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Early exposure to psychosocial adversity is among the most potent predictors of depression. Because depression commonly
emerges prior to adulthood, we must consider the fundamental principles of developmental neuroscience when examining how
experiences of childhood adversity, including abuse and neglect, can lead to depression. Considering that both the environment
and the brain are highly dynamic across the period spanning gestation through adolescence, the purpose of this review is to
discuss and integrate stress-based models of depression that center developmental processes. We offer a general framework for
understanding how psychosocial adversity in early life disrupts or calibrates the biobehavioral systems implicated in depression.
Specifically, we propose that the sources and nature of the environmental input shaping the brain, and the mechanisms of
neuroplasticity involved, change across development. We contend that the effects of adversity largely depend on the
developmental stage of the organism. First, we summarize leading neurobiological models that focus on the effects of adversity
on risk for mental disorders, including depression. In particular, we highlight models of allostatic load, acceleration maturation,
dimensions of adversity, and sensitive or critical periods. Second, we expound on and review evidence for the formulation that
distinct mechanisms of neuroplasticity are implicated depending on the timing of adverse experiences, and that inherent within
certain windows of development are constraints on the sources and nature of these experiences. Finally, we consider other
important facets of adverse experiences (e.g., environmental unpredictability, perceptions of one’s experiences) before
discussing promising research directions for the future of the field.
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INTRODUCTION
From the earliest stages of life, environmental input interacts
with the developing nervous system to influence the possible
onset, maintenance, and prognosis of depression. Researchers
and clinicians have long recognized that early adversity,
defined here as environmental exposures that constitute
deviations from the expectable environment during child
development (e.g., abuse, neglect) [1, 2], contributes to risk
for depression [3–6]. When individuals experience adversity,
they often mobilize responses from the endocrine, immune,
and nervous systems, which, in turn, engage mechanisms of
neuroplasticity that prepare them to respond to learned
environmental contingencies and future threats [7]. Several
frameworks that link adversity and attendant stress responses
to disease processes, including allostatic load [8] and acceler-
ated maturation [9], postulate that biological weathering from
chronic activation of stress response systems increases risk for
mental disorder. Other models highlight the role of the timing
of adversity within the context of sensitive periods of
development, asking whether adversity affects experience-
expectant or experience-dependent mechanisms [1, 10]. Given
that depression commonly emerges during adolescence and
can be detected as early as preschool age [11, 12], it is critical
that we consider the fundamental principles of developmental

neuroscience when elucidating the mechanisms linking early
adversity to depression.
Considering that both the environment and the brain are highly

dynamic across the period spanning gestation through adoles-
cence, we propose in this review that stress-based models of
depression adopt a developmental lens. Specifically, we argue that
whether and how psychosocial adversity disrupts or calibrates the
biological systems implicated in depression depends largely on
the developmental stage of the organism, as the sources and
nature of the environmental input shaping the brain—and the
mechanisms of neuroplasticity involved—change across develop-
ment. Although many of the concepts we describe in this review
extend to mental disorders more broadly, including bipolar
disorder, eating disorders, posttraumatic stress disorder (PTSD),
and substance use disorders, we focus on depression as an
exemplar for studying how psychosocial adversity enhances risk
for negative mental health outcomes by disrupting neurodevelop-
ment. We focus on depression because it is prevalent [13], highly
comorbid with other mental disorders [14, 15], and, although
linked to family history [16], appears to have limited genetic
etiology compared to many other disorders [17]. Underscoring the
centrality of stress to depression, many candidate biomarkers of
depression, including smaller hippocampal volume [18, 19],
disruptions in HPA-axis functioning [20, 21], and elevated
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peripheral inflammation [22, 23], are also linked with exposure to
early adversity (see [24–26] for reviews).
In this review, we begin by briefly discussing the major

mechanisms of neuroplasticity that unfold over the course of
prenatal to adolescent development. Second, we review the
leading neurobiological models of the effects of adversity on risk
for mental disorder, including allostatic load, accelerated matura-
tion, dimensional models, and sensitive period models. Third, we
expound on the formulation that distinct mechanisms of
neuroplasticity are implicated depending on the timing of these
experiences, and that inherent within certain windows of
development are constraints on the sources and nature of these
experiences. Fourth, we review evidence in favor of this
formulation. Finally, we discuss other important considerations
regarding adverse experiences—specifically, environmental
unpredictability, inescapability of exposure, and perceived sever-
ity—before summarizing emerging research themes and exciting
future directions in this area.

MECHANISMS OF NEUROPLASTICITY ACROSS DEVELOPMENT
Human brain development is a protracted process that begins in
gestation and lasts for at least two decades. In Fig. 1, we illustrate
the distinct mechanisms of neuroplasticity that govern the
different stages of brain development from the prenatal period
through adolescence. Neurogenesis, the formation of new brain
cells, including neural stem cell/progenitor cell proliferation,
neuronal migration, and neuronal differentiation, occurs primar-
ily during embryonic development, laying the foundation for
sensory processing of environmental input and postnatal
experience-dependent development [27]. Synaptogenesis, the
elaboration of synapses, is a process that unfolds rapidly across
the first year of life, peaking between 2 and 4 years and again
during adolescence [28–30], and supporting functional connec-
tions between regions of the brain. Synaptic pruning, the
elimination of synapses to consolidate efficient and exploited

connections, peaks between ages 2 and 10 years [29, 30]. Finally,
gliogenesis, the formation of astrocytes, oligodendroctyes, and
microglial cells, which play a role in remodeling of synapses
[31, 32], and the related process of myelination, the increase of
myelin that facilitates the structural neural connections that
buttress functional connectivity, occurs throughout develop-
ment at varying rates [33].

OVERVIEW OF MODELS LINKING ADVERSITY TO MENTAL
DISORDERS
Allostatic load
One prevailing framework that links stress responses systems to
mental disorder centers on the concept of allostatic load, which is
defined as the phenotypic consequences of chronic activation of
stress response systems, including endocrine, immune, and neural
adaptations to environmental input [34, 35]. While the physiolo-
gical changes that attend exposure to adversity are helpful in the
short-term by allowing the body to maintain homeostasis through
changing environmental conditions, over time these initially
adaptive responses produce “wear and tear” on regulatory
systems. For example, acute exposure to threatening adversity
promotes the secretion of hormones (e.g., cortisol) and inflam-
matory cytokines that drive changes in structural plasticity of the
hippocampus and amygdala to enhance fear learning for similar
events [36]. However, chronic stress acts through these same
hormonal and immune mediators to create glutamatergic
excitoxicity and atrophy in the hippocampus and amygdala linked
to impaired memory and other behavioral and cognitive
symptoms commonly seen in depression [37].

Accelerated maturation
As others have noted [9, 38], the allostatic load model is limited
in terms of its focus on mature systems. This framework does not
address the dynamic nature of stress response systems across
development—that is, responses to stress earlier in development
influence future development of the organism. Theories rooted
in evolutionary biology that also integrate perspectives from
developmental science posit that experiences in early life tune
stress response systems to features of a given environment in
order to maximize fitness [9, 38–40]. Scientists have argued that
for individuals raised in environments with multiple sources of
threat and/or where long-term survival is uncertain, this
“developmental reprioritization” often manifests as accelerated
maturation characterized by an earlier emergence of adult-like
phenotypes [9, 41].
Findings from the animal and human literature support the

accelerated maturation model. For example, the transition from
approach to avoidance responses to shock-paired odors that
occurs across typical rat development is accelerated in rats
exposed to early adversity, with an accompanying precocious
amygdalar phenotype [42]. Similarly, studies in juvenile mice have
shown that early adversity leads to accelerated myelination of
axons in the amygdala [43]. Parallel findings have been
documented in human children who experienced institutional
care [44], childhood abuse [45], and who were diagnosed with
PTSD [46]. Specifically, negative functional connectivity between
the amygdala and prefrontal cortex during threat processing,
which is thought to reflect cortical downregulation of stimulus-
driven signaling in the amygdala, has been interpreted as an
adult-like neural phenotype [47–49] (although see [50]) that has
been associated with lower anxiety symptoms and/or better
emotion regulation [47, 48] and more severe cumulative child-
hood adversity [51] in typically developing youth. Consistent with
models of accelerated maturation, compared to typically devel-
oping children, several studies have found that children who have
experienced severe maltreatment precociously exhibit this phe-
notype [44–46] (although see [52, 53]).

Fig. 1 Primary sources of environmental input and mechanisms
of neuroplasticity across development. Whether and how adver-
sity disrupts or calibrates biological systems implicated in depres-
sion depends largely on the developmental stage of the organism.
Primary sources of environmental input and mechanisms of
neuroplasticity change across the period spanning gestation to
adolescence. Maternal physiological signals transmitted to the
intrauterine environment influence neurogenesis and cell migra-
tion. As children mature, dominant sources of environmental input
expand, coinciding with ongoing changes in synaptic formation
and remodeling, and with changes in gliogenesis and myelination.
Primary sources of expected environmental input can also serve as
sources of adversity that influence the neurodevelopmental
processes taking place in that period. Figure created with
BioRender.com.
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Dimensions of adversity
Historically, theories of allostatic load and accelerated maturation
did not explicitly consider the multi-dimensional nature of
adversity or the potentially distinct consequences of different
forms of adversity. Dimensional models of adversity [2, 40, 54–57],
however, emphasize that it is important to elucidate core
dimensions of adversity that may differentially shape brain
development through distinct mechanisms. Prevailing dimen-
sional models distinguish between adverse experiences charac-
terized by deprivation (i.e., the absence of beneficial input, such as
cognitive impoverishment or emotional neglect) versus those
characterized by threat (i.e., the presence of harmful input, such as
abuse). In this framework, deprivation and threat are theoretical
axes of experience that elicit distinct responses in endocrine,
immune, and neural systems.
Emerging findings indicate that distinguishing dimensions of

adversity enhances specificity in our understanding of the
environmental origins of deviations in biological development
and risk for mental disorder. For example, research in humans
indicates that experiences of threat, and not deprivation, are
associated with accelerated maturation in terms of epigenetic
aging, cellular age, pubertal timing, and thinning of the
ventromedial prefrontal cortex [58, 59]. In addition, human
children who experienced deprivation in the form of prolonged
institutionalization have been found to have poorer inhibitory
control and working memory [60] and difficulties in reward-based
associative learning that contribute to higher depressive symp-
toms [61]. In contrast, children who were exposed to threat (e.g.,
living in neighborhoods with violent crime) and who were also at
higher risk for developing depression, have been found to display
deficits in fear-based learning that are associated with reductions
in the volume of the amygdala and hippocampus [62]. Similar
findings regarding differential effects of deprivation and threat on
human brain morphometry have been documented by other
groups [63–65].
It is important to note that previous research in non-human

animals that linked exposure to adversity with accelerated
development of amygdalar circuitry used environmental manip-
ulations that were arguably characterized by deprivation (e.g.,
limited bedding, early weaning, maternal separation) [42, 43, 66].
Similarly, at least one study of human children exposed to extreme
psychosocial deprivation in the form of institutionalization found
evidence of accelerated maturation of amygdala-prefrontal
circuitry [44]. These apparently equivocal findings may be due
to the fact that deprivation can be further disaggregated into
experiences involving deficits in material, cognitive, or emotional
input [67]. In both humans and other species, impoverished
environments characterized by material forms of deprivation (e.g.,
confined environments lacking visual stimulation, nutritional
deficiency) are strongly linked with delays in brain growth and
pubertal development [68–70]. Unlike these material forms of
deprivation, deprivation of emotional input (e.g., lack of comfort
from caregivers) may lead to accelerated maturation in
amygdala–prefrontal circuitry because young organisms depend
on their caregivers to regulate their emotional responses to
everyday stressors is a species-expected experience [71, 72].
Another possible explanation for mixed findings regarding the

associations of deprivation and threat with accelerated maturation
is that experiences of deprivation may accelerate certain
mechanisms of neuroplasticity, but not others. Supporting this
formation, a recent systematic review found that deprivation, but
not threat, is associated with accelerated cortical thinning of the
frontoparietal, default, and visual networks [59]. Deprivation may
accelerate synaptic pruning because certain sensitive periods
require specific environmental input to open (discussed in more
detail in the following section) [73, 74].
Whereas dimensional models of adversity focus on core aspects

of adversity that underlie multiple experiences, it is also possible

that specific forms of adversity, including certain types of
maltreatment, have distinct effects on development. While
different types of childhood maltreatment often co-occur
[75, 76] and are all strongly linked with depression risk [77, 78],
neuroimaging work by Teicher et al. suggest that specific types of
adversity are associated with distinct regional brain patterns. For
example, exposure to parental verbal abuse was associated with
structural alterations in left auditory cortex and the arcuate
fasciculus (a white matter tract that connects temporal and
parietal regions critical for language processing), whereas witnes-
sing domestic violence was associated with structural alterations
in visual cortex and the inferior longitudinal fasciculus (a white
matter tract that connects visual cortex with frontolimbic
structures; see [65] for a review of these studies). In contrast,
exposure to childhood sexual abuse in young women has been
found to be associated with reduced gray matter volume in
portions of visual cortex responsible for processing face stimuli
[79] and portions of somatosensory cortex corresponding to the
genital representation field [80]. If replicated in larger and diverse
samples, these findings would suggest that exposures to certain
types of early adversity have selective consequences on neuro-
phenotypes. Nonetheless, given the complexity of characterizing
the naturalistic environment, many studies using a specificity
approach to examine the impact of maltreatment on the brain
lack the requisite information to determine whether effects are
related to the focal adversity or another correlated experience. As
we discuss in more detail in the next section, there is also
increasing evidence that the timing of these exposures, likely in
interaction with their type, is critical for brain outcomes relevant to
the pathophysiology of depression (e.g., hippocampal subfield
development [81]).

Critical or sensitive periods
Critical or sensitive periods are circumscribed windows of devel-
opmental plasticity during which variation in environmental input
has uniquely strong and lasting effects on the brain and behavior
[82]. Whereas periods of development in which environmental
input has stronger effects on long-term functioning are “sensitive,”
periods in which missing or extremely deficient inputs lead to the
permanent loss of certain functions are “critical” [82]. Thus, critical
or sensitive period models emphasize that the developmental
timing of adversity plays a significant role in neurodevelopmental
processes and risk for mental disorders [1, 10, 73]. According to
these models, adverse experiences that occur outside of the
perimeters of a critical or sensitive period may have a relatively
limited impact on subsequent neurodevelopment. Commonly
cited evidence for critical or sensitive periods in sensory and
higher-order associative processing systems include amblyopia or
other visual deficits resulting from visual deprivation during
infancy [83], as well as difficulties in acquiring and producing
language in the absence of linguistic input and symbolic
expression [84].
Research studies conducted in human children who have

experienced institutional care and were deprived of psychosocial
input support this formulation, although it is difficult in these
studies to disentangle the effects of timing from the duration of
deprivation (for a review, see [85]). For instance, the English and
Romanian Adoptees (ERA) study [86], a 20-year observational
study of Romanian children who experienced institutionalized
care and were subsequently adopted by families in the United
Kingdom, and the Bucharest Early Intervention Project (BEIP) [87],
a 15-year study of outcomes following a randomized control trial
of high-quality foster care as an alternative to institutionalization
in Romanian orphans, found that deprivation of expected input
during infancy and toddlerhood in behavioral and neural
outcomes. Specifically, results of the ERA indicate that, by age 6
years, children who were adopted earlier (i.e., duration of exposure
to deprivation <6 months) had low levels of symptoms of
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behavioral disturbances; however, children who had been
exposed to institutionalized care for longer durations presented
with elevated symptoms of autism spectrum disorder, attention-
deficit/hyperactivity disorder (ADHD), and disinhibited social
engagement disorder that persisted into adulthood [88]. Further,
compared to adopted adults who were not exposed to depriva-
tion, previously institutionalized adopted adults had significantly
smaller total brain volumes, which, in turn, statistically mediated
the association between history of institutionalization and certain
behavioral outcomes (IQ and ADHD symptoms); moreover, longer
duration of institutional care was negatively associated with brain
volume [89].
Within the BEIP, previously institutionalized children rando-

mized to high quality foster care by age 31 months generally had
better cognitive, behavioral, and neurodevelopmental outcomes
than did children randomized to remain in “care as usual”
(typically, prolonged institutionalization) [90]. Nonetheless, these
children still had deficits compared to their never-institutionalized
peers. For example, consistent with the data acquired during
adulthood from the participants in the ERA [89], at age 8 years,
both children randomized to foster care and “care as usual”
children evidenced significantly smaller cortical gray matter
volume compared to never-institutionalized children [91]. By
implicating synaptic development in gray matter cells (i.e.,
dendritic branching, axonal outgrowth), these findings support
sensitive period models suggesting that the lack of expected
environmental input during early life affects experience-expectant
mechanisms of neuroplasticity. However, children participating in
the BEIP who were randomized to foster care showed recovery of
cortical white matter volume and fractional anisotropy in several
white matter tracts such that they were statistically indistinguish-
able from their never-institutionalized peers on these measures
[91, 92]. Findings of recovery in relation to white matter
development indicate that experience-dependent mechanisms
of plasticity involving glial cells, including myelination, may
explain how environmental input shapes development outside
of critical or sensitive periods.

The role of genetics in models of adversity
Although a more detailed discussion is beyond the scope of this
review, children’s genotypes, and that of their parents, influence
not only the development of stress response systems [93] and
brain phenotypes [94, 95], but also the types of environments
they encounter and how these environments affect their outcomes
[96–99]. Beyond the diathesis stress framework, which posits that
poor health emerges when genetic vulnerability meets with
environmental adversity, well-known evolutionary models, includ-
ing biological sensitivity to context and differential susceptibility
theory, posit that certain genotypes may confer either elevated risk
or enhanced wellbeing depending on whether environmental
conditions are negative or positive [100]. While it has become clear
that the effects of individual genetic variants on behavior are too
small to be reliability detected [101], burgeoning genome-wide
association studies are now informing the development of
polygenic scores—aggregate indices of genetic influences—that
can be used to more directly examine the role of genotype in
children’s experiences of adversity and their outcomes following
these experiences [102]. In addition to the presence of certain
genes affecting responses to adversity, experiences of adversity
may influence genetic expression through epigenetic mechanisms,
such as DNA methylation, histone modifications, and non-coding
RNA (for reviews, see [103, 104]). In fact, many candidate gene and
epigenome-wide association studies have documented correla-
tions between early adversity and alterations in the epigenome
[105–108]. In turn, alterations that change the expression of genes
in the brain affect various molecular processes, including
mechanisms of neurodevelopment, that affect risk for depression
(for a review, see [104]). Nonetheless, the extent to which

variations in the epigenome (e.g., DNA methylation) are a causal
mechanism linking adversity to mental disorder, or are simply a
biomarker of vulnerability, remains unclear and is an active area of
research [109].

Integrating and extending existing models
Environmental influences generate distinct effects on brain circuitry
due to developmental constraints in sources of input and in
mechanisms of plasticity. Integrating knowledge gained through
existing models linking early adversity to mental disorders, we
propose that there are developmental constraints both on
mechanisms of neuroplasticity and the sources environmental
input (see Fig. 1). In addition, interactions between dynamic
neurodevelopmental processes and changing sources of environ-
mental input implicate distinct mechanisms of neuroplasticity
corresponding to the developmental timing of adversity, with
likely distinct phenotypic consequences across all levels of analysis
from cells to behavior. Thus, the current framework bridges
sensitive period and dimensional models by emphasizing the
importance of both timing and type of adversity, while recogniz-
ing how the concept of allostatic load critically explains the
mediating endocrine, immune, and neural regulators of early
adversity on risk for mental disorders, including depression.
For example, we posit that experiences of deprivation during

the later postnatal stages of development (e.g., childhood,
adolescence) have a lesser impact on brain and behavioral
outcomes compared to earlier stages of development (e.g.,
infancy), as experience-expectant mechanisms of plasticity are
no longer engaged. Infancy and toddlerhood are studded with
critical or sensitive periods (e.g., for language and attachment) in
which missing environmental input may lead to the permanent
loss of specific functions supported by specific groups of neurons
and synaptic connections. In contrast, later childhood is more
likely to involve experience-dependent learning supported by
gliogenesis and myelination. Infancy presents limited opportunity
for environmental input beyond the immediate caregiving
environment such that infants are especially vulnerable to
exposure to and the consequences of deprivation in the form of
neglect [110–113]. In contrast, although infants and young
children are exposed to abuse by their caregivers [113], sources
of adverse experiences involving threat may increase with
development as the range of environmental input expands
(although high individual variability in patterns of adversity across
the life course is expected). Specifically, as children mature, they
become capable of engaging with their neighborhood, schools,
peers, and social and non-social media independently. Although
expanding environmental input provides new opportunities for
enrichment, it may also entail direct exposure to hostile school
environments, peer conflict, and community violence.
Below, we illustratively review human and non-human animal

literature investigating the consequences of adversity during the
prenatal, infant, childhood, and adolescent periods on mechan-
isms of neuroplasticity and risk for depression. Based on the
current framework, we focus on the consequences of experiences
of deprivation in infancy and emphasize the effects of threat-
related adversity during later childhood and adolescence. We
center experience-expectant mechanism as the primary processes
relevant in infancy and experience-dependent mechanisms as the
primary processes by which adversity influences phenotypic
outcomes later in development.

SOURCES OF ENVIRONMENTAL INPUT INTERACT WITH
NEUROPLASTICITY ACROSS DEVELOPMENT
Prenatal period
A growing body of literature documents the effects of psychoso-
cial stress or adversity (as well as biochemical insults that are
beyond the scope of this review) experienced by mothers both
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during pregnancy and prior to conception on increased risk for
mental disorders in their offspring [114]. As detailed in Fig. 1, the
primary source of environmental input during fetal development
is in the intrauterine milieu. Thus, although the fetus is not directly
exposed to adversity, variation in the intrauterine environment
associated with maternal stress or adversity may influence
prenatal brain development through mechanisms of plasticity
(e.g., neurogenesis, synaptogenesis) that lay the foundation for
subsequent neurobiological development and future risk for
depression and other mental disorders. As such, the prenatal
period represents a critical period of development. Experimental
evidence from research conducted in rodents demonstrates that
inducing prenatal adversity leads to anhedonic behaviors in
offspring that are analogous to human depression (e.g., with-
drawal from social play, reduced sucrose preference) [115]. In
humans, numerous studies indicate that women’s experiences of
adversity during pregnancy are associated with risk for mental
disorders, including depression, in their child and adult offspring
[116–119].
The association between prenatal psychosocial adversity and

offspring risk for mental disorder is hypothesized to be mediated,
at least in part, by the signals the fetus receives in utero [120, 121].
As in other life periods, stress response systems, including the
hypothalamic pituitary adrenal (HPA) axis and the immune system,
are activated in response to environmental threat during
pregnancy. Ensuing changes in maternal physiology, including
increases in levels of glucocorticoids and elevations in inflamma-
tion, may influence fetal neurodevelopment by affecting placental
functioning and/or by passing through the placenta and the fetal
blood–brain barrier [122–124]. Although these maternal physio-
logical signals may help prepare the fetus for the postnatal
environment [125], they may also have adverse consequences,
particularly when the postnatal environment does not match
prenatal “expectations” [126]. For example, women’s exposure to
stressful life events during pregnancy is linked to differences in
the structural and functional connectivity of amygdala–prefrontal
circuitry in newborn infants [127]. Higher maternal prenatal levels
of interleukin-6, a pro-inflammatory cytokine that is upregulated
in response to psychosocial stress, are associated with lower
fractional anisotropy in amygdala–prefrontal white matter tracts
(uncinate fasciculus) in newborn infants and poorer subsequent
cognitive functioning at age 12 months [128]. Similarly, elevated
maternal cortisol during pregnancy was associated with stronger
functional connectivity of the amygdala in newborn female infants
and higher subsequent internalizing symptoms at age 24 months
[129]. Finally, maternal prenatal stress and adversity may also
affect epigenetic processes that alter neurodevelopment [103]. For
example, in rodents, offspring of mothers exposed to chronic
unpredictable stress (e.g., aversive sounds, confinement, food
deprivation) during pregnancy had decreased hippocampal
histone acetylation [130]. In humans, women’s perceived stress
during the second trimester was associated with mildly increased
methylation of glucocorticoid-related genes in their placental
tissue, which was, in turn, associated with reduced fetal coupling
of heart rate and movement [131]. Together, these studies point
to endocrine, inflammatory, and epigenetic mechanisms by which
prenatal psychosocial experiences of the mother engender an
adverse intrauterine environment for the fetus that affects their
subsequent development in ways that may increase their risk for
negative health outcomes.
Importantly, in addition to fetal programming by maternal

adversity during pregnancy, maternal adversity that occurred prior
to conception may influence offspring brain development by
affecting epigenetic processes, the quality of the intrauterine
environment, and the child’s postnatal experiences [132, 133]. For
example, women’s exposure to childhood maltreatment has been
linked with lower cortical gray matter volume in their newborn
infants [134]. Clearly, distinguishing the effects of maternal

adversity prior to conception and during pregnancy on offspring
neurodevelopment and risk for depression is challenging given
that adversity is likely to be correlated across life stages. To help
address this challenge, King et al. [135] have recently developed a
novel measure to assist in the simultaneous assessment of parent
and child adversity, including adversity occurring during discrete
stages of the parents’ life corresponding to the child’s develop-
ment (i.e., prior to conception, prenatally, postnatally).

Infancy
Although rapid brain development occurs in gestation, postnatal
experiences nevertheless potentiate experience-expectant
mechanisms of plasticity throughout the first year of life. During
infancy, caregivers are the primary source of environmental input,
providing for instrumental needs (e.g., food and shelter) and
delivering experience-expectant psychosocial stimulation (e.g.,
cognitive stimulation and nurturance) [67]. Infancy is a window of
opportunity for the positive effects of environmental enrichment
from caregivers on long-term development. However, given that
caregivers are the primary source of environmental input in this
period, they can also be the primary source of adversity.
Specifically, caregivers may either fail to deliver experience-
expectant input—as is the case in neglect—or create harmful
input—as is the case in abuse. Perhaps because they spend the
majority of their time with their caregivers during what is often a
challenging time for parents [136], infants under age one year are
more likely to be exposed maltreatment than are children in any
other developmental period [110].
The prevalence of adversity in the form of maltreatment during

infancy is especially concerning because this period involves
cascading critical or sensitive periods, including for the develop-
ment of language and the formation of attachment bonds that
undergird socioemotional competency [1]. Thus, violations of the
expectable environment during infancy may be particularly
detrimental, leading to atypical circuit development with poten-
tially irreversible consequences for associated behavior. Specifi-
cally, because infancy involves rapid synaptogenesis followed by
pruning of unused connections, deprivation during this period
may lead to infants failing to form important connections and
experiencing severe synapse elimination [74]. Non-human animal
models of early deprivation and enrichment support this
formulation [137, 138]. In humans, institutionalized children who
are deprived of individualized input from caregivers often fail to
develop organized—let alone secure—attachment styles and are
more likely to develop disorders of social relatedness that persist
across childhood [88, 139, 140]. They also evidence lasting
differences in brain function detectable as lower EEG power in
the alpha frequency band and reduced total brain and gray matter
volumes [89, 91, 141]. Although depression is not assessed in
infancy, the attachment system organizes infants’ regulation of
emotion, and early insecure and disorganized attachment is
associated with internalizing symptoms across childhood, includ-
ing depressive symptoms [142].
Abused infants may develop structural and functional differ-

ences in amygdala–hippocampal–prefrontal circuits underlying
fear learning that may have long-term consequences for
psychiatric risk despite the fact that these experiences are not
explicitly remembered [143]. Human infant neuroimaging, includ-
ing MRI, is burgeoning [144]; however, few studies have
investigated the neural correlates of variation in the environment
during the postnatal period (i.e., most studies focus on the
neonatal brain and therefore speak to the impact of prenatal
experiences, although see [145, 146]). Moreover, ethical con-
siderations place obvious limits on allowable paradigms for
investigating fear learning behavior in human infants. Thus, most
of what we know about the impact of postnatal adversity during
infancy on fear learning behavior and circuitry comes from studies
of non-human animals experimentally exposed to stressors.
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Exposure to threat in infancy—either directly in the form of
footshock or through limited bedding and nesting paradigms that
elicit maternal abuse—appears to enhance sensitivity to subse-
quent fear learning that is mediated by the amygdala. Specifically,
rat pups exposed to threat in the form of multiple shocks at
postnatal day 17 showed enhanced subsequent contextual fear
learning in response to a tone paired with a single footshock (for
days, weeks, and even months thereafter) [147]. Exposure to abuse
in infancy also appears to disrupt behavior and amygdala activity
in response to attachment cues. For example, compared to rat
pups raised in typical conditions, those raised in conditions that
lead to maternal abuse showed reduced preference for their
mother’s odor, decreased time nursing, and enhanced engage-
ment of the amygdala in response to the mother’s odor [148].
As previously discussed, deprivation of nurturance may be

unique compared to other forms of deprivation in its impact on
stress response systems. Although it is perhaps more intuitive
that exposure to threat affects fear-related circuitry, based on
cross-species evidence that non-threatening input from care-
givers regulates stress responses during infancy [149], depriva-
tion of nurturance from a caregiver in this period may also
converge on the same amygdala–hippocampal–prefrontal cir-
cuits. Animal research strongly supports this formulation. In
young rat pups, maternal presence reduces shock-induced
corticosterone release and its subsequent influence on amygdala
activity, thereby blocking amygdala-mediated aversion learning
[150]. Compared to rat pups reared in standard environments
who have amnesia for fear learning in infancy, those who were
deprived of maternal interaction subsequently demonstrated
lasting retention of learned associations between conditioned
stimuli and threats [151]. Thus, infants who are deprived of
important caregiver interactions are likely to experience differ-
ences in the foundational development of fear circuits and
aversion or fear learning behaviors that place them at greater risk
for the development of depression.

Childhood
As infants develop and enter their preschool and school-age years,
they gain greater independence from their caregivers and
encounter a wider range of environmental input. Although input
from caregivers remains essential, particularly for stress regulation
and emotion learning [71, 152], school entry involves critical
additional sources of environmental input. Interactions with
teachers, peers, and media in school involve new sources of
enrichment, but can also entail exposure to new forms of adversity
such as bullying, and, unfortunately in the U.S., threats of violence
in the form of school shootings and preparation for these
incidents as early as Kindergarten [153].
Compared to infants, young and school-age children have

greater capacity for cognitive processing of their experiences and
may form long-term memories of adversity. Thus, from the
perspective of life history strategy, the effects of earlier and
ongoing adverse experiences on children’s representations of the
self and the environment may become more evident. In the
context of threat, these models may involve guilt, shame, and
expectations that the environment is unpredictable or dangerous
[154]. In fact, depression can be diagnosed as early as the
preschool years [12] and is marked by the complex self-conscious
emotion of guilt [155]. Exposure to adversity partially mediates the
association between family history of depression and preschool
depression [156], which predicts depression through later child-
hood and adolescence [157].
Stress paradigms based on exposure to chronic threat (e.g.,

daily footshock or immobility restraint stress) in non-human
juvenile animals have chronicled have identified differences in
amygdala-dependent avoidance learning and appetitive beha-
viors as well as hippocampal- and prefrontal-dependent memory
and attention deficits following adversity [158–160]. These non-

human animal responses resemble symptoms of human depres-
sion. Non-human animals exposed to chronic threat also showed
sustained growth of dendritic spines in the amygdala that
tracked with the development of generalized fear responses
[161], but significant atrophy in the hippocampus and prefrontal
cortex that coincided with behavioral changes consistent with
anhedonia [161, 162].
Compared to non-human animal paradigms, studies of human

children raised in threatening environments involve more
unpredictable adversity. Moreover, a wider range of behavioral
and cognitive outcomes have been examined in humans,
providing a more nuanced understanding of the effects of early
adversity on risk for depression (and mental disorders more
generally). For instance, children exposed to threatening experi-
ences showed diminished effortful control and cognitive reap-
praisal [163], they also showed enhancements in certain aspects of
cognition, such as cognitive flexibility [164], and attentional biases
to negative stimuli [165] that—consistent with accelerated
maturation models—may be associated with more mature
amygdala–prefrontal connectivity [166]. During childhood, threa-
tening environmental input acts on experience-dependent
mechanisms of plasticity involved in synaptic pruning and
myelination, likely affecting neurobiological development in ways
that reflect adaptations to the child’s specific environment.
Overall, these results indicate that the detection and encoding
of negative stimuli that support survival in threatening environ-
ments but that potentially contribute to the onset and main-
tenance of depression may be preferentially conserved and
strengthened among children consistently exposed to adversity.

Adolescence
With the initiation of puberty, adolescence represents a second
period of synaptogenesis and synaptic pruning, with experience-
dependent remodeling of brain circuits underlying complex social
behaviors [167, 168]. Although the “activating” and “organizing”
effects of adrenal and gonadal hormones on brain plasticity are
beyond the scope of the current review (see [169–171] for recent
reviews on this topic), increases in adrenal and gonadal hormones
across pubertal development have been shown to be associated
with changes in gray matter volume and white matter connec-
tions across human adolescence [172–174], with a growing
literature demonstrating associations between these brain regions
and their connections with behavioral responses to socially
relevant stimuli [168].
From an evolutionary perspective, by the time of adolescence,

children have acquired the input necessary from their caregivers
for early survival and have established the skills that only the
caregiving environment can provide (e.g., regulation of emotion
through the attachment system) [170]. Therefore, they begin to
explore outside of the immediate caregiving environment to gain
new input that is important for long-term survival (e.g., establish-
ing independence, broadening affiliative networks, fostering social
integration). Peers, especially, become a critical source of
environment input and drive exploratory and approach behaviors.
Whereas positive peer relationships can buffer adolescents’
affective and hormonal stress responses [175], there is also
evidence that when in the presence of peers versus not,
adolescents show increased activation in regions involved in
social cognition following social exclusion [176], and diminished
cognitive control to positive social cues when anticipating
rewards, concurrent with greater activation in the orbitofrontal
cortex [177]. Further, when in the presence of peers versus
parents, adolescents demonstrated weaker recruitment between
the ventral striatum and regions involved in social cognition, self-
awareness, and in representations of the self and others (insula,
temporoparietal juncture) [178]—a profile that may reflect
reduced top-down input on reward sensitivity. Female adoles-
cents exposed to hostile school environments evidence greater
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prefrontal (specifically rostral anterior cingulate) responses to
social exclusion, which mediate the association between exposure
to hostile school environments and behavioral problems [179].
Thus, enhanced relevance of peers during adolescence may have
both protective and stress-enhancing effects.
Mounting evidence also indicate that puberty opens a window

of neuroendocrine plasticity, with implications for how adoles-
cents mobilize stress responses systems. Specifically, according to
the “pubertal stress recalibration” hypothesis [180], neuroendo-
crine plasticity in puberty permits experiences of more recent
positive input to remediate the effects of earlier experiences of
adversity. For example, there is evidence that patterns of stress-
evoked cortisol reactivity and regulation following extreme forms
of adversity change during puberty to match current environ-
mental conditions. Among children exposed to adversity in the
form of institutionalization in infancy who were subsequently
raised in supportive adoptive families, a recent study found that
within-individual increases in pubertal stage corresponded to
increases in cortisol reactivity to a laboratory-based stressor [180].
It is currently unclear what are the long-term consequences of
HPA-axis recalibration for risk for depression; nonetheless, these
studies suggest pubertal normalization of the HPA-axis among
children exposed to early adversity but later enrichment. Unlike
adopted children who experience dramatic changes in their
environments, however, children who are exposed to early
adversity and who continue to be raised in their families of origin
are likely to remain in adverse environments through adolescence
[181]. For these children, puberty may lead to changes in HPA-axis
functioning that are not necessarily health-enhancing [182, 183]. It
will be important in future research to examine whether pubertal
recalibration is also instantiated in brain measures reflecting
mechanisms of neuroplasticity.

OTHER CONSIDERATIONS
Although an exhaustive survey of all features of adversity is
beyond the scope of this review, we wish to briefly highlight
additional aspects of adversity that are important to consider
when interpreting the studies reviewed. These aspects may be
especially relevant when seeking to translate findings from non-
human animal models of stress to risk for depression following
adversity in humans.
First, environmental unpredictability (i.e., stochastic variation in

environmental conditions that increase risk for death and disease)
and other related concepts from evolutionary biology are thought
to play a unique role in how adversity shapes the development of
traits that are predictive of life history behaviors (e.g., mating) and
mental wellbeing (e.g., relationship satisfaction) [40, 184].
Although operationalizing environmental unpredictability is com-
plex, it is important to determine in future research whether there
are sensitive periods of development for responding to environ-
mental unpredictability, what are the consequences of encounter-
ing environmental unpredictability early in development and how
these coincide with other dimensions of adversity (e.g., acceler-
ated or delayed maturation and deprivation or threat), and, finally,
what are the underlying mechanisms of plasticity that mediate
stress responses to environmental unpredictability across devel-
opment [185].
Second, the inescapability of a stressor, which has been robustly

tested in “learned helplessness” paradigms where the controll-
ability and predictability of stressors (e.g., aversive stimuli like
electric shocks or immobilization restraint) are varied, has a rich
history in non-human animal models of depression [186]. Even
single exposures to inescapable stressors have been shown to
induce greater changes in the brain (dendritic spine outgrowth in
the amygdala) and behavior (fear generalization) than exposure to
chronic unpredictable stressors [187]. The psychological construct
of perceived entrapment in humans has been strongly linked with

depression and even suicide risk [188]. The extent to which
perceived controllability or entrapment may moderate the effects
of adversity on brain and behavioral systems across development
remains an active area of research.
Third, compared to accidents and other non-intentional

negative life events, interpersonal adversities often involving
family or peers (e.g., abuse, bullying, domestic violence) are
strongly associated with depression [189, 190] and comorbid
disorders [191], perhaps due to their often chronic and
generative nature and their unique effects on an individual’s
sense of self-worth and trust in others [192–194]. Some studies
have identified distinct effects of childhood interpersonal
adversity on the developing brain (for example [195]). Inter-
personal adversity, however, is extremely difficult to model in
non-human animals. Mice are often the model organism for
examining adversity models of depression but are prey species
that may lack the capacity for complex interpersonal represen-
tations. Although chronic defeat paradigms are akin to physical
threats of interpersonal victimization in humans, these models
do not capture more insidious forms (e.g., ongoing harassment,
conflict, or emotional maltreatment) of adversity that impact
higher-order emotions which have a central role in depression
(e.g., shame, guilt).
Finally, it is critical for health care providers to monitor

occurrences of childhood maltreatment and evaluate and treat
any harm, physical or otherwise, regardless of the child’s
perceptions of these experiences; however, individuals’ percep-
tions of the severity of adverse experiences and daily hassles also
play a critical role in triggering depressive episodes and may partly
explain the link between early adversity and subsequent
depression and other disorders [196–198]. Recent work from our
group has shown that perceived stress mediated the association
between the objective severity of childhood adversity and
depressive symptoms in adolescents during the early months of
the COVID-19 pandemic [199]. Further, we have found that, above
and beyond the objective severity of adverse experiences in
childhood, the perceived severity of these experiences was
associated with anxiety symptoms in adolescents and fractional
anisotropy of the uncinate fasciculus [200, 201]. As with
interpersonal adversity, this aspect of experience is extremely
challenging to model in non-human animals. Further, questions
regarding the role of perceptions of adverse experience intersect
with an understanding of when children develop meta-cognitive
abilities that help them evaluate and interpret past experiences. It
is possible that as these abilities develop, behavioral responses to
earlier experiences change or emerge.

FUTURE DIRECTIONS
Over the last 50 years, our understanding of psychosocial
adversity and the capacity of the brain to adapt to one’s changing
environment has evolved, deepening our knowledge of the
mechanisms through which experiences such as abuse and
neglect influence biobehavioral functioning. These advances have
had a direct impact on the study of depression and other mental
disorders that are fundamentally characterized by pathological
responses to stress. In this review, we have summarized and
reconciled many of the influential models in the field by
emphasizing the importance of considering both type and timing
of adverse experiences. We have highlighted that changes in
environmental inputs across development coincide with changes
in mechanisms of neuroplasticity, implicating different sources of
adversity and neurodevelopmental processes based on develop-
mental stage. Given the complexity of this research and the varied
challenges in operationalizing early adversity across species, as
well as measuring its effects on neural and behavioral phenotypes,
many open questions remain. Below, we highlight but a few of the
research trends that continue to gain momentum.
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Understanding the long-term behavioral consequences, includ-
ing risk for depression (as well as other related disorders, including
ADHD, bipolar disorder, eating disorders, PTSD, and substance use
disorders), of prematurely terminated or shortened windows of
developmental plasticity following chronic or severe exposure to
adversity remains an active area of research. One speculation is
that precocious termination of sensitive periods—particularly
following threatening experiences—can protect the organism
from the possibility that negative inputs monopolize the
developing brain [9]. However, such premature closing of
windows of plasticity constrains opportunity to learning; enriching
inputs are unable to refine neural circuits in order to scaffold
subsequent development [202]. Despite difficulty in mapping
sensitive periods across mammalian species, many of the
neurobiological mechanisms that generate sensitive periods
appear to be common [82, 203, 204]. We require continued work
on the molecular mechanisms that regulate the initiation and
termination of sensitive periods [204], and the extent to which
specific types of adversities are more relevant for explaining
these processes.
With respect to elucidating timing effects of adversity on

depression-related outcomes, a critically understudied develop-
mental period has been pregnancy. Women’s hormonal and
inflammatory milieus undergo dramatic changes across preg-
nancy [123, 205], suggesting that the impact of maternal adversity
on fetal brain development may vary across gestation. Information
about how the timing of prenatal adversity moderates its impact
on the intrauterine milieu and fetal neurodevelopment has
important implications for prevention and intervention. Although
the question of prenatal timing has been explored in humans
[206, 207], the field has yet to reach definitive conclusions about
whether and how the timing of prenatal adversity influences
offspring outcomes [122]. Ongoing research efforts, including the
NIH-funded Environmental influences on Child Health Outcomes
study [208, 209], which leverages 69 longitudinal birth cohorts in
the United States in order to investigate how early adversity and
environmental exposures that span behavioral, biological, chemi-
cal, physical, and social domains affect neurodevelopmental
outcomes in over 50,000 children, will be critical in clarifying the
potentially enduring effects of prenatal adversity across multiple
stages of development (i.e., from infancy to adulthood).
Another important area of research with significant treatment

implications is disentangling dose of adversity from timing. In
humans, earlier exposure to adversity is almost always con-
founded with dose effects (i.e., earlier adversity is correlated with
later adversity; “the earlier the better” findings from interventions
are confounded by the fact that children who receive the
intervention later may have remained in adverse conditions
longer). Recent results from suggest that there are dose-response
associations between length of institutionalization and total brain
volume and regional gray matter surface area in frontocingulate
regions [89, 91]. As reviewed above, however, children rando-
mized to high-quality foster care in place of institutionalization
appear to recover in terms of measures of white matter [91, 92].
These findings therefore align more strongly with the perspective
of a sensitive period model, as the mechanisms of brain plasticity
involving neuronal development are engaged early in develop-
ment whereas experience-dependent mechanisms of plasticity
involving white matter development remain active throughout
childhood and adolescence. Thus, there may be a specific set of
neurophenotypes (e.g., functional connectivity, gray matter
volumes, cortical thinning, measures of myelin content) that
are differentially sensitive to the effects of early adversity
depending on the developmental stage and nature of that
adversity. To our knowledge, no studies have sought to system-
atically test this formulation.
From the perspective of facilitating translational psychiatry, we

require cross-species investigative efforts to gain a more complete

picture of how early adversity leads to changes in genetic,
epigenetic, cellular, molecular, and micro- and macro-scale brain
circuit phenotypes that contribute to a heightened risk for
depression. While there are appreciable limitations of non-
human animal models to explain human conditions and clear
restrictions on the type of environmental manipulations that can
be applied in humans, there are nonetheless opportunities for
both forward (e.g., identifying specific molecular regulators of
plasticity) and backward (e.g., inspiring new environmental assays
or examining specific points in development that were previously
ignored) translation. For instance, epidemiological data demon-
strate that, in terms of sex assigned at birth, depression affects
female more than male individuals, particularly during the
adolescent period when depression often emerges [11, 210].
However, most non-human animal work characterizes the effects
of adversity on the brain and associated behavioral phenotypes of
depression in male animals. Many of the classic stress responses to
threat (e.g., fleeing) are unique to male rodents; moreover, there is
clear evidence that early adversity leads to sex-specific conse-
quences in dendritic morphometry in rodents [211, 212]. Devel-
oping standardized behavioral assays explaining sex differences in
depression vulnerability—and the heterogeneous symptoms of
depression more generally—is currently an active area of research
that stands to be informed by results in human studies [213, 214].

CONCLUSIONS
Early adversity is one of the strongest predictors of depression, and
poorer mental health more generally, throughout the lifespan
[3, 4, 6] in part due to the effects of adverse experiences on
neurodevelopment [2, 10, 54]. In this review, we have surveyed
several existing models of how adversity shapes the brain circuitry
underlying risk for depression. Bridging and expanding on these
models, we proposed a framework for understanding how early
adversity increases risk for depression and other mental disorders
that is centered on principles of neurodevelopment. In addition to
emphasizing that the mechanisms of neuroplasticity change across
the period spanning gestation to adolescence, we highlighted
developmental changes in the sources and nature of the
environmental input that influences the brain. From the perspec-
tive of this framework, we discussed existing human and non-
human animal data, while acknowledging other theoretical stances
and aspects of adversity that scientists must consider and further
reconcile with extant models. Finally, we summarized ongoing
areas of research that are poised to enhance our understanding of
how early adversity contributes to risk depression. As leaders in the
field recently noted, “no single conceptual model likely accounts
for the entire range of complex effects of adversity on
neurodevelopment” [73]. Nevertheless, by integrating cross-
species research that considers the core dimensions that underlie
adverse experiences as well as the timing of these experiences in
the context of development, we move closer to a comprehensive
account of these complex effects. Given the unfortunate pre-
valence of experiences such as abuse and neglect and the role of
childhood maltreatment in the global burden of mental disorders
[77, 215], we anticipate that understanding the mechanisms by
which early adversity affects neurodevelopment represents one of
the greatest opportunities for translational psychiatry to uncover
fundamental insight into the etiology and treatment of depression.
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