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Abstract 57 

 58 

Mesoscale phenomena are ubiquitous and highly energetic features of ocean circulation.  59 

Their influence on biological and biogeochemical processes varies widely, stemming from not 60 

only advective transport but also through generation of environmental variations that affect 61 

biological and chemical rates.  Elucidation of the attendant mechanisms of physical-biological-62 

biogeochemical interaction is made difficult by the ephemeral nature of the underlying 63 

processes, necessitating the use of multidisciplinary approaches involving in situ observations, 64 

remote sensing, and modeling.  All three aspects are woven through this review in an attempt to 65 

synthesize current understanding of the topic, with particular emphasis on novel developments in 66 

recent years. 67 

 68 

 69 

 70 

 71 

 72 

Key words 73 

 74 

Eddies, eddy pumping, advection, eddy-wind interaction, eddy-driven stratification, plankton 75 

diversity.  76 

 77 

 78 

79 



4 

1. INTRODUCTION 80 

Interconnection among the physics, biology, and biogeochemistry of the sea stems from 81 

three basic sources.  First, the rates of biological and chemical reactions depend on 82 

environmental parameters such as temperature, salinity, nutrient concentration, etc.  Second, 83 

hydrodynamic transport continually redistributes dissolved and suspended constituents in the 84 

water column.  Third, constituents of interest can have directed motion through the water as a 85 

result of buoyancy (sinking or floating) and behavior (swimming) in the case of motile 86 

organisms.  Each of these three aspects supports a variety of mechanisms creating biological and 87 

biogeochemical variability at a wide range of space and time scales.  For example, the difference 88 

in deep water nutrient concentrations between the North Atlantic and North Pacific basins has 89 

been attributed to the joint effects of the global overturning circulation and remineralization of 90 

sinking particulate material (Broecker & Peng 1982). 91 

A particularly strong manifestation of physical-biological-biogeochemical interactions 92 

takes place at the oceanic mesoscale.  The currents, fronts, and eddies that comprise this class of 93 

phenomena occur on spatial scales of tens to hundreds of kilometers, and are in many ways 94 

dynamically analogous to atmospheric weather.  Mesoscale motions are typically produced by 95 

instability processes that result in flow features that are in approximate geostrophic balance in 96 

the horizontal and hydrostatic balance in the vertical; they are characterized by small Rossby and 97 

Froude numbers, as well as small aspect ratios.  Of course the mesoscale occurs within a 98 

continuum of scales, bounded above by the large scale that sets the mean gradients from which 99 

eddies are generated, and bounded below by the submesoscale, in which motions are also 100 

significantly influenced by rotation and stratification but ageostrophic effects play a primary role 101 

in the balance of forces.  Although the dynamics of mesoscale eddies and fronts are closely 102 

related, we will focus here mostly on the former.  For a recent review on the nature and 103 

consequences of oceanic eddies from a primarily physical point of view, see McWilliams (2008). 104 

Targeted studies of the biological impacts of mesoscale eddies date back at least as far as 105 

the late 1970s and early 1980s (Supplementary Table).  Pingree et al. (1979) pioneered 106 

interdisciplinary investigations of eddies in shelf seas.  Some of the first synoptic maps of 107 

phytoplankton, primary production, and seston in the open ocean were collected during the 108 

POLYMODE program, providing evidence of eddy-driven variations in all of these quantities 109 

(Radchenko 1983, Roukhiyainen & Yunev 1983).   At about that same time, advances in remote 110 

sensing yielded the first satellite-based estimates of chlorophyll, indicating a variance spectrum 111 

consistent with geostrophic turbulence (Gower et al. 1980).  Detailed interdisciplinary process 112 

studies of Gulf Stream Rings began in that same era, focusing on eddy-induced variability and 113 

regional impacts (Ring Group 1981).    These developments led to advancements in the 114 

conceptual basis for mesoscale physical-biological interactions (Legendre & Demers 1984, 115 

Mackas et al. 1985, Woods 1988).  Interest in the large-scale integrated impacts of eddies on 116 

ocean biogeochemistry was stimulated by the apparent discrepancy between estimates of new 117 

production and nutrient supply through vertical mixing (Jenkins & Goldman 1985, Shulenberger 118 

& Reid 1981).  Specifically, mesoscale processes were hypothesized to be responsible for the 119 

“missing” nutrients in the subtropical gyre (Jenkins 1988a).  While debate on that topic has 120 

continued through the present time, several new aspects have emerged—including the question 121 

of whether eddies constitute a net sink of nutrients in the subpolar gyre (McGillicuddy et al. 122 

2003) and in coastal upwelling regions (Gruber et al. 2011). 123 

This review is an attempt to synthesize our understanding of mesoscale physical-124 

biological-biogeochemical interactions, with particular emphasis on progress over the last 15 125 
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years.  One new development during this time period is the analysis of both data and models in 126 

“eddy-centric” coordinates to illuminate the underlying dynamics; this approach is described in 127 

section 2.  This framework is used in section 3 as a basis to survey the mechanisms by which 128 

eddies can influence upper ocean distributions of chlorophyll.  Eddy impacts on mean properties 129 

and fluxes are reviewed in section 4, followed by descriptions of three relatively new and 130 

growing areas of inquiry: eddy-driven biological Reynolds stresses (section 5), controls on 131 

community composition and diversity (section 6), and mesoscale niche utilization by higher 132 

trophic levels (section 7).  Concluding remarks are provided in section 8.  This work builds on 133 

earlier reviews by Angel and Fasham (1983), Flierl and McGillicuddy (2002), Lewis (2002), 134 

Lévy (2008), Oschlies (2008), Klein and Lapeyre (2009), Williams and Follows (2011; see 135 

Chapter 9).  Mahadevan (2016) reviews submesoscale biological and biogeochemical dynamics.  136 

 137 

2. A NEW WINDOW INTO PHYSICAL-BIOLOGICAL INTERACTIONS AT THE 138 

MESOSCALE: ANALYSIS IN EDDY-CENTRIC COORDINATES 139 

Recent progress in automated methods for identifying and tracking mesoscale eddies with 140 

satellite altimetry has facilitated construction of a global atlas of eddy trajectories, amplitudes, 141 

and sizes (Figure 1) (Chelton et al. 2011b).  Use of the derived eddy-centric coordinates to 142 

merge altimetric sea surface height (SSH) data with other remotely sensed properties such as 143 

satellite ocean color (CHL), sea surface temperature (SST), and ocean vector winds is now 144 

providing unprecedented opportunities for investigation of the physical and biological dynamics 145 

of mesoscale phenomena.  Construction of eddy-centric composites of many (in some cases, 146 

thousands) of synoptic realizations of satellite data has allowed mean eddy-driven signals to 147 

emerge.  These coherent eddy-driven structures in physical and biological properties vary 148 

regionally, reflecting a variety of different mechanisms by which mesoscale dynamics can 149 

influence upper ocean CHL distributions (Gaube et al. 2014). 150 

A key initial finding from the eddy-centric analysis of satellite-derived SSH was the degree 151 

of nonlinearity of mid-ocean eddies.  Whereas earlier assessments of the westward propagating 152 

signal in SSH based on a single altimeter were attributed to linear Rossby wave dynamics 153 

(Chelton & Schlax 1996), higher resolution data products from multiple satellite missions 154 

merged together (Pascual et al. 2006) yielded a different picture.  Chelton et al. (2007) computed 155 

a nonlinearity parameter from the ratio of the altimetrically-inferred geostrophic swirl velocity 156 

(u) to the propagation speed I of each eddy feature, finding that the vast majority of eddies were 157 

nonlinear ( ݑ⁄ܿ ൐ 1).  This finding has key implications with respect to interpretation of the 158 

associated biological signal: nonlinear eddies trap fluid inside them, whereas linearly 159 

propagating wavelike disturbances do not.  160 

Initial investigations of the relationships between satellite-based SSH and CHL revealed 161 

coherence in large-scale westward propagating signals that were attributed to linear Rossby 162 

waves (Cipollini et al. 2001, Uz et al. 2001), analogous to the Chelton and Schlax (1996) 163 

assessment of westward propagating signals in SSH alone.  A variety of mechanisms were 164 

proposed to explain the observed coherence in SSH and CHL, including (a) lateral advection of 165 

the mean chlorophyll gradient, (b) uplift of the deep chlorophyll maximum into the surface layer, 166 

(c) enhancement of phytoplankton biomass stimulated by upwelling of nutrients, and (d) 167 

accumulation of material in convergence zones within the planetary wave field (Charria 2003, 168 

Dandonneau et al. 2003, Killworth et al. 2004).  These early studies focused on large-scale 169 

signals characteristic of Rossby waves by processing the satellite measurements with scale-170 
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selective filters, and in some cases (Killworth et al. 2004) by utilizing only a single altimeter and 171 

thus a lower-resolution data set.   172 

Using the new global data base of eddy trajectories, Chelton et al. (2011a) overlaid eddy 173 

tracks on the westward-propagating signals previously attributed to Rossby waves in the filtered 174 

SSH and ocean color data (Figure 2d,e).  Coincidence of those features strongly suggests eddies 175 

are driving the variations.  How might eddies be aliased into a larger-scale Rossby wave signal?  176 

Westward propagation of both types of features stems from latitudinal dependence of the effects 177 

of earth’s rotation, causing them to translate at approximately the same speed.  In essence, a 178 

patchwork of westward propagating eddies has a zonal wavenumber-frequency spectrum that is 179 

qualitatively similar to that expected for linear Rossby waves, which explains why eddies can 180 

pass through the filters intended to eliminate them in earlier studies (McGillicuddy 2011). 181 

These findings require reassessment of the underlying mechanisms used to explain satellite 182 

observations of variability in SSH and upper ocean chlorophyll.  Although the same four basic 183 

processes of biomass modulation (a-d) mentioned above remain valid, their expression takes 184 

different dynamical forms at various scales, ranging from the mesoscale down to the 185 

submesoscale (Abraham 1998, Lévy et al. 2001, Siegel et al. 2008).  In the next section we 186 

survey the various mechanisms, focusing on the mesoscale. 187 

 188 

3. SURVEY OF MECHANISMS BY WHICH EDDIES AFFECT UPPER OCEAN 189 

CHLOROPHYLL DISTRIBUTIONS 190 

 191 

3.1 Eddy Stirring 192 

 Turbulent advection by mesoscale and submesoscale flows has long been recognized as a 193 

source of phytoplankton patchiness in the ocean (see review by Martin (2003)).  Idealized 194 

models of two-dimensional geophysical flows reveal the cascade of variance from large to small 195 

scales via stirring of the populations (Abraham 1998), although in some instances biological 196 

dynamics can dominate (Srokosz et al. 2003).  Direct observational evidence of mesoscale 197 

stirring has been derived from remotely sensed synoptic snapshots of surface geostrophic 198 

velocity (from altimetry) and chlorophyll (Lehahn et al. 2007).  Advanced algorithms for 199 

diagnosing various phytoplankton functional types has facilitated investigation of stirring effects 200 

on fluid dynamical niches (d'Ovidio et al. 2010). 201 

From an eddy-centric perspective, rotational flow will tend to perturb the local CHL 202 

distribution via azimuthal advection.  Consider, for example, a clockwise-rotating eddy (northern 203 

hemisphere anticyclone) in a northward CHL gradient, shown schematically in Figure 2a (top). 204 

The western (leading) edge of the eddy contains a negative CHL anomaly in the northwest 205 

quadrant and the eastern (trailing) edge a positive CHL anomaly in the southeast quadrant. In the 206 

same background field, a counterclockwise-rotating eddy (northern hemisphere cyclone) will 207 

result in a positive anomaly in the southwest quadrant and a negative anomaly in the northeast 208 

quadrant (Figure 2a, bottom).  Orientation of the dipole in CHL anomaly is a function of the 209 

rotational sense of the eddy as well as the propagation direction in relation to the ambient CHL 210 

field. 211 

 This process has been investigated in detail in the eastern subtropical South Pacific 212 

(Chelton et al. 2011a).  Eddies in this region (Figure 1, “SEP”) have a smaller mean amplitude 213 

than the global average for the same latitude band (mean SSH anomaly of 3.2 cm versus 6.2 cm), 214 

although their radial scale is approximately the same (110 km).  As such, these eddies tend to be 215 

less nonlinear than the global average, with  ݑ⁄ܿ ൐ 1 for 87% of them.  A complex relationship 216 
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exists between SSH and CHL (Figure 2c), with eddy-driven perturbations most pronounced in 217 

the areas of strongest CHL gradients.  A strong mean gradient in CHL is also present in this 218 

region, oriented meridionally in the western part and zonally in the eastern part in proximity to 219 

the coast.  Removal of the large-scale gradients and mean seasonal cycle allows the eddy signals 220 

to emerge more clearly.  Westward co-propagation of SSH and CHL is readily apparent, and 221 

individual eddy trajectories delineate the streaks in the anomaly fields (Figure 2d,e).  222 

Compositing the data into eddy-centric coordinates, oriented relative to the large-scale mean 223 

gradient, yields dipole patterns characteristic of eddy stirring (Figure 2b).  Although the dipole 224 

structures are qualitatively similar to the theoretical prediction (Figure 2a) there is a subtle 225 

difference: the magnitudes of the leading poles are higher in amplitude than the trailing poles.  226 

This asymmetry is apparently a result of the trailing edge of the eddy interacting with an ambient 227 

CHL field that has recently been under the influence of the leading edge of the eddy (Chelton et 228 

al. 2011a).  Similar dipole patterns emerged from an eddy-centric analysis of eddy features in the 229 

Sargasso Sea (Siegel et al. 2011). 230 

 231 

3.2 Eddy Trapping 232 

Nonlinear eddies tend to trap the fluid contained in their interiors (Flierl 1981, Provenzale 233 

1999).  The composition of the trapped fluid depends on the process of eddy formation as well as 234 

the local gradients in physical, chemical, and biological properties.  These properties can be 235 

maintained over long time periods, depending on ring evolution and exchange with the 236 

surrounding water masses.  Gulf Stream Rings provide a classic example (Wiebe & Joyce 1992) 237 

(Figure 3a).  Cyclonic meanders pinch off cold-core rings that trap nutrient rich, high CHL slope 238 

water from the landward side of the Gulf Stream, whereas anticyclonic meanders pinch off 239 

warm-core rings that trap oligotrophic low CHL water from the Sargasso Sea. A contrasting 240 

example comes from the Leeuwin current (Figure 3b), which can spawn anticyclonic eddies 241 

with enhanced CHL derived from the coastal region (Moore et al. 2007).  Trapped fluid is not 242 

unique to rings and boundary currents, and it is a common characteristic of nonlinear eddies in 243 

the open ocean (e.g., Menkes et al. 2002). 244 

The trapping mechanism is evident in eddy-centric composites from the Gulf Stream 245 

region (Gaube et al. 2014).  Cyclones from the region labeled “GS” in Figure 1 contain positive 246 

CHL anomalies in their interiors, and anticyclones contain negative CHL anomalies (Figure 247 

4a,b).  In both cases the anomalies appear as a monopole structure, in contrast to the dipole 248 

structure produced by eddy stirring (Figure 2b).  More importantly, these CHL anomalies are 249 

present at the initial time of eddy detection (Figure 4c,d), suggesting they originated from the 250 

process of eddy formation.  Note that the region over which this analysis was performed is large 251 

enough to include not only Gulf Stream rings, but also mid-ocean eddies; there is no distinction 252 

between them in the eddy-centric composites.  In some regimes, such as the Agulhas 253 

retroflection, fluid trapped in rings can propagate well into the ocean interior, providing 254 

significant lateral fluxes of physical, chemical, and biological properties Lehahn et al. (2011). 255 

 256 

3.3 Eddy Pumping 257 

This mechanism can be conceptualized by considering a density surface with mean depth 258 

coincident with the base of the euphotic zone. This surface is perturbed vertically by the 259 

formation, evolution, and destruction of mesoscale features. Three types of features are 260 

schematized in Figure 5.  Cyclones and anticyclones dome and depress the seasonal and main 261 

pycnoclines, respectively.  Mode-water eddies are comprised of a lens-shaped disturbance that 262 
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raises the seasonal pycnocline and lowers the main pycnocline.  During eddy formation and 263 

intensification (Figure 5, top), shoaling density surfaces in cyclones and mode-water eddies lift 264 

nutrients into the euphotic zone, where they are rapidly utilized by the biota. Deepening of the 265 

isopycnals in anticyclones pushes nutrient-depleted water out of the well-illuminated surface 266 

layers. The asymmetric light field thus rectifies vertical displacements of both directions into a 267 

net upward transport of nutrients. Two aspects of this process favor complete utilization of the 268 

upwelled nutrients. First, the time scale for biological uptake is fast (order of days) with respect 269 

to the physical supply mechanism (eddy lifetimes on the order of months). Second, because the 270 

nutrient enhancement takes place in the eddy’s interior, the circulation tends to isolate it from the 271 

surrounding waters, which allows biomass to accumulate until the nutrients are exhausted. 272 

Evidence for the eddy pumping mechanism is also present in the eddy-centric anomalies 273 

from the Gulf Stream region (Figure 1, “GS”).  To begin with, the positive CHL anomaly 274 

monopoles in cyclones and negative CHL anomaly monopoles in anticyclones (Figure 4, left) 275 

are consistent with expectations based on the conceptual model for eddy pumping—although 276 

monopole structures of these polarities are ambiguous with respect to eddy trapping and 277 

pumping (Gaube et al. 2014).  As stated above, the presence of these anomalies at the time of 278 

first detection is consistent with trapping.  However, the signature of eddy pumping is manifested 279 

by a subtle trend that barely exceeds the associated uncertainties: as cyclones intensify in the first 280 

twelve weeks of their lifetimes (Figure 4c), CHL anomalies also increase (Figure 4d).  In 281 

contrast, the negative CHL anomaly in anticyclones is more stable over time during the same 282 

interval. 283 

It is important to note that the eddy-centric analysis based on sea level cannot distinguish 284 

between mode-water eddies and regular anticyclones.  Because steric height in mode-water 285 

eddies is dominated by downward displacement of the main pycnocline, they appear as positive 286 

anomalies in sea level, indistinguishable from regular anticyclones both in terms of SSH and 287 

their rotational velocities (McGillicuddy et al. 2007, Sweeney et al. 2003).  As such, CHL 288 

anomalies generated by eddy stirring are expected to be the same in mode-water eddies as they 289 

are in regular anticyclones.  In contrast, the expected response in terms of eddy pumping is 290 

confounding: positive for intensifying mode-water eddies and negative for intensifying regular 291 

anticyclones.  As for trapping, the CHL signature would depend on the ambient gradients and 292 

whether the mechanism of formation was subduction from a remote source (Ebbesmeyer & 293 

Lindstrom 1986) or local generation through eddy-wind interaction (McGillicuddy 2015). 294 

The eddy-induced vertical flux depends not only on the structure of the isopycnal 295 

displacements, but also on the sense in which they are being perturbed by eddy dynamics. The 296 

latter characteristic is determined by the eddy’s developmental stage, as well as eddy-eddy 297 

interactions during its lifetime.  During the process of eddy decay (Figure 5, bottom), the sense 298 

of the vertical motions is opposite to that during formation/ intensification: relaxation of the 299 

density perturbations associated with eddy decay results in upper ocean downwelling in cyclonic 300 

features and mode-water eddies, while causing upwelling within anticyclones.  An excellent 301 

example of the latter is provided by frictional spindown of warm core rings.  A model by Franks 302 

et al. (1986) demonstrated how phytoplankton biomass enhancement could result from the 303 

nutrient input caused by the approximately 1 m day
-1

 vertical velocities at ring center. Uptake 304 

rates of nitrate and silicic acid observed in the same ring which were sufficient to utilize the 305 

upward flux of nutrients (Nelson et al. 1989). 306 

 307 
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3.4 Eddy-wind interaction 308 

 It was recognized long ago that the superposition of a wind-driven Ekman flow on a 309 

mesoscale velocity field gives rise to ageostrophic circulations involving significant vertical 310 

transports (Niiler 1969, Stern 1965). Submesoscale patches of vertical velocity result from the 311 

generalized Ekman divergence, which includes vortex stretching terms associated with advection 312 

of the interior vorticity by the boundary layer velocity.  For a uniform wind stress applied to a 313 

radially symmetry eddy, this effect creates a dipole of upwelling and downwelling, the structure 314 

of which depends on the direction of the wind and the vorticity of the eddy (see Figure 4.33 of 315 

Flierl and McGillicuddy, 2002). 316 

The presence of mesoscale variability in the ocean affects the wind stress itself, via two 317 

different processes.  First, there is a feedback from sea surface temperature.  Cooler ocean 318 

temperatures tend to stabilize the marine atmospheric boundary layer (MABL), decoupling it 319 

from winds aloft; conversely, warmer ocean temperatures tend to destabilize the MABL thereby 320 

decreasing vertical shear in the wind.  The net effect is to increase surface wind speeds over 321 

warmer water and decrease them over colder water, leading to measurable differences in wind 322 

stress, its curl, and therefore Ekman pumping (Chelton et al. 2004).  Second, there is a direct 323 

effect on the stress due to eddy-driven surface currents.  That is, higher stress occurs on the flank 324 

of the eddy where the wind opposes the surface current, with lower stress on the flank of the 325 

eddy where the wind and the current are in the same direction (Figure 6a).  The net result is 326 

Ekman suction (upwelling) in the interiors of anticyclones (Figure 6b) (Dewar & Flierl 1987, 327 

Martin & Richards 2001), and Ekman pumping (downwelling) in the interiors of cyclones 328 

(Gaube et al. 2013).  In contrast to the prior two mechanisms of eddy-wind interaction, the 329 

vertical velocity field resulting from eddy-induced Ekman pumping is a monopole located at 330 

eddy center that does not depend on the direction of the wind.   331 

Gaube et al. (2015) assessed the relative magnitudes of these three processes, finding that 332 

the sea surface temperature effect is generally smaller than the other two.  Magnitudes of the 333 

vertical velocities induced by vorticity advection tend to be larger than those arising from eddy-334 

induced Ekman pumping.  However, the integrated impact depends critically on the structure of 335 

the associated vertical velocity fields.  Specifically, the relative persistence of the monopole 336 

generated by the surface current stress effect overshadows the constantly-fluctuating dipole 337 

created by vorticity advection (see Gaube et al. (2015), Figures 8 and 9). 338 

 In nutrient limited conditions, eddy induced Ekman pumping is thus expected to produce 339 

positive CHL anomalies in anticyclones (upwelling), and negative CHL anomalies in cyclones 340 

(downwelling).  This is precisely the pattern observed in eddy-centric composites of CHL 341 

anomaly and eddy induced Ekman pumping from the South Indian Ocean (Figure 4e,f).  Time-342 

series of CHL anomaly (Figure 4g,h) reveal CHL anomalies are present at the time of eddy 343 

detection, suggesting the eddy trapping mechanism is also at work.  Indeed, both satellite data 344 

and in situ process studies (Moore et al. 2007, Waite et al. 2007) have shown that high-345 

chlorophyll waters of coastal origin can be entrained into anticyclones of the Leeuwin Current 346 

(Figure 3b).  However, the time series presented in Figure 4g,h also show that the positive CHL 347 

anomalies in anticyclones are significantly higher in weeks 6-11 as compared with weeks 1-4, 348 

which is consistent with eddy-induced Ekman pumping.  Martin and Richards (2001) cited this 349 

process as a potential contributor to nutrient flux in an anticyclone in the northeast Atlantic.  350 

Eddy-induced Ekman pumping has also been invoked as an explanation for an extraordinary 351 

bloom of diatoms deep in the euphotic zone of a mode-water eddy in the Sargasso Sea 352 
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(McGillicuddy et al. 2007) as well as near-surface CHL variations in the South China Sea (Li et 353 

al. 2014). 354 

 355 

3.5 Impacts on mixed layer depth 356 

The presence of geostrophic motions and their associated vorticity produces local 357 

variations in the effective Coriolis frequency, which can affect propagation characteristics of 358 

near-inertial waves (e.g., Kunze 1985).  Regions of negative vorticity can focus and amplify of 359 

such waves, thereby augmenting shear, potentially leading to increased vertical mixing.  360 

Simulations by Klein and Hua (1988) illustrated the mesoscale heterogeneity in mixed layer 361 

depth that can arise from this process in a quasigeostrophic flow field forced by a uniform wind.  362 

This “inertial Ekman pumping” creates a broad spectrum of variations in mixed layer depth, 363 

although an eddy-scale signal is prominent. 364 

Mixed layer depth is also modulated by the local changes in stratification driven by eddy-365 

induced vertical isopycnal displacements.  For example, in a cyclonic eddy, upward doming of 366 

the pycnocline increases stratification in the upper ocean, thereby shallowing the mixed layer 367 

depth for a given amount of turbulent kinetic energy from the surface.  Conversely, downward 368 

deflection of the pycnocline by an anticyclonic eddy tends to reduce upper ocean stratification, 369 

thereby allowing the same amount of turbulent kinetic energy to create a deeper mixed layer.  370 

These direct impacts of the local stratification tend to be augmented by air-sea heat flux 371 

anomalies resulting from the associated perturbations in sea surface temperature (Williams 372 

1988).  For example, consider a situation in which the mean SST is such that there is no net 373 

sensible heat transfer to or from the atmosphere.  Cold sea surface temperature anomalies in 374 

cyclones tend to draw heat into the ocean from the atmosphere, further increasing stratification in 375 

those features relative to the ambient waters.  Similarly, warm sea surface temperature anomalies 376 

in anticyclones tend to release heat from the ocean into the atmosphere, cooling the surface 377 

ocean and thereby enhancing convection.  The tendency for anticyclonic eddies to have deeper 378 

mixed layers than cyclones has been noted in the Gulf Stream (Dewar 1986), the northeast 379 

Atlantic (Williams 1988), the North Pacific (Kouketsu et al. 2012), and the South Indian Ocean 380 

(Dufois et al. 2014, Gaube et al. 2013).  In fact, Dufois et al. (2014) have offered deeper mixed 381 

layers (Figure 7) as an alternative explanation for long-lived CHL anomalies in anticyclones of 382 

the South Indian Ocean (Figure 4e-h).   Differentiating between enhanced mixing and eddy-383 

induced Ekman pumping is difficult in this case, as both mechanisms tend to produce CHL 384 

anomalies of the same sign in this nutrient-limited regime.  In a light-limited regime, eddy-driven 385 

variations in mixed layer depth would presumably produce the CHL anomalies of the opposite 386 

sign: shallower (deeper) mixed layers in cyclones (anticyclones) would lend themselves to higher 387 

(lower) CHL (Table 1). 388 

 389 

3.6 Mechanisms of CHL enhancement in the peripheries of anticyclonic eddies 390 

 In contrast to the dipole and monopole anomalies of CHL described above, annular ring-391 

shaped patterns have been observed around the peripheries of eddies, particularly anticyclones.  392 

Although such patterns have yet to emerge in eddy-centric composites of many eddies, synoptic 393 

snapshots have revealed these features in a variety of regimes, including the Southern Ocean 394 

(Kahru et al. 2007) (Figure 8, top), the Gulf of Alaska (Mizobata et al. 2002), and the 395 

Mozambique channel (José et al. 2014).  Qualitatively similar patterns have been produced in a 396 

variety of models (José et al. 2014, Lapeyre & Klein 2006, Lévy & Klein 2004, Lima et al. 2002, 397 

Mahadevan et al. 2008) (Figure 8, bottom).  Two basic mechanisms have been invoked to 398 
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explain these annular patterns: (1) lateral entrainment of streamers of high-CHL water from 399 

nearby coastal or frontal regions, and (2) local enhancement via either stratification in light-400 

limited systems or nutrient supply via upwelling along the eddy periphery.  The latter can arise in 401 

submesoscale patches of upwelling and downwelling associated with meandering of the circular 402 

front that delineates the outer edge of an eddy (McGillicuddy et al. 1995).  Upwelling rates in 403 

such features can be as high as 10-100 m d
-1

 as a result of eddy-wind, eddy-eddy, and/or eddy-404 

front interactions (Mahadevan et al. 2008, Martin & Richards 2001, Yoshimori & Kishi 1994). 405 

 These upwelling rates that occur at the submesoscale are much larger than those 406 

characteristic of the eddy-scale itself.   However, these intense vertical motions are also 407 

associated with swift horizontal currents characteristic of frontal regions.  As such, a water parcel 408 

transported into the euphotic zone by a submesoscale upwelling cell can be rapidly advected into 409 

a submesoscale downwelling cell where that same parcel can be transported back out of the 410 

euphotic zone.  The degree to which the upwelled nutrients will be utilized by the biota depends 411 

on the relative time scales of the supply and uptake processes.  This is of course a function of  412 

the dynamical regime and the local chemical and biological environment (see review by 413 

Williams and Follows (2003)).  Another key factor is the degree of reversibility along the 414 

upwelling and downwelling trajectory.  Both vertical mixing and lateral dispersion can lend a 415 

degree of irreversibility to the process, making the nutrient content of the downwelled water less 416 

than that which was upwelled, resulting in a net transport of nutrients (Martin & Richards 2001, 417 

Martin et al. 2001).  418 

 419 

3.7 Global perspective 420 

The preceding sections (3.1-3.6) illustrate the variety of mechanisms by which eddies can 421 

shape CHL distributions in the upper ocean.  A global perspective is facilitated by examination 422 

of the correlation between satellite measurements of SSH and CHL (Figure 9).  Areas of positive 423 

correlation are indicative of positive CHL anomalies associated with anticyclonic eddies 424 

(positive SSH anomaly) and negative CHL anomalies with cyclonic eddies (negative SSH 425 

anomaly).  Conversely, regions of negative correlation are indicative of positive CHL anomalies 426 

associated with cyclonic eddies, and negative CHL anomalies associated with anticyclones.  The 427 

coherent regional structure in this correlation strongly suggests systematic variations in the 428 

mechanisms of mesoscale physical-biological interactions in the global ocean (Gaube et al. 429 

2014). 430 

A prime example of negative correlation occurs in the Gulf Stream region.  Eddy-centric 431 

analysis (Figure 4a-d) suggests both trapping (Figure 3a) and eddy pumping (Figure 5) are at 432 

work.  Negative correlation is observed in other western boundary current systems and their 433 

midlatitude extensions, including the Kuroshio Current, the Agulhas Current and Brazil-434 

Malvinas Confluence.  Similarly, most eastern boundary current systems, such as the California 435 

Current, the Peru-Chile Current and the Benguela Current are characterized by negative 436 

correlation.  Regions of negative correlation are also observed in the open ocean, such as 437 

northeast of Madagascar and to the east of the Hawaiian Islands in the North Pacific. 438 

A prominent feature of positive correlation resides in the South Indian Ocean.  Eddies in 439 

this region exhibit the signature of trapping, likely associated with high-CHL anticyclones and 440 

low-CHL cyclones spawned from the Leeuwin Current (Figure 3b; Figure 4h).  High CHL in 441 

anticyclones and low CHL in cyclones may be maintained by (a) eddy induced Ekman pumping 442 

(Figure 4e,f) and/or (b) eddy impacts on mixed layer depth (Figure 7).  These same mechanisms 443 

may be operating in other regions of positive correlation, such as the central South Pacific, 444 
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subtropical North and South Atlantic and around the Hawaiian Islands in the central North 445 

Pacific.   446 

The SSH-CHL cross-correlation along the line in the southeast Pacific (Figure 9) 447 

examined by Chelton et al. (2011b) is consistent with Figure 2f, with negative values in the east 448 

and positive values in the west.  However, the key to diagnosis of the eddy stirring characteristic 449 

of the region (Figure 2a,b) lies in the time-lagged cross correlation.  Maximum positive 450 

correlation occurs with SSH anomaly lagging CHL anomaly by approximately one month, 451 

whereas maximum negative correlation occurs with SSH anomaly leading CHL anomaly by one 452 

month (Figure 2f).  This is a result of the westward propagating dipoles, in which positive and 453 

negative lobes of CHL anomalies are offset from eddy center where the extrema in SSH occur.  454 

Note that the negative correlation at -1 month lag tends to be weaker than the positive correlation 455 

at +1 month lag, owing to the fact that the ambient CHL on the trailing edge of the eddy has been 456 

previously disturbed by advection from the leading edge (Cf. Figure 2b). 457 

In aggregate, these results highlight the utility of eddy-centric compositing to illuminate 458 

mechanisms of physical-biological interaction.  However, limitations are also clear.  For 459 

example, based on this information alone, a CHL response to upwelling / downwelling occurring 460 

during eddy intensification cannot be differentiated from the trapping of CHL during eddy 461 

formation in regions where the ambient CHL gradient favors enhanced (suppressed) CHL in the 462 

interiors of cyclonic (anticyclonic) eddies (e.g. the Gulf Stream).  Likewise, a CHL response to 463 

eddy-induced Ekman pumping and/or eddy-driven perturbations to mixed layer depth cannot be 464 

differentiated from the trapping of CHL in regions where the ambient CHL gradient favors 465 

enhanced (suppressed) CHL in the interiors of anticyclonic (cyclonic) eddies (e.g. the South 466 

Indian Ocean).  The temporal evolution of the SSH and CHL signatures of eddies can help to 467 

address these ambiguities, but unequivocal diagnosis of the underlying mechanisms is not 468 

possible on the basis of satellite data alone.  Moreover, the near-surface manifestation of 469 

mesoscale eddies in ocean color data may not always reveal the physical-biological dynamic in 470 

its entirety, insofar as large amplitude biological responses can take place deep in the euphotic 471 

zone where they are only partially detected by satellite (McGillicuddy et al. 2007).  Thus, in 472 

order to develop a more complete understanding of the role of mesoscale eddies in upper ocean 473 

ecosystem dynamics and biogeochemical cycling, detailed analysis of satellite observations 474 

together with subsurface in situ measurements and numerical simulations is needed.   475 

 476 

4. EDDY IMPACTS ON MEAN PROPERTIES AND FLUXES 477 

 Whereas the study of eddy-driven variability is guided by observations, quantification of 478 

their integrated impact on mean properties of the system and associated biogeochemical fluxes 479 

ultimately relies on models.  A wide variety of approaches have been used to address this 480 

question, ranging from idealized process-oriented formulations to more realistic simulation-481 

oriented configurations.  These approaches are complementary in a number of ways, not the least 482 

of which is that the former provide conceptual frameworks for diagnosis of more complex 483 

simulations.  For example, Lee and Williams (2000) evaluated eddy-driven fluxes in a periodic 484 

channel forced with wind stresses and heat fluxes that mimic subtropical to subpolar 485 

environments.  Adopting the Gent et al. (1995) formalism, they derive eddy-induced advection 486 

and diffusion from the time-averaged and zonally-averaged tracer equations.  Their results show 487 

that eddy-induced advection and diffusion of nutrients oppose each other in the upper ocean, 488 

whereas they reinforce each other in the deep ocean (Figure 10a).  Wind-driven flows also play 489 

an important role in the near-surface layer (Figure 10b): lateral Ekman fluxes into the 490 
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subtropical gyre oppose the outward eddy-induced advection, and downwelling of nutrients 491 

driven by Ekman convergence counters upward eddy-induced advection (eddy pumping).  492 

Idealized models have also elegantly demonstrated that resolving mesoscale eddies may not be 493 

adequate for assessing the mean fluxes.  Lévy et al. (2001) simulated frontal instability at 494 

resolutions of 10, 6, and 2 km, finding that new production systematically increased with 495 

resolution.  Productivity of the 2 km model was almost a factor of three higher than the 10 km 496 

model, clearly demonstrating the importance of submesoscale processes. 497 

It is only relatively recently that truly eddy-resolving models have been run on basin to 498 

global scales (Hecht & Hasumi 2008), and computational limitations generally preclude 499 

simulations much longer than 5-10 years for coupled physical-biological-biogeochemical 500 

applications.  Such integrations are typically long enough to provide several years of quasi-501 

equilibrium solution for analysis subsequent to the transients associated with adjustment to initial 502 

conditions.  However, these solutions can be far from true equilibrium, as illustrated in a recent 503 

study by Lévy et al. (2012b) comparing the results of 1/54º and 1/9º resolution models integrated 504 

for 50 years in an idealized double-gyre simulation reminiscent of the North Atlantic (Figure 505 

11).  After 50 years, the two models show systematic regional differences in total production of 506 

±60%.  A particularly salient feature of the higher resolution model is a ~30% decrease in 507 

productivity of the subtropical gyre, attributed to a long-term deepening of the nitracline in that 508 

region.  In other words, mesoscale and submesoscale dynamics produce not only local 509 

fluctuations, but also changes in the mean state of the system.  This caveat must be kept in mind 510 

when interpreting the results from shorter-term integrations described below. 511 

 512 

4.1 Subtropical Gyre 513 

The role of eddies in supplying nutrients in the subtropical gyre has been debated for 514 

some time.  Comparison of two hydrographic profiles sampled one month apart off Bermuda 515 

documented an apparently eddy-driven nutrient injection event that could account for 20-30% of 516 

the annual new production (Jenkins 1988b).  High-resolution transects in the Pacific (Venrick 517 

1990) and Atlantic (Strass 1992) revealed mesoscale variations in chlorophyll consistent with 518 

eddy-induced upwelling.  Surveys of a cyclone in the lee of Hawaii documented increased 519 

primary production in its interior, and extrapolation of that result suggested a 20% enhancement 520 

of global primary production by mid-ocean eddies (Falkowski et al. 1991).  A variety of models 521 

have been brought to bear on this question, but the magnitude of the eddy-induced flux and its 522 

utilization is model-dependent (Eden & Dietze 2009, Martin & Pondaven 2003, McGillicuddy et 523 

al. 2003, McGillicuddy et al. 1998, McGillicuddy & Robinson 1997, Oschlies 2002, Oschlies & 524 

Garcon 1998, Pasquero et al. 2005).   525 

An example is provided in Figure 12, in which the horizontal and vertical nutrient fluxes 526 

in a one-tracer light-limited nutrient transport model have been decomposed into their time-mean 527 

and eddy-driven components.  Although this decomposition is different from that used by Lee 528 

and Williams (2000) to distill Figure 10, some commonalities are evident in the results.  In the 529 

subtropical gyre, mean vertical advection constitutes a sink of nitrate, owing to the downwelling 530 

caused by Ekman convergence.  Eddy-induced vertical advection is a source of nitrate, which is 531 

sufficient to overcome the mean downward transport such that the total vertical advection is a net 532 

source of nitrate.  Note that Lee and Williams (2000) predicted the opposite, with Ekman 533 

downwelling overshadowing eddy pumping (Figure 10b).  In other aspects, the realistic 534 

simulation is more similar to the idealized model.  Horizontal advection (Figure 12) is near zero 535 

over much of the subtropical gyre due to the low concentration of nitrate in the surface waters of 536 
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this region.  However, horizontal advection is a net source of nutrients along the northern edge of 537 

the gyre. This lateral flux of nitrate into the gyre arises mostly from the mean fields, roughly 538 

consistent with the Ekman flux of nitrate described by Williams and Follows (1998). 539 

 540 

4.2 Subpolar Gyre 541 

 New production in the subpolar gyre is considerably higher than that in the subtropical 542 

gyre (Figure 12), due to a combination of vigorous vertical mixing and mean upwelling from 543 

divergence of the wind-forced Ekman surface current.  Interestingly, the time-varying 544 

component of vertical advection is negative over a large portion of this region, especially in areas 545 

where the wintertime mixed layer depth is deepest. In the southern part of the gyre, the 546 

magnitude of this sink is sufficient to overcome the mean upward vertical advection, causing the 547 

total vertical advection to be negative in that area.  Horizontal advection is also important in this 548 

region. The large area of negative net lateral flux arises primarily from mean horizontal 549 

advection.  Eddy-driven horizontal advection in this area varies on smaller scales but generally 550 

tends to reinforce the mean. This negative lateral flux is due to northeastward flow of the North 551 

Atlantic importing lower concentrations of nitrate into the subpolar gyre. 552 

In contrast to the subtropical gyre where eddy-driven fluxes constitute a net source of 553 

nutrients, it appears that the oceanic mesoscale has a significant impact on nutrient removal from 554 

the euphotic zone in the subpolar gyre. A similar feature is evident in the simulations of Oschlies 555 

(2002), suggesting this result is not model dependent. Diagnosis of the solutions shown in 556 

Figure 12 suggests that the downward nutrient flux results from mesoscale processes associated 557 

with restratification following deep convection (Figure 13).  Indeed, mesoscale and 558 

submesoscale dynamics have been shown to play a key role in the process of restratification 559 

(Mahadevan et al. 2012, Marshall 1997, Nurser & Zhang 2000).  Lévy et al. (1998, 1999) 560 

described how mesoscale restratification increases productivity following convection by 561 

releasing phytoplankton from light limitation. The eddy-induced nutrient sink shown in Figure 562 

13 is the counterpart to that process deeper in the water column: the same mesoscale dynamics 563 

that restratify the near-surface region pump nutrients out of the euphotic zone. This removal 564 

takes place at a time when the ambient nutrients are in excess of limiting concentrations, so there 565 

is no immediate reduction of productivity.  However, this process would tend to decrease 566 

productivity on seasonal to annual time scales, insofar as a portion of the nutrients brought into 567 

the euphotic zone by wintertime mixing are pumped back downward prior to utilization.  On the 568 

other hand, Mahadevan et al. (2012) have suggested that the mixed layer eddies involved in 569 

restratification could increase overall productivity. 570 

 571 

4.3 Coastal upwelling systems 572 

 Upwelling regions along coastal margins support some of the most productive marine 573 

ecosystems on earth.  These systems also tend to have high eddy kinetic energy, owing to the 574 

squirts, jets, filaments, and eddies that are formed when along-shore wind stress generates an 575 

Ekman divergence at the coast that leads to upwelling.  In contrast to the oligotrophic waters of 576 

the open ocean where eddy-induced nutrient fluxes can increase productivity, it appears that 577 

eddy-driven processes decrease productivity in eastern boundary upwelling systems (Gruber et 578 

al. 2011).  Two mechanisms appear to be at work: lateral stirring and subduction. 579 

First, stirring by mesoscale structures transports upwelling-derived biomass offshore, 580 

thereby reducing biomass in the upwelling zone itself.  This process was noted by Rossi et al. 581 

(2008) in their analysis of Finite Size Lyapunov Exponents (FSLEs) and chlorophyll 582 
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distributions in the Benguela and Canary upwelling systems.  FSLEs provide a measure of lateral 583 

stirring, and can be computed directly from satellite altimeter data.  Rossi et al. found that 584 

chlorophyll concentration was inversely correlated with FSLEs in these systems, such that the 585 

more vigorous stirring in the Benguela system was associated with lower chlorophyll 586 

concentrations than the Canary system.  The role of mesoscale processes in reducing 587 

phytoplankton biomass was quantified in a model of the Benguela system, indicating eddy-588 

driven transports are responsible for 30-50% of the offshore fluxes of biological tracers 589 

(Hernández-Carrasco et al. 2014). 590 

The second mechanism involves offshore subduction of upwelled nutrients.  Gruber et al. 591 

(2011) diagnosed the eddy-induced nitrogen fluxes from a high-resolution coupled-physical 592 

biological model of the California Current system (Figure 14).  As expected, vertical eddy-593 

induced fluxes are positive close to the coast, where mesoscale dynamics are intimately involved 594 

in the upwelling process.  Lateral eddy fluxes transport nitrogen away from the coast in the 595 

surface layer, in concert with downward eddy-induced transport offshore—the net result of 596 

which is subduction into the ocean interior.  These subducted nutrients occupy an intermediate 597 

layer that is distinct from that which feeds the Ekman-driven upwelling cell, thus constituting a 598 

“leak” of nutrients that decreases the overall productivity of the system. 599 

In addition to eddy-induced transports, there are special biogeochemical transformations 600 

that take place within eddies in upwelling systems. For example, hotspots for fixed-nitrogen loss 601 

have been observed in association with anticyclonic eddies in the Peru oxygen minimum zone 602 

(Altabet et al. 2012, Bourbonnais et al. submitted, Stramma et al. 2013).  However, observations 603 

of this process are currently so sparse that quantification of their integrated impact on nutrient 604 

budgets is not yet possible. 605 

 606 

4.4 Other regional Studies 607 

 Growing awareness of the diversity of eddy impacts on biological systems has led to 608 

increasing numbers of regional studies.  For example, analysis of satellite-based observations of 609 

sea level and ocean color in the Weddell-Scotia confluence in the Southern Ocean indicates that 610 

cyclonic eddies enhance biological production (Kahru et al. 2007).    Both observations and 611 

models suggest anticyclonic eddies enhance production in the northern Gulf of Alaska, by virtue 612 

of the iron they transport from the coastal margin into the interior (Crawford et al. 2007, Xiu et 613 

al. 2011).  A high-resolution model of the South China Sea suggests cyclonic eddies are an 614 

important source of nutrients to the surface ocean in that region, triggering shifts in 615 

phytoplankton species composition toward diatoms, thereby increasing export flux and 616 

associated cycling of carbon (Xiu & Chai 2011).  On the other hand, observations in the South 617 

China Sea have revealed enhanced export fluxes in anticyclones, attributed to submesoscale 618 

upwelling along eddy peripheries (Zhou et al. 2013; Cf. section 3.6).  Using data from shipboard 619 

surveys, Prasanna Kumar (2007) estimated that eddy pumping increases productivity in the Bay 620 

of Bengal by a 50-100%.  In a model of the Arabian Sea, Resplandy et al. (2011) found that 621 

multiple mesoscale processes contributed to regional nutrient budgets, namely (1) lateral 622 

advection from coastal upwelling zones into the interior via jets and filaments, (2) eddy 623 

pumping, and (3) eddy-driven restratification following monsoonally-driven convective mixing.  624 

Such integrative analyses seeking to assess the net impact of eddies on various systems draw 625 

heavily on the growing data base provided by in situ process studies (Supplementary Table).  626 

 627 
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5. EDDY-DRIVEN BIOLOGICAL REYNOLDS STRESSES 628 

 Three-dimensional coupled physical-biological models are typically formulated in terms 629 

of the mean field approximation, in which properties ߮௜ in a given grid cell are assumed to be 630 

adequately represented by their mean value ప߮ഥ .  Of course, fluctuations ߮௜ᇱ  exist; the Reynolds 631 

decomposition expresses the full field as a sum of mean and fluctuating components, the latter of 632 

which average to zero: ߮௜ ൌ ప߮ഥ ൅ ߮௜ᇱ.  Biological and biogeochemical transformations typically 633 

involve nonlinear functions, so even though ప߮ᇱതതത ൌ 0, the average value of such a function 634 

operating on the fluctuations ݂ሺ ప߮ᇱሻതതതതതതത does not necessarily vanish.  Moreover, the average product 635 

of two constituents ప߮߮ఫതതതതതത includes contributions not only from the means ߮௜	߮௝ but also from the 636 

“biological Reynolds stresses” ప߮ᇱ߮ఫᇱതതതതതത.  These effects have been examined in a variety of idealized 637 

frameworks, including theoretical (Goodman 2011, Goodman & Robinson 2008), one-638 

dimensional (Brentnall et al. 2003),  and two-dimensional (Wallhead et al. 2008), providing 639 

quantification of the limitations of the mean field approximation in such systems. 640 

 It is only recently that the net impact of fluctuations in biological properties has been 641 

examined in three-dimensional simulations of mesoscale and submesoscale turbulence (e.g., 642 

Wallhead et al. 2013).  Lévy and Martin (2013) diagnosed these terms from their 1/54º resolution 643 

physical-biological model of the North Atlantic, making the distinction between “eddy reactions” 644 

and “eddy transports” of the type described in earlier sections.  Their findings illustrate the eddy 645 

reaction terms play qualitatively different roles for different state variables (see Lévy and 646 

Martin’s Figure 9).  For nitrate, the eddy reactions are generally small relative to the mean 647 

biogeochemical reactions, with the latter being balanced by a complex latitudinally-dependent 648 

combination of vertical mixing, mean advection, and eddy transport.  In contrast, eddy reactions 649 

are amongst the largest terms in the phytoplankton equation, negative in sign and varying 650 

inversely with the mean reaction term.  In other words, nonlinear interactions at the mesoscale 651 

and submesoscale reduce primary productivity.  For zooplankton, the eddy reactions vary with 652 

latitude: they are small south of 28ºN, increase secondary productivity between 28ºN and 40ºN, 653 

and decrease secondary productivity north of 40ºN.  Although the details of these diagnoses may 654 

be model dependent, these findings clearly illustrate that eddy-driven fluctuations can be 655 

rectified by nonlinear biogeochemical transformations—and that the magnitudes of the eddy 656 

reactions are on the order of 5-15% of the means (see Lévy and Martin’s Figure 7).  Whereas 657 

complete knowledge of a modeled system lends itself to relatively straightforward computation 658 

of biological Reynolds stresses, observational assessment is made more challenging by the lack 659 

of multiscale resolution of all relevant quantities. Initial attempts to quantify eddy-driven 660 

biological Reynolds stresses suggest more modest magnitudes than those derived from models 661 

(Martin et al. submitted). 662 

 663 

6. INFLUENCES ON PHYTOPLANKTON COMMUNITY COMPOSITION AND 664 

DIVERSITY 665 

Eddy-induced disturbances in the physical and chemical environment can bring about 666 

changes in the communities of primary producers.  In fact, such biological responses may 667 

regulate the net impact on biogeochemical fluxes described above.  For example, Goldman 668 

(1988) suggested the “spinning wheel” concept in which the background state of oligotrophic 669 

systems is dominated by small phytoplankton growing primarily on nutrients that are recycled 670 

through the microbial loop. This state is episodically perturbed by the input of nutrients to the 671 

base of the euphotic zone, causing a shift in phytoplankton species composition from 672 

picoplankton toward much larger cells such as diatoms. In such a scenario, these large cells 673 
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would sink rapidly once the nutrient enhancement was depleted, thereby contributing a 674 

disproportionately large fraction of new versus total primary production. Laboratory culture 675 

experiments have confirmed that diatoms can grow rapidly enough to produce significant blooms 676 

even at the low light levels characteristic of the base of the euphotic zone (Goldman & 677 

McGillicuddy 2003).  Indeed, evidence for mesoscale variations in diatom abundance has been 678 

observed in a variety of oceanographic environments, including the North Pacific (Brzezinski et 679 

al. 1998), Hawaiian lee eddies (Olaizola et al. 1993, Seki et al. 2001, Vaillancourt et al. 2003), 680 

the Hawaiian Ocean Time-series (Letelier et al. 2000), the Sargasso Sea (Krause et al. 2010, 681 

McGillicuddy et al. 2007), and the Bermuda Atlantic Time-series (Krause et al. 2009, McNeil et 682 

al. 1999, Sweeney et al. 2003).  Bibby and Moore (2011) found that the response of diatom 683 

populations to eddy-induced upwelling in the subtropical Atlantic and Pacific depends on the 684 

nitrate to silicate ratio of the upwelled water.  In several cases, mesoscale diatom blooms have 685 

been linked directly to enhanced export (Allen et al. 2005, Benitez-Nelson et al. 2007, Bidigare 686 

et al. 2003).   687 

 Even more general relationships between the mesoscale environment and plankton 688 

community structure have emerged from both observations and models.  For example, Rodriguez 689 

et al. (2001) identified a linear relationship between the size-abundance spectrum (SAS) of 690 

phytoplankton and vertical velocity in the northwestern Alboran Sea.  Specifically, upwelling 691 

(downwelling) motions tended to increase (decrease) the relative abundance of large 692 

phytoplankton, thereby flattening (steepening) the SAS—suggesting that mesoscale motions 693 

exert a primary control on size structure of phytoplankton communities. 694 

 Models have been used to address a growing interest in the influence of mesoscale 695 

dynamics on the diversity of open ocean phytoplankton populations, challenging the assumption 696 

of environmental homogeneity in Hutchinson’s  (1961) classic “paradox of the plankton.”  Using 697 

a two-species model with a uniform distribution of limiting resource embedded in 698 

quasigeostrophic turbulence, Bracco et al. (2000) show how coherent vortices can preserve 699 

diversity by isolating populations from the surrounding fluid: a less-fit species can persist in 700 

conditions in which they would otherwise be outcompeted if the more-fit species were not 701 

excluded by the lack of mixing.  Perruche et al. (2011) considered a case in which the mesoscale 702 

motions influenced the distribution of resources (nutrients), finding that surface quasigeostrophic 703 

turbulence facilitated coexistence of two competing phytoplankton species.  Upwelling in 704 

filaments stimulated both species, whereas eddy cores serve as refugia as found by Bracco et al. 705 

(2000). 706 

 Additional studies of phytoplankton diversity have been facilitated by the development of 707 

the so-called “Darwin” model in which many tens of species (“ecotypes”) are stochastically 708 

assigned physiological characteristics with basic allometric tradeoffs (Follows et al. 2007).  By 709 

allowing the suite of ecotypes to compete in a three-dimensional model ocean, phytoplankton 710 

species composition is an emergent property of the system.  Clayton et al. (2013) examined an 711 

eddy-permitting case, finding that regions of high eddy kinetic energy in western boundary 712 

currents coincide with high diversity in the simulated phytoplankton community (Figure 15a).  713 

These “hotspots” in diversity are supported by the confluence of multiple upstream populations, 714 

local stimulation via nutrient supply, and environmental variability provided by eddies.  Lévy et 715 

al. (2014) quantified the impact of dispersal on diversity by applying the Darwin biological 716 

module into eddy-resolving simulations in an idealized North Atlantic domain (depicted in 717 

Figure 11a).  Their counterintuitive results (Figure 15b) suggest that increasing dispersion leads 718 

to increasing local diversity (order 10-100 km scales) and decreasing regional diversity (order 719 
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1000 km scales).  In other words, hydrodynamic transport leads to the dominance of fewer 720 

species overall, but those fewer species occur over larger ranges with a higher degree of 721 

coexistence.  Studies of this type are still quite novel, and the data needed to test such models is 722 

only beginning to emerge (Clayton et al. 2014, Follows et al. 2007). 723 

 724 

7. EFFECTS ON HIGHER TROPHIC LEVELS 725 

Eddy dynamics can perturb oceanic ecosystems, influencing trophic levels ranging from 726 

primary producers (as described in section 6) to top predators.  For example, Wiebe and Flierl 727 

(1983) described changes in zooplankton (euphausiid) species distributions during the decay of a 728 

cold core ring: native cold water species such as Nematoscelis megalops emigrated, whereas 729 

warm water species such as Stylocheiron carinatum immigrated.  These changes in distributional 730 

patterns were facilitated by vertical positioning behavior in the presence of a hydrodynamic 731 

environment that varies with depth.  Specifically, descent of the N. megalops population during 732 

ring decay resulted in its exit from the region of trapped fluid, thereby bringing about 733 

expatriation.  In contrast, the near-surface keeping behavior of S. carinatum subjects it to 734 

enhanced horizontal mixing within the mixed layer, thereby facilitating its invasion into the ring 735 

interior.  Active vertical positioning also supports a mechanism for concentrating organisms 736 

within a mesoscale flow field: depth-keeping behavior in the presence of convergence (Genin et 737 

al. 2005, Olson & Backus 1985). 738 

 Mesoscale phenomena are also relevant to the transport and survival of planktonic larvae.  739 

Lobel and Robinson (1986) noted a cyclonic eddy near Hawaii retained larval reef fishes for a 740 

time period sufficient to complete their pelagic developmental phase and resettle their native 741 

reefs.  On the other hand, eddies also provide means for enhanced larval dispersion and 742 

population connectivity, both in the coastal margin (Mitarai et al. 2009) and in the deep sea 743 

(Adams et al. 2011).  Bakun (2006) presented a conceptual framework in which eddy-driven 744 

variations in productivity offer competing tradeoffs in terms of larval survival: enhanced 745 

productivity improves early life nutrition at the expense of increased predator abundance, 746 

whereas suppressed productivity decreases the abundance of predators at the expense of poorer 747 

larval nutrition.  These concepts have been invoked to explain mesoscale variations in the 748 

distribution of larval bluefin tuna (Alemany et al. 2010, Lindo-Atichati et al. 2012), sailfish, 749 

marlin, swordfish, and other species (Richardson et al. 2010).  750 

 Distributions of adult fishes have also been associated with the mesoscale environment.  751 

Based on catch data, cyclonic eddies appear to be home to higher abundances of bluefin tuna in 752 

the Gulf of Mexico (Teo & Block 2010) and blue marlin in the vicinity of Hawaii (Seki et al. 753 

2002).  Based on acoustic and trawl surveys, mid-water fishes are associated with anticyclonic 754 

eddies in the Iceland Basin (Godø et al. 2012).  Visual sightings of cetaceans (whales and 755 

dolphins) in the northern Gulf of Mexico indicated congregations in or near cyclones and in the 756 

confluence of cyclone-anticyclone pairs where zooplankton and micronekton prey abundances 757 

were higher (Davis et al. 2002).  Seabirds of various kinds have been associated with the 758 

peripheries of eddies and convergence zones between them, including great frigate birds in the 759 

Mozambique channel (Tew Kai & Marsac 2010, Weimerskirch et al. 2004), and albatross, terns, 760 

and shearwaters in the Southern Indian Ocean (Hyrenbach et al. 2006, Nel et al. 2001).  The 761 

advent of electronic tagging and telemetry has facilitated investigation of mesoscale niche 762 

utilization and behavior by a diverse range of marine animals, including turtles (Gaspar et al. 763 

2006, Kobayashi et al. 2011, Polovina et al. 2004), elephant seals (Bailleul et al. 2010, 764 

Campagna et al. 2006), shearwaters (Yoda et al. 2014), and penguins (Cotté et al. 2007).  In 765 
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many cases, association of these animals with mesoscale features is directly linked with foraging 766 

behavior. 767 

 768 

8. CONCLUDING REMARKS 769 

 Advances in theory, observation, and modeling have facilitated substantial progress in 770 

understanding of physical-biological-biogeochemical interactions in the ocean.  It has become 771 

abundantly clear that the impacts of eddies varies regionally (section 3.7) by virtue of the wealth 772 

of processes that contribute (sections 3.1-3.7) and variations in the relative amplitudes at which 773 

those mechanisms are expressed.  The longstanding debate about the magnitude of the eddy-774 

induced nutrient source in the subtropics continues (section 4.1), whereas potential eddy-driven 775 

nutrient sinks have become apparent in subpolar gyres (section 4.2) and in coastal upwelling 776 

regions (section 4.3).  Appreciation is growing for the role of mesoscale processes in biological 777 

dynamics, including eddy-induced Reynolds stresses (section 5), planktonic biodiversity (section 778 

6), and niche utilization by higher trophic levels (section 7).  Future prospects are bright for 779 

further progress in these areas as observational capabilities improve in towed instrumentation 780 

(Davis et al. 2005), autonomous platforms (Johnson et al. 2009), genomic methods to 781 

characterize planktonic communities (DeLong et al. 2006), and electronic tagging technologies 782 

(Block et al. 2001).  Increased spatial resolution in upcoming altimeter missions (Fu & 783 

Ubelmann 2013) and finer spectral resolution in ocean color missions (Del Castillo 2012) will 784 

enhance the abilities to characterize physical and biological properties in the upper ocean.  785 

Likewise, computational infrastructure and modeling capabilities continue to progress (Hecht & 786 

Hasumi 2008).  This confluence of advances in in situ observation, remote sensing, and 787 

modeling have set the stage to further elucidate the linkages between mesoscale and 788 

submesoscale dynamics (Lévy et al. 2012a), which is perhaps one of the most challenging and 789 

exciting prospects for future research in this area. 790 
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 1253 

 1254 

Eddy type MLD anomaly CHL anomaly 

  Nutrient limited Light limited 

Cyclone - - + 

Anticyclone + + - 

 1255 

Table 1.  Upper ocean chlorophyll (CHL) anomalies expected from anomalies in mixed layer 1256 

depth (MLD) associated with cyclones and anticyclones in different regimes limited by nutrients 1257 

and light.  Note this idealized summary does not represent mode-water eddies, which constitute a 1258 

special case of anticyclones. 1259 

 1260 

 1261 

 1262 

Program Area Reference 

POLYMODE Sargasso Sea Nelepo (1983) 

Cold Core Rings Gulf Stream Ring Group (1981) 

Warm Core Rings Gulf Stream, Kuroshio, East Australia 

Current 

Wiebe & McDougall (1986) 

Wiebe and Joyce (1992) 

PRIME Northeast Atlantic Savidge & Williams (2001) 

POMME Northeast Atlantic Mémery et al. (2005) 

Haida Eddy 

Project 

Gulf of Alaska Miller et al. (2005) 

Eddies 2003 Leeuwin Current Waite et al. (2007) 

E-FLUX Hawaiian lee eddies Benitez-Nelson & McGillicuddy 

(2008) 

EDDIES Sargasso Sea Benitez-Nelson & McGillicuddy 

(2008) 

MESOBIO Mozambique Channel Ternon (2014) 

 1263 

Supplementary Table.  Interdisciplinary in situ process studies of mesoscale eddies.   Please 1264 

forward information on additional studies that should be included to dmcgillicuddy@whoi.edu 1265 

so that the living document located at 1266 

http://science.whoi.edu/users/mcgillic/eddy_process_studies/table.pdf can be made more 1267 

complete and kept current. 1268 
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 1270 

 1271 
 1272 

Figure 1. Tracks of long-lived (lifetimes ≥ 16 weeks) mesoscale eddies identified by an 1273 

automated eddy tracking procedure (Chelton et al. 2011b).  Red tracks represent anticyclones 1274 

and blue tracks cyclones.  Three regional subdomains are indicated: Southeast Pacific (SEP), the 1275 

Gulf Stream region (GS), and South Indian Ocean (SIO).  Figure adapted from Chelton et al. 1276 

(2011b), courtesy of Peter Gaube. 1277 
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 1279 
 1280 
Figure 2.  (a) Schematic diagram of eddy-driven stirring of CHL for clockwise (top) and counter-1281 
clockwise (bottom) rotating eddies propagating westward in regions where the CHL gradient is 1282 
northward. An otherwise smooth contour of CHL (dashed lines) is distorted by the rotational velocity 1283 
field within the eddy, as shown by the solid lines. Advection of CHL within the large-scale background 1284 
CHL gradient results in the positive and negative CHL anomalies shown by the red and purple regions, 1285 
respectively.  (b) Composite averages for clockwise (top) and counter-clockwise (bottom) eddies in the 1286 
region labeled “SEP” in Figure 1.  The outer perimeter of each circle corresponds to twice the eddy 1287 
radius scale. The vectors in each panel are the gradient of the composite average SSH, which is 1288 
proportional to the geostrophic velocity. The number N of eddy realizations in the composite average and 1289 
the magnitude r of the ratio of the primary pole in the leading (left) half of each composite to the 1290 
secondary pole in the trailing (right) half are labeled on each panel.  (c) An example map from the SEP 1291 
region for 7 March 2001 showing log10(CHL) in color with contours of positive and negative anomaly 1292 
SSH (solid and dashed lines, respectively) at intervals of 2 cm, excluding the zero contour.  The 1293 
horizontal line indicates the section along which the time-longitude plots in panels d and e are presented. 1294 
(d) SSH with eddy tracks within ±2°of 20°S overlaid (dashed and solid lines for CW and CC rotating 1295 
eddies, respectively); (e) log10(CHL) with the same eddy tracks overlaid.  (f) Lagged cross-correlation 1296 
between log10(CHL) at time t and SSH at time t + lag, calculated over the full 10-year data record; the 1297 
white areas correspond to correlations smaller than the estimated 95% significance level. Positive lags 1298 
correspond to log10(CHL) leading SSH, and the contour interval is 0.2 with the zero contour omitted for 1299 
clarity.  From Chelton et al. (2011a). 1300 
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 1303 
Figure 3.  Processes of (a) Gulf Stream Ring formation, and (b) anticyclone generation in the 1304 

Leeuwin current.  Panel (a): (top) adapted from The Warm Core Rings Executive Committee 1305 

(1982), bottom adapted from  Knauss (1978); panel (b) adapted from Moore et al. (2007) and 1306 

Pearce and Griffiths (1991). 1307 
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 1311 
                                                                                        1312 

Figure 4. Composite averages of eddy-centric CHL anomaly in (a,b) the Gulf Stream region 1313 

(year round), and (e,f) the South Indian Ocean (May-October).  Locations of the two domains are 1314 

shown in Figure 1. Contours in panels (a) and (b) are SSH anomaly, and eddy-induced Ekman 1315 

pumping in panels (e) and (f).  Regions of the composites that do not exceed the 95% confidence 1316 

interval of mean are masked with white.  The x and y coordinates of the composite averages are 1317 

normalized by the eddy radius. The title of each composite average indicates both the number of 1318 

eddy realizations N used to construct the composite and the effective degrees of freedom N
*
 used 1319 

to computed the 95% confidence interval.  Right hand panels depict time-series of eddy 1320 

amplitude and CHL anomaly for cyclones (blue) and anticyclones (red).  The beginning of the 1321 

time series are shaded to indicate that both eddy amplitude and CHL anomaly are only observed 1322 

after the eddy is first detected by the automated eddy tracking procedure, defined here as week 1.  1323 

From Gaube et al. (2014). 1324 
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 1328 
Figure 5. Isopycnal displacements associated with three types of eddies in the process of 1329 

formation/intensification (top row) and decay (bottom row). Two density surfaces are depicted in 1330 

each case: one in the seasonal thermocline (࣋૚) and one in the main thermocline (࣋૛).  From 1331 

Flierl and McGillicuddy (2002). 1332 
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 1334 
 1335 

Figure 6.  (a) Illustration of how a uniform wind applied to an anticyclonic eddy can lead to a 1336 

divergence and upwelling in the eddy interior. The surface current reduces the stress where the 1337 

wind is in the same direction as the current (point A), and increases it where the wind and current 1338 

oppose each other (point B). The difference in the magnitude of the associated Ekman transport 1339 

creates a divergence at eddy center, regardless of the direction of the wind.  (b) Vertical velocity 1340 

field at the base of the Ekman layer for an idealized circular eddy subject to a 15 m s
-1

 wind. 1341 

Contour intervals are 0.2 m d
-1

 with positive values denoting upwelling. The dotted line 1342 

corresponds to the radius at which the maximum azimuthal velocity occurs.  From Martin and 1343 

Richards (2001). 1344 
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 1347 
Figure 7.  Climatological average mixed layer depths in cyclonic (blue) and anticyclonic (red) 1348 

eddy interiors from ARGO floats in the South Indian Ocean (region similar to “SIO” in Figure 1349 

1). The number N of ARGO floats used for each month is reported. The thin gray lines 1350 

correspond to the NO3 mean seasonal contours (from World Ocean Atlas 2009) ranging from 0.3 1351 

to 1 mmol m
-3

.  For each time point, the rectangular box is delimited by the lower quartile (Q1) 1352 

and the upper quartile (Q3), while the median is represented inside the box by a straight line. 1353 

Whiskers are drawn to the extreme values that are inside the fences lying at Q1-1.5 X (Q3–Q1) 1354 

and Q3+1.5 X (Q3–Q1). Lines join median values.  From Dufois et al. (2014). 1355 
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 1358 
 1359 

Figure 8.  A large anticyclonic eddy north of the mean position of the Southern Antarctic 1360 

Circumpolar Current front (black curve) on Jan 28, 2004: (a) CHL and (b) sea surface 1361 

temperature. Ocean areas covered by clouds are shown in white. The white curves are edges 1362 

determined on the CHL image but overlaid on both images.  Lower panels show output from a 1363 

numerical model highlighting an anticyclonic eddy.  Negative relative vorticity in panel (c) is 1364 

accompanied by high phytoplankton concentration around the periphery of the vortex (d).  Note 1365 

that the sense of rotation is clockwise in the lower panels (northern hemisphere) and 1366 

counterclockwise in the upper panels (southern hemisphere).  Panels (a) and (b) from Kahru et 1367 

al. (2007); panels (c) and (d) from Lévy & Klein (2004).   1368 
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 1370 

 1371 
Figure 9.  Map of the correlation between anomalies of sea level and chlorophyll.  White areas 1372 

correspond to correlations smaller than the estimated 95% significance level.  Regions of 1373 

significantly positive and negative cross correlations are enclosed by solid and dashed contours, 1374 

respectively.  Adapted from Gaube et al. (2014). 1375 
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 1377 
 1378 

Figure 10.  Schematic of the eddy-induced transfer of nutrients. SectionAC may be viewed as 1379 

passing through a subtropical gyre or section AB as through the Southern Ocean. In (a), the 1380 

eddy-induced advection (black straight arrows) and diffusion (curly arrows) oppose each other at 1381 

the surface, but reinforce each other at depth. In (b), the Ekman advection (white arrow) is 1382 

included.  From Lee and Williams (2000). 1383 
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 1385 
 1386 

Figure 11. (a) Sea surface temperature simulated in an idealized double-gyre system of the 1387 

western North Atlantic. Panels (b) and (c) show five-year average depth-integrated (0-120m) 1388 

primary production for 1/54º and 1/9º models after 50 years of integration; panel (d) shows their 1389 

difference.  Note the different map projection in panel (a) from Lévy and Martin (2013) versus 1390 

panels (b-d) from Lévy et al. (2012b). 1391 
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 1395 
Figure 12.  Five-year time-averaged new production (a) and nutrient supply terms (b-h), 1396 

integrated over the euphotic zone.  Advective fluxes in the vertical (middle row) and horizontal 1397 

(lower row) have been separated into their mean and eddying components.  All fields have been 1398 

smoothed with a 24-point e-folding scale Gaussian filter. Asterisks indicate the main features of 1399 

the solutions described in the text. Contours in Figure panel (b) indicate maximum wintertime 1400 

mixed layer depths of 100, 300, and 500 m. Note that wintertime mixed layers inside the 500-m 1401 

contour exceed that value by severalfold; additional contours are not shown for clarity of 1402 

presentation.  From McGillicuddy et al. (2003). 1403 
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 1406 
 1407 

Figure 13.  Schematic of the eddy-driven processes that tend to restratify an area of deep 1408 

convection in the open ocean. Inward flux near the surface and outward flux at depth imply a 1409 

downward eddy-driven transport that removes nutrients from the euphotic zone. Note that the 1410 

convective area does not represent an individual chimney but the larger region over which 1411 

mesoscale and submesoscale convective events take place.  From McGillicuddy et al. (2003). 1412 
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 1417 
Figure 14.  Cross-shore sections illustrating the role of eddies in inducing a lateral loss of total 1418 

nitrogen from a model of the California Current system.  Panels (a) and (b) depict vertical and 1419 

horizontal fluxes of total nitrogen, respectively; units are nmol m
-2

 s
-1

.  White lines are potential 1420 

density; black dashed lines indicate negative fluxes.  Panel (c) depicts a conceptual diagram of 1421 

the impact of mesoscale eddies on coastal circulation, nitrogen transport, and organic matter 1422 

production and export. The thick lines indicate total nitrogen transports and the thin lines depict 1423 

circulation pattern. Shown in blue are the Ekman-driven transports and circulations. The red 1424 

arrows show the eddy-driven transports. Contour lines denote potential density and green arrows 1425 

the vertical export of organic matter.  From Gruber et al. (2011). 1426 
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 1429 
Figure 15.  (a) Annual average diversity in the surface layer of the high-resolution (HR) 1430 

configuration described in Clayton et al. (2013). Diversity (α) is defined as the total number of 1431 

phytoplankton types with biomass greater than 0.001% of the total phytoplankton biomass. Black 1432 

contour lines indicate phytoplankton diversity hotspots (α > 10.2).  (b)  Trends in local diversity 1433 

(α; 10-100 km scales) and regional diversity (γ; 1000 km scales) as a function of dispersion from 1434 

the simulations described in Lévy et al. (2014).  Experiments 0D, 1D, 3D-m, and 3D-e are 1435 

ranked along the x-axis by increasing level of dispersion in the flow field. In the case with no 1436 

dispersion (0D) each grid cell in the horizontal and vertical dimensions is treated independently.  1437 

Vertical mixing is added in the 1D case, and advection by the mean velocity is added in the 3D-1438 

m case.  The full eddy-resolving flow is accounted for in 3D-e.  Results from the latter two 1439 

experiments are marked with dots and stars, respectively.  1440 
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