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Abstract

The past decade has seen an explosion of research directed toward better understanding of the mechanisms of
mesenchymal stem/stromal cell (MSC) function during rescue and repair of injured organs and tissues. In addition
to delineating cell–cell signaling and molecular controls for MSC differentiation, the field has made particular
progress in defining several other mechanisms through which administered MSCs can promote tissue rescue/repair.
These include: 1) paracrine activity that involves secretion of proteins/peptides and hormones; 2) transfer of
mitochondria by way of tunneling nanotubes or microvesicles; and 3) transfer of exosomes or microvesicles
containing RNA and other molecules. Improved understanding of MSC function holds great promise for the
application of cell therapy and also for the development of powerful cell-derived therapeutics for regenerative
medicine. Focusing on these three mechanisms, we discuss MSC-mediated effects on immune cell responses, cell
survival, and fibrosis and review recent progress with MSC-based or MSC-derived therapeutics.
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OGT, O-GlcNAc Transferase; PGE2, Prostaglandin E2; SDF-1, Stromal Cell-derived Factor-1; TGFβ, Transforming
Growth Factor Beta; Th, T Helper; TLR, Toll-like Receptor; TNFα, Tumor Necrosis Factor Alpha; TNT, Tunneling
Nanotube; Treg, Regulatory T Cell; TSG, TNF-stimulated Gene; VEGF, Vascular Endothelial Growth Factor

Background
Mesenchymal stem cells, also referred to as multipotent
stromal cells or mesenchymal stromal cells (MSCs), have
been the subject of intense scientific investigation since
their initial discovery by Alexander Friedenstein in the
late 1960s [1–5]. In their early studies, Friedenstein and
colleagues demonstrated that MSCs, likely originating
from the mesoderm, had the capacity to differentiate
into a variety of mesenchymal tissue lineages such as os-
teoblasts, chondrocytes, and adipocytes. These observa-
tions sparked a substantial degree of interest in the
potential application of MSCs for the repair of serious

connective tissue trauma and disease [6–10]. It was ori-
ginally hypothesized that, upon administration, MSCs
would migrate to sites of injury, engraft, and differentiate
into functional cells, resulting in regeneration of dam-
aged or diseased connective tissues (Fig. 1a). Surpris-
ingly, results from hundreds of animal studies and many
human trials conducted over the past few decades have
challenged this classic paradigm. In short, while MSCs
were found to exhibit a remarkable degree of efficacy in
a variety of disease models, it became increasingly appar-
ent that the cells did not engraft in significant numbers
or for durations sufficient to explain the results in terms
of tissue replacement [11–15]. More surprisingly, MSCs
were reported to engraft and differentiate into functional
cells of tissues that did not originate from mesoderm
[16, 17], questioning the long-established dogma that
differentiation of adult stem cells is typically restricted
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to tissues derived from their germ layer of origin [18–20].
Later studies confirmed that the majority of results de-
scribing cross-germ line differentiation of MSCs could be
ascribed to limitations in methodology or cell fusion
events (Fig. 1b) [21–23]. Still largely unsolved, the mystery
of efficacy without long-term engraftment, especially in
non-mesodermal tissues, remains a source of considerable
debate [24, 25]. In retrospect, a partial explanation for the
benefits of MSC administration traces back to some of the
very first observations made with bone marrow stromal

cells. In the 1970s, Dexter and colleagues were the first to
demonstrate that adherent stromal cells from bone mar-
row (later identified as MSCs) could sustain the growth,
viability, and multipotent status of hematopoietic stem
cells in long-term co-cultures that lacked growth factor
supplementation [26–29]. Of particular interest was that
the cultures achieved homeostasis with the self-renewal of
progenitor cells balanced against the development of com-
mitted hematopoietic cells. These initial studies suggested
that MSCs had the capacity to sustain the growth and

a. Differentiation of MSCs to replace cells.

c. Paracrine activity of MSCs that promotes tissue rescue/repair.

d. MSC-mediated transfer of organelles and/or molecules by TNTs.

e. Transfer of molecules from MSC-derived exosomes or microvesicles.
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Fig. 1 MSCs rescue and/or repair injured cells and tissues by diverse mechanisms. a Differentiation into replacement cell types. b Rescue of damaged
or dying cells through cell fusion. c Secretion of paracrine factors such as growth factors, cytokines, and hormones. VEGF vascular endothelial growth
factor, PDGF platelet-derived growth factor, ANG1 angiopoietin-1, IL-11 interleukin-11, PGE2 prostaglandin E2, TSG-6 TNF-stimulated gene-6, SDF-1
stromal-derived factor-1, HGF hepatocyte growth factor, IGF-1 insulin-like growth factor-1. d Transfer of organelles (e.g., mitochondria) and/or molecules
through tunneling nanotubes (TNTs). Ca2+ calcium, Mg2+ magnesium. e MSC-mediated transfer of proteins/peptides, RNA, hormones, and/or chemicals
by extracellular vesicles such as exosomes or microvesicles. Exosomes are generated through the endocytic pathway and released through exocytosis.
By contrast, microvesicles are produced by cell surface budding and released directly from the plasma membrane. Note that the figure is not drawn to
scale. Also, use of mechanisms a–e is not equivalent. For example, for MSCs administered intravenously, use of mechanism c is likely more relevant
than are mechanisms (a) or (b)
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viability of certain cell types through secretion of so-called
trophic factors and even presented the notion that they
could regulate certain facets of the immune system.
In an effort to reconcile discrepancies between the

modest frequency and duration of engraftment with
their remarkable healing properties, a contemporary
view of MSC functionality is taking form. Rather than
assuming long-term engraftment and differentiation,
new hypotheses indicate that MSCs heal injured and dis-
eased tissues/organs using alternative modes of rescue
and repair that enhance cell viability and/or prolifera-
tion, reduce cell apoptosis, and, in some cases, modulate
immune responses. The alternative modes of repair by
MSCs include paracrine activity of secreted growth fac-
tors, cytokines, and hormones (Fig. 1c), cell–cell interac-
tions mediated by tunneling nanotubes (TNTs; Fig. 1d),
and release of extracellular vesicles (EVs) that contain
reparative peptides/proteins, mRNA, and microRNAs
(miRNAs; Fig. 1e). The purpose of this review is to
examine and discuss key progress and important issues
within this rapidly expanding area of regenerative
medicine.

Paracrine effects of administered MSCs
Immune modulation by MSCs
Some of the first evidence that MSCs could actively
blunt immune responses originated from the results of
mixed lymphocyte reaction (MLR) assays performed ex
vivo [30–36]. These assays are based on the observation
that T cells from preparations of immunologically mis-
matched peripheral blood mononuclear cells proliferate
rapidly when mixed together under appropriate condi-
tions [37, 38]. Results from MLR assays showed that T-
cell expansion could be inhibited by the addition of
MSCs to MLRs. While the majority of cell culture stud-
ies to date agree that such observations are mediated by
MSC-derived soluble factors that do not cause T-cell
apoptosis, several alternative mechanisms have also been
proposed. Di Nicola et al. [31] employed a series of anti-
body blocking assays to implicate the role of transform-
ing growth factor beta (TGFβ) and hepatocyte growth
factor (HGF) whereas Aggarwal et al. [32] proposed a
role for prostaglandin E2 (PGE2) based on their ability
to ablate inhibitory responses with cyclooxygenase 2
(COX2) inhibitors. Aggarwal et al. further proposed that
the secretion of PGE2 and related factors induced den-
dritic cells to up-regulate the anti-inflammatory cytokine
interleukin (IL)10 while reducing the secretion of pro-
inflammatory tumor necrosis factor alpha (TNFα) and
IL12. This, in turn, initiates a shift in the ratio of T
helper (Th) cells from a pro-inflammatory Th1 subtype
to an anti-inflammatory Th2 subtype. This was accom-
panied by the differentiation of naive T cells to an immu-
noregulatory regulatory T cell (Treg) phenotype, thereby

reducing the overall number of Th cells. Similarly,
Akiyama et al. [39] showed that MSCs could induce
apoptosis of inflammatory T cells through activation of
the Fas–Fas ligand axis. During this process, MSCs re-
cruited additional T cells by secretion of monocyte
chemotactic protein-1 (MCP-1) as part of a positive
feedback loop. Apoptotic T-cell debris then activated
phagocytes to secrete TGFβ, resulting in the differenti-
ation of naive T cells into Treg cells that can promote
systemic immune tolerance [39]. In an alternative model,
Meisel et al. [33] proposed an intriguing mechanism
whereby MSC-derived indoleamine-2,3-dioxygenase
(IDO) catalyzes the conversion of tryptophan to kynure-
nine in an interferon gamma-dependent manner. In
turn, the kynurenine inhibits T-cell proliferation [40,
41]. This mechanism was later confirmed by utilizing
the IDO antagonist 1-methyl-L-tryptophan [42]. In a
series of experiments performed by Waterman et al.
[43], it was reported that MSCs could be induced to
express enhanced levels of IDO and PGE2 by transient
stimulation of toll-like receptor (TLR)3 with
polyinosinic-polycytidylic acid (poly I:C). MSC-mediated
IDO activity has also been shown to enhance kidney
allograft tolerance in mouse models through a mechan-
ism involving Treg up-regulation, demonstrating that
IDO-mediated mechanisms of immune modulation can
indeed occur in vivo [44]. Nitric oxide [45], galectin-1
and semaphorin-3A [46] have also been implicated as
MSC-derived modulators of T-cell proliferation, but it is
noteworthy to add that nitric oxide has only been shown
to function as an MSC modulator in the murine system.
MSCs also have the capacity to modulate the activity

of macrophages. This effect was initially described ex
vivo using macrophage cultures stimulated with TLR li-
gands such as lipopolysaccharide (LPS), zymozan, or
polyinosine-polycytidylic acid (poly I:C); these simulate
the effects of bacterial or viral infection [47, 48]. When
macrophages are challenged with such agents, they
secrete inflammatory factors such as TNFα, IL1β, IL6,
and reactive oxygen species. In the presence of MSCs,
however, the ability of activated macrophages to secrete
inflammatory factors was attenuated [32, 49]. Of interest,
these observations were explained, in part, by MSC-
mediated secretion of the extracellular protein TNFα-
stimulated gene protein (TSG)6 [50]. In this model, expos-
ure to zymozan caused cultured macrophages to secrete
high levels of TNFα and other inflammatory mediators via
the TLR2–nuclear factor kappa-B (NFkB) axis. TNFα acti-
vates TSG6 expression by MSCs and engages a negative
feedback loop by inhibiting NFkB via activation of the
CD44 receptor. Several in vivo studies have confirmed
that MSC-derived TSG6 acts via the CD44 receptor to
inhibit NFkB activity in macrophages, dendritic cells, and
Th cells in models of peritonitis [50], diabetes [51], and
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corneal transplant rejection [52]. In addition to the ac-
tion(s) of TSG6, MSC-derived PGE2 has also been dem-
onstrated to have potent effects on macrophages in vivo.
In a murine model of sepsis, Nemeth et al. [53] demon-
strated that, upon activation by LPS or TNFα, MSCs se-
creted PGE2. This caused the release of anti-inflammatory
IL10 by macrophages and improved cell survival. Indeed,
the role of PGE2 in MSC-mediated macrophage modula-
tion is a common theme in many culture models [54, 55].
In an alternative mechanism proposed by Chen et al. [56],
placental human MSCs inhibited the interaction of TLR4
with a key effector molecule, MyD88 [48], resulting in in-
hibition of secretory factors by macrophages. This process
was inhibited by addition of a COX2 inhibitor, suggesting
that the process was PGE2-dependent.
MSCs were reported to modulate the proliferation, dif-

ferentiation, and immunoglobulin secretion of B cells
without induction of apoptosis [57]. Transwell assays
separating the two cell types but allowing for exchange
of secreted factors showed that such MSC-mediated ef-
fects derived, in part, from the paracrine activity of sol-
uble factors secreted by MSCs. These experimental
results have since been replicated using purified B cells
and unpurified preparations of peripheral blood mono-
nuclear cells [58–60]; however, the paracrine mechanism
was recently challenged by a co-culture study that sug-
gested physical interaction between T cells and MSCs
was necessary for MSCs to inhibit the activities of B cells
[61]. Using a mouse model of allergy, Nemeth et al. [62]
reported that MSC-derived TGFβ was critical in sup-
pressing B-cell mediated allergic responses in vivo. They
speculated that MSCs may recruit Treg cells that down-
regulate allergy-specific cytokine and immunoglobulin
production as well as lung eosinophil infiltration. Consist-
ent with their immune-modulatory properties, efficacy
with MSC treatment has been demonstrated in a variety
of inflammatory models of disease, including arthritis [63],
Crohn’s disease [64], multiple sclerosis [65, 66], myocar-
dial infarction [14], diabetes [51, 67], graft versus host dis-
ease [34, 68, 69], and corneal rejection [52].

Promotion of cell survival by MSCs
In addition to the paracrine effects of MSCs on immune
cells, they also secrete a diverse repertoire of factors that
support cell survival, including growth factors, cytokines,
and extracellular matrix (ECM). Together, the compo-
nents of the MSC secretome have the theoretical cap-
acity to rescue injured cells, reduce tissue damage, and
accelerate repair. This is exemplified by their natural
roles as reticular cells that support the hematopoietic
stem cell niche [26–28, 70, 71] and as vascular pericytes
that support endothelial cells [72, 73]. The observation
that MSCs can be isolated from a wide variety of tissues,
such as bone marrow, adipose, ligament, skin, placenta,

dental pulp, synovium, placenta, umbilical cord, and
other fetal tissues [72, 74], lends support to the con-
cept that they function endogenously as stromal sup-
port cells.
The pro-survival effect(s) of the MSC secretome on

other cell types was first recognized through studies of
long-term bone marrow cultures [26–29, 75] and embry-
onic cells [76]. Collectively, these cell culture studies
provide for an attractive, paracrine-based explanation for
the ability of MSCs to promote healing across a broad
range of developmentally unrelated tissues and for myr-
iad diseases and injury types. Detailed analysis of the
MSC transcriptome and proteome has confirmed that
they secrete a vast repertoire of paracrine pro-survival
factors commonly referred to as trophic factors or medi-
ators [77–82]. Of interest, the MSC-secreted factors
comprise a diverse group of soluble peptides and pro-
teins with complementary set(s) of biological activities
that can accelerate progenitor cell self-renewal, stimulate
angiogenesis, and minimize apoptosis and/or inflamma-
tion. Despite several decades of research and progress,
the specific paracrine mechanisms by which adminis-
tered MSCs improve cell survival and self-renewal under
particular contexts of tissue rescue/repair remain largely
undefined [75, 77].
In line with the traditional model of paracrine biology

whereby cells secrete factors that regulate adjacent cells,
it was initially thought that engrafted MSCs readily mi-
grated into injured tissue and then remained to orches-
trate repair. For many models of tissue injury, however,
what was originally perceived as “MSC migration”
turned out to be far less directed (e.g., non-specific, tran-
sient trapping of MSCs within the microvasculature and
capillary network). Of particular interest, depending on
their relative size (i.e., diameter), the majority of intra-
venously administered MSCs will typically lodge in the
lung microvasculature upon the first pass through the
circulation, regardless of the presence or absence of
lung-specific injury. Notably, after intravenous MSC in-
fusion, paracrine factors released into the blood by cir-
culating MSCs or from trapped MSCs may indirectly
influence survival signaling and the fate of distal cells
previously compromised by injury or disease. Thus, for
effect, paracrine factors produced by MSCs appear not
to depend on long-term MSC engraftment, nor do they
require the unlikely differentiation of mesodermal pro-
genitors into tissues of ectodermal or endodermal
lineages.
Some of the best evidence supporting an indirect role

for MSCs in the repair of tissues/organs originates from
studies of heart with infarction. In a rat model of myo-
cardial infarction, MSCs modified with the gene encod-
ing protein kinase B (a.k.a. Akt) engrafted into the
myocardium, reduced pathological remodeling, and
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improved cardiac function [83]. The observed efficacy
was later attributed to a paracrine effect mediated by se-
creted frizzled related protein (sFRP), a Wnt signaling
inhibitor that reduces cardiomyocyte apoptosis [84–86].
Since these studies, a number of additional mechanisms
for the paracrine action of MSC-derived factors on car-
diac repair have been proposed, including secretion of
angiogenic factors [87–89], stromal cell derived factor-1
(SDF-1) [90], and Jagged/Notch signaling [89, 91]. Of
interest, MSC-mediated improvements in cardiac func-
tion could be achieved without long-term engraftment
of MSCs [11]. Using a different approach, MSC-
conditioned medium was employed to prime cardiac
stem/progenitor cells prior to cardiac grafting in a rat
model of myocardial infarction. The conditioned
medium (CM) improved cardiac stem cell engraftment
through mechanisms involving connective tissue growth
factor and insulin signaling [92].
The role of MSCs in the protection of other damaged

tissues has also been demonstrated. For example, intra-
peritoneally and intravenously administered MSCs from
murine bone marrow and adipose tissue had a protective
effect in a cisplatin-induced acute kidney injury (AKI)
model [93], as evidenced by a reduction in the apoptosis
of tubule cells and improved renal function. This effect
appeared to be mediated by secreted factors since the re-
sults could be repeated by intraperitoneal administration
of CM generated from the MSCs (MSC-CM). In con-
trast, Xing et al. [94] reported that murine MSC-CM
containing HGF, vascular endothelial growth factor
(VEGF)-A and insulin-like growth factor (IGF)-1 failed
to protect the kidneys of mice against ischemia-
reperfusion injury, whereas live MSCs had a significant
protective effect. This is one of several examples in the
field where apparently minor differences in the cell
source, the culture conditions, duration of medium con-
ditioning, and dosage can profoundly affect outcome.
Such complexities have made elucidation of the mecha-
nism(s) responsible for the protective effect of MSCs on
kidney tissue challenging, but some progress has been
made. For example, Zarjou et al. [95] demonstrated that
the stress-responsive enzyme heme-oxygenase-1 (HO-1)
played a role by utilizing MSC from bone marrow of
HO-1-/- mice. In this study, HO-1+/+ MSC-CM rescued
pathology associated with cisplatin-induced AKI, while
HO-1-/- MSC-CM was ineffective. The authors attrib-
uted the difference in effect to enhanced levels of SDF-1,
VEGF-A, and HGF in the HO-1+/+ MSCs. Indeed, im-
munological and transcriptional blocking experiments
both confirm a protective role for VEGF-A [96–98] and
IGF-1 [99] in mice with AKI and for VEGF-A in rats
with cerebral ischemia (stroke) [100].
The utility of MSCs and their secreted products to

protect cells and to foster tissue repair has been

demonstrated in numerous efficacy-based studies across
a broad range of tissue injury and disease models. While
a comprehensive summary of the associated literature is
beyond the scope of this review, some key examples of
MSC-derived benefits include facilitation of wound heal-
ing [101], improved treatment of diabetes [102], en-
hancement of bone repair [103, 104], and effect(s) on
cancer [105].

Effects of MSCs on fibrosis
Fibrosis is generally defined as a an accelerated accumu-
lation of ECM factors (predominantly collagen type I)
that prevents the regeneration of tissue. It can occur in
virtually any tissue as a result of trauma, inflammation,
immunological rejection, chemical toxicity, or oxidative
stress. Current clinical strategies generally have poor
outcomes in terms of efficacy and adverse effects [106].
Given the immunomodulatory and trophic properties of
MSCs, they have become attractive candidates for the
treatment of fibrosis and preclinical studies suggest they
have a promising level of efficacy in a variety of models.
While the anti-fibrotic effects of MSCs are likely to over-
lap with their anti-inflammatory and angiogenic proper-
ties, the specific mechanisms remain poorly understood.
Nevertheless, a comprehensive review by Usuner et al.
[107] suggests that their modes of action seem to fall
under four categories: i) immune modulation, ii) inhib-
ition of TGFβ-mediated differentiation of various cells
types into ECM-secreting myofibroblasts by epithelial to
mesenchymal transition, iii) inhibition of oxidative stress,
and iv) matrix remodeling. For example, Ortiz et al. dem-
onstrated that systemic murine MSC administration at-
tenuated fibrosis in a bleomycin-induced lung injury
model [108]. This was achieved through MSC-mediated
secretion of IL1 receptor antagonist, which reduced infil-
tration of lymphocytes and neutrophils and their produc-
tion of inflammatory and fibrotic mediators such as IL1
and TNFα. Using the same model, it was recently reported
that MSCs had the capacity to inhibit fibrosis through the
action of the secreted protein stanniocalcin-1 (STC-1)
[109]. The authors demonstrated that STC-1 acted in
multiple ways by reducing the secretion of collagen by fi-
broblasts, by reducing TGFβ output by endothelial cells
and also through alleviating oxidative stress by uncoupling
mitochondrial respiration via the induction of uncoupling
protein 2. Using a model of chronic kidney injury, Huuskes
et al. [110] demonstrated that MSCs improved kidney
morphology and functionality when co-administered with
the putatively anti-fibrotic hormone recombinant human
relaxin (serelaxin). In this system, MSCs and serelaxin
acted synergistically to reduce TGFβ-induced myofibro-
blast differentiation and collagen deposition while increas-
ing the level of matrix metalloproteinase 2 (MMP2), a
collagen-degrading enzyme.
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Transfer of mitochondria by TNTs and microvesicles
Discovery of TNTs
Rustom et al. [111] first reported TNTs as a communi-
cating intercellular transport network formed in cultures
of transformed cells (human 293 cells and rat PC12
cells) as well as primary cells from rat kidney. Endocytic
organelles (lysosomes) and vesicles were shown to move
through thin, 50–200 nm diameter filaments that
stretched between cells. Incubation of cells in the inhibi-
tor latrunculin B demonstrated a requirement for poly-
merized F-actin in TNT formation. Onfelt et al. [112]
reported TNTs in human immune cells (e.g., natural
killer cells, macrophages, and B cells) and later demon-
strated that TNTs between macrophages had different
properties and potentially differing functions; they ob-
served thin filaments containing F-actin and also a
thicker subset (0.7 microns) that contained both F-actin
and microtubules. The thicker TNT subset was shown
to transport mitochondria and lysosomal vesicles [113].
Other studies demonstrated that some TNTs were
actinomyosin-dependent [114, 115]. For example, the
Gerdes group showed that kidney cells treated with S-
(-)-blebbistatin, a myosin II-specific inhibitor, increased
the number of TNTs formed and also organelle transfer,
whereas a general myosin inhibitor increased TNT num-
ber but significantly reduced organelle transfer [114].

Discovery of mitochondrial transfer by cultured MSCs
The first evidence that transfer of mitochondria might
benefit injured target cells came from studies of human
MSCs co-cultured with a unique lung epithelial cell line
that lacked functional mitochondria (A549rho cells)
[116]. Utilizing a complementation screen to detect
mitochondrial transfer and resulting cell growth, the
Prockop group reported that human MSCs could restore
aerobic respiration to A549rho cells by transfer of mito-
chondria or mitochondrial DNA (mtDNA). Mitochon-
drial transfer from MSCs to rescued A549rho cells was
demonstrated by tracking genetic tags (i.e., mtDNA and
nuclear DNA) and by time-lapse photomicroscopy of
MSCs transduced with lentiviral vectors to target
DsRed2 to mitochondria [116]. MSCs are now under-
stood to transfer mitochondria to several different cell
types, including epithelial cells, endothelial cells, and
cardiac myocytes [117]. Such transfers are particularly
evident when the potential target cells are injured or
under stress. For example, MSCs were recently shown to
prevent apoptosis in endothelial cells by transferring
mitochondria during hypoxic/ischemic stress [118].

TNT formation and mitochondrial transfer in vivo
The first evidence that TNTs could form in vivo came
from studies of the eye. Using wild-type, eGFP chimeric
mice, and Cx3cr1(GFP) transgenic mice and confocal

microscopy tracking, Chinnery et al. [119] documented
membrane nanotubes that formed between bone marrow-
derived MHC class II(+) cells in whole-mounted corneal
tissue. Notably, they observed an increase in TNT fre-
quency during corneal injury or inflammation. In a follow-
up study with live imaging of myeloid cells in inflamed
corneal explants from Cx3cr1(GFP) and CD11c(eYFP)
transgenic mice, Seyed-Razavi et al. [120] showed de novo
formation of nanotubes at a rate of 15.5 μm/min. These
results demonstrated that TNTs could form in the absence
of actual cell–cell contact and, furthermore, that they
could then be directed from one cell toward another. Add-
itional evidence for in vivo mitochondria or mtDNA trans-
fer between cells came from studies of a remarkable
canine transmissible venereal tumor that had persisted in
feral dog populations for about 10,000 years. Rebbeck et
al. [121] showed that the transmitted tumor cell line had
obtained mitochondria (mtDNA) from multiple canine
hosts over time. They suggested that fitness/persistence of
canine transmissible venereal tumor benefited from the ac-
quisition of host-derived mtDNA and through shedding of
mutant and/or damaged mtDNA that could negatively im-
pact mitochondrial biogenesis. Importantly, multiple re-
search groups have shown that intercellular transfer of
organelles and mtDNA is not limited only to the animal
kingdom. Intercellular organelle trafficking and horizontal
gene transfer in plants has been reported for both plastids
[122] and mitochondria [123].

Proteins shown to control transfer of mitochondria by MSCs
after tissue injury
Several recent studies have provided compelling evi-
dence that administered MSCs can transfer mitochon-
dria in vivo and, furthermore, that mitochondria transfer
from MSCs can rescue injured pulmonary cells and
ameliorate lung injury. Islam et al. [124] demonstrated
that airway instillation of human MSCs could reduce
LPS-mediated lung injury, in part, through transfer of
mitochondria. Using live optical imaging, they docu-
mented transfer of vesicles containing labeled mitochon-
dria from MSCs to alveolar epithelial cells that increased
alveolar ATP levels and cell survival. Unlike wild-type
MSCs, MSCs genetically modified for connexin 43 that
were incapable of forming gap junctions and MSCs with
dysfunctional mitochondria did not reduce acute lung
injury [124].
Recent data from a cigarette smoke-induced model of

lung injury suggest that donor source and age may affect
repair by mitochondria transfer by MSC. Li et al. [125]
found that transplantation of MSCs derived from in-
duced pluripotent stem cells may provide enhanced re-
pair after transplantation by virtue of increased TNT
formation and mitochondria transfer relative to adult-
derived MSCs.
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Using loss- and gain-of-function approaches, Ahmad
et al. [126] elegantly demonstrated that Miro-1, an outer
mitochondrial membrane Rho-like GTPase, regulated
the amount of mitochondrial transfer from MSCs to cul-
tured lung epithelial cells. Enhanced expression of Miro-
1 was shown to increase transfer of mitochondria from
MSCs and treatment of mice with MSCs overexpressing
Miro-1 reduced Rotenone lung injury and airway hyper-
responsiveness and negative remodeling in several
models of asthma [126].

Regulators of mitochondria transport identified in other cell
types that may orchestrate mitochondrial transfer by MSCs
In addition to Miro-1, other proteins known to regulate
intracellular mitochondrial dynamics (e.g., fusion, fission,
tethering, and trafficking) [127, 128] may also promote
or inhibit intercellular mitochondria transfer. Miro-1
and Miro-2 belong to a group of dynamin-related pro-
teins that regulate mitochondrial division and fusion.
They interact with TRAK1 and TRAK2 (identified as
Milton in Drosophila), adaptor proteins that recruit
kinesin motor proteins to mitochondria. The resulting
adaptor–motor protein complex shuttles mitochondria
along microtubules and was demonstrated to be critical
for neuronal transport of mitochondria to axons, den-
drites, and synapses [129–131]. Mitofusin 1 and 2 may
also regulate mitochondria transfer as they are known to
interact with Miro-1 and Miro-2 as well as TREK1/
TREK2 in the adaptor–motor protein complex [132].
Perhaps not surprising, motor proteins are likely to be
required for generation of some forms of TNTs. Myo-X
(Myo10) is a myosin motor protein that localizes to the
ends of cellular filapodia. It is unique in that it does not
require substrate attachment to induce filapodia exten-
sion [133]. Co-culture studies in neuronal cells demon-
strated that Myo10 was required for TNT formation
from filapodia and overexpression of Myo10 resulted in
increased TNT formation and vesicle transfer between
cells [134].
Although the damage/injury signals that initiate mito-

chondrial transfer have yet to be identified, it is plausible
that differences in intracellular Ca+2 or energy stores
(e.g., glucose, ATP) may play a role in directing one cell
to transfer mitochondria to another. For example, intra-
cellular movement of mitochondria is highly sensitive to
cytosolic Ca+2 levels. Wang and Schwartz [135] elegantly
demonstrated that Ca+2 promotes Miro to interact with
the motor domain of kinesin, thus blocking kinesin from
the microtubule. Accordingly, mitochondria transfer
from cell to cell may be affected by differences in intra-
cellular Ca+2 concentration and/or localization. Consist-
ent with this concept, TNTs have been shown to transfer
Ca2+ and even electrical signals to neighboring cells
through TNT-associated gap junctions [136, 137]. In

addition, the level of available nutrients can alter move-
ment of mitochondria. In neurons, Pekkurnaz et al.
[138] reported that extracellular glucose and the enzyme
O-GlcNAc transferase (OGT) affect mitochondrial mo-
tility by altering GlcNAcylation of Milton, an OGT sub-
strate. As OGT activity is dependent on glucose,
increased glucose was shown to decrease mitochondrial
motility.
Of special interest, several reports indicate regulatory

overlap or some form of integration between TNT for-
mation and endosomal trafficking, as both interact with
components of the exocyst complex that regulates ves-
icular transport from the Golgi apparatus to the plasma
membrane [139, 140]. For example, Hase et al. [141] re-
ported that M-sec, part of the exocyst complex, inter-
acted with the small GTPase RalA and was required for
TNT formation in a macrophage cell line. Furthermore,
they showed that M-sec expression could induce cell
protrusions de novo, some of which formed TNTs with
adjacent cells. Subsequently, Schiller et al. [142] found
that the transmembrane MHC class III protein leukocyte
specific transcript 1 (LST1) was also required for TNT
formation. At the cell membrane, LST1 was shown to
interact with M-Sec, myosin, and myoferlin and also to
recruit RalA, promoting its interaction with the exocyst
complex [142]. Notably, some mechanisms (e.g., pro-
teins) controlling TNT formation and/or mitochondrial
transfer may be specific to specialized cell types such as
neurons. However, in light of the conserved nature of
intracellular adaptor/kinesin motor protein complexes,
mitochondrial dynamics, and endosomal trafficking, it is
probable that many mechanisms that control TNT for-
mation and/or mitochondrial transfer are similar be-
tween many cell types, including MSCs.

Modifying mitochondrial transfer and/or mitochondria for
clinical application
For future clinical application, harnessing mitochondrial
transfer in a controlled and predictable manner will
likely require further mechanistic insight. Importantly,
recent advances in targeting of DNA to mitochondria
may provide new tools to track or even perhaps to gen-
etically alter mitochondria by modifying mtDNA as op-
posed to nuclear genes for proteins targeted to
mitochondria (e.g., genes for mitochondrial membrane
proteins). For example, Yu et al. [143] restored ATP syn-
thesis in cells carrying mutant mtDNA for human
NADH ubiquinone oxidoreductase subunit 4 (ND4) by
infecting cells with an adeno-associated virus capsid
(VP2) fused to a mitochondrial targeting sequence and
the wild-type ND4 mitochondrial gene sequence. Fol-
lowing recent successful testing in non-human primates
and human eyes ex vivo, the innovative method may
soon be applied in clinical trials for treatment of Leber
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hereditary optic neuropathy, a disease caused by a muta-
tion in the ND4 mitochondrial gene [144].
Despite the potential benefits of mitochondrial transfer

or other TNT-mediated effects, it is worth noting that
cell–cell communication by way of TNTs may also have
some negative consequences. In contrast to their potential
therapeutic benefits, TNTs also have potential to act as
disease vectors for transmission of HIV/AIDS [145], bac-
teria [113], Prions [146], and oncogenic miRNAs [147].

Transfer of RNAs and other molecules by EVs
The general term “extracellular vesicle” (EV) refers to
membrane-bound vesicles released from most, if not all,
somatic cell types (reviewed in [140, 148, 149]). To-
gether, the EVs include exosomes, 30–100-nm plasma
membrane-coated vesicles of endocytic origin; microve-
sicles, 50–1000-nm vesicles of non-endocytic origin; and
apoptotic bodies, 1–5-μm vesicles released during mem-
brane blebbing of apoptotic cells [150].
Cellullar exosomes are released when multivesicular

bodies traffic to and fuse with the plama membrane in a
regulated manner. Exosomes were first identified and
isolated from cultures of normal and transformed cells
during the 1980s [151–153]. Valadi et al. [154] made a
key contribution when they demonstrated that both
mRNA and miRNA could be exchanged between cells
by virtue of exosomal transfer. Studying xenogenic co-
cultures, they observed expression of various mouse pro-
teins in human mast cells after exosomal transfer from
murine cells, indicating successful translation of exoso-
mally delivered mRNA into protein. As with exosomes
isolated from diverse cell types, MSC-derived exosomes
are reported to contain lipid raft domains [155] and tetra-
spanins known to alter the fusion state of cell membranes
(e.g., CD9, CD81), Alix, a calcium-binding protein with
roles in both endosomal trafficking and cell death, and
TSG101, a tumor suppressor protein [156, 157]. Com-
pared with exosomes, which are relatively homogenous
upon release, microvesicles are heterogenous in both size
and composition. Furthermore, regulatory mechanisms
for microvesicular shedding from the membrane surface
remain poorly understood.
Exosomes purified from MSCs have garnered tremen-

dous interest in the field of regenerative medicine based
on their ability to reduce apoptosis/necrosis in rodents
after ischemic injury to the heart [158, 159], brain [160,
161], lung [162], liver [163], or kidney [164]. In addition,
exosomal transfer from MSCs is reported to reduce in-
flammation and to increase cell proliferation during tis-
sue repair [162, 165, 166]. Tomasoni et al. [167] showed
that MSCs transferred exosomes with mRNA for IGF1R
and IGF1 to cisplatin-damaged proximal tubular cells;
this resulted in their expression of IGF1R, thereby in-
creasing sensitization to IGF-1. The exosomal transfer

improved renal cell survival and increased proliferation
during repair after injury. In multiple drug-induced
models of liver injury, treatment with MSC exosomes at
the time of injury increased the number of proliferating
cell nuclear antigen-positive proliferation cells while re-
ducing the number of hepatocytes undergoing apoptotic
cell death [168]. Treatment of a murine carbon
tetrachloride-based injury model with exosomes from
human umbilical cord-derived MSCs was shown to re-
duce liver fibrosis [169]. Following stroke in rats, treat-
ment with MSC-derived exosomes was shown to
promote angiogenesis, neurogenesis, neurite outgrowth,
and recovery by virtue of transfer of miR-133b [170,
171]. In addition to RNAs, exosomes and microvesicles
can deliver peptide/protein-based paracrine effectors
such as growth factors, cytokines, and hormones. For ex-
ample, transfer of Wnt4 by exosomes from human um-
bilical cord-derived MSCs improved repair of skin
wounds in rats by altering cell proliferation [172].
Currently, many investigators and clinicians are inter-

ested in the potential of MSC-derived EV therapeutics for
repair of injured and diseased tissue and to treat cancer
[173, 174]. Most studies with exosome-based treatment of
injured tissues/organs report positive outcomes, However,
whether or not MSC-mediated transfer of exosomes,
microvesicles, and/or their constituents promote or inhibit
the activities of transformed cells in a way that would
positively or negatively impact cancer remains context-
dependent and controversial. For example, bone marrow
MSCs were shown to reduce the growth of cultured breast
cancer cells by transferring miR-127, -197, -222, and -223
through gap junctions and exosomes; these miRNAs are
known to target CXCL12 (a.k.a. SDF-1) [175]. Lee et al.
[176] suggested that exosomes from MSCs might suppress
angiogenesis based on their containing miR-16, a miRNA
that targets VEGF and was shown to reduce its expression
in a breast cancer cell line. By contrast, Zhu et al. [177]
reported that exosomes from human MSCs actually pro-
moted tumor growth in vivo by inducing VEGF expres-
sion in tumor cells. Boelens et al. [178] reported cross-talk
between stromal cells and breast cancer cells whereby
stromal exosomes induced paracrine antiviral signals and
stimulated juxtacrine Notch3 signaling that increased the
number of therapy-resistant tumor-initiating cells. As with
other paracrine effects of cell-based therapy or treatments
based on administration of signaling agonists (e.g., growth
factors), it is clear that care must be taken to avoid poten-
tial off-target treatment effects of administered EVs to
avoid cancer cell propagation and/or metastasis.
Towards standardization of exosome-based therapy

using MSCs or any cell type, identification of the most
reliable and consistent vesicle isolation methods will be
critical so that different laboratories can effectively com-
pare their results. At present, several different methods
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of isolation are widely used, including centrifugation,
filtration, immunoaffinity isolation with beads, and
microfluidics. Notably, exosomes isolated from the
same source by different methods may differ in amount
and/or content [179–181].
Research aimed at improved understanding of mecha-

nisms controlling cargo loading of exosomes will also be
important. For protein-based cargo, Shen et al. [182]
have reported some progress using expressed plasma
membrane anchors. For miRNA-based cargo, Villarroya-
Beltri et al. [183] recently identified specific miRNA se-
quence motifs that direct their loading into exosomes. Fur-
thermore, they determined that sumoylated heterogenous
nuclear ribonucleoprotein (hnRNPA2B1) was required for
sorting of miRNAs into exosomes based on the specific
motifs. Detailed characterization of MSC exosome content
under various conditions and from all tissues will likely
aid in a more predictable product in terms of therapy.
For example, MSCs isolated from various tissues differ
in terms of exosome content [184, 185] and MSCs from
bone marrow with multiple myeloma were reported to
differ in miRNA content relative to MSCs from control
bone marrow [183].

Conclusions
In light of promising results in animal models and pa-
tients, therapeutic use of MSCs and MSC-based prod-
ucts for treatment of tissue injury and disease is likely to
undergo continued evaluation. As next steps, focusing
efforts toward achieving standardized methods of MSC
isolation, characterization, and administration has great
potential to provide powerful new treatments with MSCs
or MSC-derived products. In regard to the predominant
mechanisms of MSC function, clarification of the rela-
tive role(s) that each mechanism plays during the rescue
and repair of damaged tissues/organs following MSC ad-
ministration may serve to improve treatment safety, effi-
cacy, and predictability of outcome for patients.
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