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Obesity is the most common cause of metabolic complications and poor quality of life in 24 

Prader.Willi syndrome (PWS). Hyperphagia and obesity develop after an initial phase of 25 

poor feeding and failure to thrive. Several mechanisms for the aetiology of obesity in PWS 26 

are proposed which include disruption in hypothalamic pathways of satiety control resulting 27 

in hyperphagia, aberration in hormones regulating food intake, reduced energy expenditure 28 

due to hypotonia and altered behaviour with features of autism spectrum disorder. Profound 29 

muscular hypotonia prevents PWS patients from becoming physically active, causing reduced 30 

muscle movements and hence reduced energy expenditure. In a quest for the aetiology of 31 

obesity, recent evidence has focused on several appetite.regulating hormones, growth 32 

hormone, thyroid hormones and plasma adipocytokines. However, despite advancement in 33 

understanding of the genetic basis of PWS, there are contradictory data on the role of satiety 34 

hormones in hyperphagia and data regarding dietary intake are limited. Mechanistic studies 35 

on the aetiology of obesity and its relationship with disease pathogenesis in PWS are 36 

required. . In this review, we focused on the available evidence regarding mechanisms of 37 

obesity and potential new areas that could be explored to help unravel obesity pathogenesis in 38 

PWS.   39 

  40 

 �41 
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Prader.Willi Syndrome (PWS) is a genetic neurological disorder due to loss of function in the 43 

long arm (q11.q13) of paternally derived chromosome 15 occurring in 1 in 16,000 (1 in 44 

10,000 to 1 in 25,000) live births.� The loss of function can be caused by a deletion in 45 

chromosome 15 (~70.75%), uniparental disomy (UPD) (~20.25%), an imprinting defect due 46 

to a mutation in the imprinting centre of the chromosome 15 (~2.5%) or unbalanced 47 

translocations (~1%) (1, 2). 48 

The syndrome is characterised prenatally by decreased fetal movements, 49 

polyhydromnios and post.natally by hypotonia (“floppy child”), feeding problems, and 50 

failure to thrive in early infancy, followed by growth delay, learning difficulties, hyperphagia 51 

and obesity, sleep abnormalities, behavioural problems and hypogonadism (1). Characteristic 52 

phenotypic features in most but not all PWS patients include short stature, small hands and 53 

feet, narrow nasal bridge, almond shaped palpebral fissures, thin upper lip, narrow bifrontal 54 

diameter, scoliosis, eye abnormalities, thick saliva, and hypopigmentation (1). 55 

Severe obesity develops in various nutritional stages (3). A classical description of 56 

these stages was based on two phases; poor feeding, hypotonia, and failure to thrive in early 57 

infancy (phase 1, 0.9 months age), followed by hyperphagia leading to obesity (phase 2, >9 58 

months age to adulthood). However, in a large cohort study of PWS patients followed for 10 59 

years, Miller ���	�� observed a more gradual shift occurring over 7 nutritional phases starting 60 

from before birth (phase 0) and continuing into childhood (phase 1a, 1b, 2a, 2b, 3) and adult 61 

life (phase 4) (3). These were based on the child’s food intake, behaviour, and growth in body 62 

mass (Figure 1).  63 

Although Prader Willi syndrome is the most common cause of syndromal obesity, a 64 

major cause of metabolic complications and mortality in this group (4), the exact mechanism 65 
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for the development of obesity is still largely unknown. Abnormalities in the hypothalamic 66 

satiety centre and its hormonal circuitry have been suggested to affect energy expenditure (5), 67 

food intake (2), and hormonal deficiencies (2). Other factors implicated include muscle tone 68 

(6) and body composition (7). Scoliosis in PWS patients with increasing age is proposed to be 69 

the result of prolonged hypotonicity, increasing age, obesity and subtle bone dysplasia rather 70 

than growth hormone therapy.  However, the interaction of these factors is complex and 71 

needs further study. Furthermore, controversial data on the role of satiety hormones, insulin, 72 

and plasma adipocytokines suggest that other unknown mechanisms may play a role in the 73 

aetiology of obesity in PWS. How far the occurrence of obesity in itself is a confounding risk 74 

factor for the distribution of fat and lean mass rather than hormonal aberrations remains to be 75 

determined. Diet is an important contributor to the onset and progression of obesity however 76 

there are very few studies looking at the dietary intake of PWS patients. This review explores 77 

recent evidence related to the hormonal, dietary, and body composition factors related to 78 

obesity in PWS. Furthermore, it also suggests potential new areas of research that may help 79 

unravel obesity pathogenesis in PWS. 80 

�����	�������
������
�������
��	������
��
��81 

Several hormones related to central and hypothalamic satiety signals have been studied to 82 

explain the aetiology of obesity in PWS (Table 1). Functional magnetic resonance imaging 83 

data suggest that PWS patients show greater post.meal sub.cortical (hypothalamus, 84 

amygdala, hippocampus) stimulation of food activation centres in the limbic and paralimbic 85 

region compared to non.PWS obese and healthy lean controls. In contrast, simple obesity is 86 

associated with significantly higher activity in the dorsolateral prefrontal and orbitofrontal 87 

cortex associated with inhibitory control of food intake compared to PWS patients (8). This 88 

response is even higher for high versus low calorie foods as studies also suggest hyper.89 

stimulation of the satiety related hypothalamic neuronal circuitry in PWS patients compared 90 
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to non.PWS obese patients in response to high calorie vs. low calorie foods (9). This 91 

indicates that functional dysfunction of reward circuitry regions associated with 92 

hypothalamic.satiety.regulating hormones is also involved in development and maintenance 93 

of obesity in PWS.  94 

������	�95 

Ghrelin is a gut hormone which stimulates food intake (orexogenic),  growth hormone 96 

release, gastric emptying, regulates glucose metabolism, stimulates adipose tissue 97 

lipogenesis, and inhibits lipid oxidation (10). Elevated levels of plasma ghrelin stimulate 98 

agouti related peptide (AGRP) neurons in the arcuate nucleus of the hypothalamus which in 99 

turn inhibit the melanocortin receptor 4 (MCR4) in the paraventricular nucleus of 100 

hypothalamus. Inhibition of MCR4 results in delayed satiety and loss of appetite. Persistently 101 

increased orexigenic ghrelin levels in PWS, particularly in children after 3.5 years age 102 

compared with normal children were first reported by DelParigi and colleagues (11) 103 

supported by other studies comparing PWS patients with non.PWS obese, healthy lean, leptin 104 

deficient, and melatonin receptor 4 deficient patients (12, 13, 14). In their study, ghrelin 105 

levels remained high in PWS patients compared to healthy controls even after the same 106 

satiating dose of liquid meals which led to a delayed sense of fullness and persistent drive to 107 

eat (11) (Figure 2). 108 

However in contrast, others found no significant difference in plasma ghrelin levels 109 

between normal weight PWS patients less than 5 years of age, compared with healthy 110 

children matched for age, BMI, and gender (15). This may indicate that levels of ghrelin in 111 

PWS patients increase in childhood only prior to the onset of obesity which does not occur in 112 

healthy children. This assertion is supported by a study which showed significantly higher 113 

levels of plasma ghrelin and a negative correlation between plasma total ghrelin levels and 114 

BMI SDS in lean PWS children (median age 3.6 years) compared to lean controls (16). In a 115 
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recent study of sixty very young (<2 years age) PWS patients in the early nutritional phase 116 

(phase 1), plasma ghrelin levels were significantly higher than in healthy early.onset 117 

morbidly obese patients and healthy sibling lean controls (17). Higher levels of ghrelin were 118 

observed in these patients in early nutritional phases (phase 1a and 1b) long before the onset 119 

of hyperphagia which suggests that higher plasma ghrelin may not be causally related to the 120 

onset of hyperphagia (17). Ghrelin up.regulates adipose tissue lipogenesis and inhibits 121 

lipolysis by activating sterol response element binding proteins, acyl CoA carboxylase, 122 

lipoprotein lipase, and fatty acid synthase independent of its orexigenic effects (18). Whether 123 

persistent increases in plasma ghrelin are involved in triggering higher fat mass in PWS and 124 

whether the effect of growth hormone on fat mass is due to suppression of the plasma ghrelin; 125 

needs further research.  126 

�127 

�	����	�128 

Plasma insulin deficient states or insulin resistance cause diabetes mellitus, and up to 20% of 129 

PWS children develop type 2 diabetes (19). Insulin inhibits neuropeptide Y and stimulates 130 

pro.opiomelanocortin (POMC) neurons in the arcuate nucleus to reduce food intake and is 131 

regarded as one of the mechanisms contributing to obesity in PWS. Some evidence suggests 132 

lower fasting plasma insulin and delayed insulin secretion during an oral glucose tolerance 133 

test (OGTT) with or without normal insulin sensitivity (20), while others have suggested 134 

increased plasma insulin depicting insulin resistance (21) (Table 1). When compared with 135 

age, weight, and BMI matched non.PWS obese controls, obese PWS subjects manifest 136 

different glucoregulatory mechanisms via reduced β.cell response to glucose stimulation, a 137 

significantly increased hepatic insulin extraction, and dissociation of obesity and insulin 138 

resistance (22). Obesity is a diabetogenic state, therefore it is unclear whether changes in 139 

insulin levels are a consequence of severe obesity or the insulin secreting capability of PWS 140 
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patients is abnormal (20). Plasma insulin is an inhibitor of ghrelin independent of plasma 141 

glucose levels (23). Reduced insulin levels in diabetic PWS patients may therefore be a 142 

contributory factor to the elevated plasma ghrelin and its hypothalamic effects.  143 

����
�������	��144 

Deficiency of growth hormone (GH) in PWS is associated with low muscle mass, increased 145 

fat mass, poor muscle tone and strength, decreased movements, and reduced energy 146 

expenditure and exercise tolerance (24). GH replacement therapy in adult PWS patients is 147 

associated with an increase in skeletal muscle mass, reduction in percentage body fat, 148 

increased muscle tone and exercise endurance, independent of the growth hormone secretory 149 

status (25). Furthermore, higher systemic inflammatory cytokines such as TNFα, MCP.1, and 150 

IL.8 and significantly lower fasting glycaemia, insulinemia, IGF.1, and HOMA.IR values 151 

have been shown to partially reverse with GH replacement therapy compared to non.PWS 152 

obese controls.  Compared to untreated patients Tanner stage 1 and 2, GH replacement 153 

therapy seems to improve mean energy intake and reduce total body fat mass measured by 154 

DEXA despite higher saturated fat intake (26). This might indicate improved metabolism and 155 

energy expenditure with GH treatment. Moreover, studies following patients for 12.24 156 

months after the cessation of GH replacement have shown a progressive increase in BMI and 157 

a tendency towards an increase in visceral adipose tissue (27). 158 

����
�
�	�159 

Obestatin is produced in the stomach by post.translational modification of ghrelin. In contrast 160 

to ghrelin, obestatin suppress food intake, inhibits gastric emptying, and decrease weight gain 161 

(28). Unlike ghrelin, obestatin binds to a G protein coupled receptor 39 (GPR39) although it 162 

does not cross the blood brain barrier (28). No study has reported significant difference in 163 

plasma obestatin levels between obese PWS and obese non.PWS patients (29). 164 

������������
�
���	���165 
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Leptin reduces food intake and energy metabolism by inhibiting neuropeptide Y neurons in 167 

the arcuate nucleus. Although plasma leptin in PWS patients is positively correlated with 168 

BMI and body fat mass, no difference has been found in leptin concentration in PWS infants 169 

(17), children and adults (30) compared to healthy normal weight and obese when adjusted 170 

for BMI or fat mass. Although, significantly higher leptin mRNA and plasma leptin 171 

concentration in obese PWS and non.PWS obese children compared to healthy non.obese 172 

children was also reported in a small number of patients (n=6 in each group) (31). No 173 

difference in the relationship of leptin mRNA levels between PWS and non.PWS obesity 174 

might suggest similar response of leptin to obesity regardless of its cause. Whether the 175 

hypothalamic response to the levels of leptin is also the same, needs to be investigated. 176 

Amongst other adipocytokines, plasma resistin and adiponectin have been studied in 177 

PWS obese and non.obese patients (32, 33) (Table 1).  Higher levels of resistin are associated 178 

with insulin resistance and lipogenesis in PWS obese patients (32) while plasma adiponectin 179 

is anti.inflammatory, anti.atherogenic and associated with increased insulin sensitivity in 180 

PWS patients (33). 181 

Visfatin, produced by adipose tissue, is positively associated with systemic 182 

inflammation, atherogenesis, and diabetes (34) and increases by up to 32% for each hour 183 

decrease in rapid eye movement (REM) sleep (35). PWS patients with obesity have reduced 184 

REM sleep and are therefore at risk of increased plasma adipocytokines. However, visfatin 185 

has not yet been measured in PWS. 186 

���
�������187 

Peptide YY is released from ileal and colonic cells postprandially to induce satiety by 188 

stimulating POMC neurons, inhibiting NPY, and reducing gastric emptying (Table 1, Figure 189 

2). There are two isoforms; PYY (1.36), selective for NPY1, 2, and 5 receptors, and PYY (3.190 
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36), an anorectic sub.type, highly selective for NPY2 receptor in the arcuate nucleus which 191 

regulates food intake under physiological conditions (36). There is contradictory evidence 192 

suggesting reduced (14) or increased (37) levels of PYY (3.36) in obese PWS compared to 193 

non.PWS obese and lean controls. 194 

�������������	���195 

Approximately 20.30 % of PWS patients suffer from deficiency in central hypothalamic 196 

thyroid hormone.releasing hormone at birth  (1, 38) and up to 2 years of age (38). Reduced 197 

free, total T4, T3, and TSH suggests disturbance of the hypothalamic thyroid.releasing 198 

hormone and TSH axis. Hypothyroidism from early infancy adds to the floppiness, 199 

hypotonia, reduced energy expenditure and reduced BMR and hence obesity in later years. 200 

 201 

In summary, alteration in several satiety and peripheral satiety hormones may affect the 202 

hypothalamic satiety regulation in PWS resulting in delayed satiety and early appetite 203 

stimulation (Table 1). Furthermore, the peripheral effects of growth and thyroid hormone 204 

deficiency affect body composition contributing to reduced energy expenditure. 205 

Contradictory data on the relationship of body fat mass and BMI in PWS and non.PWS obese 206 

patients raises the question as to whether satiety hormones are causatively related to the 207 

aetiology of hyperphagia in PWS.   208 

 ��
�����	
�����	��!��209 

Obesity results from an imbalance between energy intake and expenditure. Diet is therefore 210 

likely to be an important contributory factor. Although reduced energy expenditure and 211 

hypothalamic dysfunction might promote energy accumulation in PWS children and young 212 

adults, the occurrence of in.satiable hunger and gastroparesis might promote dietary intake 213 

(39). “Hypo.activity” and “hypo.metabolism” in PWS children requires intake of 20.30% 214 

lower energy than healthy age.matched children. Adherence to specific macronutrient and 215 

Page 9 of 50 Pediatric Obesity



10 

 

energy restricted diets reduces the proportion of body fat (19.8% vs. 41.9%) and body mass 216 

index (0.3 SDS vs. 2.23 SDS) in children and adults (40).   217 

Although the effect of dietary intervention on the body composition of PWS patients 218 

has been investigated, very few studies have looked at actual daily dietary intake in obese 219 

PWS children. Furthermore, none has compared dietary intake between healthy obese and 220 

obese.PWS groups of the same age range which could give an indication whether PWS obese 221 

patients under.report or under.eat similar to the healthy obese.  222 

An early study by Holm and Pipes (1976) on 14 PWS patients reported an intake of 223 

650.1050 Kcal/day during the initial period of weight loss depending on the size of the 224 

patient (41). Eight of 11 patients who lost weight were able to successfully maintain their 225 

weight over 6 months to 5 years on a 800.1990 Kcal/day diet appropriate for age (41). This 226 

suggests that hyperphagia and subsequent obesity can be prevented by restriction of caloric 227 

intake. Moreover, children below 5 years with PWS report a daily energy intake of 228 

approximately 30% to 65% below recommended amounts followed for up to 3 years (42). 229 

Similar results have been observed in adults with reported daily energy intake of 1000.1500 230 

kcal (43).  231 

These studies are limited by subject numbers, narrow age range, limited time of 232 

dietary data collection, not accounting for age related differences in dietary intake, and 233 

dietary intake reported by parents. Recording reliable dietary information in PWS patients 234 

with behavioural issues is a challenge. Intake of a balanced nutritious diet is essential for 235 

normal growth and homeostasis. This suggests consideration of appropriate nutritional 236 

support tailored to individuals and not just energy restriction. Further large scale studies with 237 

more robust methods of recording dietary data are needed to record the routine nutrient intake 238 

of these patients before dietary intervention strategy is applied to ensure balanced growth, 239 

preventing obesity and under.nutrition of the patients at the same time.  240 
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Obesity attributed to no known identifiable cause has been shown to differ from 242 

hypothalamic obesity in PWS in terms of both intrinsic (such as GH, thyroid hormones, 243 

insulin, and leptin) and extrinsic factors (such as exercise, diet, and lifestyle). Growth 244 

hormone deficiency, hypothyroidism and hypogonadism in addition to lower energy 245 

expenditure (both resting and activity), hypotonia, and behavioural issues in patients with 246 

PWS result in lower lean mass by 25.27% and a higher fat mass compared to simple obese 247 

patients (44). Reduced lean mass with lower physical activity and muscular hypotonia could 248 

result in less weight.bearing stress on the bones and hence lower bone.mineral content and 249 

density (45) particularly after adjustment for height and age of the patient. This suggests that 250 

differences in lean mass, fat mass or bone.mineral density should also be studied in the 251 

context of height for age of the patients and their pituitary status. The distribution of fat and 252 

lean mass differ between body sites (e.g. between lumber & spine area and the hips & thighs) 253 

indicates the need for careful interpretation of body composition measurements. How far the 254 

occurrence of obesity in itself is a confounding risk factor for fat and lean mass distribution 255 

rather than hormonal aberrations, remains to be determined. Long.term follow up studies are 256 

therefore required to characterize the changes in body composition in PWS patients. 257 

��	�
�
�#����	
���	�����
��	�
�������
���	��!��258 

Of the three main molecular mechanisms of PWS genotypes (deletion, UPD 15, and 259 

imprinting defects), no significant difference in the prevalence of obesity or hyperphagia 260 

between the deletion or non.deletion PWS patients have been reported (46). Although no 261 

peculiar characteristic can exclusively be attributed to individual genotype, psychiatric illness 262 

and intellectual disability is more common in mUPD compared to need for special feeding 263 

techniques, sleep disturbance, hypopigmentation, and speech articulation defects in the 264 
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deletion group (47). Although individual cases have been reported suggesting association of 265 

hyperphagia, obesity and hypogonadism with specific genetic aberrations such as 266 

microdeletions of HBII.85 class of small nucleolar RNAs (snoRNAs) (48), lack of expression 267 

of PWCR1/HBII.85 snoRNAs (49), and SNORD116 C/D box snoRNA cluster (50), there is 268 

scarcity of mechanistic evidence from mutant animal models that could prove the effect of 269 

these aberrations on obese/lean phenotype. 270 

Patients with UPD have been observed with significantly lower insulin.induced growth 271 

hormone secretion compared to the deletion group (51). However there was no significant 272 

difference in the yearly improvement in height (52) or the bone.mineral density (53) in 273 

response to GH replacement therapy in either group. The lack of significant obese phenotype.274 

genotype correlation and a similar response to GH despite differences in basal GH secretion 275 

suggests that PWS children acquire obesity regardless of the genetic cause and that obesity 276 

results from a constellation of behavioral, psychiatric, and developmental disturbances.  277 

�����
����

�#�
���	������#������	��!��278 

With characteristic disease.related muscle hypotonia and alteration in body composition, 279 

differences in physical activity between obese PWS and obese non.PWS patients or the 280 

healthy population are expected. Evidence suggests reduced physical activity (by ~20%) and 281 

reduced vigour (by ~30%) in PWS obese versus non.PWS obese subjects (6). Only 12% 282 

patients reach local recommendations for daily physical activity compared with 20.22% of 283 

the normal population (54). Interestingly, this physical activity level is independent of 284 

adiposity.  285 

Long term home based exercise interventions improve lean muscle mass, reduce calf skinfold 286 

and increase spontaneous physical activity (from 45% to 71%), and exercise capacity (from 287 

31% to 78%) (55). 288 
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Autistic features are present in up to 36% PWS patients and could be due to the 289 

overexpression of ubiquitin protein ligase E3A (UBE3A) in maternal UPD, which 290 

significantly contributes to mental retardation and behavioural and communication problems 291 

(56). These traits tend to increase with age (56) and may contribute to overweight and obesity 292 

by increasing dietary intake and reduce physical activity due to a “lonely” and less socializing 293 

behaviour.  294 

Patients with PWS frequently suffer from daytime sleepiness and have abnormal 295 

circadian rhythms of rapid eye movement sleep, central hypoventilation, abnormal 296 

ventillatory response to hypoxia, and hypercapnia. This leads to episodes of apnoea and 297 

hypopnea and disturbed sleep further exacerbated by obesity. Constellation of these disorders 298 

lead to reduced physical activity and energy expenditure, anxiety, stereotyped behaviour, 299 

difficulty in maintaining social relations and communication (57). 300 

$�	
�����	���	����
��������

��	��301 

Obesity is the leading cause of morbidity and mortality in PWS patients. It is a complex 302 

phenomenon occurring due to disturbance in the hypothalamic satiety regulatory mechanisms 303 

contributed by several hormones, body composition differences, low physical activity, altered 304 

feeding behaviour and increased dietary intake (supplementary figure 1). However, the exact 305 

mechanisms responsible remain to be determined and need further study. 306 

Obesity in PWS is associated with chronic low.grade inflammation which is not 307 

explained by obesity and insulin resistance (58). The gut microbiota have been recently 308 

suggested to be involved in obesity.genesis via increased energy harvest from fermentable 309 

carbohydrates. The gut microbiota in non.PWS obesity have also been associated with 310 

chronic low.grade inflammation. However, this has not been studied in obese PWS patients. 311 

There is limited evidence of baseline dietary habits of PWS patients and therefore 312 
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longitudinal studies are needed to elucidate the dietary patterns of these patients to 313 

individually tailor dietary intervention. 314 

 315 
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�324 

&������'�����
������������������������������� 
�
�
�����������������
�������( 325 

PWS children are hypotonic with poor suck and failure to thrive in early infancy but 326 

gradually catch up with their growth in phase 2a and 2b. Obesity develops by phase 3 when 327 

most of the factors contributing to obesity have already set in. Some patients develop obesity 328 

very early (e.g. during phase 2a) (Miller ���	� 2011) (course shown in dotted line). NIDDM; 329 

Non.insulin dependent diabetes mellitus, m; months, y; years 330 

 331 

&������)� ��	
���
��������
����������������������������(�!�� ������������	
�332 

�����������*)++,-�*./-( 333 

Decreased plasma insulin and PYY result in loss of stimulatory signals to the POMC neurons 334 

and loss of inhibitory signals to NPY neurons in the arcuate nucleus which fails to stimulate α 335 

and β.MSH to control satiety via activation of MCR4 receptor in the Paraventricular nucleus. 336 

The role of leptin is still under investigation (marked with “?” in the figure) as overall 337 

evidence suggests no difference in leptin concentration in PWS obese vs. non.PWS obese. 338 

On the other hand, persistent increase in plasma ghrelin results in stimulation of neurons 339 

expressing NPY and AGRP which inhibit MCR4 signalling and hence increase drive towards 340 

food intake (3). Alteration in TRH.TSH axis results in reduced energy expenditure (2). 341 

Deficiency of GH due to loss of feedback mechanism despite persistent increase in plasma 342 

ghrelin results in growth delay increasing weight for height ratio, reduced muscle mass, and 343 

increased body fat (1). AGRP, agouti.related protein; α.MSH, alpha melanocyte stimulating 344 

hormone receptor; NPY, neuropeptide Y; POMC, pro.opiomelanocortin;TRKB, tyrosine 345 

kinase receptor, GH; growth hormone, PYY; Peptide YY, TRH; Thyroid hormone releasing 346 

hormone, TSH; Thyroid stimulating hormone,�TRKB; Tyrosine kinase receptor B.  347 
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��  ���������� ������� ': ��� ������� 
	
���� ���� �
�� ��	
���
�� ��� ���
���� ���349 

�������������
������� 350 

GH; Growth hormone, TSH.TRH; thyroid stimulating hormone.thyroid releasing hormone, 351 

EE; energy expenditure, BMR; basal metabolic rate 352 

  353 
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Table 1: Hormones related to aetiology of obesity in Prader.Willi Syndrome 354 

0������� ��������

�����	�����

��������!	����� �
�
������	�������� ���
������������� ����

1
������ Stomach AGRP in Arcuate 
nucleus, adipose 
tissues 

Regulates short term food intake, 
↑ in hunger, ↓ after food intake,  

Persistently ↑ ghrelin even after food 
intake leading to weight gain. Levels 
vary with age 

(11) 

�   Regulates lipid metabolism ↑ body fat   

�   ↑ GH secretion Failure to increase GH leading to 
growth delay, failure to thrive, short 
stature 

 

���
������ Derived post.
transnationally 
from 
preproghrelin 

AGRP in Arcuate 
nucleus 

Suppresses appetite, inhibit 
jejunal contractions, and decrease 
body weight 

Limited evidence, Higher Obestatin in 
≤3 years PWS patients contributing to 
failure to thrive and poor feeding in 
early stages 

(60) 

�    No difference between obese PWS and 
obese controls 

(29) 

"� ���� Adipose tissue POMC and NPY 
neurons in arcuate 
nucleus 

Primarily inhibits NPY but also 
stimulates POMC neurons leading 
to stimulation of MCR4 receptor 
to induce satiety 

Levels similar in PWS and obese 
control although positively correlated 
with BMI and body fat 

(30) 

��
�
���� Adipose tissue Liver Hepatic insulin resistance and 
lipogenesis 

↑ in PWS (not related to insulin 
resistance, only related to the degree of 

(32) 
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obesity) 

�    No difference between obese PWS and 
obese and lean controls 

(33) 

!�� ���	���� Adipose tissue β.cells in pancreas ↑ Insulin sensitivity , anti.
inflammatory,  anti.atherogenic 

↑ in PWS compared to non.PWS obese, 
significant positive correlation with 
insulin sensitivity in PWS but not in 
obese controls 

(33) 

�    ↑ in PWS compared to obese controls 
but ↓ in PWS compared to lean, no 
correlation with insulin sensitivity and 
anthropometric measurements 

(37) 

2�
������ Adipose tissue Pancreas, muscles, 
liver 

Associated with inflammation and 
insulin resistance. Increase with 
short sleep duration 

No data available  

�33� Duodenum Inhibitory 
Presynaptic receptor 
for NPY 

Induce satiety by stimulating 
POMC and inhibiting NPY 
resulting in dis.inhibition of α and 
β MSH 

↓ PYY (3.36) in PWS compared to 
healthy controls leading to delayed 
sense of fullness 

(14) 

�   Reduce gastric emptying and gut 
transit time 

Delayed sense of fullness, overeating   

�    ↑ in PWS compared to non.PWS obese, (61) 

�    ↑ in PWS compared to obese controls 
but ↓ in PWS compared to lean. No 

(37) 
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GLP.1; Glucagon.like peptide 1, AGRP; Agouti.related peptide, GH; growth hormone,  POMC; pro.opiomelanocortin, NPY; neuropeptide Y, 355 

NIDDM; non.insulin dependent diabetes mellitus,  PWS; Prader.Willi syndrome. 356 

correlation with insulin sensitivity and 
anthropometric measurements 

#�
����� Pancreas POMC and NPY 
neurons in arcuate 
nucleus 

Stimulate POMC and inhibit NPY 
neurons leading to stimulation of 
MCR4 receptor to induce satiety 

↓ in PWS leading to hyperphagia, and 
NIDDM in adulthood 

(61) 

1����
�

0�������

Anterior 
pituitary 

Muscles, Bones, 
adipose tissue 

Induces normal growth and 
energy metabolism 

Growth delay, altered metabolism and 
energy expenditure 

(24, 25) 

1"��'� Intestine Pancreas Enhances insulin sensitivity  No difference at baseline, ↑ after GH 
replacement therapy 

(33) 

�
������


������
�

Thyroid gland Muscles, Bones, 
adipose tissue 

Regulate whole body metabolism ↓ in PWS resulting in altered metabolic 
rate and energy expenditure 

(38) 
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Table 1: Hormones related to aetiology of obesity in Prader�Willi Syndrome 

�������� �	
�����

���
��
	���

�	
�������
	��� ����	����	��������� ��
�������	������ ����

�����	�� Stomach AGRP in Arcuate 

nucleus, adipose 

tissues 

Regulates short term food intake, 

↑ in hunger, ↓ after food intake,  

Persistently ↑ ghrelin even after food 

intake leading to weight gain. Levels 

vary with age 

(11) 

�   Regulates lipid metabolism ↑ body fat   

�   ↑ GH secretion Failure to increase GH leading to 

growth delay, failure to thrive, short 

stature 

 

����
�
	�� Derived post�

transnationally 

from 

preproghrelin 

AGRP in Arcuate 

nucleus 

Suppresses appetite, inhibit 

jejunal contractions, and decrease 

body weight 

Limited evidence, Higher Obestatin in 

≤3 years PWS patients contributing to 

failure to thrive and poor feeding in 

early stages 

(60) 

�    No difference between obese PWS and 

obese controls 

(29) 

���
	�� Adipose tissue POMC and NPY 

neurons in arcuate 

nucleus 

Primarily inhibits NPY but also 

stimulates POMC neurons leading 

to stimulation of MCR4 receptor 

to induce satiety 

Levels similar in PWS and obese 

control although positively correlated 

with BMI and body fat 

(30) 

���	�
	�� Adipose tissue Liver Hepatic insulin resistance and 

lipogenesis 

↑ in PWS (not related to insulin 

resistance, only related to the degree of 

obesity) 

(32) 
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�    No difference between obese PWS and 

obese and lean controls 

(33) 

�
	�����
	�� Adipose tissue β�cells in pancreas ↑ Insulin sensitivity , anti�

inflammatory,  anti�atherogenic 

↑ in PWS compared to non�PWS obese, 

significant positive correlation with 

insulin sensitivity in PWS but not in 

obese controls 

(33) 

�    ↑ in PWS compared to obese controls 

but ↓ in PWS compared to lean, no 

correlation with insulin sensitivity and 

anthropometric measurements 

(37) 

�	���
	�� Adipose tissue Pancreas, muscles, 

liver 

Associated with inflammation and 

insulin resistance. Increase with 

short sleep duration 

No data available  

���� Duodenum Inhibitory 

Presynaptic receptor 

for NPY 

Induce satiety by stimulating 

POMC and inhibiting NPY 

resulting in dis�inhibition of α and 

β MSH 

↓ PYY (3�36) in PWS compared to 

healthy controls leading to delayed 

sense of fullness 

(14) 

�   Reduce gastric emptying and gut 

transit time 

Delayed sense of fullness, overeating   

�    ↑ in PWS compared to non�PWS obese, (61) 

�    ↑ in PWS compared to obese controls 

but ↓ in PWS compared to lean. No 

correlation with insulin sensitivity and 

anthropometric measurements 

(37) 
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GLP�1; Glucagon�like peptide 1, AGRP; Agouti�related peptide, GH; growth hormone,  POMC; pro�opiomelanocortin, NPY; neuropeptide Y, 

NIDDM; non�insulin dependent diabetes mellitus,  PWS; Prader�Willi syndrome. 

 ����	�� Pancreas POMC and NPY 

neurons in arcuate 

nucleus 

Stimulate POMC and inhibit NPY 

neurons leading to stimulation of 

MCR4 receptor to induce satiety 

↓ in PWS leading to hyperphagia, and 

NIDDM in adulthood 

(61) 

���!
��

��������

Anterior 

pituitary 

Muscles, Bones, 

adipose tissue 

Induces normal growth and 

energy metabolism 

Growth delay, altered metabolism and 

energy expenditure 

(24, 25) 

���"#� Intestine Pancreas Enhances insulin sensitivity  No difference at baseline, ↑ after GH 

replacement therapy 

(33) 

$����	
�

���������

Thyroid gland Muscles, Bones, 

adipose tissue 

Regulate whole body metabolism ↓ in PWS resulting in altered metabolic 

rate and energy expenditure 

(38) 
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