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Status epilepticus (SE) is a major clinical emergency that is associated with high mortality
and morbidity. SE causes significant neuronal injury and survivors are at a greater risk of
developing acquired epilepsy and other neurological morbidities, including depression and
cognitive deficits. Benzodiazepines and some anticonvulsant agents are drugs of choice for
initial SE management. Despite their effectiveness, over 40% of SE cases are refractory
to the initial treatment with two or more medications. Thus, there is an unmet need of
developing newer anti-SE drugs. Levetiracetam (LEV) is a widely prescribed anti-epileptic
drug that has been reported to be used in SE cases, especially in benzodiazepine-resistant
SE or where phenytoin cannot be used due to allergic side-effects. Levetiracetam’s non-
classical anti-epileptic mechanisms of action, favorable pharmacokinetic profile, general
lack of central depressant effects, and lower incidence of drug interactions contribute to
its use in SE management. This review will focus on LEV’s unique mechanism of action
that makes it a viable candidate for SE treatment.

Keywords: levetiracetam, calcium homeostasis, status epilepticus, anti-epileptic, mechanisms

STATUS EPILEPTICUS: DEFINITION, CAUSES AND
CONSEQUENCES
Status epilepticus (SE) is a neurological emergency associated with
a significant morbidity and mortality (1). It is defined as contin-
uous seizure activity lasting greater than 30 min or intermittent
seizures without regaining consciousness lasting for 30 min or
longer (2). An operational definition of SE has also been pro-
posed that suggests any seizures lasting more than 5 min to be
considered SE and immediate steps taken to stop it to limit further
morbidity and mortality (3). SE affects approximately 200,000
people annually and accounts for as many as 55,000 deaths per
year in the United States alone (1). The economic burden of SE
is also high with SE patients having 30–60% higher reimburse-
ments than patients admitted for other acute health problems,
including acute myocardial infarction or congestive heart failure
(4). SE can be caused by acute symptomatic processes such as
metabolic disturbances (for example, electrolyte imbalance, renal
failure, and sepsis), CNS infection, stroke, head trauma, drug
toxicity, and hypoxia (5–7). Chronic symptomatic processes that
cause SE include pre-existing epilepsy or the discontinuation of
anti-epileptic drugs, chronic ethanol abuse and withdrawal, and
remote processes such as CNS tumors or stroke (5–7). SE can
be convulsive or non-convulsive, and under both situations SE
can cause significant brain damage particularly in the limbic sys-
tem (8, 9). SE patients are at a higher risk of developing acquired
epilepsy (10, 11). About 12–30% of adults with a new diagnosis of
epilepsy first present in SE (10, 11). Further, survivors of SE suffer
from other neurological problems including depression, cognitive
deficits, and suicidal ideations (12).

TREATMENT OF SE
It is extremely important to recognize and control SE since pro-
longed SE can quickly develop into refractory SE, which is very
difficult to treat (13). In addition, prompt SE treatment is essential
to prevent mortality and the progressive brain damage that pro-
duces neurological morbidities. Treatment of SE (14) begins with
medical stabilization of the patient with an initial focus on respi-
ratory and circulatory stabilization. Further evaluations are then
made looking for underlying causes of SE (metabolic disturbances,
infections, etc.) and treatments are provided to correct them.
Following these emergency stabilizations of the patient’s physi-
ological status, treatment of SE is rapidly initiated using currently
accepted first line drugs for stopping SE. This usually includes
immediate treatment with benzodiazepines such as midazolam,
diazepam, or lorazepam. The second-line of drugs to control SE
include fosphenytoin,phenytoin,phenobarbital, and valproic acid.
Despite the effectiveness of benzodiazepines and other anticonvul-
sant drugs in treating seizures, prolonged SE becomes refractory to
treatment with currently available anticonvulsant agents treatment
in over 40% of SE cases becoming refractory to the initial treatment
with two or more medications (13). Clinical trials have shown
that patients treated within 20 min of SE had better prognoses
than those who did not respond within 20 min (15). However,
epidemiological studies have shown that time to seizure treatment
varies broadly with only about 41% of all patients receiving their
first anti-epileptic drug within 30 min (16). In addition, termi-
nation of SE with benzodiazepines or phenytoin was effective in
80% of patients when administered within 30 min of seizure onset,
but this effectiveness decreased to less than 40% when treatment
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was initiated several hours after seizure onset (17). In such a sce-
nario, the treatment options become extremely limited to drugs
such as pentobarbital, midazolam, or propofol. Topiramate and
ketamine are used as additive agents to benzodiazepines and first
line drugs to control refractory SE (18). However drug interac-
tions, side-effects, pharmacoresistance, CNS depression, all add to
the medical complexity of treating SE effectively and highlight the
need to develop additional agents to treat SE. Thus, there is an
unmet need of developing newer anti-SE drugs.

LEV FOR THE TREATMENT OF SE
Levetiracetam (LEV) [(S)-α-ethyl-2-oxo-1-pyrrolidine acetamide]
is a broad-spectrum anti-epileptic drug that was approved by the
US Food and Drug Administration in 1999 and has quickly become
one of the widely prescribed drugs for the treatment of partial and
generalized epilepsy. While it is structurally unrelated to other
anti-epileptic drugs, it is structurally related to nootropic agent
piracetam. Levetiracetam is not considered a substrate for multi-
drug transporters (19). The multi-drug transporter proteins are
thought to be responsible for altering drug concentrations at the
site of action by affecting drug uptake or increasing transport of
drug cleaving enzymes. Increased expression of multi-drug trans-
porter proteins is hypothesized to be a major mechanism for devel-
oping pharmacoresistance (20). This could explain the low proba-
bility of pharmacoresistance for LEV, despite daily chronic intake
of the medication. In addition, minimal drug interactions, fewer
side-effects, and broad-spectrum efficacy have all contributed to
LEV’s ever widening use for the treatment of seizures. These char-
acteristics make LEV a strong candidate for second-line treatment
of SE, especially in patients with refractory SE and where use of
phenytoin is deemed inappropriate due to allergic side-effects (21).
With the recent introduction of an intravenous preparation of
LEV, there has been considerable interest in the use of LEV for
the treatment of SE (22), although LEV is not approved for this
indication. There are recent studies and review articles that dis-
cuss the use of LEV in the management of SE (18, 21, 23–28). The
rest of this article will mainly focus on the molecular targets and
unique mechanism of actions of LEV that makes it such an attrac-
tive drug candidate for not only the treatment of SE, but also other
neurological disorders such as Huntington’s chorea (29), Tardive
dyskinesia (30), Tourette syndrome (31), anxiety disorders (32),
traumatic brain injury and stroke (33), amongst others.

UNIQUE ANTICONVULSANT PROPERTY OF LEV
Currently, little is known regarding the mechanism underlying
LEV’s anti-epileptic action. The discovery of LEV’s anticonvul-
sant activity is unique. It was devoid of anticonvulsant activity in
the acute maximal electroshock seizure test and in the maximal
chemoconvulsive seizure test in pre-clinical assays (34). However,
a potent protection was observed against partial epileptic seizure
activity induced by pilocarpine and kainic acid (34). It also exhib-
ited anticonvulsant activity against kindled seizures and in the
Strasbourg genetic absence epilepsy rats (35). Studies attempting
to elucidate LEV’s anticonvulsant action revealed a unique profile
of mechanisms (36). Surprisingly, it did not exhibit the classical
action in that LEV had no effect on voltage-dependent Na+ chan-
nels, GABAergic transmission, or affinity for either GABAergic

or glutamatergic receptors (37). These represent the most com-
mon mechanisms of action for the vast majority of anti-epileptic
drugs. In light of these studies, multiple laboratories focused on
elucidating the molecular mechanisms that make LEV a potent
anti-epileptic and SE drug. The following sections highlight the
unique properties of LEV as an anticonvulsant agent.

EFFECTS OF LEV ON NEUROTRANSMITTER RELEASE
Research has revealed several unique mechanisms for the anti-
convulsant effects of LEV. Levetiracetam has been shown to affect
GABA turnover in the striatum and decrease levels of the amino
acid taurine, a low affinity agonist for GABAA receptors, in the hip-
pocampus with no effect in other amino acids (38). In addition,
LEV removed the Zn2+-induced suppression of GABAA-mediated
presynaptic inhibition, resulting in a presynaptic decrease in glu-
tamate mediated excitatory transmission (39). Other reports have
also suggested that the mechanisms of the anti-epileptic and neu-
roprotective actions of LEV seem to be mediated, at least in part,
through the combination of inhibitory effects on depolarization-
induced and Ca2+-induced Ca2+ release-associated neurotrans-
mitter releases (40). Effects of LEV on Ca2+ channels have been
widely studied (41, 42). Levetiracetam is also reported to modu-
late the presynaptic P/Q-type voltage-dependent calcium (Ca2+)
channel to reduce glutamate release in the dentate gyrus, the area
of the hippocampus that regulates seizure activities (43). Simi-
larly, LEV has been reported to inhibit neurotransmitter release
via intracellular inhibition of presynaptic Ca2+ channels (44).

LEVETIRACETAM AND SV2A
Synaptic vesicle protein 2 (SV2) is a 12 trans-membrane integral
protein present at all synaptic sites. It consists of three isoforms,
2A, 2B, and 2C. The SV2A isoform is most widely distributed,
2B is brain specific, and 2C is the minor brain isoform. SV2
proteins have been proposed to act as transporters of common
constituent of the vesicles, such as Ca2+ or ATP (45). SV2A has
also been shown to interact with the presynaptic protein synap-
totagmin, which is considered the Ca2+ sensor for regulation
of Ca2+-dependent exocytosis of synaptic vesicles (46). SV2A is
involved in controlling exocytosis of neurotransmitter-containing
vesicles (47). SV2A is not essential for synaptic transmission,
but SV2A knockout mice exhibit seizures (48). Thus, SV2A lig-
ands could protect against seizures through effects on synap-
tic release mechanisms. Indeed, SV2 has been identified as the
likely target for LEV. Studies have shown that the brain distri-
bution of the LEV-binding site, as revealed by autoradiography,
matches the equivalent distribution of SV2A as determined by
immunocytochemistry (45, 49). Elegant studies have shown that
SV2A is indeed the binding site for LEV in the brain (50, 51).
Thus, LEV’s interaction with SV2A is a leading mechanism of its
anti-epileptic action.

LEVETIRACETAM AND Ca2+ SIGNALING
Ca2+ ions are major second messenger molecules that play a role
in plethora of biological functions including neuronal excitability
and synaptic plasticity (6, 52). Ca2+ levels are therefore tightly reg-
ulated to attain the high signal-to-noise ratio in cellular communi-
cations. Disturbances in Ca2+ homeostatic mechanisms resulting
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in elevated intracellular Ca2+ levels have been reported in multiple
neurological disorders including stroke, movement disorders, and
seizure pathologies (6, 52). Incessant Ca2+ entry into the neurons
via the NMDA receptors during SE and persistent leak of Ca2+

from intracellular Ca2+ stores have now been firmly established
in SE induced epilepsy (6, 52). Laboratory research has shown
that blocking the ryanodine receptor-mediated Ca2+ leak from
endoplasmic reticulum using dantrolene lowers the elevated Ca2+

post SE and prevents the development of epileptiform discharges
in hippocampal neurons (53). Interestingly, LEV reduced intra-
neuronal Ca2+ levels by inhibiting ryanodine and IP3 receptor
dependent Ca2+ release from endoplasmic reticulum (54). The
ability of LEV to modulate the two major Ca2+-induced Ca2+

release systems demonstrated an important molecular effect of this
agent on a major second messenger system in neurons and could
possibly contribute to its unique mechanism of action. In addition,
LEV has also been shown to inhibit Ca2+ entry by blocking the
L-type Ca2+ channels in hippocampal neurons of spontaneously
epileptic rats (55). There are other studies that report no action
of LEV on L-type Ca2+ channels, but LEV has been shown to be
selective toward N-type Ca2+ channels’ freshly isolated CA1 hip-
pocampal neurons of rats (56). Thus, the effects on Ca2+ entry
and release pathways are an important aspect of LEV’s mechanism
of action.

LEVETIRACETAM AND EPILEPTOGENESIS
The process by which healthy brain tissue is transformed by
an injury into a hyperexcitable circuit of neurons giving rise to
spontaneous seizures (acquired epilepsy) is called epileptogenesis
(6). This transformation includes a myriad of neuronal plasticity
changes including axonal sprouting, neuronal degeneration, neu-
rogenesis, astrocytes activation, and changes in neurotransmitter
release and their receptor response (6). Major second messen-
ger systems that are activated after brain injury are suspected
as initiating and sustaining these neuroplasticity changes that
underlie epileptogenesis. Role of Ca2+ ions in epileptogenesis is
well-established. Brain injury-induced protracted alterations in
Ca2+ homeostasis are thought to trigger changes in protein tran-
scription and gene expression that underlie abnormal synaptic
plasticity changes expressed as seizure disorders and associated
behavioral abnormality. Inhibition of Ca2+ elevations following
SE are neuroprotective and produce an anti-epileptogenic effect
(53, 57). Levetiracetam has been reported to limit epileptoge-
nesis (58, 59). This effect could partly be attributed to LEV’s
effect on Ca2+ homeostasis, as discussed above. Thus, LEV sig-
nificantly inhibited development of epileptic focus following
kindling-induced epileptogenesis (59). Further, a significant inhi-
bition of seizures even at 5 weeks following termination of LEV
treatment was observed in spontaneously epileptic rats indicating
that LEV possesses anti-epileptogenic properties (60). However,
other studies have failed in observing LEV’s anti-epileptogenic
potential, for example 5-weeks of LEV treatment did not pre-
vent development of seizures when administered 4 h after the
onset of SE with seizure termination through diazepam (61). The
ability of LEV to prevent development of seizures following SE
makes it an important agent for the treatment of SE. Thus, LEV
has important potential as an anti-epileptogenic agent that needs
further elucidation.

CONCLUDING REMARKS
Levetiracetam is a unique anticonvulsant agent that has multi-
ple mechanism of action that differentiates it from conventional
anticonvulsant drugs. This makes it an ideal agent to add to the
treatments for SE. Refractory SE is a major medical and neuro-
logical emergency associated with high morbidity and mortality.
Levetiracetam offers a unique anticonvulsant treatment option to
initiate for the treatment of refractory SE. Its low incidence of
side-effects and sedative properties make it an ideal agent to con-
sider in treating refractory SE. The availability of an intravenous
preparation of LEV also facilitates its use in treating refractory SE.
Further studies should confirm that LEV will also be a major first
line drug for the treatment of SE, but at present it is not approved
for this use. The unique anticonvulsant mechanisms of action of
LEV make it an ideal agent to add to conventional anticonvul-
sant agents and to consider for the treatment of refractory SE and
intractable seizure disorders.
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