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Abstract: Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus and
one of the leading causes of nephrotic syndrome. The disease exhibits heterogenous outcomes with
approximately 30% of cases progressing to end-stage renal disease. The clinical management of MN
has steadily advanced owing to the identification of autoantibodies to the phospholipase A2 receptor
(PLA2R) in 2009 and thrombospondin domain-containing 7A (THSD7A) in 2014 on the podocyte
surface. Approximately 50–80% and 3–5% of primary MN (PMN) cases are associated with either
anti-PLA2R or anti-THSD7A antibodies, respectively. The presence of these autoantibodies is used
for MN diagnosis; antibody levels correlate with disease severity and possess significant biomarker
values in monitoring disease progression and treatment response. Importantly, both autoantibodies
are causative to MN. Additionally, evidence is emerging that NELL-1 is associated with 5–10% of
PMN cases that are PLA2R- and THSD7A-negative, which moves us one step closer to mapping out
the full spectrum of PMN antigens. Recent developments suggest exostosin 1 (EXT1), EXT2, NELL-1,
and contactin 1 (CNTN1) are associated with MN. Genetic factors and other mechanisms are in place
to regulate these factors and may contribute to MN pathogenesis. This review will discuss recent
developments over the past 5 years.

Keywords: membranous nephropathy; PLA2R; THSD7A; animal models

1. Introduction

Membranous nephropathy (MN) consists of cases with unknown etiology (primary
MN/PMN or idiopathic MN/IMN) and incidences caused by other conditions (secondary
MN/SMN) including cancers, infections such as hepatitis B, drug reactions, and autoim-
mune diseases such as lupus; PMNs and SMNs constitute approximately 75–80% and
20–25% of MN cases, respectively [1–3]. MN contributes to approximately 30% of nephrotic
syndromes in adults [4,5] with the typical clinical features including proteinuria, hypoalbu-
minemia, hyperlipidemia, and edema [6–8]. The first evidence for MN as a kidney-limited
autoimmune disease was derived via the immunization of rats with kidney extracts (Hey-
mann nephritis rats) in 1959 [9]; this animal model was instrumental in the subsequent
identification of GP330 or megalin expressed on the podocyte surface as the antigen for
membranous glomerulonephritis developed in Heymann nephritis rats [10]. In humans,
the podocyte surface antigens associated with IMN were later discovered as the M-type
phospholipase A2 receptor (PLA2R) in 2009 [11] and thrombospondin domain-containing
7A (THSD7A) in 2014 [12].

The identification of the anti-PLA2R antibody in patients with primary MN was a
major breakthrough in the understanding of MN pathogenesis and the clinical manage-
ment of these patients. PLA2R, and to a lesser extend THSD7A, are the two major MN
antigens expressed on the podocyte surface. Based on studies involving different co-
horts, accumulative evidence reveals the presence of anti-PLA2R antibodies (aPLA2R-Ab)
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and aTHSD7A-Ab in 50–80% and 3–5% of PMN cases, respectively [12–17]. Circulating
aPLA2R-Ab possesses impressive sensitivity and specificity in MN diagnosis. The level
of aPLA2R-Ab correlates with the severity of disease, thus offers prognostic value in the
evaluation of treatment response, and as a surrogate marker for monitoring disease re-
mission following therapeutic intervention. Evidence strongly supports the pathological
role of aPLA2R-Ab and aTHSD7A-Ab; the passive transfer of aPLA2R-Ab to transgenic
mice expressing murine PLA2R specifically in podocytes [18] as well as the transfer of
aTHSD7A-Ab to mice lead to the rapid development of MN [19]. The functionality of these
auto-antibodies to MN is further supported by the newly emerging treatment of MN via
the depletion of B cells using rituximab [20].

In spite of major advancements in knowledge and the clinical management of MN, the
disease still exhibits a heterogenous prognosis. For MN patients who require therapeutic
intervention, only 60% showed partial or complete remission during a 24 month treatment
period with rituximab [21]. Personalized treatment on the initial pathological causes
leading to the autoimmunity to PLA2R or THSD7A is not yet feasible, as our understanding
on the upstream and downstream events contributing to PLA2R- and THSD7A-associated
MN remain limited. This is likely attributed to the current animal models for MN being
primarily models of passive antibody transfer; these models do not fully recapitulate
the course of disease development in MN patients. Upstream pathological events are
likely affected by genetic and other factors that might be associated with sex and aging.
MN affects males to females at a 2:1 ratio, with the disease onset at a median age of 4th–
6th decades [3,22]. In this regard, evidence suggests the involvement of genetic factors
and other podocyte antigens in MN pathogenesis [23]. This review will focus on recent
developments made in the past five years regarding (1) the mechanisms contributing to
PLA2R- and THSD7A-derived autoimmunity in MN pathogenesis and (2) other podocyte
antigens that affect MN.

To comprehensively review this topic, we have searched PubMed under the term:
“membranous nephropathy” [any field] AND “autoantibody” [any field] AND “Journal
article” [publication type] AND “2016–present” [data publication]. A total of n = 222
articles were retrieved. After the exclusion of reviews, case reports, and articles not directly
relevant to this topic, 60 publications remain and are discussed.

Autoimmune reactions of MN occur at the kidney glomeruli, featuring granular
IgG deposition along with the deposition of components in the complement system (the
membrane attack complex/MAC of component) in the glomerular basement membrane
(GBM) adjacent to podocytes, i.e., the subepithelial region [24]. The depositions are caused
by (1) mechanisms leading to the shedding of podocyte antigens to the GBM and (2) the
binding of antibodies (Figure 1); the deposition contributes to GBM thickening and damage
of the glomerular filtration barrier integrity, leading to proteinuria. The most common
podocyte surface antigens are PLA2R and THSD7A; others may also be involved, including
cell surface protein contactin 1 (CNTN1), intracellular proteins exostosin 1 (EXT1) and
EXT2, as well as the secretory protein NELL-1 (neural epithelial growth factor like-1)
(Figure 1). The involvement of these antigens in MN pathogenesis will be discussed in the
following sections.

Figure 1. Factors promoting membranous nephropathy pathogenesis. Mechanisms regulate the production of autoantibod-
ies to the podocyte antigens and the shedding of podocyte antigens into the GBM; this leads to the formation of immune
complex in the subepithelial region and within the GBM (right panel), subsequently causing proteinuria.
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2. Contributions of Autoimmunity to PLA2R in MN Pathogenesis
2.1. The Association of Anti-PLA2R Antibodies with Primary MN

Following the determination of megalin on the podocyte surface as the antigen for
nephrotic syndrome in Heymann nephritis rats [10], efforts over a long period of time
resulted in the identification in 2009 of PLA2R as a podocyte antigen to which autoim-
munization occurs in human PMN [11]. The importance of this discovery should not be
underestimated; it revolutionized the clinical management of MN in terms of diagnosis
and therapy assessment, as well as refocusing research effort towards illustrating PLA2R-
derived impacts on MN. The prevalence of aPLA2R-Ab in PMN over secondary SMN and
its clinical values has been extensively studied [25]. Here, we will provide a brief update
on recent progress in the past five years.

Evidence clearly reveals a general association of aPLA2R-Ab with primary MN com-
pared to secondary MN. In a study of a Chinese cohort (n = 164) consisting of 84 PMN,
22 SMN, 40 non-MN glomerulonephritis, and 20 healthy individuals, aPLA2R-Ab was
detected in 64.6% (53/82) of PMN patients [26], 36.4% (8/22) of SMN cases, and not at all in
controls (patients with non-MN glomerulonephritis and healthy individuals) [26]. Similarly,
in a population containing 122 PMN (or IMN), 30 SMN, and 100 non-MN nephropathy, 82%
of PMN and 16.7% of SMN cases were aPLA2R-Ab+ [27]. Among 252 PMN and 32 SMN
cases, aPLA2R-Ab+ was detected in 70.6% (178/252) of PMN patients and 28.1% (9/32)
of SMN patients [28]. The detection of aPLA2R-Ab in SMN patients ranging from 16% to
36% indicates a complex association of aPLA2R-Ab with MN, suggesting more intricate
mechanisms underlying PLA2R impact on MN pathogenesis.

The presence of aPLA2R-Ab in PMN patients correlates with disease severity. In
comparison to patients with aPLA2R-Ab– PMN, those with aPLA2R-Ab+ PMN experi-
enced higher proteinuria and nephritic-range proteinuria (> 3.5/day; p < 0.05) [26]. Among
the 72 IMN patients with nephrotic syndrome, high level of aPLA2R-Ab correlates with
elevations in 24-h total proteinuria prior to and after combinational therapy with pred-
nisone plus cyclosporine A [29]. Serum aPLA2R-Ab correlated better than the glomerular
deposition of aPLA2R-Ab with reductions in renal function, including serum albumin,
serum creatinine, estimated glomerular filtration rate (eGFR), and proteinuria [30]. In
572 patients with biopsy-proven PMN, patients with serum aPLA2R-Ab (68.5%, 392/572)
had higher levels of proteinuria compared to those negative for aPLA2R-Ab [31].

In a cohort of 572 biopsy-confirmed IMN cases, a high level of aPLA2R-Ab was
associated with a reduced rate of proteinuria remission following immunosuppressive
therapy [31]. In a large cohort of 359 PMN patients, 202 patients were aPLA2R-Ab+ based
on ELISA analysis [32]. Among these patients, aPLA2R-Ab level was associated with poor
spontaneous remission (odds ratio(OR) 2.2, p = 0.011) and poor therapy remission (OR 3.15,
p = 0.004) [32]. Immune suppressive treatment of PMN patients with cyclophosphamide
or tacrolimus (FK506) led to decreases in aPLA2R-Ab along with improvement in renal
function evident through elevations in serum albumin [33]. In 285 PMN patients with
12-months follow-up, it was observed that patients positive for aPLA2R and intracellular
antigens (aldose reductase, SOD2, and α-enolase) had more than a 4-fold higher risk of
reduced renal function defined by eGFR < 60 mL/min per 1.73 m2 (OR 4.32, 95% con-
fidence interval (CI) 1.41–13.26, p = 0.01) [34]. However, serum aPLA2R is not always
associated with poor prognosis. Patients with aPLA2R-Ab+ MN had a 83.9% remission
rate based on the reduction of proteinuria to <50% of baseline, compared to 54.5% remis-
sion rate for patients with aPLA2R-Ab– MN in response to ≥6-month therapy of either
glucocorticoid alone or in combination with immunosuppressant therapy [27]. Collectively,
circulating levels of aPLA2R-Ab generally predict treatment response. This notion is sup-
ported by several meta-analyses. In 28 studies covering 1235 aPLA2R-Ab+ PMN cases
and 407 patients with aPLA2R-Ab– PMN, aPLA2R-Ab level correlated with reductions in
renal function and aging [35]. Similar conclusions were also derived in a meta-analysis of
12 reports with 2224 PMN patients; furthermore, aPLA2R-Ab levels were associated with
non-remission following immunosuppressive therapy (poor remission rate 2.52, 95% CI
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1.79–3.55, p < 1 × 10−5) [36]. In 2345 PMN patients from 29 studies, patients with aPLA2R-
Ab– PMN at biopsy or time of diagnosis had a better chance of disease remission (remission
rate (RR) 1.31, 95% CI 1.12—.46, p < 0.05) and for aPLA2R-Ab+ patients, antibody reduc-
tion at the completion of immunosuppressive therapy predicted better clinical remission
(RR 2.86, 95% CI 1.75–4.69, p < 0.05) [37]. The poor remission associated with aPLA2R-Ab
was also reported in a total of 11 clinical trials involving 824 PMN patients [38].

Anti-PLA2R antibodies provide diagnostic values to PMN. With a defined cutoff titer
of aPLA2R-Ab, the diagnosis of PMN could be achieved with 71% sensitivity and 100%
specificity in a population containing 69 IMN cases, 9 SMN cases, 94 patients with non-
MN glomerulonephritis, and 286 healthy individuals [39] (Table 1). In a cohort of 57 IMN
patients, 62 patients with non-MN glomerulonephritis, and 22 healthy individuals, aPLA2R-
Ab levels discriminated IMN patients at a ROC (receiver operating characteristic curve)
AUC (area under the curve) value of 0.879; with the optimized cutoff value, diagnosis
of PMN, at 82.5% sensitivity and 75% specificity [40] (Table 1). The diagnosis of IMN
was reported at 88.1% sensitivity and 96% specificity in a population consisting of biopsy
confirmed IMN cases (n = 67), 200 patients with other renal diseases, and 36 healthy
controls [41] (Table 1). The diagnosis of IMN was reported at 83.9% sensitivity and 99.4%
specificity in 155 PMN cases compared to 154 controls [42], as well as at 80.8% sensitivity
and 98% specificity in 374 confirmed IMN cases vs. 296 non-MN controls [43] (Table 1).

Table 1. Diagnosis of primary membranous nephropathy (PMN) with serum anti-PLA2R antibodies.

PMN Cases Control Cases 1 Sensitivity Specificity Refs

69 386 71% 100% [39]

57 84 82.5% 75% [40]

67 236 88.1% 96% [41]

155 154 83.9% 99.4% [42]

374 296 80.8% 98% [43]
1 Control cases include secondary MN (SMN) cases, patients with non-MN renal disease, and healthy individuals.

2.2. The Anti-PLA2R Antibody as a Cause of PMN

The robust association of aPLA2R-Ab with PMN, along with the correlation of aPLA2R-
Ab levels with PMN severity and treatment response, highlights a possible functional
impact of aPLA2R-Ab in PMN pathogenesis. This concept is supported by the rituximab-
derived depletion of B cells in treating PMN [21]. The temporal relationship between
aPLA2R-Ab and the clinical manifestation of PMN fits well with a causal impact of aPLA2R-
Ab on PMN. An association between pre-implant aPLA2R-Ab with recurrent MN following
kidney transplantation was observed. In a study of 63 transplantations, patients with
aPLA2R-Ab had a higher risk of recurrent MN (rMN, hazard ratio (HR) 1.87, 95% CI
1.16–3.0, p = 0.01) [44]. Similarly, pre-implant aPLA2R-Ab predicted rMN following kidney
transplantation at 85% sensitivity and 92% specificity [45]. In 33 MN patients without
nephrotic proteinuria at the time of diagnosis and treated with blockers of the renin-
angiotensin system, it was observed that those with aPLA2R-Ab were at increased risk of
developing nephrotic proteinuria (HR 3.66, 95% CI 1.39–9.64, p = 0.009) [46]. These recurrent
MN cases following kidney transplantation in the presence of aPLA2R-Ab support a
causative role of the antibody in PMN pathogenesis. Consistent with these observations,
in a recent study of 134 PMN patients from the Department of Defense Repository with
longitudinal serum samples available, 44% (59/134) of PMN cases were aPLA2R-Ab+
and the appearance of this antibody could be months to years before MN diagnosis and
documented non-nephrotic range proteinuria [47].

Even with accumulated evidence supporting a causative role of aPLA2R-Ab in MN,
direct demonstration of this concept via the passive transfer of aPLA2R-Ab into mice
has been challenging; as mice do not express endogenous PLA2R on podocytes and
the construction of transgenic mice expressing human PLA2R in the podocyte has been



Biomolecules 2021, 11, 513 5 of 21

difficult [48]. However, the situation has changed lately. Transgenic mice expressing
full-length murine PLA2R specifically in the podocytes have been constructed [18]. The
passive transfer of rabbit anti-mouse PLA2R antibodies induced a rapid onset of MN in
the transgenic mice evident by the development of proteinuria, hypercholesterolemia, and
morphological features of MN [18]. Collectively, evidence reveals a causative action of
aPLA2R-Ab in MN pathogenesis.

The causative link of aPLA2R-Ab to MN provides a solid basis for targeting IgG4
aPLA2R-Ab in MN therapy. In this effort, a Phase II multi-center clinical trial PRISM
(peptide GAM immunoadsorption therapy in primary membrane nephropathy) has been
conducted [49]. PRISM aims to remove IgG from 12 patients with biopsy-proven PMN;
these patients had nephrotic range proteinuria and an aPLA2R-Ab titer > 170 µ/mL.
Safety, tolerance to immunoadsorption therapy, as well as reductions of aPLA2R-Ab along
with the improvement of renal functions have been examined. The clinical trial was
completed at the end of 2019 (Clinical Trial on Autoimmune Membranous Nephropathy:
Immunoadsorption—Clinical Trials Registry—ICH GCP), with the outcome yet to be
reported. Nonetheless, a positive outcome is to be expected based on the pathological
cause of not only aPLA2R-Ab but also aTHSD7A-Ab in MN. Considering the existence of
other MN-causing antigens, this IgG immunoadsorption approach might be an attractive
alternative therapy.

3. THSD7A as a Podocyte Antigen of Membranous Nephropathy

Antibodies to thrombospondin type-1 domain-containing 7A (THSD7A) were initially
reported in 15 out of 154 (9.6%) patients with idiopathic MN in 2014 [12]. The presence
of serum aTHSD7A-Ab correlates well with the tissue staining of THSD7A in MN biop-
sies [50]. In comparison to 50–80% of PMN patients having aPLA2R-Ab, aTHSD7A-Ab
contributes to approximately 5% of PMN cases [51,52]. Circulating aTHSD7A-Ab was
observed in 1.6% of 192 IMN patients [53], 2% of 578 patients with PMN [54], and 3%
in 3 studies containing 258 [55], 1012 [52], or 1276 PMN cases [51]. In a meta-analysis
of 10 studies conducted up to the end of 2017 for a total of 4121 PMN patients, the 3%
prevalence rate of renal stained THSD7A and circulating aTHSD7A-Ab was increased to
10% among aPLA2R-Ab negative cases [56], consistent with PMN cases being positive for
either and rarely for both (PLA2R and THSD7A) antigens [23,57]. In two separate studies
involving 1270 (258 + 1012) PMN patients, approximately 1% of cases were positive for
both PLA2R and THSD7A [52,55]. The distribution of THSD7A-associated PMN cases
does not differ among different ethnic groups [56]. Patients with high serum titers of
aTHSD7A-Ab were associated with poor prognosis and did not respond to treatment [52].
The diagnostic efficiency of serum aTHSD7A-Ab towards PMN is associated with low
sensitivity but high specificity. In a recent meta-analysis of 10 studies involving 4545
PMN patients, aTHSD7A-Ab had achieved diagnosis efficiency in aPLA2R-Ab negative
cases at 8% summary sensitivity and 100% summary specificity [58]. The low sensitivity
is likely attributable to the low prevalence of serum aTHSD7A-Ab even in patients with
PLA2R-negative PMN. Nonetheless, the high specificity can assist in the non-invasive
diagnosis of PMN. Collectively, although THSD7A is not a common MN antigen compared
to PLA2R, aTHSD7A-Ab levels correlate with poor clinical performance in patients with
THSD7A-associated PMN.

Evidence supports aTHSD7A-Ab as a pathological cause of MN. The immunoadsorp-
tion of two patients with aTHSD7A-Ab+ MN, one patient with melanoma, and another with
bladder cancer, led to reductions of circulating aTHSD7A-Ab and the improvement of renal
function [59]. Furthermore, recurrent MN rapidly developed in kidney transplant patients
with THSD7A-associated PMN and enhanced THSD7A staining was detected in the kidney
allograft [19]. Passive transfer of this patient’s aTHSD7A-Ab or anti-human THSD7A
produced from rabbit led to a rapid onset MN pathology in mice without complement
activation [19,60].



Biomolecules 2021, 11, 513 6 of 21

4. Mechanisms Underlying PLA2R- and THSD7A-Contributed MN Pathogenesis

Compared to the rapid expansion of PLA2R and THSD7A as MN antigens, knowl-
edge on their related mechanisms remains limited. Other factors or pathways are critical
for both antigens to induce MN. Gene profiling of mouse podocytes revealed pathways
regulating cytoskeleton, cell differentiation, endosomal transport, and peroxisome func-
tions [61]. Disruption of these events in podocytes can result in MN. For instance, the
binding of aTHSD7A-Ab to cell expressing THSD7A affects the cytoskeleton [19]. Consid-
ering that PMN is a kidney-limited autoimmune disease, alterations in the global immune-,
inflammation-, and MGN (membranous glomerulonephritis)-associated triplet (IIMATs)
networks were recently identified, which include chemokine signaling, the Jak-STAT path-
way, B cell and T cell signaling pathways, and others [62], highlighting the importance of
abnormalities in immune processes to MN pathogenesis.

4.1. Genetic Factors

Genetic factors are clearly involved in MN. For instance, while the passive transfer of
rabbit anti-human THSD7A to BALB/c mice led to proteinuria at day 2, with a dramatic
increase in severity up to day 14 compared to mice transferred with preimmune IgG, this
did not occur in C57BL/6 mice [60]. The passive transfer of rabbit anti-mouse PLA2R IgG
to transgenic mice expressing murine PLA2R in the podocyte induced a rapid onset of MN
in the BALB/c strain [18]; it will be interesting to examine whether C57BL/6 mice display
similar resistance to PLA2R-induced MN.

The risk loci associated with PLA2R MN are involved in peptide presentation in the
immune system. The single-nucleotide polymorphism (SNP) rs2187668 of HLA-DQA1
(human leukocyte antigen class II DQ alpha 1) and rs4664308 of PLA2R are risk alleles
of PMN [63]. In a study of 1112 IMN patients and 1020 healthy controls, patients with
HLA-DQA1 rs2187668 and PLA2R rs4664308 risk alleles had an 11.13-fold higher PMN risk
(p = 6.03 × 10−21) compared to individuals with the protective genotype at either gene [64].
Impressively, among 26 individuals with both risk alleles, 19 (73%) had serum aPLA2R-Ab
compared to none in the 19 individuals with the protective genotype at both alleles [64].
In an Indian cohort of 114 PMN patients, rs2187668 of HLA-DQA1 was a risk factor of
serum aPLA2R-Ab [65]. The risk allele of PLA2R rs4664308 in PMN development was
also reported by others [66]. Both PLA2R rs4664308 and HLA-DQA1 rs2187668 SNPs are
intronic [64]; their impact might be on gene expression. Another pair of intronic risk alleles
were rs9272729 of HLA-DQA1 and rs17830558 of PLA2R; individuals with homozygous
HLA-DQA1 rs9272729 and heterozygous PLA2R rs17830558 had an 80-fold (OR 79.4,
p = 7.1 × 10-5) higher risk of developing MN compared to individuals without the risk
alleles at both genes [67].

Risk locus was also found in HLA-DRB1. The DRB1*1501 and DRB1*0301 allele
are independent risk factors of IMN with respective ORs of 4.65 (p < 0.001) and 3.96
(p < 0.001) [68]. Both risk alleles are associated with higher levels of aPLA2R-Ab [68,69].
Interactions of DRB1*1501 and DRB1*0301 independently with PLA2R rs4664308 were
detected; it was suggested that arginine 13 and alanine 71 encoded by DRB1*1501, as well
as lysine 71 encoded by DRB1*0301, facilitate the presentation of PLA2R epitopes and
thereby enhance aPLA2R-Ab production [68]. The risk allele DRB1*1501 was also identified
in a separate study involving PLA2R-associated MN (n = 343), non PLA2R-associated MN
(n = 50), and healthy individuals (n = 385) [70]. Additionally, it was recently reported
that two twin sisters having the risk alleles of DRB1*1501, DRB1*0301, and DQB1*0602
developed PLA2R-associated IMN [71], consistent with the involvement of the risk alleles
of DRB1*1501 and DRB1*0301 in developing PLA2R-associated IMN.

In support of the concept for facilitating PLA2R epitope presentation in aPLA2R-Ab
production, increases in plasma cells and regulatory B cells (BREG) occurred in PLA2R-
associated MN patients; memory B cells contributed to aPLA2R-Ab production [72]. Ac-
cumulative evidence supports that risk alleles at HLA-DQA1, HLA-DRB1, and PLA2R
rs4664308 are risk factors of PLA2R-associated PMN. Risk alleles for THSD7A-associated
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MNs remain unclear. Collectively, the involvement of HLA-DQA1 and HLA-DRB1 in
PLA2R-associated MN pathogenesis is consistent with the current knowledge for the im-
portance of T-cell dependent and B-cell-mediated autoimmunity to anti-receptor-caused
autoimmune diseases [73], which include the receptor PLA2R in PMN.

4.2. Epitopes of PLA2R and THSD7A

Both PLA2R (180-kDa) and THSD7A (250-kDa) have a large extracellular N-terminal
domain on podocytes, which contain several motifs (Figure 2). The N-terminal fragment of
PLA2R consists of a cysteine-rich (CysR) or Richin B domain, a fibronectin-like domain
(FnII), and 8 C-type lectin-like domain (CTLD); the THSD7A extracellular fragment contains
21 thrombospondin type 1 (TSP-1) domains and a basic region (Figure 2) [57].

Figure 2. Epitope utilization for PLA2R and THSD7A in PMN patients. Both epitope spreading (A) and co-utilization
of epitopes distant and adjacent to podocyte membrane (B) occurred in PLA2R-associated PMN patients. The epitope
frequency for THSD7A (C) was derived from reference (79) based on 150 THSD7A-associated PMN cases. The 21 TSP-1
domains in TSD7A can be classified as group 1 thrombospondin repeat 1 (TSR 1) and group TSR 2 [57]. (D) CNTN1 is
anchored on the cell surface.

Epitope regions of PLA2R, reacted with patient-derived aPLA2R-Abs, were initially
mapped to CysR [74], CTLD1, and CTLD7 [75] (Figure 2A). The 31-mer amino acid pep-
tide of CysR binds to aPLA2R-Abs with high affinity and displays 85% inhibition of
the interaction of aPLA2R-Abs with PLA2R [74]. All PLA2R-associated PMN patients
have circulating aPLA2R-Abs that recognize this epitope [76]. Patients with aPLA2R-Abs
recognizing CTLD1 and/or CTLD7 had more severe nephrotic range proteinuria, were
less likely to have spontaneous remission, and showed a higher risk of disease progres-
sion to end-stage renal disease (ESKD) compared to those with aPLA2R-Abs to CysR
epitope [75]. It was suggested that the CysR epitope is the dominant epitope targeted
by anti-PLA2R antibodies, which then extends to CTLD1 and/or CTLD7 epitopes as a
result of epitope spreading (Figure 2A) following disease progression [75]. In support of
this model, patients with epitope spreading had higher aPLA2R-Abs titer sand reduced
rates of remission [77]. Epitope spreading is also associated with treatment outcomes;
rituximab treatment of patients with nephrotic syndrome and base-line epitope spreading
reduced epitope spreading, aPLA2R-Ab titers, and resulted in remission; on the other hand,
nonresponse patients showed persistent epitope spreading [77]. However, the association
of epitope spreading with the severity and prognosis of PLA2R-associated PMN appears
to be more complex. Anti-PLA2R antibodies to the epitope within the CysR-FnII-CTLD1
was previously mapped [78]. An epitope to CTLD8 was recently observed in 16% of
150 patients with PLA2R MN [79] (Figure 2B). All 150 newly diagnosed patients have
aPLA2R-Abs reacting to both the N-terminal region (CysR-FnII-CTLD1) and C-terminal
region (CTLD7-CTLD8). With 54 months follow-up for therapy with ACE inhibitors or
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angiotensin receptor blockers, 89% of patients (133 out of 155) had remission of proteinuria
independent of antibodies with domain-specific profiles, i.e., a domain-specific antibody
does not predict disease outcome independently of total aPLA2R-Abs [79]. Collectively,
whether epitope-unique antibodies will specifically impact PLA2R-assocaited MN needs
further investigation.

Epitope utilization on THSD7A remain less clear. Among 31 cases of THSD7A-
associated MN, 9 epitope regions across 21 TSP-1 domains were identified, with the
N-terminal region d1-d2 (domain 1-domain 2) being most frequently recognized [80]
(Figure 2C). This is similar to PLA2R, with the CysR epitope having the most common
reaction with aPLA2R-Abs [76]. Serum containing antibodies recognizing more than two
epitopes has a higher titer of aTHSD7A-Ab [80], which shares similarities with the epitope
spreading model of PLA2R [75]. Intriguingly, the common domain epitope between the
31-mer CysR epitope of PLA2R and a 28-mer sequence within d1-d2 regions (48—192)
of THSD7A was recently reported [81]. While cross activities of autoantibodies to either
PLA2R or THSD7A could be detected on the common epitope at peptide level, these cross
activities did not occur at the protein level [81]. Nonetheless, the involvement of this
common epitope remains a possibility in PMN patients that are positive for both PLA2R
and THSD7A autoantibodies. It will be interesting to examine this scenario. Collectively,
while epitope knowledge is critical in developing domain-specific immunotherapies to
PMN, there is still a long road ahead before it can be applied in clinical settings.

4.3. Complement Activation in PLA2R- and THSD7A-Contributed MN

Complements (C3 and C5b-9) are present in immune deposits in PMN [82–84]; com-
plement activation is a pathological contributor to MN [85,86]. This concept is supported by
the essential role of complement activation in developing proteinuria in Heymann nephri-
tis rats [87–89]. Additionally, immunization with human recombinant non-collagenous
domain 1 (rh-α3NC1) led to the development of proteinuria and the deposition of C3 and
C5b-9 in wild type mice but not in mice with AP deficiency [90]. In patients with PLA2R-
associated PMN, the accumulation of C3 and C5b-9 in immune deposits occurs [91,92].
Both aPLA2R-Ab and aTHSD7A-Ab are predominant IgG4s [11,12], a subtype IgG that
does not fix component C1q and thus is unable to initiate complement activation through
the classical pathway (CP) [89]. However, the CP can contribute to PLA2R-associated MN.
For instance, in a case of recurrent MN developed 13 days following kidney transplantation,
both the native and graft biopsies displayed depositions of monoclonal aPLA2R-Ab IgG3-κ,
C1q, C3, and C5b-9 but not MBL (mannose-binding lectin), indicating CP-mediated comple-
ment activation [93]. IgG4 was suggested to bind and activate the lectin pathway (LP) [86].
IgG4 purified from aPLA2R-Ab-positive PMN patients was found to bind MBL and induce
cytoskeleton alteration in human podocytes in vitro [94]; in a recent study of complement
activation products present in the circulation and urine in 134 biopsy-confirmed PMN
patients containing 91 patients with PLA2R-associated PMN, complement activation via
LP in the presence of aPLA2R-Ab was suggested [95]. Complement activation through
the alternative pathway (AP) is supported by the genetic evidence for the deposition of
aPLA2R-Ab IgG4, C3, and C5b-9 in patients with MBL deficiency [96]; additionally, in
patients with PLA2R-associated PMN, AP can be utilized via the production of antibodies
targeting complement factor H (CFH) [97], a cell surface AP inhibitor [98,99]. Collectively,
evidence supports the role of complement activation in PLA2R-associated MN.

Evidence is not clear for a role of complement activation in THSD7A-contributed
MN. Passive transfer of aTHSD7A-ab derived from patients to mice induces proteinuria,
which does not require C3 deposition, although C3 deposition occurs in response to the
deposition of mouse-derived anti-human IgG later [19]. Additionally, the injection of rabbit
anti-HSD7A resulted in MN without C3 deposition [60].



Biomolecules 2021, 11, 513 9 of 21

4.4. Physiological Impact of PLA2R and THSD7A on MN Pathogenesis

The passive transfer of anti-THSD7A IgG to BALB/c and C57BL/6 mice induced IgG
deposition in both mouse strains but proteinuria only in the BALB/c mice [19], suggesting
different downstream events following immune complex deposition occurring in different
mouse strains. THSD7A plays a role in podocyte cell skeleton regulation; the binding of
THSD7A IgG derived from patients induced substantial cell cytoskeleton reorganization in
mouse primary glomerular epithelial cells and in human embryonic kidney 293 (HEK293)
cells ectopically expressing human THSD7A [19]. In human podocytes, THSD7A enhances
adhesion, facilitates attachment to collagen type IV-coated surfaces, and reduces migration
ability [100], supporting its role in regulating the podocyte skeleton. THSD7A is expressed
at the basal surface of podocytes in humans and mice [19,101] and in the foot processes
proximate to slit diaphragms [102]. The binding of aTHSD7A-Ab can damage the integrity
of the filtration barrier, resulting in proteinuria.

The functions of PLA2R remains unclear. In a recently established podocyte-specific
mPLA2R (murine PLA2R) mouse model, mPLA2R was detected at the slit diaphragm of
podocyte foot processes [18], which implies that the binding of the anti-PLA2R antibody
may cause podocyte injury; this may in part contribute to proteinuria. PLA2R was reported
to be associated with the annexin A2-S100A10 complex at the podocyte surface and Ca2+

enhances this association [103]. Nonetheless, whether this association is sensitive to
aPLA2R-Ab and its contributions to MN pathogenesis warrants further investigation.

It remains unclear how certain factors or pathways are involved in leading to the
accumulation of soluble PLA2R and THSD7A into the subepithelial region and the GBM
(Figure 1), an important event for immune complex deposition [104]. Alternative splicing
may contribute to soluble PLA2R [105]. The cleavage of THSD7A at a site close to cell
membrane may be in part attributable to soluble THSD7A [106].

5. Other MN-Associated Antibodies Targeting Podocyte Antigens
5.1. Exostosin 1 and Exostosin 2

By using laser capture-coupled mass spectrometry, exostosin 1 (EXT1) and EXT2 were
identified in 5 of 15 PLA2R-negative MN and none in 7 PLAR2-positive MN cases in a
pilot cohort [107]. In the discovery cohort of 224 PLA2R-negative MN cases and 102 con-
trols (including 47 cases of PLAR2-positrive MN and other controls), mass spectrometry
and immunohistochemistry (IHC) detected 21 and 26 (11.6%) EXT1/EXT2-positive cases,
respectively, only in PLA2R-negative MN cases. Granular staining of EXT1 and EXT2
along the GBM and a typical staining pattern of MN was demonstrated. IgG1 was the
most abundant anti-EXT1/EXT2. The deposition of component C3 along the capillary
wall was observed [107]. Most patients (85%) with EXT1/EXT2-positive MN had other
autoimmune diseases including lupus (8/26), revealing EXT1 and EXT2 as potential target
antigens for SMN [107]. The association with pure class V lupus nephritis was confirmed
in 8 out of 18 patients in a validation cohort [107]. EXT1/EXT2-positive SMN occurred
predominantly in females (21/26 = 80.8%) [107]. While evidence favors EXT1 and EXT2 as
potential target antigens for SMN, there are patients among these 26 EXT1/EXT2-positive
MN cases with no evidence of existing autoimmune conditions [107].

EXT1 and EXT2 are members of the exostosin glycosyltransferase family; both func-
tion in the synthesis of the heparan sulfate (HS) backbone via chain elongation [108,109].
EXT1 (8q24.11) and EXT2 (11p11.2) form heterodimers, which enhances their activity and
stability [110]. EXT1 and EXT2 form a complex in the endoplasmic reticulum (ER) trans-
membrane and loss of their functions causes hereditary multiple osteochondromas [111].
By functioning in HS synthesis, EXT1 and EXT2 affect multiple signaling events, including FGF,
BMP, and Wnt signaling [111]. How these signaling pathways and the ER residence of EXT1
and EXT2 contribute to their impact on SMN are an interesting aspect of future research.
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5.2. Neural Cell Adhesion Molecule 1 (NCAM-1)

Similar to the association of EXT1 and EXT2 with lupus nephritis [107], NCAM-1 was
reported as an antigen for membranous lupus nephritis (MLN) and PMN [112]. In an effort
to discover unknown MN antigens via mass spectrometry analysis of laser-capture micro-
dissected MN glomeruli, NCAM-1 was identified in three cases of MLN [112]. Among
212 MLN and 102 PMN cases, 14 (6.6%) and 2 (2%) were associated with NCAM-1, respec-
tively [112]. The co-localization of NCAM-1 with IgG along the GBM was observed. Both
C1q and C3 were detected in immune deposits [112]. Among 13 cases with determined
IgG subclasses, IgG1 was present in 11 cases with 6 cases being IgG1 dominant [112], show-
ing that IgG4 is not the dominant anti-NCAM-1 antibody IgG. The IgG1 dominance for
anti-NCAM-1 antibodies shares similarity with anti-EXT1/EXT2 antibodies [107], support-
ing the association of both NCAM-1 and EXT1/EXT2 with lupus nephritis. Nonetheless,
aPLA2R-Ab was also reported in 5.3% of MLN cases and the presence of aPLA2R-Ab is
associated with poor renal prognosis [113]. However, the clinical impact of anti-NCAM-1
antibodies needs further investigation. NCAM-1 is a neural cell adhesion protein with a
high level of expression in the central nervous system, and its association with proliferative
lupus nephritis was previously reported [114].

5.3. Neural Epidermal Growth Factor-like 1 (NELL-1)

Following the system described above, the same group recently identified NELL-1
as a target antigen candidate for PMN [115]. Among PLA2R-negative MN cases from a
discovery cohort (n = 126) from the Mayo clinic and a validation population (n = 84) from
France and Belgium, 16.2% (34/210) of NELL-1 positive cases were detected [115]. IgG1
was the most abundant Ig subclass produced in patients with NELL-1 MN. Granular stain-
ing of NELL-1 along the GBM was demonstrated; the co-staining of anti-NELL-1 with IgG
supports anti-NELL-1 IgG as a component of IgG deposition in the subepithelial surround-
ing. The staining of component C3 occurred along the capillary wall [115]. Circulating
anti-NELL-1 in five patients was demonstrated in serum [115]. NELL-1 is expressed at a
high level in neural tissues including the brain and at a low level in non-neural tissues such
as in the liver and kidney [116]. In the kidney, tubules express a higher level of NELL-1 and
its expression is marginally detected in the glomeruli [115,117]. Nonetheless, the authors
favored the possibility of NELL-1 shedding from the podocyte for the immune complex
deposition along the GBM [115]. NELL-1 is a secreted protein [118]. With NELL-1 being
expressed at higher levels in other tissues, together with its presence in the extracellular
domain (secreted), and the circulating anti-NELL-1 antibody in MN patients, the possi-
bility of the deposition of the anti-NELL-1-Ab-NELL-1 complex into to the subepithelial
region cannot be excluded. Nonetheless, the evidence collectively supports NELL-1 as a
MN antigen.

In a discovery cohort containing 126 patients with PLA2R-negative MN, 29 NELL-1
positive MN cases were not associated with autoimmunity and other system conditions,
suggesting NELL-1 as a potential target antigen of PMN. However, this should be inter-
preted with caution; in the validation cohort (n = 84), 4 among 5 NELL-1 positive MN
patients had cancer (lung cancer, metastatic pancreatic carcinoma, metastatic breast cancer,
and urothelial carcinoma) [115].

The association of NELL-1 MN with cancer is in accordance with NELL-1 being a
potent growth factor for the osteochondral lineage [118]. NELL-1 activates the mitogen-
activated protein kinase (MAPK) pathway and Wnt/β-catenin signaling [119]; both are
well-established oncogenic events [120,121]. NELL-1 contains a set of domains. The N-
terminal thrombospondin-like module (TSPN) binds heparin [119,122], which facilitates
NELL-1 association with integrin [123]. The upregulation of NELL-1 causes congenital
cranial defects attributed to the premature fusion of sutures [124,125]; mice with transgenic
overexpression of NELL-1 also develop craniosynostosis [126]. These observations are
in line with the critical role of NELL-1 in osteogenesis and skeletal development [119].
EXT1 and EXT2 play important roles in HS synthesis and their loss leads to inherited
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skeleton defects [111,127]; EXT1/EXT2 and NELL-1 were identified in the same system
and in PLA2R-negative MN. Additionally, autoantibodies to EXT1/EXT2 and NELL-1 in
MN patients were IgG1-based. With these similarities, it is tempting to suggest at least
some association between EXT1/EXT2 and NELL-1 in MN development.

With NELL-1 contributing to 5–10% of PMN cases along with PLA2R (70–80%) and
THSD7A (1–5%), approximately 5–10% of PMN cases seem to involve antigens yet to be
identified [128].

5.4. Contactin 1 (CNTN1)

Similar to NELL-1, Contactin 1 (CNTN1) is mainly expressed in neural tissues [129].
CNTN1 forms a complex with contactin-associated protein-1 (CASPR1) on the axonal
membrane, which binds neurofascin (Nfasc) on the Schwann cell surface to form septate-
like axoglial junctions in the paranodal region [130,131]. CNTN1 plays an essential role
in maintaining the cohesion between the axon and the myelin sheath in the paranodal
loops. Antibodies targeting CNTN1 and other two proteins (CASPR1 and Nfasc) have
been reported in patients with chronic inflammatory demyelinating polyradiculoneuropa-
thy (CIDP) [132–135], a heterogenous chronic autoimmune neuropathy characterized by
autoimmunity-induced demyelination [136,137].

Evidence is accumulating for the association of CNTN1 with MN. Anti-CNTN1 (IgG4)
was detected in 0.7% (n = 1500) [138], 0.8% (n = 342) [139], 6.5% (n = 46) [140], and 7.5%
(n = 53) [141] of CIDP cases respectively. Among the 10 patients out of 1500 CIDP cases
with IgG4 anti-CNTN1, 6 had concurrent MN; these patients were PLA2R-negative [138].
In a separate study, one of three anti-CNTN1 positive CIDP patients exhibited concurrent
MN [139]. In addition to these 7 CNTN1-associated MN cases reported in 2020, 14 anti-CNTN1
positive CIDP patients with MN were accumulatively described from 1987–2018 [141–152],
including 10 cases with neuropathy occurring before nephropathy and 4 cases with concurrent
pathologies (please see literature review by Hashimoto et al.) [152]. CNTN1-associated MN
has a male to female ratio of 10:4 (2.5:1) [152]. While the development of MN in these
21 CIDP patients with anti-CNTN1 Ab implies that kidney CNTN1 is a potential target,
this has not been directly determined. This is important, as CNTN1 mRNA is only weakly
expressed in the kidneys [153].

In a late case report of a 43-year-old male with CIDP who developed MN with
nephrotic syndrome one year after being diagnosed with neuropathy, IgG4 anti-CNTN1
but not anti-PLA2R antibody was detected [154]. IgG deposition was confirmed by im-
munofluorescence staining. Clear podocyte expression of CNTN1 by IHC only occurred
in the MN glomeruli but not in controls [154], providing direct evidence for podocyte
CNTN1 upregulation as a potential target antigen for CIDP-associated MN. It is tempting
to suggest podocyte CNTN1 as a major target antigen for MN occurring in CIDP patients.
This concept is supported by the common observation that these patients are generally
resistant to CIDP therapy such as intravenous immunoglobulin (IVIG) but sensitive to
immunosuppressive treatments [138]. For this 43-year-old male with CIDP and MN, IVIG
was not effective and immunosuppressive therapy improved both nephrotic syndrome
and neuropathy [154].

MN development in the CIDP population appears specific for CNTN1. The CNTN1-
Caspr1-Nfasc complex is required to form septate-like axoglial junctions in the paranodal
loops [130,131]. While autoantibodies to this complex were produced, MN only occurred
in 6 of 10 patients with IgG4 anti-CNTN1, despite 15 among 1500 CIDP patients producing
anti-Nfasc antibodies [138]. This is more intriguing considering that podocytes express
high levels of Nfasc in their major processes [155].

5.5. Semaphorin 3B, High Temperature Recombinant Protein A1 (HTRA1), and Protocadherin 7
(PCDH7)

Mass spectrometry analysis of laser dissected PLA2R-negative PMN biopsies identi-
fied semaphorin 3B in 3 cases among 70 biopsies in the Mayo clinical cohort [156]. Other
cases (n = 8) were from French cohort #1 (2 out of 16 cases: 2/16), French cohort #2 (2/59),



Biomolecules 2021, 11, 513 12 of 21

and an Italian cohort (4/43). IgG1 was the dominant subclass among 4 cases in which an
IgG subclass was determined. Among the 11 cases of semaphorin 3B MN, 8 were pediatric
patients; among the remaining 3 adult cases, the average age of onset was 36.3 years. The
data suggests the occurrence of anti-semaphorin 3B IgG1 antibodies in pediatric and young
MN patients. Complement C1q, C2, and 3 were detected in immune deposits [156]. Collec-
tively, evidence supports semaphorin 3B as a new PMN antigen particularly for pediatric
and young patients. Semaphorin 3B is a secreted protein; its expression in podocytes was
reported [157]. Nonetheless, its functions in the kidneys remain unclear.

HTRA1 was recently identified as a target podocyte antigen in 3 PMN cases; anti-
HTRA1 antibodies were predominantly IgG4 [158]. Among 85 PLA2R-negative PMN
biopsies, PCDH7 was identified in 8 cases [159]. Granular deposits of PCDH7, IgG, and C3
along the GBM were observed; IgG typing on two cases revealed IgG4 in both [159]. A total
of 12 PCDH7-associated MN cases have been accumulated with the mean age of 61 and sex
ratio of 3:1 for males vs. females [160]. C1q and C3 deposition was absent. One of 12 pa-
tients had prostate cancer [160]. The evidence supports PCDH7 as a new PMN antigen. The
involvement of HTRA1 and PCDH7 as PMN antigens requires additional investigations.

6. Other Aspects

Following the identification of PLA2R in 2009 and THSD7A in 2014, much has been
done to demonstrate both PMN target antigens being present on the podocyte surface. The
clinical potentials of PLA2R and THSD7A in terms of diagnosis, prognosis, and therapy
responses have been demonstrated. However, it is important to note that high levels of
aPLA2R-Ab can correlate with good prognoses; two patients with high levels of aPLA2R-Ab
had spontaneous remission [161]; it was also observed that patients with aPLA2R-Ab+ MN
had a higher remission rate than those with aPLA2R-Ab– MN following therapy [27]. These
exceptions indicate complex mechanisms underlying PLA2R-caused PMN pathogenesis
and progression, about which much less is known. The clinical applications of PLA2R and
THSD7A can also be affected by the existence of PLA2R- and THSD7A-negative PMN cases.

This concern can be reduced with the latest evidence supporting NELL-1 as an antigen
in PLA2R- and THSD7A-negative PMN cases. It appears that PMN cases with circulating
IgG1 anti-NELL-1 constitute 5–10% of PMN [115,128]. Considering the distribution of
currently identified MN antigens including PLA2R (70–80%), THSD7A (1–5%), NELL-1
(5–10%), NCAM-1, semaphorin 3B, HTRA1, PCDH7, and unknown antigens (5–10%) in
PMN cases [128], we are getting much closer to mapping out the full spectrum of PMN
target antigens.

However, the tasks ahead are certainly challenging. PMN constitutes 75% of MN cases,
and can be classified as PLA2R-, THSD7A-, or possibly NELL-1-associated. Nonetheless,
the existence of aPLA2R-Ab in 16% to 36% of SMN cases in some reports indicates a
more complex scenario. Are there common causes for both PMN and SMN? This concept
could be supported by the association of both IgG4 (PLA2R and THSD7A) and IgG1
(NELL-1) with PMN. Additionally, in a retrospective analysis of 58 MN biopsies, only
PLA2R (p = 0.25) showed higher staining in PMN than SMN, but this was not the case
for THSD7A (n = 6) and IgG4 (n = 34) staining [162]. Both PLA2R and THSD7A are well-
established for their association with PMN. While the association of THSD7A with cancer
was not observed in every study [12,52,54,55], reports are accumulating for its presence in
cancer-associated SMN [163,164], which might be particularly relevant in colorectal and
breast cancer-caused SMN [165]. In a study of malignancy-associated MN, 16 cancer cases
with PLA2R-associated MN were reported [163].

Accumulative evidence supports complement activation as a potential mechanism of
MN pathogenesis [95,97,166]. In this regard, attempts have been made to inhibit comple-
ment activation as a therapeutic option to treat MN. In view of the central position of C3 and
C5 in complement activation via CP, LP, and AP, inhibitors to C3 and C5 have been devel-
oped. Eculizumab, a humanized monoclonal anti-C5 antibody (Alexion Pharmaceuticals,
Boston, MA), was not effective in reducing proteinuria in MN patients [166]. Pegcetacoplan
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(APL-2; Apellis Pharmaceuticals, Waltham, MA) is a C3 inhibitor currently being examined
in a Phase II clinical trial (NCT03453619) on glomerulopathies, including PMN. However,
evidence suggests effects being non-satisfactory [166]. Other ongoing clinical trials in MN
include inhibition-targeting APs and LPs. LNP023 (Novartis, Basel, Switzerland) is an
inhibitor of complement factor B (CFB) and thus inhibits AP actions [167,168]; LNP023 is
under a Phase II clinical trial in PMN patients (NCT04154787). Narsoplimab (OMS721;
Omeros, Seattle, Washington, USA) is a monoclonal human IgG4 antibody inhibiting
mannan-binding lectin-associated serine protease-2 (MASP-2) [169], a protease that cleaves
C2 and C4 to initiate complement activation via an LP [166]. OMS721 is under a Phase
II clinical trial in MN patients (NCT02682407). The inhibition of the initiation pathways
regulating complement activation (APs and LPs) is supported by the predominance of IgG4
in PLA2R- and THSD7A-associated PMN patients and the involvement of both the AP
and LP in PLA2R-associated PMN (see Section 4.3) [166]; these patients may benefit from
LNP023 or OMS721 therapy. However, for MN cases involving IgG1, other approaches for
targeting complement activation need to be explored.

7. Future Perspectives

Now is an exciting time to study PMN; the field is expeditiously expanding. Podocytes
are likely subjected to primary injury during MN pathogenesis; it is interesting to see that
iPSC (inducible pluripotent stem cell)-differentiated podocytes can repair the injury in
a mouse model of MN [170]; whether this can be used alone or together with immuno-
suppressive therapy should be explored. While rituximab is emerging as the standard
immunosuppressive therapy for PMN [21], the knowledge gained on PLA2R and THSD7A
needs to be translated into the clinic for targeted therapies. To reach this status, the current
understanding on MN requires substantial advancement.

Knowledge on NELL-1 contributions to MN or PMN will be rapidly emerging. Its
relationship to other MN antigens can be studied. For instance, as a secreted protein or
growth factor, its actions in osteogenesis require it to bind to a receptor, cantactin-associated
protein-like 4 (CNTNAP4) [119]. It would be fascinating to examine the connection between
NELL-1 and CNTN1 in MN pathogenesis.

While CNTN1 has been suspected to be an MN antigen in a sub-CIDP population
for more than 30 years, its detection in podocytes in a patient with both CIDP and MN
pathologies further supports this possibility. CNTN1 is anchored on the cell surface and
contains multiple extracellular motifs (Figure 2D), which share structural similarities with
PLA2R and THSD7A (Figure 2). CNTN1 modulates multiple cellular signaling pathways
and facilitates tumorigenesis [171–174]. Whether CNTN1 is a novel MN antigen should be
further explored.

MN-associated antigens in humans, PLA2R, NELL-1, and (possibly) CNTN1, are
expressed at low levels in podocytes. It is thus tantalizing to propose that this likely
neoantigen status in the podocyte is a contributing factor for MN. However, merely being
a neoantigen is not sufficient. The transgenic expression of PLA2R in mouse podocytes
does not by itself cause MN without the passive transfer of anti-PLA2R IgG [18], despite
PLA2R being the most common PMN target antigen. Additionally, mice with a transgenic
expression of human laminin α5 in the basement membrane only produce MN in transgenic
fetuses produced from crosses between transgenic males and wild type females [175], which
resulted from the transfer of maternal anti-human laminin α5 antibodies [175,176]. Another
intriguing situation is that the immunization of DBA1 mice with a 14-mer peptide 23 of
human COLIV α3 NCI protein produced comparable antibodies in all mice but only 50%
of animals developed MN [177], suggesting the need for additional hits [178].

The lack of understanding on the other hits is a major hurdle for MN research and
clinical care. The lung was suggested as being an initial site for producing PLA2R immunity,
evident by PLA2R expression in the lung [105] and MN incidence association with air
pollution [179]. Evidence now also supports the contribution of complement activation to
MN pathogenesis [90,180]. Starting from the generation of the Heymann nephritis model
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in 1959 [9], the passive transfer of IgG remains the standard animal model in current MN
research. The limitation of this model is evident; it cannot address the initial factors critical
for MN development. A major risk factor of MN is aging; the rapid onset of passive MN
models is not applicable when analyzing the time factor. New animal models may be
needed to advance MN research to the next level.
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