induced insulin

resistance (809, 956). The mechanism for C2-ceramide in-

hibition of AKT has been linked to both increased PP2A

activity (715, 748, 806, 961) and defective insulin-stimu-

lated AKT translocation (805) through activation of atypi-

cal PKC
 (67, 241, 659, 806). Subsequent studies of cera-

mide-induced insulin resistance have focused on AKT inhi-

bition as the primary mechanism.

Short-chain ceramides provided a convenient early experi-

mental tool for in vitro studies, but the most prevalent en-

dogenous ceramides incorporate palmitate or other long-

chain saturated fatty acids (SFAs). Accordingly, most recent

studies of ceramide-induced insulin resistance have focused

on the effects of SFAs. Palmitate potently induces insulin

resistance in cultured myocytes and hepatocytes, especially

when AKT Ser473 phosphorylation is used as the primary

readout of insulin resistance (126, 740). However, when

functional readouts of insulin resistance such as insulin-

stimulated glycogen synthesis, glucose uptake, and HGP

suppression are used, palmitate induces insulin resistance to

a similar extent as unsaturated fatty acids (USFAs) such as

oleate and linoleate (323, 740). Because USFAs do not in-

crease ceramide levels, it follows that ceramides cannot be

the only mediator of lipid-induced insulin resistance (124).

A potential role for ceramides in SFA-induced muscle insu-

lin resistance has been investigated in several in vitro and in

vivo studies in which ceramide synthesis is perturbed and

insulin action is assessed. Many of these studies have used

the natural fungal product myriocin, which inhibits the first

step in ceramide biosynthesis: serine palmitoyltransferase-1

activity (127, 545). For example, palmitate-rich lard oil

infusion caused acute muscle insulin resistance in rats, as-

sociated with increases in both myocellular DAG and cer-

amides; myriocin treatment partially prevented this insulin

resistance, associated with abrogation of ceramide but not

DAG accumulation (322, 323). Additionally, myriocin pre-

treatment in C2C12 myotubes totally prevented palmitate-

induced, but not linoleate-induced, insulin resistance (323).

However, another study found that myriocin treatment did

not reverse glucose intolerance in SFA-fed mice despite nor-

malization of muscle ceramide content (243). A key con-

founder in many studies of ceramide-induced insulin resis-

tance, even those designed to specifically modify ceramide

biosynthesis, is concomitant changes throughout the lip-

idome, including changes in other putative mediators of

insulin resistance such as DAG (101, 102). For example,

myriocin, described as the “workhorse” of ceramide studies

(127), has been shown to alter energy balance, weight gain,

and ectopic lipid accumulation in multiple models of obe-

sity (934). The relative contribution of each of these known

modulators of muscle insulin sensitivity to the overall phe-
notype of myriocin-treated rodents is challenging to assess.

Ceramides have also been investigated for a potential role in
lipid-induced hepatic insulin resistance. Mice lacking one
copy of dihydroceramide synthase 1 (Des1�/�) displayed
improved insulin sensitivity in insulin tolerance tests (al-
though whole-body ceramide levels were similar to wild-
type littermates and glucose tolerance was not altered)
(323). Mice with haploinsufficiency for ceramide synthase 2
(CerS2�/�), which produces very-long-chain (C22/C24)
ceramides, did not display altered total hepatic ceramide
content (672). However, CerS2�/� mice shifted the acyl
chain composition of their hepatic ceramides to increase
C16:0 (palmitoyl) ceramides, and this was associated with
worsening of hepatic steatosis and insulin resistance; the
steatosis at least partially owed to mitochondrial lipid oxi-
dation defects (672). The coexistence of hepatic steatosis in
many experimental models of perturbed ceramide biosyn-
thesis (61, 323) complicates efforts to identify the media-
tor(s) responsible. Even in models genetically perturbing
lipid metabolism, rodents and humans with elevated liver
triglyceride also generally exhibit elevated DAG (115, 144,
371, 547). Additionally, a recent human lipidomic study
noted positive associations between hepatic ceramides and
HOMA-IR score, but observed similar associations with
hepatic DAG (506). However, recent studies of mice with
tissue-specific overexpression of the ceramide-degrading
enzyme acid ceramidase challenge this paradigm. Liver-spe-
cific inducible overexpression of acid ceramidase (Alb-AC
mice) decreased hepatic ceramide content and was associ-
ated with protection from HFD-induced hepatic insulin re-
sistance despite increased hepatic DAG content (922). In-
terestingly, however, HFD-fed Alb-AC mice also displayed
marked protection from hepatic steatosis (~3-fold lower
liver TAG content) (922). The mechanistic basis for this
unusual dissociation of hepatic DAG and TAG content,
also observed in mice with adipose-specific overexpression
of acid ceramidase (922), is not clear. Interestingly, reversal
of hepatic insulin resistance upon acid ceramidase induc-
tion paralleled reversal of hepatic steatosis in this study
(922). Although ceramide content was only one of many
physiological parameters altered by tissue-specific acid ce-
ramidase overexpression, this study is certainly consistent
with a role for ceramides in hepatic insulin resistance.

Ultimately, the questions of whether and how ceramides
impair cellular insulin action derive their significance from
the extent to which ceramide biosynthesis and ceramide
levels are altered in insulin-resistant states. Many studies
weigh in on this latter question, with varying conclusions.
In the earliest such report, obese Zucker fa/fa rats were
found to have increased liver and skeletal muscle ceramide
content (852). Ceramides were also elevated in liver and
muscle from Zucker diabetic fatty (ZDF) rats (323), lard-oil
infused rat liver and muscle (323), ob/ob mouse liver (8),
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and obese human muscle (4, 21, 803). However, because
these common models of insulin resistance are all charac-
terized by generalized elevations in tissue lipid content, they
do not permit assessment of the specific role of ceramides in
insulin resistance. Indeed, many models of lipid-induced
insulin resistance in both muscle and liver are not associated
with increased ceramide levels. For example, 8 wk of high-
fat feeding was associated with unchanged muscle ceramide
content and decreased hepatic ceramide content in
C57BL/6J mice (548). Acute Liposyn II infusion potently
induced muscle insulin resistance without altering muscle
ceramides (942). Mice lacking pyruvate dehydrogenase ki-
nase 2 and 4 (Pdk2/4�/�) constitutively oxidized glucose in
muscle and consequently developed lipid-induced muscle
insulin resistance, but muscle ceramide levels were not in-
creased (669). Neither SFA-rich nor USFA-rich 3-day HFDs
raised liver ceramide content in rats, despite the presence of
profound hepatic insulin resistance (253). In four indepen-
dent studies of obese, nondiabetic humans, hepatic cer-
amide content was not correlated with insulin resistance in
three; one study did observe a positive association (445,
506, 512, 834). In mice with reduced tissue lipid delivery
secondary to knockdown of ApoA5, improved muscle and
liver insulin sensitivity were not associated with differences
in tissue ceramide content (113). In fructose-fed liver-
specific Xbp1�/� mice with decreased de novo lipogenesis
relative to wild-type fructose-fed controls, hepatic insulin
sensitivity was increased but hepatic ceramide levels were
increased (375). Furthermore, the insulin-sensitizing effects
of estradiol in ovariectomized female mice were associated
with correction of DAG/nPKC axis activation but no
changes in liver or muscle ceramides (111). These models
suggest that increased liver or muscle ceramide levels are
not necessary for lipid-induced insulin resistance.

Just as studies of diacylglycerol-mediated insulin resistance
have increasingly subdivided their measurements by acyl
chain length, stereoisomer, and subcellular localization, so
several ceramide studies have focused on specific ceramide
species and their subcellular localization. Muscle C18:0 cer-
amides in particular have been identified as inversely corre-
lated with insulin sensitivity during hyperinsulinemic-eu-
glycemic clamps in three human studies (52, 619, 844),
although this relationship is not observed in all studies (21,
149, 819). Interestingly, one recent study employing subcel-
lular fractionation found that this C18:0 ceramide relation-
ship was observed in the sarcolemmal, mitochondrial/ER,
and nuclear compartments alike (619). However, another
fractionation study that separated muscle biopsies into sub-
sarcolemmal and intramyofibrillar fractions observed
strong correlations with HOMA-IR for only C16:0 and
C18:1 ceramides (149). Because of its saturated acyl chain,
C18:0 ceramide has been hypothesized to impair insulin
action by decreasing membrane fluidity in addition to the
PP2A/AKT mechanism discussed above, but these hypoth-
eses have not yet been directly tested (52). Intriguingly,

however, C18:0 ceramides are the first muscle ceramide
species to increase during high-fat feeding in mice (854).

The role of ceramides in adipose insulin resistance is un-
clear, but research in this area is accelerating. Human stud-
ies have reported correlation of adipose ceramide content
with HOMA-IR (64) and increased adipose ceramides in
obese diabetic compared with obese nondiabetic subjects
(122). Additionally, the whole-body insulin sensitization
associated with adipose-specific induction of ceramide deg-
radation suggests a role for adipose ceramides in insulin
action, whether direct or via tissue cross-talk (922). Indeed,
C16:0 ceramides have been reported to be increased in ad-
ipose tissue from obese subjects, in concert with increased
mRNA expression of the relevant synthetic enzyme CerS6
(686). High-fat feeding has also been reported to increase
adipose ceramides in mice (856). Inhibition of adipocyte
ceramide biosynthesis in WAT-specific serine palmitoyl-
transferase (Sptlc2) knockout mice protected mice from
HFD-induced weight gain and hyperglycemia, although,
surprisingly, this genetic perturbation did not change the
abundance of most WAT ceramide species (122). As with
many rodent models investigating the role of ceramides in
lipid-induced hepatic insulin resistance, the global altera-
tions in energetics confound efforts to ascribe the metabolic
improvements seen in these mice to any one mechanism.

Another important question for assessment of the relevance
of ceramide-induced insulin resistance pertains to the site(s)
of signal transduction blockade in insulin resistance. If cer-
amides are responsible for typical obesity-associated insulin
resistance, and ceramides induce insulin resistance through
AKT inhibition, then one would predict that proximal in-
sulin signaling would be intact and all detectable defects
would be downstream of AKT. While defects in AKT Ser473

phosphorylation are certainly detected in both muscle and
liver insulin resistance (113, 115, 669, 921), proximal insu-
lin signaling defects are also prominent (117, 470, 722).
Interestingly, glucosylceramides such as GM3 ganglioside
have been suggested to impair proximal insulin signaling
through altered INSR membrane microdomain localization
(125, 376), and specific inhibition of glucosylceramide syn-
thase improves insulin sensitivity in obese rodents (8); more
work is needed to understand the role of specific glucosyl-
ceramides in insulin resistance. However, the observed im-
pairment in proximal insulin signaling in typical insulin
resistance poses a problem for the hypothesis that ceramide
inhibition of AKT is a central defect in insulin resistance; a
primary defect at the level of AKT might actually be pre-
dicted to enhance proximal insulin signaling through the
loss of AKT-regulated negative-feedback mechanisms such
as GRB10 stabilization (339, 944). Additionally, increasing
AKT phosphorylation through acute PP2A inhibition–
blocking one of the proposed mechanisms for ceramide-
induced insulin resistance–is insufficient to restore insulin
sensitivity in fat-fed rats and unexpectedly exacerbates

INSULIN ACTION AND INSULIN RESISTANCE

2181Physiol Rev • VOL 98 • OCTOBER 2018 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (106.051.226.007) on August 8, 2022.



muscle insulin resistance (254). Unless ceramides also im-
pair proximal insulin signaling through currently unidenti-
fied mechanisms, it seems unlikely that ceramide signaling
to AKT can fully account for typical obesity-associated in-
sulin resistance.

Taken together, the mechanistic evidence for ceramide-in-
duced insulin resistance is strongest in skeletal muscle, with
more equivocal data for liver and WAT (644, 810). The
relative significance of ceramide-induced insulin resistance
in typical obesity-associated tissue insulin resistance is un-
clear; ceramide signaling may be sufficient to drive insulin
resistance in some models but does not appear to be neces-
sary for lipid-induced insulin resistance.

D. Acylcarnitines, Metabolic Inflexibility, and
Insulin Resistance

The DAG/nPKC and ceramide/AKT models of skeletal
muscle insulin resistance both implicate inappropriate ana-
bolic shunting of excess lipid to bioactive moieties. How-
ever, an alternative hypothesis posits that inappropriate ca-
tabolism of excess lipid, mismatched to tricarboxylic acid
(TCA) cycle flux, can also impair insulin action in skeletal
muscle. A key observation fueling this hypothesis was that
rates of fatty acid oxidation (FAO) were increased by high-
fat feeding in ex vivo skeletal muscle homogenates, suggest-
ing that the fate of excess lipid in the myocyte is not simply
ectopic storage (427). However, this increase in FAO was
not accompanied by increases in CO2 production (i.e., com-
plete oxidation) but instead by increases in myocellular
acylcarnitines:fatty acids bound to carnitine to enable mi-
tochondrial entry, a marker of incomplete FAO (427). Mus-
cle acylcarnitine profiling in profoundly insulin-resistant
Zucker diabetic fatty rats revealed striking increases in
long-chain acylcarnitines, especially those with chain length
�10 carbons (427). These increases, coupled with measure-
ments of decreased TCA cycle metabolites, were interpreted
as reflecting FAO mismatched to TCA flux and consequent
mitochondrial stress (427). This result complemented the
earlier observation that PGC-1�, a transcriptional coacti-
vator activated by exercise, promoted complete oxidation
of lipids and was diminished by high-fat feeding (426).
However, muscle-specific PGC-1� overexpression was later
shown to unexpectedly cause muscle insulin resistance de-
spite increased rates of FAO; these mice also displayed in-
creased muscle DAG content and PKC� activation (143).
Additionally, the addition of carnitine to the culture me-
dium was reported to facilitate the ability of palmitate to
induce insulin resistance in L6 myotubes, suggesting a role
for FAO in lipid-induced insulin resistance (427). These
results, though intriguing, are somewhat difficult to recon-
cile with other reports associating carnitine supplementa-
tion with increased muscle insulin sensitivity in high-fat-fed
rodents (583, 866a).

Acylcarnitines are measured in plasma to noninvasively

probe inborn errors of FAO (746). The mechanisms of acyl-

carnitine appearance in plasma are incompletely under-

stood, but plasma acylcarnitine concentrations are thought

to reflect intracellular levels (654, 746). Could plasma acyl-

carnitine levels thus be used as a biomarker for incomplete

FAO in muscle? The major problem with this proposition is

that plasma acylcarnitine levels are a function of FAO rates

in not just skeletal muscle, but in all tissues. The liver in

particular preferentially oxidizes lipids and is likely a major

contributor to plasma acylcarnitine levels (19, 746). Inter-

estingly, in Pdk2/4�/� mice with constitutive glucose oxi-

dation in skeletal muscle, myocellular medium- and long-

chain acylcarnitines were markedly decreased but plasma

levels were unchanged compared with wild-type controls

(669). This dissociation of muscle and plasma acylcarnitine

profiles, also reported in humans (784), indicates that

plasma acylcarnitines probably cannot be used to interro-

gate incomplete FAO in skeletal muscle, although several

groups have attempted to do so (5, 541).

How might incomplete FAO in general, or acylcarnitines in

particular, mediate insulin resistance? One possibility is

that acylcarnitines directly impair insulin signaling. Treat-

ment of C2C12 myotubes with physiologically relevant

concentrations (5–25 �M) of C4:0, C14:0, or C16:0

acylcarnitine impaired insulin-stimulated AKT Ser473

phosphorylation, although the effect was modest (20 –

30% decrease) and not dose dependent (10). Proximal

insulin signaling effectors were not assessed. Incomplete

FAO has also been proposed to induce muscle insulin

resistance by increasing reactive oxygen species (ROS)

production. Palmitate treatment increases ROS produc-

tion in association with impaired insulin-stimulated glu-

cose uptake, but pharmacological inhibition of FAO with

mildronate prevents both effects (10). However, acylcar-

nitines per se have not directly been shown to increase

ROS production. Rather, acylcarnitine levels may reflect

the degree to which FAO exceeds cellular ATP demand, a

condition in which ROS production would be greater

(235). Putative mechanisms of ROS-induced insulin re-

sistance are discussed in section VI.

The physiological rationale for acylcarnitine-induced insu-

lin resistance is unclear. Muscle acylcarnitine concentra-

tions are regulated by nutritional status in insulin-sensitive

rats, and HFD-induced muscle insulin resistance is accom-

panied by loss of this nutritional regulation but does not

cause absolute increases in acylcarnitine concentrations

compared with levels in fasted, chow-fed rodents (427).

This indicates that if acylcarnitines impair insulin action in

fat-fed rodent muscle, they might also be expected to do so

during the fasted state in insulin-sensitive rodents; this is

difficult to reconcile with the known insulin-sensitizing ef-

fects of fasting in rodent skeletal muscle (32).
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An alternative explanation for the increase in muscle
acylcarnitines observed in some models of insulin resis-
tance is that they simply reflect relative oxidative sub-
strate selection. The pattern of muscle acylcarnitine lev-
els observed in fasted and fed rats fed chow or HFD,
described above, is completely consistent with isotopic
measurements of oxidative substrate selection (VPDH/
VTCA) in soleus muscle of chow- and high-fat-fed rats, in
which relative rates of FAO are similar in fasted chow-
fed rats to those in high-fat-fed rats both basally and after
insulin stimulation (T. Alves, R. Perry, Y. Rahimi, and G.
Shulman, unpublished data). Similar results have been
reported in lean and obese insulin-resistant human skel-
etal muscle (395). A simple interpretation of these data is
that they reflect metabolic inflexibility: the inability of
insulin-resistant skeletal muscle to increase relative glu-
cose utilization upon transition to the fed, or insulin-
stimulated, state. The concept of metabolic inflexibility
in muscle insulin resistance has its roots in the Randle
glucose-fatty acid cycle, but incorporates modern models
of lipid-induced insulin resistance (397, 561). The mech-
anism for metabolic inflexibility in lipid-induced insulin
resistance is incompletely elucidated, but an explanation
consistent with available mechanistic data is that bioac-
tive lipid moieties such as DAG or ceramide impair insu-
lin signaling to decrease insulin-stimulated GLUT4 trans-
location, thereby impairing insulin-mediated increases in
glucose availability for oxidative metabolism. This oc-
curs in parallel with increased lipid availability, resulting
in increased relative rates of FAO in fat-fed, insulin-re-
sistant muscle. Metabolic inflexibility, in this conception,
would be a consequence rather than a cause of lipid-
induced insulin resistance. If acylcarnitine levels primar-

ily reflect relative FAO flux, then their association with
muscle insulin resistance may also be secondary to the
primary defect of lipid-induced impairments in insulin
signaling.

Unravelling the mechanisms of lipid-induced insulin resis-
tance has proven a difficult task. Indeed, even the core
premise that ectopic lipid accumulation impairs insulin ac-
tion in liver and muscle remains controversial. While only
one fully defined mechanistic framework linking a specific
bioactive lipid to impaired hepatocellular insulin signaling
(the DAG/PKC�/INSR axis) has been described, lipid-in-
duced skeletal muscle insulin resistance has received more
mechanistic attention. However, although many partial
mechanisms have been elucidated, each has weaknesses and
more work is needed to define their respective roles in hu-
man disease. As currently understood, however, the pro-
posed mechanisms linking the lipid mediators discussed in
this section–DAG, ceramide, and acylcarnitines–to im-
paired skeletal muscle insulin signaling are summarized in
FIGURE 17.

VI. CELLULAR NUTRIENT STRESS AND
INSULIN RESISTANCE

A. Endoplasmic Reticulum Stress and Insulin
Resistance

The underlying cause of obesity-associated insulin resis-
tance is nutrient oversupply. The mechanisms for lipid-
induced insulin resistance described in section V outlined
cellular and molecular responses to chronic elevations in
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FIGURE 17. Proposed molecular mechanisms of lipid-induced skeletal muscle insulin resistance. A: diacyl-

glycerol (DAG) has been proposed to cause muscle insulin resistance by activating protein kinase C-� (PKC�).

The targets of PKC� within the insulin signaling cascade are incompletely defined but may include insulin

receptor substrate 1 (IRS1) and GIV. PI3K, phosphoinositide-3-kinase. B: ceramides have been proposed to

mediate skeletal muscle insulin resistance by decreasing AKT activity through at least two mechanisms. PP2A,

protein phosphatase 2A. C: incomplete mitochondrial fatty acid oxidation has been proposed to mediate

skeletal muscle insulin resistance, either through direct effects of the resultant acylcarnitine species or

through production of reactive oxygen species, which modulate various cellular processes.
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one major class of biological macromolecule: fats. How-

ever, other cell-autonomous responses to nutrient over-

load have also been implicated in the pathogenesis of

insulin resistance. One of these is the unfolded protein

response (UPR), activated by endoplasmic reticulum

(ER) stress.

The UPR is an intricate, elegant, and well-understood

mechanism that allows the cell to match protein synthetic

demand to protein synthetic capacity (191). The three

branches of the UPR are controlled by three integral ER

membrane proteins: PKR-like eukaryotic initiation factor

2� kinase (PERK), inositol-requiring enzyme 1 (IRE1), and

activating transcription factor 6 (ATF6) (331). In the nor-

mal, unstressed ER, these three proteins are kept inactive by

binding of the chaperone BiP/GRP78 to PERK, IRE1, and

ATF6; the accumulation of misfolded proteins leads to BiP

dissociation and UPR activation (331). Key downstream

effectors in the ER stress response with proposed roles in

metabolic regulation include NF-B and c-Jun NH2-termi-

nal kinase (JNK).

In 2004, the first report directly linking ER stress to obesity

and insulin resistance in vivo was published (605). This

landmark study first noted that in both high-fat-fed and

ob/ob mice, markers of ER stress such as phosphorylated

eIF2�, PERK, and JNK were strongly increased in liver

(605). Acute chemical induction of ER stress impaired in-

sulin signaling at the level of IRS1, associated with JNK-

dependent serine phosphorylation of IRS1 (465, 605).

Taken together with the same group’s earlier report that

JNK activity was increased in obese insulin resistant mice

(318), these studies advanced the hypothesis that ER stress

induces insulin resistance by promoting inhibitory phos-

phorylation of IRS1 by JNK. Curiously, whole-body Jnk

deletion was associated with improved INSR signaling in

obese mouse liver in the first study (318), but JNK activa-

tion was not associated with impaired INSR signaling in the

later study (605). Given the known role of direct INSR

defects in hepatic insulin resistance (116, 722), the hypoth-

esis that JNK inhibits insulin signaling at the level of IRS1

implies that other defects must be present to account for

INSR inhibition. Additionally, the role of JNK activation in

hepatocellular insulin resistance has been called into ques-

tion by the finding that liver-specific Jnk�/� mice are more,

not less, prone to hepatosteatosis and hepatic insulin resis-

tance (709).

The initial observation of an activated UPR in obesity has

been repeatedly confirmed in mouse liver (572, 792) and in

human liver (284, 445) and adipose tissue (70, 284, 757).

Mechanistic work describing the relationship between ER

stress and insulin resistance has primarily been carried out

in liver, a logical candidate tissue to develop ER stress dur-

ing nutrient oversupply.

A major model system for investigating the role for ER
stress in hepatic insulin resistance has been mice with de-
fects in X-box binding protein 1 (XBP1). The mRNA splice
variant of XBP1, XBP1s, is a transcription factor and a key
effector of the UPR (237, 938). Whole-body Xbp1�/� mice
display ER stress (e.g., PERK and JNK activation), associ-
ated with glucose intolerance and impaired insulin action
that is apparent as far proximally as the INSR (605). How-
ever, the Xbp1�/� mice also gain more weight than wild-
type controls, raising the possibility that other obesity-as-
sociated mechanisms such as ectopic lipid-induced insulin
resistance may contribute to the phenotype (605). Indeed,
an alternative hypothesis for the relationship between ER
stress and insulin resistance emerged from the 2008 report
that XBP1 activates the de novo lipogenic transcriptional
program (460). Mice with liver-specific Xbp1 deletion dis-
played markedly defective DNL, which was particularly
apparent on a lipogenic high-fructose diet (460). However,
liver-specific deletion of Xbp1 unexpectedly led to in-
creased levels of its upstream regulator IRE1, which in turn
increased JNK activation (375). Other signs of ER stress,
including BiP/GRP78 levels and eIF2� phosphorylation,
were also observed in this model (375). Together, these
observations comprised a novel phenotype: a mouse with
increased hepatic ER stress but decreased hepatic lipids.
When subjected to hyperinsulinemic-euglycemic clamp
studies, the fructose-fed liver-specific Xbp1�/� mice dis-
played increased hepatic insulin sensitivity (375). These
data indicate that UPR activation and JNK activity are in-
sufficient to cause hepatic insulin resistance and suggest that
in many models of ER stress-associated insulin resistance,
XBP1-mediated lipogenesis may be a contributing factor,
unifying ER stress with the DAG/nPKC model of lipid-
induced insulin resistance (FIGURE 18A). Interestingly, ad-
enoviral overexpression of Xbp1 in high-fat-fed mice also
prevented hepatosteatosis, PKC� activation, and hepatic in-
sulin resistance, indicating that the relationship between
XBP1 and lipogenesis may be more complex than previ-
ously thought (314). Similarly, activation of IKK�, which
phosphorylates and activates XBP1, reversed diet-induced
hepatosteatosis and hepatic insulin resistance in multiple
mouse models (490). The finding that both XBP1 inhibition
and activation improve hepatic insulin action is not easily
reconciled.

Overall, it has been difficult to elucidate whether ER
stress per se is a significant primary defect in human
hepatic insulin resistance. Some markers of ER stress
(eIF2� phosphorylation, CHOP induction) are associ-
ated with insulin resistance in human liver, but the most
mechanistically critical readouts of ER stress (XBP1
splicing, JNK phosphorylation) are not (445). Further-
more, the interaction between ER stress and lipid metab-
olism means that many models of ER stress are also mod-
els of ectopic lipid deposition. Does ectopic lipid induce
insulin resistance through activation of the UPR, or is ER
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stress merely a secondary consequence of a primary, ec-
topic lipid-mediated defect? There is evidence that excess
lipid accumulation, especially oversupply of saturated
fatty acids, induces ER stress (251), but the triad of in-
creased hepatic insulin sensitivity, decreased hepatic lipid
accumulation, and increased ER stress in liver-specific
Xbp1�/� mice ultimately indicates that ER stress may
require ectopic lipid accumulation to induce hepatic in-
sulin resistance.

However, while ER stress may not be the primary defect in
hepatic insulin resistance, it may well exacerbate primary

lipotoxic mechanisms. In support of this hypothesis, ame-
liorating ER stress in ob/ob mice by BiP/GRP78 overexpres-
sion decreases hepatic steatosis and increases hepatic insu-
lin sensitivity (382). In addition, ER stress has been shown
to increase the expression of lipin-2 (which catalyzes the
synthesis of DAG from PA); lipin-2 overexpression impairs
hepatic insulin signaling by activating the DAG/PKC� axis,
while lipin-2 knockdown in high-fat-fed mice improves he-
patic insulin signaling (708).

WAT ER stress is less well studied than hepatic ER stress,
but a small but intriguing literature links ER stress in WAT

IRS IRS
PI3K AKT

Unfolded protein response

Overnutrition

XBP1s

JNK

Endoplasmic

reticulum

De novo lipogenesis 

DAG/PKCε

signaling 
IHTG

ATF6 PERK IRE1

Mitochondrial dysfunction

and muscle insulin resistance

Aging

Genetic predisposition

Mitochondrial ATP

synthesis

Overnutrition

Lipid oversupply

IMCL

DAG/PKCθ signaling

ATP

demand

Lipid

oxidation 

Lipid

storage

Incomplete oxidation

Acylcarnitines

ROS

?

INSR INSR

ER stress and hepatic insulin resistanceA B

?

FIGURE 18. Nutrient stress and insulin resistance. A: endoplasmic reticulum (ER) stress, manifested as the

unfolded protein response (UPR), is activated in multiple models of liver insulin resistance. Accumulation of

misfolded proteins in the ER lumen initiates the UPR, activating PKR-like eukaryotic initiation factor 2� kinase

(PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). Key effectors of the

UPR include c-Jun NH2-terminal kinase (JNK) and the mRNA splice variant of X-box binding protein 1 (XBP1s).

JNK may directly impair proximal insulin signaling, although this is controversial. XBP1s transcriptionally

activates the de novo lipogenic program and promotes hepatic steatosis, which may in turn drive hepatic insulin

resistance through diacylglycerol (DAG)/protein kinase C (PKC)� signaling. B: muscle insulin resistance is

associated with mitochondrial dysfunction, although cause and effect relationships are not clearly defined. The

red pathway describes observations made in humans: older adults and the young lean insulin-resistant

offspring of parents with type 2 diabetes (T2D) display reduced mitochondrial ATP synthesis in skeletal muscle,

probably reflective of reduced ATP demand as resting mitochondria operate at submaximal ATP synthetic

rates. This decrease in substrate oxidation promotes lipid storage, increasing intramyocellular lipid (IMCL).

IMCL accumulation may then impair proximal insulin signaling through activation of the DAG/PKC� axis,

accounting for the reduced insulin-stimulated glucose uptake observed in these individuals. Alternatively,

chronic overnutrition and/or lipid oversupply increases the mitochondrial capacity for fatty acid oxidation.

However, because ATP demand is relatively inflexible, this increase is not enough to match supply, leading to

IMCL accumulation and increased rates of incomplete fatty acid oxidation. Incomplete fatty acid oxidation

produces acylcarnitine species and reactive oxygen species (ROS). Acylcarnitines have been hypothesized to

impair insulin signaling through undefined mechanisms, and ROS have broad cellular effects, including impair-

ment of mitochondrial function. ROS-induced mitochondrial damage would then exacerbate these effects,

further promoting IMCL accumulation and ROS production.
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to increased lipolysis. The ER-associated triglyceride syn-
thetic enzyme DGAT1 serves to re-esterify liberated fatty
acids to triglyceride, and adipose-specific Dgat1�/� mice
developed WAT ER stress during cold exposure and fasting
(139). This activation of the UPR was associated with adi-
pose tissue macrophage infiltration, pointing to links be-
tween ER stress and inflammation in WAT (139, 331). The
prolipolytic effects of ER stress are potentially mediated by
PKA activation and consequent perilipin phosphorylation
(76, 187, 958). Given the primacy of lipolysis in adipocyte
insulin action, understanding the contribution of ER stress
to overall lipolytic tone has major implications. Even if
proximal insulin signaling is intact, insulin’s ability to sup-
press cAMP-mediated lipolysis could be thwarted by ER
stress-mediated activation of cAMP-mediated lipolysis, a
functional insulin resistance.

The role of ER stress in muscle insulin resistance remains
uncertain. The landmark 2004 study of ER stress and insu-
lin resistance in liver reported no induction of ER stress
markers in skeletal muscle of high-fat-fed mice (605). How-
ever, others have observed mild increases in some (BiP,
CHOP expression), but not all (IRE1� or JNK activation)
markers of ER stress in human muscle insulin resistance
(416). Still others report no induction of any ER stress
markers (BiP, CHOP, IRE1�, PERK expression) in skeletal
muscle after 6 wk of high-fat feeding in humans despite
inducing glucose intolerance associated with increased in-
tramyocellular lipid content (183). Furthermore, neither
expression of a constitutively active JNK mutant specifi-
cally in skeletal muscle nor skeletal muscle-specific ablation
of JNK altered muscle insulin action or glucose homeostasis
(606a).

B. Mitochondrial Energetics, Oxidative
Stress, and Insulin Resistance

The ER is not the only organelle placed under nutrient stress
during chronic caloric excess. We now consider the patho-
genesis and significance of mitochondrial oxidative stress in
the context of nutrient, especially lipid, oversupply. In
broad terms, the two major fates of fatty acids once trans-
ported into the myocyte are oxidation and storage. The
evidence linking excess lipid storage to myocellular insulin
resistance (see sect. V) has prompted intense investigation
of the other side of the coin: lipid oxidation (561). An early
hypothesis in this field posited that IMCL accumulation and
consequent insulin resistance might be driven by inappro-
priately decreased lipid oxidation. Indeed, there is clear ev-
idence for decreased mitochondrial activity (i.e., ATP syn-
thesis as measured by 31P-MRS) in insulin-resistant human
populations such as the elderly, the young lean offspring of
parents with T2D, and prediabetic subjects, providing a
potential etiological clue to the myocellular energetics un-
derlying T2D (219, 503, 635, 636). There is also strong
evidence for structural damage and decreased total content

of skeletal muscle mitochondria in insulin-resistant humans
(148, 396, 552, 614). This does not necessarily imply mito-
chondrial insufficiency: resting mitochondria are typically
not operating at their maximal oxidative capacity (699).
Furthermore, mitochondrial activity is primarily dictated
by cellular ATP demand rather than by changes in sub-
strate availability (326). Regardless of mechanism, how-
ever, the decreased mitochondrial activity of insulin-re-
sistant skeletal muscle could significantly alter whole-
body caloric demand, facilitating intracellular nutrient
oversupply and lipid-induced insulin resistance.

Recently, human genetic studies have identified metabolic
risk alleles with mechanisms that link T2D to mitochon-
drial energetics in a way consistent with the lipid storage
versus utilization paradigm. One such gene, SLC16A11, is a
monocarboxylate (i.e., pyruvate, lactate) transporter local-
ized to the endoplasmic reticulum and plasma membrane; it
is expressed particularly highly in liver (706, 872a). The
SLC16A11 risk haplotype is particularly prevalent (~30%
allele frequency) in individuals of Mexican descent and is
estimated to account for ~20% of the increased T2D risk in
that population (872a). The several variants in the
SLC16A11 T2D risk haplotype decrease SLC16A11 ex-
pression and impair its plasma membrane localization;
hepatocytes with siRNA-mediated SLC16A11 knockdown
displayed accumulation of acylcarnitines, DAG, and TAG,
indicative of decreased FAO. These studies suggest that the
SLC16A11 mutations in the T2D risk haplotype increase
diabetes risk by promoting intracellular lipid storage, which
results from impaired mitochondrial fatty acid oxidation. A
second interesting risk allele lies in the N-acetyltransferase 2
(NAT2) gene, which emerged in a genome-wide association
study searching for genes associated with insulin resistance
(414). Mice with whole-body deletion of the mouse or-
tholog Nat1 displayed a decreased basal metabolic rate,
decreased energy expenditure, and mitochondrial dysfunc-
tion in diverse tissues including WAT, brown adipose tis-
sue, liver, heart, and skeletal muscle (114, 130). As a result,
these mice were predisposed to lipid-induced liver and mus-
cle insulin resistance associated with DAG-induced PKC�

and PKC� activation in liver and muscle, respectively, when
placed on a HFD (114).

However, the relationship between mitochondrial activ-
ity and insulin action is more complex than the simple
model outlined above, in which insulin-resistant myo-
cytes store rather than oxidize lipid. Interestingly, after
several weeks of high-fat feeding, rodents develop skele-
tal muscle insulin resistance in parallel with increased
capacity for fatty acid oxidation ex vivo (427, 548, 853).
This may reflect an adaptive response that insufficiently
compensates for increased lipid availability, leading to
IMCL accumulation and insulin resistance (549). Indeed,
even potent activation of FAO, by pharmacological
AMPK activation or acetyl-CoA carboxylase 2 deletion,
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is insufficient to protect mice from HFD-induced muscle

insulin resistance, highlighting the primacy of ATP de-

mand rather than substrate supply in mitochondrial en-

ergetics (320, 596). Alternatively, there is evidence that

increased relative �-oxidative flux may itself drive insulin

resistance in skeletal muscle, contrary to the initial hy-

pothesis that impaired lipid oxidation drives muscle in-

sulin resistance. This hypothesis is supported by several

models in which blocking �-oxidative flux improves mus-

cle insulin sensitivity, even despite IMCL accumulation

(230, 287, 427). However, increased FAO is certainly not

necessary for lipid-induced muscle insulin resistance, as

demonstrated by the muscle insulin resistance of consti-

tutively glucose-oxidizing Pdk2/4�/� mice (669).

How might �-oxidative flux impair muscle insulin ac-

tion? One proposed mediator is the acylcarnitine species

produced by incomplete FAO, discussed in section V.

Another potential link is ROS, which serve as an “elec-

tron release valve” when substrate oxidation exceeds

ATP demand (i.e., in states of nutritional oversupply)

(37, 235). Although all ROS derive from superoxide

(O2
·�), the key bioactive ROS is thought to be hydrogen

peroxide (H2O2) which serves as a second messenger to

communicate mitochondrial redox status (235). High-fat

feeding increases mitochondrial H2O2 production within

3 days, the effect persists in chronically fat-fed mice, and

this oxidized redox state is detectable throughout the cell

as a decreased ratio of reduced to oxidized glutathione

(GSH/GSSG ratio) (22). Furthermore, skeletal muscle

from obese humans displays increased mitochondrial

H2O2 production and decreased GSH/GSSG ratio (22).

Because the activity of many protein kinases and phos-

phatases is regulated by the redox status of cysteine thi-

ols, it has been proposed that a more oxidized cellular

environment may favor the serine/threonine phosphory-

lation events that characterize normal negative feedback

of insulin action (235). For example, ROS activation of

stress kinases such as JNK has been observed (570). Im-

portantly, cellular redox state is highly dynamic; models

linking increased H2O2 production to impaired insulin

action propose that in states of chronic overnutrition, the

tendency to oxidize the cellular environment postprandi-

ally outweighs the tendency to reduce the cellular envi-

ronment during times of relative fasting, preventing this

normally self-correcting system from restoring homeo-

stasis (235). Redox regulation of cell signaling is also

likely to depend critically on spatiotemporal factors; for

example, local H2O2 production by NADPH oxidase 4

(NOX4) is increased upon insulin receptor activation to

inactivate local phosphatases (e.g., PTP1B, PTEN) and

amplify proximal insulin signaling (37, 515, 920). This

may account for the phenotype of mice lacking the ROS

scavenger glutathione peroxidase 1, which were pro-

tected from HFD-induced insulin resistance (497).

There is experimental evidence for the hypothesis that

blocking mitochondrial ROS production can prevent mus-

cle insulin resistance. Scavenging mitochondrial H2O2, ei-

ther through pharmacological means or by transgenically

expressing catalase in mitochondria (MCAT mice), protects

against HFD-induced muscle insulin resistance (22, 338,

747). Notably, the MCAT mice were also protected from

age-induced muscle insulin resistance, associated with pre-

served mitochondrial activity and decreased DAG/PKC�

axis activation compared with aged wild-type mice (463).

However, the therapeutic potential of targeting oxidative

stress remains controversial; studies of antioxidant supple-

mentation have yielded conflicting results (177, 549), and a

systematic review of 78 randomized clinical trials of human

antioxidant supplementation revealed no effect on mortal-

ity (63).

Together, these studies suggest a unified model in which,

faced with chronic lipid oversupply, myocytes attempt to

compensate by becoming metabolically inflexible and in-

creasing relative lipid utilization. However, because cel-

lular ATP demand does not increase to match substrate

supply, the rate of lipid utilization is limited and is insuf-

ficient to prevent IMCL deposition. In parallel, increased

relative FAO drives ROS production, which damages the

mitochondria, inducing the reduced mitochondrial activ-

ity of insulin resistant muscle. These reductions in mito-

chondrial activity exacerbate the tendency towards pos-

itive energy balance, further favoring IMCL deposition

and muscle insulin resistance (FIGURE 18B). Interestingly,

several transgenic mouse models have challenged this

model by inducing severe mitochondrial dysfunction and

yet observing improvements in muscle glucose uptake

(327). These models include mice with deletion of the

mitochondrial transcription factor Tfam, mice with de-

letion of the mitochondrial apoptosis-inducing factor

Aif, and mice with deletion of the transcriptional co-

activators PGC-1� and PGC-1� (656, 913, 945). Such

models force a re-evaluation of the hypothesis that de-

creased mitochondrial function leads to intramyocellular

lipid accumulation and consequent muscle insulin resis-

tance. One possible reconciliation is that these mecha-

nisms predominate in the setting of relatively mild

(�40%) reductions in mitochondrial oxidative phos-

phorylation, whereas severe mitochondrial dysfunction

as seen in the aforementioned transgenic models may

lead to increased anaerobic glycolysis, decreased fat ox-

idation, and an increase in the ADP:ATP ratio that acti-

vates AMPK-dependent glucose transport, apparently in-

creasing insulin sensitivity. Differences in the parameter

being assessed as mitochondrial function, whether in

vivo ATP synthetic function, total oxidative capacity,

mitochondrial density, or another readout, can also af-

fect the conclusions drawn (42).
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VII. INTEGRATED PHYSIOLOGICAL
MECHANISMS OF INSULIN
RESISTANCE

A. The Macrophage-Adipocyte Interaction
and Inflammatory Signaling in Insulin
Resistance

Human obesity is characterized by expansion of the adipose
tissue; both hyperplasia and hypertrophy of adipocytes con-
tribute to this effect. However, this expansion is a homeo-
static stress and is associated with increased adipocyte cell
death (562). Chemotactic signals from stressed adipocytes
recruit cellular pioneers: bone marrow-derived macro-
phages (892, 928). These adipose tissue macrophages
(ATMs) deposit in “crownlike structures” around dead adi-
pocytes and secrete cytokines with autocrine, paracrine,
and endocrine effects (562, 594). Obesity-stimulated ATMs
display characteristic activation patterns that differ from
those observed in the classically activated (“M1-polar-
ized”) macrophages seen in response to, for example, bac-
terial infection (86, 431). Importantly, studies of mice with
impaired acute inflammatory capability have revealed that
acute adipose tissue inflammation is critical for proper tis-
sue remodeling and nutrient storage in WAT; loss of this
capability increases ectopic lipid storage and worsens diet-
induced insulin resistance (896). Metabolically activated
ATMs exocytose lysosomes to help clear dead adipocytes
and employ a PPAR�-driven transcriptional program to
buffer excess fatty acids (154, 431). It is chronic inflamma-
tion, then, that is the maladaptive condition associated with
insulin resistance. Although it is now well-established that
human obesity is a chronic inflammatory state that alters
metabolic homeostasis (424, 467), the mechanisms by
which inflammation may cause insulin resistance in various
tissues and the importance of these processes to the devel-
opment of insulin resistance and T2D remain areas of active
investigation (446, 717). Here, we focus on proposed mech-
anistic links between inflammation and insulin resistance,
primarily in WAT.

The basic model for inflammation-induced insulin resis-
tance is a “two-hit” model in which macrophage activation
is followed by macrophage elaboration of paracrine and/or
endocrine factors which induce insulin resistance in target
cells such as adipocytes or hepatocytes (594). Both pro-
cesses have been well studied and are complex.

Both WAT resident macrophages and monocyte-derived
macrophages are activated in inflamed WAT. However,
multiple other immune cell types contribute to the inflam-
matory milieu in obese adipose tissue. Indeed, the first in-
flammatory cells to infiltrate WAT during high-fat feeding
are not macrophages but neutrophils (212, 823). Neutro-
phils may serve a key role in recruiting and activating ATMs
during high-fat feeding (783). Adipose B2 lymphocytes also

accumulate in obese adipose tissue; their depletion miti-
gates HFD-induced insulin resistance in part by impairing
ATM activation (937). The recruitment of ATMs may also
involve the chemokine MCP-1 and its receptor CCR2
(731); genetic or pharmacological inhibition of CCR2 or
MCP-1 in mice has been associated with decreased obesity-
associated ATM infiltration and improved insulin sensitiv-
ity (383, 891), although another study of Ccr2�/� mice
unexpectedly observed that ATM infiltration was unaltered
and glucose tolerance was worsened (351). Metabolically
activated ATMs are not easily classified using the tradi-
tional M1-pro-inflammatory/M2-anti-inflammatory para-
digm, but rather appear to adopt a third polarization state
that can be recapitulated in vitro by palmitate exposure
(431). ATM activation may also be driven in part by natural
killer (NK) cells residing in visceral adipose depots, which
detect adipocyte stress and promote macrophage activa-
tion, possibly through interferon-� (IFN-�) or TNF-� (461,
895). Blocking the adipocyte-NK cell interaction, depleting
NK cells, or ablating IFN-� signaling protected mice against
HFD-induced ATM activation and glucose intolerance
(461, 601, 895). As discussed above, the characterization of
metabolically activated ATMs as purely deleterious is an
oversimplification (927); metabolically beneficial ATM
functions such as lipid storage and dead adipocyte clearance
are also upregulated in obesity (154, 929).

Ultimately, the mechanism by which ATM activation (the
“first hit”) promotes insulin resistance is presumed to re-
quire the “second hit”–elaboration of inflammatory cyto-
kines (594). The cytokines most commonly implicated in
insulin resistance include TNF-� and interleukin (IL)-1�,
although others including leukotriene B4 and galectin-3
have been the subject of recent investigation (332, 336, 364,
485, 486, 894). TNF-� was the first inflammatory cytokine
revealed to be increased in obese adipose tissue in rodents
and humans (332, 336). Neutralization of TNF-� improved
whole-body insulin-stimulated glucose uptake in obese
fa/fa rats, suggesting a mechanistic role for TNF-� in obe-
sity-associated insulin resistance (336). Furthermore,
Tnfa�/� mice were protected from HFD-induced insulin
resistance, and TNF-� receptor ablation partially protected
ob/ob mice from insulin resistance (865). However, more
recent results demonstrating that local inhibition of TNF-�
action impairs glucose tolerance indicate that the relation-
ship between TNF-� and insulin resistance is more complex
than initially suspected (896).

The leading hypothesis linking cytokines such as TNF-� to
insulin resistance has long been that cytokine receptor acti-
vation in insulin target cells activates signaling pathways
that directly or indirectly impair insulin action. In vitro,
several cytokines including TNF-� induce insulin resistance
through direct inhibition of IRK activity (333–335, 485),
but the doses required to achieve inhibitory effects are often
orders of magnitude higher than those measured in plasma
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from insulin-resistant subjects (332, 334, 335). Although
paracrine effects (macrophage to adipocyte, or Kupffer cell
to hepatocyte) are likely operative, quantifying paracrine
signaling in vivo is difficult.

Efforts to close the mechanistic circuit linking cytokine re-
ceptor activation and impaired insulin signaling have
largely converged on a pleiotropic effector of both cytokine
signaling and ER stress: JNK. JNK induces a complex pro-
inflammatory transcriptional program but also directly
phosphorylates IRS1. JNK activity is increased in obese
insulin-resistant liver, WAT, and skeletal muscle (318); in
liver, JNK activation is present as early as 3 days after
beginning a HFD (721). Jnk1�/� mice were protected from
HFD-induced obesity and insulin resistance, but their in-
creased energy expenditure, implied by their increased core
body temperature, prevents attribution of their insulin-sen-
sitive phenotype to direct effects of JNK on the insulin sig-
naling pathway (318). A link between Jnk inhibition and
increased energy expenditure is also supported by experi-
ments using a dominant-negative JNK to block JNK activity
in adipocytes and macrophages (849) and experiments us-
ing JNK-specific antisense oligonucleotides (775).

However, tissue-specific Jnk knockout mice have provided
more nuanced insights into JNK biology and suggest that in
some cases, insulin-sensitizing effects of Jnk deletion can be
dissociated from effects on body composition (711). Adi-
pocyte-specific Jnk deletion did not prevent body weight
gain in HFD-fed mice, but did preserve hepatic insulin sen-
sitivity, associated with protection from hepatic lipid accu-
mulation (710). The observation that Jnk1/Jnk2 ablation in
macrophages (�KO mice) prevented ATM infiltration and
whole-body insulin resistance in high-fat-fed mice pointed
to a key role for JNK in establishing the proinflammatory
state in macrophages and provided further evidence for the
importance of macrophage activation in HFD-induced in-
sulin resistance (302). However, �KO mice displayed simi-
lar improvements in whole-body insulin sensitivity on reg-
ular chow diet (302). Because increased tissue JNK activity
and ATM infiltration are characteristics of high-fat feeding
(302, 318), it is not clear why the metabolic phenotype of
�KO mice was similarly pronounced on both regular chow
and high-fat diets. Nevertheless, one interpretation of these
data is that JNK activation in adipocytes and macrophages
contributes to HFD-induced insulin resistance in distant
tissues such as liver.

In skeletal muscle, JNK activation is not sufficient for obe-
sity-associated insulin resistance (606a), and reports con-
flict as to whether skeletal muscle-specific Jnk deletion pro-
tects from obesity-associated insulin resistance (606a, 712).
In the one study of muscle-specific Jnk deletion that did
observe protection from HFD-induced muscle insulin resis-
tance, muscle LpL expression was also decreased, raising
the possibility that the insulin-sensitizing phenotype might

be attributable to protection from lipotoxicity rather than
direct effects of JNK to inhibit proximal insulin signaling
(712). Additionally, liver-specific Jnk deletion does not pro-
tect mice from hepatic insulin resistance but instead pro-
motes hepatosteatosis and glucose intolerance (709). Fur-
thermore, the canonical mechanism by which JNK activa-
tion is proposed to impair cellular insulin signaling–IRS1
Ser307 phosphorylation–is unlikely to mediate insulin resis-
tance in vivo. Knock-in IRS1 Ser307Ala mice display wors-
ened, not preserved, insulin action (167); the phosphomi-
metic IRS1 Ser307Asp mutation also fails to impair insulin
signaling (888). Alternative mechanisms for JNK-induced
insulin resistance, including transcriptional mechanisms,
require further study. Together, the emerging picture link-
ing JNK to insulin resistance is not one of direct insulin
signaling blockade in target tissues like muscle and liver, but
rather, perhaps, one of indirect effects involving the macro-
phage-adipocyte-hepatocyte axis.

Indeed, an emerging paradigm posits that cytokine-induced
lipolysis mediates the link between inflammation and insu-
lin resistance. HFD-fed �KO mice displayed reduced palmi-
tate and glycerol turnover (i.e., reduced lipolysis) during
hyperinsulinemic-euglycemic clamps compared with HFD-
fed wild-type controls, associated with improved suppres-
sion of hepatic glucose production (620). TNF-� may pro-
mote lipolysis by decreasing expression of perilipin and/or
fat-specific protein 27 (FSP27), lipid droplet proteins
thought to control the access of lipases to the adipocyte
lipid droplet (455, 681). Furthermore, the increased plasma
NEFA concentrations of ob/ob mice were rescued to the
levels of lean mice by TNF-� loss (865). Importantly, how-
ever, the increased fatty acid turnover of WAT in chronic
obesity likely owes not only to cytokine-mediated lipolysis
but also to fatty acid spillage from dead adipocytes. The
importance of this latter mechanism was highlighted by
studies of whole-body and myeloid-specific Nox2�/� mice,
which lack functional metabolically activated ATMs (154).
These mice accumulated dead adipocytes and developed
profound hepatosteatosis and insulin resistance (154).
Overall, adipose lipolysis, whether nutrient stress induced
or inflammation induced, may cause insulin resistance by
increasing lipid delivery to skeletal muscle and liver, acti-
vating pathways of lipid-induced insulin resistance (e.g., the
DAG/nPKC axis) and also promoting hepatic gluconeogen-
esis through acetyl CoA activation of pyruvate carboxylase
(620). This hypothesis unifies the paradigms of lipid-
induced insulin resistance and inflammation-induced insu-
lin resistance and points to an integrated physiological
mechanism regulating the cell-autonomous defects of lipid-
induced insulin resistance.

Is inflammation a primary insult in T2D, or rather an exac-
erbating factor? Several lines of evidence suggest that adi-
pose tissue inflammation is not necessary for adipose insulin
resistance. For example, adipose tissue insulin resistance is
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detectable in rodents even after 1 wk of high-fat feeding
(115, 722), but adipocyte death and ATM infiltration are
minimal even after 4 wk of HFD and do not become prom-
inent until 12 wk of HFD (582, 807). Genomic evidence
also argues against the classification of T2D as an inflam-
matory disease. Large-scale analysis of disease-related sin-
gle nucleotide polymorphisms (SNPs) cross-referenced to
cell type-specific epigenetic regulatory activity revealed ro-
bust clustering of all known autoimmune and inflammatory
diseases examined (226). T2D SNPs decidedly did not share
this enrichment in lymphoid or myeloid cell types, indicat-
ing that the strong heritability of T2D risk (599) is likely not
mediated by genetic effects in inflammatory cells such as
macrophages (226). Adipose tissue inflammation is also not
required for insulin resistance; multiple models of partial
and complete lipodystrophy manifest severe insulin resis-
tance in the absence of significant ATM activation (406,
642, 957). A particularly interesting case of this phenome-
non involves mice lacking FSP27, also known as cell death-
inducing DFFA-like effector c (CIDEC) (825, 957). When
subjected to energy storage stresses (high-fat feeding, leptin
deficiency, or lack of brown adipose tissue), Fsp27�/� mice
failed to expand their adipose depots or develop significant
ATM infiltration but nevertheless developed severe hepatic
insulin resistance with profound hepatic steatosis (825,
957). Furthermore, adipose insulin resistance induced by
adipose-specific deletion of the obligate mTORC2 compo-
nent Rictor led to increased MCP-1 expression and macro-
phage infiltration, suggesting that adipose insulin resistance
is sufficient to induce adipose tissue inflammation (762).
Together, these lines of evidence suggest that although ad-
ipose tissue inflammation can accompany and exacerbate
obesity-associated insulin resistance, it is likely not the pri-
mary defect.

Several anti-inflammatory agents in clinical use have been
evaluated for efficacy in T2D (271). Marked species differ-
ences between rodent and human inflammation and inte-
grated insulin action may underlie the wildly disparate re-
sults obtained with some such agents in mice and men. For
example, the TNF-� antagonists etanercept and infliximab
have not shown a consistent insulin-sensitizing effect in hu-
man trials despite good efficacy in mice (25, 56, 467, 795,
885). Although the salicylate prodrug salsalate has achieved
modest and consistent glucose lowering in randomized hu-
man trials, the ability of salicylate to directly activate
AMPK and induce mitochondrial uncoupling renders an
anti-inflammatory mechanism unnecessary for its antihy-
perglycemic effects (268–270, 303, 780). The anti-inflam-
matory agent amlexanox, which inhibits the obesity-up-
regulated kinases IKK� and TBK1, reverses adipose tissue
inflammation and obesity in mice by increasing energy ex-
penditure, consistent with the role of TBK1 as a negative
regulator of AMPK and energy balance (687, 955). In a
small randomized double-blind clinical trial in patients with
T2D, 12 wk of amlexanox achieved small (�0.5%) but

statistically significant reductions in glycated hemoglobin
(600). Interestingly, response to amlexanox was strongly
related to reductions in IHTG (600). The relative contribu-
tions of reductions in adipose tissue inflammation and in-
creases in energy expenditure to the glycemic improvements
observed with amlexanox is uncertain, although C-reactive
protein levels tended to be higher at baseline in subjects who
had a good response to amlexanox treatment (600). How-
ever, serum IL-6 levels were also increased in responders, a
finding at odds with the frequently (though not universally)
metabolically deleterious effects of this cytokine (403). This
example highlights the complex interplay between the met-
abolically beneficial and metabolically harmful effects of
inflammation, which may complicate ongoing efforts to test
other anti-inflammatory agents for antidiabetic effects
(271, 467, 716).

B. Circulating Branched-Chain Amino Acids
and Insulin Resistance

In 1969, measurements of all amino acids in human plasma
revealed that concentrations of all three branched-chain
amino acids (BCAAs; valine, leucine, and isoleucine) were
elevated in obese subjects compared with lean controls and
positively correlated with fasting insulin (228). The interac-
tion between plasma amino acids and glucose homeostasis
is complex, with effects on insulin secretion, hepatic glucose
production, and peripheral glucose disposal all well-estab-
lished (72, 238, 435). Interest in the link between BCAAs
and insulin resistance has been reinvigorated in the 21st
century by metabolomics methods that have confirmed a
strong association between the HOMA-IR score and circu-
lating BCAA concentration (129, 516, 577, 918). Further-
more, plasma BCAA concentrations predict future T2D risk
(608, 880, 919), and genomic variants that increased BCAA
levels were associated with T2D in a Mendelian random-
ization study (502). Adipose tissue BCAA catabolic enzyme
expression is consistently decreased in rodent and human
models of obesity, providing a putative etiology for the
obesity-associated increase in circulating BCAAs (312, 508,
751, 759).

With these associations established, a key question became
whether BCAAs actively modulate or passively reflect insu-
lin sensitivity. This is an area of active investigation and
controversy (508, 576). BCAA supplementation alone is
insufficient to induce insulin resistance in regular chow-fed
rats, but contributes to insulin resistance in high-fat-fed rats
(577). Two main mechanisms have been proposed by which
BCAAs may impair insulin action. In one, chronic BCAA
activation of mTOR, which senses leucine (733), provides
negative feedback to insulin signaling at the level of IRS1
(577). The mTORC1-activated ribosomal S6K1 is chroni-
cally activated in obese and diabetic rodents and humans
(846) and is a known negative regulator of IRS signaling
(339, 846, 859, 860, 948). Furthermore, the insulin resis-
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tance of high-fat-fed/BCAA-supplemented rats was re-
versed by treatment with the mTORC1 inhibitor rapamycin
(577). However, activation of the BCAA/mTORC1 axis has
also been associated with improved insulin sensitivity (e.g.,
exercise or BCAA supplementation) (508, 509, 954). Addi-
tionally, mice with deletion of mitochondrial BCAA transam-
inase (BCATm) display profoundly increased plasma BCAA
concentrations but are protected from HFD-induced obesity
and insulin resistance (758), arguing that BCAA-mediated ef-
fects such as mTOR activation alone are insufficient to pro-
duce insulin resistance.

In the other proposed mechanism for BCAA-induced insu-
lin resistance, BCAAs themselves are not the culprit.
Rather, the bioactive moieties are proposed to be BCAA
catabolic products (e.g., propionyl CoA, succinyl CoA,
branched-chain ketoacids). In one hypothesis, increased
BCAA turnover drives the production of toxic mitochon-
drial BCAA catabolites, which are in turn proposed to im-
pair mitochondrial oxidative metabolism (508, 576) and
thereby induce mitochondrial stress, activating stress ki-
nases such as JNK that have been linked to insulin resis-
tance (576, 711). Evidence for this hypothesis, especially
knowledge of precisely how BCAA catabolism is altered in
human insulin resistance, is currently limited. Recently, the
BCAA catabolic product 3-hydroxyisobutyrate (3-HIB; a
valine catabolite) has been identified as a paracrine positive
regulator of myocellular fatty acid uptake (366). 3-HIB was
shown to be secreted from myocytes and to promote trans-
endothelial fatty acid transport and myocellular lipid up-
take; mice given 3-HIB-supplemented drinking water devel-
oped DAG/PKC� axis activation in skeletal muscle and im-
paired glucose tolerance (366). 3-HIB levels were shown to
be elevated in muscle from db/db mice and T2D humans,
suggesting physiological relevance (366). This intriguing
mechanism thus links BCAA-induced insulin resistance
with lipid-induced insulin resistance.

An alternative hypothesis proposes that elevated plasma
BCAAs are a consequence of insulin resistance. This hy-
pothesis is supported by a human genetic study in which
risk alleles for insulin resistance were associated with higher
plasma BCAA levels, but risk alleles for higher BCAA levels
were not associated with higher HOMA-IR scores (516).
Mechanistically, a potentially trivial explanation is that re-
sistance to insulin’s anabolic effects on protein synthesis
results in increased circulating BCAA levels; however, insu-
lin suppression of leucine turnover has been reported to be
similar in T2D patients and controls (299, 507). It has also
been proposed that, rather than BCAA catabolism promot-
ing oxidative stress, lipid availability and usage may induce
oxidative stress that inhibits BCAA catabolic enzymes
(508). It is also possible that the decreased adipose expres-
sion of BCAA catabolic enzymes which drives the obesity-
associated increase in plasma BCAAs is secondary to insulin
resistance (508). Additionally, because BCAA catabolism

provides acetyl CoA substrate for lipogenesis (an esti-
mated 30% of lipogenic acetyl CoA in differentiated
3T3-L1 adipocytes is derived from BCAA catabolism)
(281), the decreased adipose BCAA catabolic enzyme ex-
pression of obesity may impair proper nutrient storage in
adipose tissue, promoting ectopic lipid deposition in tis-
sues such as skeletal muscle with preserved BCAA cata-
bolic capacity in obesity. Although this latter mechanism
is attractive for its unification of the BCAA metabolic
signature with established lipotoxic mechanisms of insu-
lin resistance, it lacks direct experimental support. With
many important questions currently unanswered, this
field is ripe for future investigation.

C. Adipokines and Hepatokines in Insulin
Resistance

The explosion of newly identified secreted peptide hor-
mones in the past 20 yr calls to mind the early 20th century,
when investigators in the nascent discipline of endocrinol-
ogy were rewarded with the discoveries of insulin, sex ste-
roids, thyroxine, and other fundamental hormones (65).
The identification of new hormones, now as then, is often
received with great excitement and therapeutic hope. For
many new hormones, however, pathophysiological signifi-
cance and therapeutic potential are still uncertain. Here, we
briefly highlight several of the best-studied new hormones,
focusing on the evidence for their role in human insulin
resistance.

In this review, we have highlighted the role of WAT and
liver as master controllers of substrate storage and delivery.
However, they are also prolific endocrine organs, and sev-
eral adipokines and hepatokines have been implicated in
human insulin resistance. Here we limit our discussion to
retinol binding protein 4 (RBP4), adiponectin, fetuin-A
(FetA), and FGF21, four circulating mediators with partic-
ularly strong evidence of relevance to human insulin resis-
tance.

RBP4 was identified in 2005 as a gene with reciprocal tran-
scriptional regulation in adipose GLUT4-overexpressing
and adipose GLUT4-null mice (935). RBP4 is a secreted
protein produced by both liver and WAT, but the liver is the
source of nearly all circulating RBP4 in mice (838). In mice,
transgenic overexpression of Rbp4 or chronic RBP4 admin-
istration induces whole-body insulin resistance, and Rbp4
deletion improves insulin action (935). In three distinct hu-
man cohorts, serum RBP4 levels correlated with body mass
index (BMI), fasting plasma insulin, and impaired insulin-
stimulated peripheral glucose uptake during hyperinsuline-
mic-euglycemic clamp studies (278). Furthermore, the insu-
lin-sensitizing effect of exercise was highly correlated with
the extent of the decrease in serum RBP4 concentration
(278, 425). The increased adipose RBP4 expression of hu-
man obesity is associated with an approximate doubling of
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serum RBP4 concentration (277, 278). The mechanism by
which RBP4 impairs peripheral insulin action is not clear.
Proposed mechanisms include direct activation of hepato-
cellular lipogenic programs (924) and activation of adipose
tissue macrophages (ATMs) (553, 584). The latter mecha-
nism is supported by studies employing transfer of RBP4-
treated dendritic cells into wild-type mice; this intervention
increased ATM infiltration and worsened glucose tolerance
(553). This paradigm unifies RBP4 with lipolysis-driven pe-
ripheral and hepatic insulin resistance.

Adiponectin was discovered in 1995 as an adipocyte-spe-
cific secreted protein that circulates in high-molecular-
weight oligomers at a concentration of 5–10 �g/ml (51,
736). Although this concentration is quite high by endo-
crine hormone standards, adiponectin’s oligomeric quarter-
nary structure means that its molar concentration is only
10–30 nM (51). Adiponectin concentrations are consis-
tently lower in obese humans, but generally remain in the
5–10 �g/ml range (337, 850). Acute elevation of plasma
adiponectin concentrations �100 �g/ml reduces hepatic
glucose production, but the physiological significance of
this effect is unclear (51). The modestly decreased circulat-
ing adiponectin levels in humans with metabolic disease are
a reproducible finding and are widely used as a biomarker
for adipose tissue dysfunction, although it is unclear to
what extent these small changes contribute to systemic met-
abolic disease. For example, the lean offspring of parents with
T2D are insulin resistant but display unaltered plasma adi-
ponectin levels (636). Mechanistically, attempts to attribute
the glucose-lowering effects of adiponectin to AMPK activa-
tion (932) are challenged by observations that AMPK activa-
tion is insufficient to suppress HGP (511) and that adiponectin
still suppresses HGP in mice lacking the AMPK activator
LKB1 in liver (324, 542).

An intriguing link between adiponectin and other para-
digms of insulin resistance was revealed in the 2011 report
that activation of the adiponectin receptors AdipoR1 and
AdipoR2 induces a ceramidase (i.e., ceramide-degrading)
activity (324). Although likely not sufficient to explain the
acute suppression of HGP by adiponectin, liver-specific ce-
ramidase activation in the chronic setting is sufficient to
prevent hepatosteatosis and HFD-induced hepatic insulin
resistance (922). These findings provide one possible mech-
anism for the many models linking adiponectin to insulin
sensitivity, such as the ob/ob adiponectin transgenic mice,
which display approximately threefold increased circulat-
ing adiponectin and normal insulin sensitivity despite
weighing up to twice as much as obese ob/ob controls (408).
Remarkably, acute inducible deletion of adiponectin is suf-
ficient to rapidly (within 2 wk) induce hepatic insulin resis-
tance, in concert with increased hepatic lipid uptake and
increased hepatic ceramides (923). Together, these results
suggest that AdipoR1/2 agonism might be an effective strat-
egy to treat insulin resistance, and indeed, such an agonist,

AdipoRon, has been reported to have beneficial effects in
high-fat-fed and db/db mice (590). Although AdipoRon did
not affect weight gain in these models, it improved glucose
tolerance and insulin sensitivity associated with reduced
liver and muscle triglyceride content; ceramide levels were
not specifically reported (590). The pleiotropic effects of
adiponectin are truly staggering (851, 936), and potential
intersections with insulin resistance include modulation of
ectopic lipid content, ceramide levels, and adipose tissue
inflammation. Although the molecular mechanisms of adi-
ponectin action remain incompletely understood, and the
contribution of reduced adiponectin levels to human dis-
ease remains uncertain, adiponectin agonism may neverthe-
less be a promising space for therapeutic innovation.

We previously considered SFAs in section V as ceramide
precursors. In that context, SFAs have been proposed to
promote insulin resistance by providing substrate for cer-
amide biosynthesis (323). However, another proposed
mechanism for SFA-induced insulin resistance is activation
of Toll-like receptor 4 (TLR4) signaling (761). Mechanisti-
cally, the link between SFA-TLR4 signaling and insulin re-
sistance has been proposed to involve transcriptional up-
regulation of ceramide biosynthetic enzymes (62). Al-
though SFAs are not ligands for TLR4 (734), the fatty acid-
binding glycoprotein FetA was later shown to be such a
ligand and to thus link SFAs to TLR4 activation (606). FetA
is a hepatokine, produced by the liver and proposed to
activate SFA-TLR4 signaling in adipocytes; this in turn is
thought to promote inflammatory cytokine production
(606). In support of this hypothesis, mice lacking FetA are
protected from diet-induced insulin resistance (525). In hu-
mans, serum FetA and NEFA concentrations show a statis-
tical interaction; when either FetA or NEFA levels are high;
higher levels of the other predict impaired glucose tolerance
(798). By this mechanism, adipocyte-hepatocyte crosstalk is
proposed to be bidirectional: the hepatokine FetA induces
adipokines like IL-6 and TNF-�, which may in turn mod-
ulate hepatocellular signaling pathways (797). Although
an intriguing paradigm, the overall pathophysiological
significance of the SFA-TLR4 axis is still uncertain. In
one study, female Tlr4�/� mice were protected from
HFD-induced insulin resistance (though males were not)
(761). In a separate report, neither Tlr4�/� mice nor mice
with knockdown of TLR4 or adapter protein MyD88
were protected from SFA-induced ceramide accumula-
tion, DAG/PKC� axis activation, or hepatic insulin resis-
tance (253). Additionally, FetA has been shown to di-
rectly impair INSR tyrosine kinase activity (indeed, it
was discovered in this context) (30, 524, 793), so it may
not be necessary to invoke TLR4 signaling to explain the
effect of FetA on cellular insulin action.

Finally, the hepatokine FGF21 has received tremendous in-
terest for its ability to increase FAO and energy expenditure
and to decrease plasma lipids (738, 797). Pharmacological
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doses of FGF21 improve insulin sensitivity even in lean,
chow-fed mice and reverse insulin resistance in fat-fed mice,
effects attributable in part to reduced ectopic lipid accumu-
lation (112). But with species-specific, tissue-specific, and
dose-dependent roles in seemingly contradictory physiolog-
ical processes, a complete understanding of FGF21 physi-
ology is still elusive (233). For example, although rodent
studies have largely focused on FGF21 as a mediator of the
physiological response to fasting, plasma FGF21 concentra-
tions in humans are not increased until 10 days of fasting
(227, 233). Additionally, FGF21 levels are paradoxically
increased in obese and insulin-resistant humans, suggesting
that obesity may be an FGF21-resistant state (123, 953).
Indeed, FGF21 resistance, as measured by signaling re-
sponses, is apparent in obese mice (232). Because the fatty
acid-regulated transcription factor PPAR� positively regu-
lates FGF21 expression, it has been proposed that the hepa-
tosteatosis of obesity drives increases in circulating FGF21,
which in turn promotes the FGF21 resistance of obesity
(233). However, just as pharmacological insulin dosing
achieves glycemic control despite insulin resistance in peo-
ple with T2D, FGF21 and FGF21 analogs may have poten-
tial for the treatment of hepatic steatosis and nonalcoholic
steatohepatitis (NASH) in humans despite FGF21 resis-
tance (252, 264, 824). Unfortunately, osteopenia is a major
on-target adverse effect that may limit the clinical utility of
FGF21 or its analogues (824, 893).

VIII. SUMMARY

The sheer complexity of biological systems means that any
effort to understand insulin resistance with a unified, suc-
cinct, and straightforward model may be a fool’s errand.
Certainly normal insulin action, despite sharing important
effectors among different cell types, performs myriad func-
tions that are not particularly amenable to encapsulation. In
particular, understanding the intricate relationship between
insulin control of both lipid and carbohydrate metabolism
has proved a worthy challenge for generations of investiga-
tors (532). But in considering the several putative mediators
of insulin resistance discussed in the preceding sections, it is
tempting both to note potential areas of unification and to
veer into teleological speculation.

The fundamental element linking all putative mediators of
insulin resistance is a relationship to nutrient oversupply.
Each mechanism discussed in this review is proposed to
cause insulin resistance by either increasing nutrient-de-
rived toxic metabolites (DAG, ceramide, acylcarnitine,
BCAA), overdriving nutrient utilization processes (ER
stress, oxidative stress), or responding to nutrient stress-
mediated cellular toxicity (inflammation). Moreover, the
pathophysiology of insulin resistance driven by cellular
stress pathways and by inflammation shares common
threads with the insulin resistance induced by bioactive lip-
ids. ER stress promotes de novo lipogenesis. The mitochon-

drial dysfunction of aged and insulin-resistant humans fa-
cilitates positive energy balance and ectopic lipid storage.
Adipose tissue inflammation drives lipolysis, increasing
substrate delivery to nonadipose tissues. We therefore pro-
pose an integrated model of insulin resistance in which sev-
eral simultaneous responses to nutrient oversupply con-
verge and collide to facilitate ectopic lipid accumulation
and consequent insulin resistance in skeletal muscle and
liver (FIGURE 19).

If overnutrition is the central driver of all these metabolic
defects, then the most obvious therapeutic option is calorie
restriction. Although the cellular effects of caloric restric-
tion are complex and incompletely understood, the physio-
logical effects of applying a hypocaloric diet to an obese
insulin-resistant subject represent a useful test of the hy-
potheses presented in this review. Recently, Perry et al.
(625) catalogued the metabolic consequences of a 3-day
very-low-calorie diet (VLCD; 25% of normal caloric in-
take) in a rat model of insulin-resistant T2D (4 wk of
high-fat feeding or Western diet followed by low-dose
streptozotocin/nicotinamide to achieve fasting hypergly-
cemia). Without significantly reducing body weight,
VLCD achieved near-normalization of plasma glucose and
insulin levels. This was associated with reductions in IHTG,
hepatic acetyl CoA, hepatic membrane-associated DAG,
and hepatic PKC� activation; parameters that did not
change included hepatic ceramides, plasma glucagon, a
panel of inflammatory cytokines, plasma FGF21, plasma
BCAAs, and hepatic ER stress markers (625). In hyperinsu-
linemic-euglycemic clamp studies, VLCD resulted in in-
creased AKT activation and insulin suppression of HGP
(625). Interestingly, both direct and indirect components of
hepatic insulin action were improved by VLCD; the im-
provements in HGP seen with VLCD could be abrogated by
acetate infusion (to prevent VLCD-induced decreases in he-
patic acetyl CoA) or recapitulated by a glycogen phosphor-
ylase inhibitor (to simulate VLCD-induced improvements
in insulin-stimulated hepatic glycogen synthesis) (625). The
utility of this rapid intervention is that it helps to distinguish
the parameters that drive hyperglycemia from those that are
secondary consequences or exacerbating factors. The re-
sults incriminate hepatic DAG-PKC� axis activation and
metabolite-driven gluconeogenesis.

Yet all studies have limitations, and a major limitation of
the above study is one shared by much of the work cited in
this review: the use of a rodent model to draw inferences
about human pathophysiology. One of the rodent-human
differences most germane to the study of insulin resistance is
the order in which tissues develop insulin resistance upon
overnutrition. In rodents, just a few days of high-fat feeding
is sufficient to cause hepatic steatosis and hepatic insulin
resistance; skeletal muscle insulin resistance requires several
weeks to develop (429). In those weeks, meanwhile, WAT
expands and eventually becomes inflamed, stimulating li-
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polysis and in turn hepatic gluconeogenesis (620). In hu-

mans, available evidence points to skeletal muscle insulin

resistance as the first defect; the young, healthy, lean off-

spring of type 2 diabetics display skeletal muscle insulin

resistance but normal IHTG and normal hepatic insulin

action (639). Muscle insulin resistance promotes hepatic

lipogenesis, however, and eventually NAFLD and hepatic

insulin resistance develop. How adipose insulin resistance

fits into this paradigm in humans remains relatively uncer-

tain.

Indeed, adipose tissue insulin resistance is a particularly

exciting topic of active exploration (176). WAT is adapted

to store excess energy and can do so prolifically without

inducing metabolic derangements [evidenced most dramat-

ically by the adiponectin transgenic ob/ob mouse, which

remains normally insulin sensitive despite morbid obesity

(408)]. As a result, some paradigms of nutrient stress well

characterized in skeletal muscle and liver, such as lipid-

induced insulin resistance, do not obviously translate to the

white adipocyte. Gross measurement of tissue lipids such as
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RBP4 and other proinflammatory signals lead to the recruitment of macrophages to white adipose tissue.
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activation of pyruvate carboxylase (PC)] stimulatory effects on gluconeogenesis, and also promotes accumu-

lation of intrahepatic triglyceride (IHTG) and consequent lipid-induced hepatic insulin resistance, which impairs

insulin stimulation of net hepatic glycogen synthesis. Together, these effects increase hepatic glucose produc-

tion. Chronically increased lipolysis may also facilitate the accumulation of intramyocellular lipid (IMCL) and

consequent lipid-induced muscle insulin resistance. The decreased glucose disposal of muscle insulin resis-

tance increases glucose availability for the liver, which in turn promotes IHTG accumulation and worsens

hepatic insulin resistance.
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DAG in a cell type that is at least 50% lipid by mass (528)
is unlikely to reveal meaningful information. Yet chronic
overnutrition clearly constitutes a stress for adipocytes; the
crownlike structures that blemish obese WAT are adipocyte
tombstones. The development of new techniques to study
the spatiotemporal compartmentalization of metabolic
fluxes may enable investigation of the seemingly paradoxi-
cal hypothesis that a cell specialized for lipid storage could
also be vulnerable to lipotoxicity. Inflammation is a prom-
inent putative mediator of adipose insulin resistance, but
HFDs seem to cause adipose insulin resistance before the
development of detectable adipose inflammation. ER stress
is present in obese WAT and appears related to lipolysis,
but this potential link requires further study. The essential
role of adipose tissue in the integrated physiology of insulin
action has been a major theme of metabolic research in the
21st century (735), yet a deeper mechanistic understanding
of the underpinnings of adipose tissue insulin resistance is
urgently needed.

Physiological systems seek homeostasis (424), so the teleol-
ogy of insulin resistance should be viewed through a ho-
meostatic lens. However, because evolution did not occur in
an environment of permanent caloric surplus, it is also pos-
sible that the physiological consequences of insulin resis-
tance at best are meant to be temporary and at worst are
adventitious. Mechanistically, the phosphorylation events
and other signaling phenomena that produce insulin resis-
tance may represent appropriately activated negative-feed-
back mechanisms. More insidiously, the phosphorylation
events mediating insulin resistance could result from a
coopting of normal negative-feedback mechanisms by
pathologically activated kinases not normally essential to
the insulin response (e.g., nPKCs) but evolutionarily similar
enough to the kinases mediating normal negative feedback
(e.g., S6K1) to phosphorylate similar substrates in the right
context. This could only have occurred if a permanently
overnourished cellular milieu was rare enough in evolution-
ary history to not exert significant selection pressure against
this adventitious pathological use of physiological negative-
feedback mechanisms. Although this scenario is possible,
there are nevertheless several viable hypotheses treating in-
sulin resistance as an appropriate, nonaccidental homeo-
static mechanism.

Plausibly, insulin resistance could have evolved as a cell-
autonomous protective response to nutrient oversupply.
The organellar nutrient stress responses–mitochondrial
oxidative stress, ER stress– highlight the threat to cell
survival that nutritional oversupply poses. Just as ER
stress induces signaling cascades that restore homeostasis
by promoting membrane synthesis and reducing new
protein synthesis, so insulin resistance might be an ap-
propriate response to nutrient oversupply that limits glu-
cose utilization, macromolecule synthesis, and other an-
abolic processes. In a nutrient-replete cell, continued

anabolism may have greater costs (e.g., oxidative and ER
stresses) than benefits.

Another possibility is that insulin resistance represents a
multi-organ physiological response that benefits the or-
ganism by promoting calorie storage in WAT in times of
nutritional plenty. Shutting down insulin-stimulated an-
abolic fluxes in muscle and liver should shunt substrate to
alternative destinations such as WAT. The chief flaw in
this conception is that WAT also becomes insulin resis-
tant upon overnutrition, although perhaps through dif-
ferent mechanisms than liver and skeletal muscle.

A final interesting teleology that applies to lipid-induced
insulin resistance in particular treats insulin resistance as a
beneficial adaptation to fasting. Fasting promotes lipolysis
and increases relative lipid utilization; as a result, fasting
induces triglyceride accumulation in liver and skeletal mus-
cle (306, 796). Fasting has been shown to induce profound
skeletal muscle insulin resistance in humans (519, 887); this
does not occur in mice (306), but mouse studies are com-
plicated by the significant body composition changes
(~10% body weight loss) induced by even overnight fasting.
Lipid-induced insulin resistance in liver and skeletal muscle
could serve a useful purpose during fasting by favoring
gluconeogenesis, minimizing glycogen storage, and con-
serving glucose for the CNS. Consistent with this hypothe-
sis, DAG accumulation, PKC activation, and inhibition of
IRK activity have been observed in starved rat liver (387,
628). Recently, a remarkable study of river-dwelling and
cave-dwelling populations of the Mexican tetra fish pro-
vided evolutionary support for the starvation-adaptation
hypothesis of insulin resistance (690). Fish adapted to the
nutrient-scarce cave environment were markedly insulin re-
sistant, in many cases due to a partial loss-of-function mu-
tation in the insulin receptor (690). The cavefish develop
larger fat depots and are better able to maintain their body
weight during starvation (690). Although the cavefish have
other possibly independent metabolic adaptations such as
decreased metabolic rate and altered circadian periodicity,
these observations suggest that insulin resistance is evolu-
tionarily selected for in nutrient-limited environments.
However, other evidence for this hypothesis is lacking, par-
tially due to the marked dissimilarity in fasting responses
between mice and humans. Additionally, fasting is a hypo-
insulinemic state in which the physiological relevance of
insulin resistance is not obvious beyond serving to prime the
response to refeeding.

Regardless of its physiological provenance, insulin resis-
tance is maladaptive in the setting of chronic overnutrition.
Understanding insulin action and resistance more com-
pletely will facilitate the intelligent use of existing antidia-
betic therapies, enable the development of new therapeu-
tics, and, perhaps most importantly, inform prevention
strategies to stem the tide of type 2 diabetes.
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454. Latva-Rasku A, Honka M-J, Stančáková A, Koistinen HA, Kuusisto J, Guan L, Manning
AK, Stringham H, Gloyn AL, Lindgren CM, Collins FS, Mohlke KL, Scott LJ, Karjalainen
T, Nummenmaa L, Boehnke M, Nuutila P, Laakso M; T2D-GENES Consortium. A
Partial Loss-of-Function Variant in AKT2 Is Associated With Reduced Insulin-Mediated
Glucose Uptake in Multiple Insulin-Sensitive Tissues: A Genotype-Based Callback
Positron Emission Tomography Study. Diabetes 67: 334–342, 2018. doi:10.2337/
db17-1142.

455. Laurencikiene J, van Harmelen V, Arvidsson Nordström E, Dicker A, Blomqvist L,
Näslund E, Langin D, Arner P, Rydén M. NF-kappaB is important for TNF-alpha-
induced lipolysis in human adipocytes. J Lipid Res 48: 1069–1077, 2007. doi:10.1194/
jlr.M600471-JLR200.

456. Laybutt DR, Schmitz-Peiffer C, Saha AK, Ruderman NB, Biden TJ, Kraegen EW.
Muscle lipid accumulation and protein kinase C activation in the insulin-resistant
chronically glucose-infused rat. Am J Physiol Endocrinol Metab 277: E1070–E1076,
1999.

MAX C. PETERSEN AND GERALD I. SHULMAN

2208 Physiol Rev • VOL 98 • OCTOBER 2018 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (106.051.226.007) on August 8, 2022.

https://doi.org/10.1053/j.gastro.2008.01.075
https://doi.org/10.1007/s00125-015-3532-9
https://doi.org/10.1016/j.cell.2015.02.010
https://doi.org/10.1530/EJE-11-0431
https://doi.org/10.1074/jbc.M507621200
https://doi.org/10.1016/j.cmet.2007.10.013
https://doi.org/10.1152/ajpendo.00165.2014
https://doi.org/10.2337/diab.40.11.1397
https://doi.org/10.1016/j.cmet.2014.08.010
https://doi.org/10.1016/j.cmet.2014.08.010
https://doi.org/10.1038/nature13198
https://doi.org/10.1038/nature13198
https://doi.org/10.1021/bi00896a003
https://doi.org/10.1042/bj0940712
https://doi.org/10.2337/diabetes.51.3.599
https://doi.org/10.2337/diabetes.51.3.599
https://doi.org/10.2337/diabetes.49.2.284
https://doi.org/10.2337/diabetes.53.12.3048
https://doi.org/10.2337/diabetes.53.12.3048
https://doi.org/10.1007/s001250051123
https://doi.org/10.2337/diab.35.6.662
https://doi.org/10.1210/jcem.87.1.8187
https://doi.org/10.1016/j.tem.2010.01.001
https://doi.org/10.1016/j.tem.2010.01.001
https://doi.org/10.1038/ncomms12977
https://doi.org/10.1152/physrev.00032.2015
https://doi.org/10.1073/pnas.1113359108
https://doi.org/10.1038/nrendo.2015.189
https://doi.org/10.1016/j.plipres.2009.05.001
https://doi.org/10.1172/JCI81480
https://doi.org/10.1053/j.gastro.2013.11.049
https://doi.org/10.1152/ajpendo.00038.2002
https://doi.org/10.1016/j.cell.2017.09.045
https://doi.org/10.1016/j.cell.2017.09.045
https://doi.org/10.1073/pnas.1000323107
https://doi.org/10.1016/j.cell.2012.03.017
https://doi.org/10.2337/db17-1142
https://doi.org/10.2337/db17-1142
https://doi.org/10.1194/jlr.M600471-JLR200
https://doi.org/10.1194/jlr.M600471-JLR200


457. Leavens KF, Birnbaum MJ. Insulin signaling to hepatic lipid metabolism in health and
disease. Crit Rev Biochem Mol Biol 46: 200–215, 2011. doi:10.3109/10409238.2011.
562481.

458. Leavens KF, Easton RM, Shulman GI, Previs SF, Birnbaum MJ. Akt2 is required for
hepatic lipid accumulation in models of insulin resistance. Cell Metab 10: 405–418,
2009. doi:10.1016/j.cmet.2009.10.004.

459. Lechin F, Dijs B, Pardey-Maldonado B. Insulin versus glucagon crosstalk: central
plus peripheral mechanisms. Am J Ther 20: 349 –362, 2013. doi:10.1097/MJT.
0b013e318235f295.

460. Lee A-H, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the
transcription factor XBP1. Science 320: 1492–1496, 2008. doi:10.1126/science.
1158042.

461. Lee B-C, Kim M-S, Pae M, Yamamoto Y, Eberlé D, Shimada T, Kamei N, Park H-S,
Sasorith S, Woo JR, You J, Mosher W, Brady HJM, Shoelson SE, Lee J. Adipose Natural
Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in
Obesity. Cell Metab 23: 685–698, 2016. doi:10.1016/j.cmet.2016.03.002.

462. Lee H-Y, Birkenfeld AL, Jornayvaz FR, Jurczak MJ, Kanda S, Popov V, Frederick DW,
Zhang D, Guigni B, Bharadwaj KG, Choi CS, Goldberg IJ, Park J-H, Petersen KF,
Samuel VT, Shulman GI. Apolipoprotein CIII overexpressing mice are predisposed to
diet-induced hepatic steatosis and hepatic insulin resistance. Hepatology 54: 1650–
1660, 2011. doi:10.1002/hep.24571.

463. Lee H-Y, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, Jurczak MJ, Zhang D, Woo
DK, Shadel GS, Ladiges W, Rabinovitch PS, Santos JH, Petersen KF, Samuel VT,
Shulman GI. Targeted expression of catalase to mitochondria prevents age-associated
reductions in mitochondrial function and insulin resistance. Cell Metab 12: 668–674,
2010. doi:10.1016/j.cmet.2010.11.004.

464. Lee KU, Lee HK, Koh CS, Min HK. Artificial induction of intravascular lipolysis by
lipid-heparin infusion leads to insulin resistance in man. Diabetologia 31: 285–290,
1988.

465. Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feed-
back inhibition of the insulin signaling cascade. J Biol Chem 278: 2896–2902, 2003.
doi:10.1074/jbc.M208359200.

466. Lee YJ, Ko EH, Kim JE, Kim E, Lee H, Choi H, Yu JH, Kim HJ, Seong J-K, Kim K-S, Kim
JW. Nuclear receptor PPAR�-regulated monoacylglycerol O-acyltransferase 1
(MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic
steatosis. Proc Natl Acad Sci USA 109: 13656–13661, 2012. doi:10.1073/pnas.
1203218109.

467. Lee YS, Wollam J, Olefsky JM. An Integrated View of Immunometabolism. Cell 172:
22–40, 2018. doi:10.1016/j.cell.2017.12.025.

468. Lee Y, Wang M-Y, Du XQ, Charron MJ, Unger RH. Glucagon receptor knockout
prevents insulin-deficient type 1 diabetes in mice. Diabetes 60: 391–397, 2011. doi:
10.2337/db10-0426.

469. Lehel C, Olah Z, Jakab G, Anderson WB. Protein kinase C epsilon is localized to the
Golgi via its zinc-finger domain and modulates Golgi function. Proc Natl Acad Sci USA

92: 1406–1410, 1995. doi:10.1073/pnas.92.5.1406.

470. Le Marchand-Brustel Y, Grémeaux T, Ballotti R, Van Obberghen E. Insulin receptor
tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mice. Nature

315: 676–679, 1985. doi:10.1038/315676a0.

471. Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4.
Nat Rev Mol Cell Biol 13: 383–396, 2012. doi:10.1038/nrm3351.

472. Levine R, Fritz IB. The relation of insulin to liver metabolism. Diabetes 5: 209–222,
1956. doi:10.2337/diab.5.3.209.

473. Levin MC, Monetti M, Watt MJ, Sajan MP, Stevens RD, Bain JR, Newgard CB, Farese
RV Sr, Farese RV Jr. Increased lipid accumulation and insulin resistance in transgenic
mice expressing DGAT2 in glycolytic (type II) muscle. Am J Physiol Endocrinol Metab

293: E1772–E1781, 2007. doi:10.1152/ajpendo.00158.2007.

474. Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in
the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23: 201–229,
2002. doi:10.1210/edrv.23.2.0461.

475. Lewis GF, O’Meara NM, Cabana VG, Blackman JD, Pugh WL, Druetzler AF, Lukens
JR, Getz GS, Polonsky KS. Postprandial triglyceride response in type 1 (insulin-depen-

dent) diabetes mellitus is not altered by short-term deterioration in glycaemic control
or level of postprandial insulin replacement. Diabetologia 34: 253–259, 1991. doi:10.
1007/BF00405084.

476. Lewis GF, Vranic M, Harley P, Giacca A. Fatty acids mediate the acute extrahepatic
effects of insulin on hepatic glucose production in humans. Diabetes 46: 1111–1119,
1997. doi:10.2337/diab.46.7.1111.

477. Lewis GF, Zinman B, Groenewoud Y, Vranic M, Giacca A. Hepatic glucose production
is regulated both by direct hepatic and extrahepatic effects of insulin in humans.
Diabetes 45: 454–462, 1996. doi:10.2337/diab.45.4.454.

478. Lewis RE, Cao L, Perregaux D, Czech MP. Threonine 1336 of the human insulin
receptor is a major target for phosphorylation by protein kinase C. Biochemistry 29:
1807–1813, 1990. doi:10.1021/bi00459a020.

479. Lewis RE, Wu GP, MacDonald RG, Czech MP. Insulin-sensitive phosphorylation of
serine 1293/1294 on the human insulin receptor by a tightly associated serine kinase.
J Biol Chem 265: 947–954, 1990.

480. Li JH, Gautam D, Han S-J, Guettier J-M, Cui Y, Lu H, Deng C, O’Hare J, Jou W,
Gavrilova O, Buettner C, Wess J. Hepatic muscarinic acetylcholine receptors are not
critically involved in maintaining glucose homeostasis in mice. Diabetes 58: 2776–
2787, 2009. doi:10.2337/db09-0522.

481. Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, Knowler WC, Bennett
PH, Bogardus C. Insulin resistance and insulin secretory dysfunction as precursors of
non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J

Med 329: 1988–1992, 1993. doi:10.1056/NEJM199312303292703.

482. Li M, Vienberg SG, Bezy O, O’Neill BT, Kahn CR. Role of PKC� in Insulin Sensitivity
and Skeletal Muscle Metabolism. Diabetes 64: 4023–4032, 2015. doi:10.2337/db14-
1891.

483. Lindh R, Ahmad F, Resjö S, James P, Yang JS, Fales HM, Manganiello V, Degerman E.
Multisite phosphorylation of adipocyte and hepatocyte phosphodiesterase 3B.
Biochim Biophys Acta 1773: 584–592, 2007. doi:10.1016/j.bbamcr.2007.01.010.

484. Lin HV, Accili D. Hormonal regulation of hepatic glucose production in health and
disease. Cell Metab 14: 9–19, 2011. doi:10.1016/j.cmet.2011.06.003.

485. Li P, Liu S, Lu M, Bandyopadhyay G, Oh D, Imamura T, Johnson AMF, Sears D, Shen
Z, Cui B, Kong L, Hou S, Liang X, Iovino S, Watkins SM, Ying W, Osborn O, Wollam
J, Brenner M, Olefsky JM. Hematopoietic-Derived Galectin-3 Causes Cellular and
Systemic Insulin Resistance. Cell 167: 973–984.e12, 2016. doi:10.1016/j.cell.2016.10.
025.

486. Li P, Oh DY, Bandyopadhyay G, Lagakos WS, Talukdar S, Osborn O, Johnson A,
Chung H, Maris M, Ofrecio JM, Taguchi S, Lu M, Olefsky JM. LTB4 promotes insulin
resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat

Med 21: 239–247, 2015. doi:10.1038/nm.3800.

487. Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver:
mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogen-
esis. Proc Natl Acad Sci USA 107: 3441–3446, 2010. doi:10.1073/pnas.0914798107.

488. Lithell H, Orlander J, Schéle R, Sjödin B, Karlsson J. Changes in lipoprotein-lipase
activity and lipid stores in human skeletal muscle with prolonged heavy exercise. Acta

Physiol Scand 107: 257–261, 1979. doi:10.1111/j.1748-1716.1979.tb06471.x.

489. Liu F, Roth RA. Identification of serines-1035/1037 in the kinase domain of the insulin
receptor as protein kinase C alpha mediated phosphorylation sites. FEBS Lett 352:
389–392, 1994. doi:10.1016/0014-5793(94)00996-1.

490. Liu J, Ibi D, Taniguchi K, Lee J, Herrema H, Akosman B, Mucka P, Salazar Hernandez
MA, Uyar MF, Park SW, Karin M, Ozcan U. Inflammation Improves Glucose Homeo-
stasis through IKK�-XBP1s Interaction. Cell 167: 1052–1066.e18, 2016. doi:10.1016/
j.cell.2016.10.015.

491. Liu L, Zhang Y, Chen N, Shi X, Tsang B, Yu Y-H. Upregulation of myocellular DGAT1
augments triglyceride synthesis in skeletal muscle and protects against fat-induced
insulin resistance. J Clin Invest 117: 1679–1689, 2007. doi:10.1172/JCI30565.

492. Liu T, Yu B, Kakino M, Fujimoto H, Ando Y, Hakuno F, Takahashi S-I. A novel
IRS-1-associated protein, DGK
 regulates GLUT4 translocation in 3T3-L1 adipocytes.
Sci Rep 6: 35438, 2016. doi:10.1038/srep35438.

493. Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers DJ, Cole
P, Yates J III, Olefsky J, Guarente L, Montminy M. A fasting inducible switch modulates

INSULIN ACTION AND INSULIN RESISTANCE

2209Physiol Rev • VOL 98 • OCTOBER 2018 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (106.051.226.007) on August 8, 2022.

https://doi.org/10.3109/10409238.2011.562481
https://doi.org/10.3109/10409238.2011.562481
https://doi.org/10.1016/j.cmet.2009.10.004
https://doi.org/10.1097/MJT.0b013e318235f295
https://doi.org/10.1097/MJT.0b013e318235f295
https://doi.org/10.1126/science.1158042
https://doi.org/10.1126/science.1158042
https://doi.org/10.1016/j.cmet.2016.03.002
https://doi.org/10.1002/hep.24571
https://doi.org/10.1016/j.cmet.2010.11.004
https://doi.org/10.1074/jbc.M208359200
https://doi.org/10.1073/pnas.1203218109
https://doi.org/10.1073/pnas.1203218109
https://doi.org/10.1016/j.cell.2017.12.025
https://doi.org/10.2337/db10-0426
https://doi.org/10.1073/pnas.92.5.1406
https://doi.org/10.1038/315676a0
https://doi.org/10.1038/nrm3351
https://doi.org/10.2337/diab.5.3.209
https://doi.org/10.1152/ajpendo.00158.2007
https://doi.org/10.1210/edrv.23.2.0461
https://doi.org/10.1007/BF00405084
https://doi.org/10.1007/BF00405084
https://doi.org/10.2337/diab.46.7.1111
https://doi.org/10.2337/diab.45.4.454
https://doi.org/10.1021/bi00459a020
https://doi.org/10.2337/db09-0522
https://doi.org/10.1056/NEJM199312303292703
https://doi.org/10.2337/db14-1891
https://doi.org/10.2337/db14-1891
https://doi.org/10.1016/j.bbamcr.2007.01.010
https://doi.org/10.1016/j.cmet.2011.06.003
https://doi.org/10.1016/j.cell.2016.10.025
https://doi.org/10.1016/j.cell.2016.10.025
https://doi.org/10.1038/nm.3800
https://doi.org/10.1073/pnas.0914798107
https://doi.org/10.1111/j.1748-1716.1979.tb06471.x
https://doi.org/10.1016/0014-5793(94)00996-1
https://doi.org/10.1016/j.cell.2016.10.015
https://doi.org/10.1016/j.cell.2016.10.015
https://doi.org/10.1172/JCI30565
https://doi.org/10.1038/srep35438


gluconeogenesis via activator/coactivator exchange. Nature 456: 269–273, 2008. doi:
10.1038/nature07349.

494. Li Y, Soos TJ, Li X, Wu J, Degennaro M, Sun X, Littman DR, Birnbaum MJ, Polakiewicz
RD. Protein kinase C � inhibits insulin signaling by phosphorylating IRS1 at Ser(1101).
J Biol Chem 279: 45304–45307, 2004. doi:10.1074/jbc.C400186200.

495. Li Y, Zalzala M, Jadhav K, Xu Y, Kasumov T, Yin L, Zhang Y. Carboxylesterase 2
prevents liver steatosis by modulating lipolysis, endoplasmic reticulum stress, and
lipogenesis and is regulated by hepatocyte nuclear factor 4 alpha in mice. Hepatology

63: 1860–1874, 2016. doi:10.1002/hep.28472.

496. Lodhi IJ, Wei X, Semenkovich CF. Lipoexpediency: de novo lipogenesis as a metabolic
signal transmitter. Trends Endocrinol Metab 22: 1–8, 2011. doi:10.1016/j.tem.2010.
09.002.

497. Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, Bruce C, Shields BJ, Skiba B,
Ooms LM, Stepto N, Wu B, Mitchell CA, Tonks NK, Watt MJ, Febbraio MA, Crack PJ,
Andrikopoulos S, Tiganis T. Reactive oxygen species enhance insulin sensitivity. Cell

Metab 10: 260–272, 2009. doi:10.1016/j.cmet.2009.08.009.

498. Long YC, Cheng Z, Copps KD, White MF. Insulin receptor substrates Irs1 and Irs2
coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways.
Mol Cell Biol 31: 430–441, 2011. [Correction in Mol Cell Biol 37: e00232-17, 2017.]
10.1128/MCB.00983-10.

500. López-Sánchez I, Garcia-Marcos M, Mittal Y, Aznar N, Farquhar MG, Ghosh P. Pro-
tein kinase C-theta (PKC�) phosphorylates and inhibits the guanine exchange factor,
GIV/Girdin. Proc Natl Acad Sci USA 110: 5510–5515, 2013. doi:10.1073/pnas.
1303392110.

501. Lotta LA, Gulati P, Day FR, Payne F, Ongen H, van de Bunt M, Gaulton KJ, Eicher JD,
Sharp SJ, Luan J, De Lucia Rolfe E, Stewart ID, Wheeler E, Willems SM, Adams C,
Yaghootkar H, Forouhi NG, Khaw K-T, Johnson AD, Semple RK, Frayling T, Perry
JRB, Dermitzakis E, McCarthy MI, Barroso I, Wareham NJ, Savage DB, Langenberg C,
O’Rahilly S, Scott RA; EPIC-InterAct Consortium; Cambridge FPLD1 Consortium.
Integrative genomic analysis implicates limited peripheral adipose storage capacity in
the pathogenesis of human insulin resistance. Nat Genet 49: 17–26, 2017. [Corrigen-
dum in Nat Genet 49: 317, 2017.] 10.1038/ng.3714.

502. Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, Schmidt AF, Imamura F,
Stewart ID, Perry JRB, Marney L, Koulman A, Karoly ED, Forouhi NG, Sjögren RJO,
Näslund E, Zierath JR, Krook A, Savage DB, Griffin JL, Chaturvedi N, Hingorani AD,
Khaw K-T, Barroso I, McCarthy MI, O’Rahilly S, Wareham NJ, Langenberg C. Genetic
Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and
Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med 13:
e1002179, 2016. doi:10.1371/journal.pmed.1002179.

503. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 307:
384–387, 2005. doi:10.1126/science.1104343.

504. Lu M, Wan M, Leavens KF, Chu Q, Monks BR, Fernandez S, Ahima RS, Ueki K, Kahn
CR, Birnbaum MJ. Insulin regulates liver metabolism in vivo in the absence of hepatic
Akt and Foxo1. Nat Med 18: 388–395, 2012. doi:10.1038/nm.2686.

505. Luo J, Sobkiw CL, Hirshman MF, Logsdon MN, Li TQ, Goodyear LJ, Cantley LC. Loss
of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response,
and hyperlipidemia. Cell Metab 3: 355–366, 2006. doi:10.1016/j.cmet.2006.04.003.

506. Luukkonen PK, Zhou Y, Sädevirta S, Leivonen M, Arola J, Orešič M, Hyötyläinen T,
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