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Abstract

Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or 

multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key 

pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, 

we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be 

drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such 

as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates 

the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically 

intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.
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Introduction

The prevalence of neurodegenerative diseases, including 

Alzheimer’s disease (AD), Parkinson’s disease (PD), amyo-

trophic lateral sclerosis (ALS), frontotemporal dementia 

(FTD), and Huntington’s disease (HD), is increasing at an 

alarming rate due to the increase in average life expectancy. 

Patients with these diseases display serious neurological dis-

abilities, such as memory impairment and motor problems, 

for which there are no cure. One of the cardinal features of 

neurodegenerative diseases is the presence of protein toxic-

ity [1]. Here, we define protein toxicity as all the pathologi-

cal alterations that result from the accumulation, oligomeri-

zation, and/or multimerization of disease-associated toxic 

proteins.

Protein toxicity is a unifying feature of both sporadic 

and familial cases of neurodegenerative diseases. One of 

the mechanisms by which protein toxicity occurs is through 

genetic mutations. For example, 5 point mutations in the 

genes encoding synuclein alpha (SNCA; A53T, A30P, E46K, 

H50Q, and G51D) and 52 mutations (alzforum.org/muta-

tions) in amyloid precursor protein (APP) have so far been 

identified to be associated with PD and AD, respectively [2, 

3]. Likewise, protein toxicity can arise from more than 20 

genetic mutations in the TARDBP gene encoding TDP-43 

protein, which are associated with ALS and FTD [4]. In 

addition, a recently identified GGG GCC  repeat expansion 

in the intronic region of the C9ORF72 gene is associated 

with ALS/FTD and is known to produce five different dipep-

tide-repeat proteins (DPRs; poly-GA, -GR, -GP, -PR, -PA) 

through repeat associated non-AUG (RAN) translation [5]. 

The arginine-rich DPRs, in particular, have been shown to 

cause protein toxicity [6]. Moreover, polyQ protein toxicity 

is solely caused by an expansion mutation of the glutamine 

tract in each of the genes responsible for polyQ diseases [7].

On the other hand, aberrant proteins generated indepen-

dently of known genetic mutations can also contribute to 

protein toxicity. For instance, abnormal cytoplasmic accu-

mulation of TDP-43, known as “TDP-43 pathology,” is 

observed in most cases of ALS and in about half of FTD 

cases, even when there is no TARDP mutation [8]. Likewise, 

independent of SNCA mutation, α-synuclein aggregation is 

often observed in PD and several other neurological dis-

orders known as “synucleinopathies”. In fact, PD is rarely 

caused by mutations in SNCA [9]. Similarly, AD is rarely 
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caused by mutations in APP  [10], yet accumulation of amy-

loid beta is the hallmark feature of AD. Thus, regardless of 

the disease etiology (sporadic or familial), protein toxicity 

seems to be a hallmark of most neurodegenerative diseases.

In neurodegenerative diseases, protein toxicity in affected 

neurons may result in cellular defects such as transcriptional 

alteration, mitochondrial dysfunction, and an impaired pro-

tein/RNA quality control system, all of which critically 

contribute to the initiation and progression of neurodegen-

erative diseases. Although cell death is the final outcome 

of the disease process, cell death is often preceded by neu-

rological deficits in animal models and patients [11, 12]. 

Hence, this review will focus on the neuronal dysfunction 

that occurs prior to cell death. Notably, each type of cellular 

defects is not absolutely specific to a certain neurodegenera-

tive disease; but instead, these defects are more commonly 

observed in a variety of disease cases. Given the crucial 

contribution of protein toxicity to neurodegenerative disease 

pathogenesis, increasing our understanding of protein toxic-

ity is indispensable for future development of rational and 

effective therapeutics for these diseases. Instead of charac-

terizing protein toxicity from one disease to another (e.g., 

AD, PD, and ALS), in the following sections, we discuss the 

mechanisms underlying protein toxicity from one subcellular 

compartment to another (e.g., nucleus and mitochondria; see 

Table 1 and Fig. 1). 

Protein toxicity in the nucleus

Nuclear inclusions (NIs) of toxic proteins in neurons are 

observed in approximately 20 different neurodegenerative 

diseases [13]. In particular, nuclear accumulation of toxic 

disease proteins is closely associated with the pathogenesis 

of polyQ diseases (see below for details). Although a grow-

ing body of evidence indicates nuclear dysfunction to be 

central to the pathogenesis of several neurodegenerative 

diseases, the precise role of neuronal intranuclear inclusion 

bodies in the disease pathogenesis is still a matter of debate. 

There is a view that microscopically visible NIs are not 

toxic, but are instead self-protective structures or incidental 

byproducts of the pathogenic process. This view proposes 

that the more soluble protofibrillar or oligomeric aggregates 

(as opposed to the more mature fibrillar aggregates formed 

inside the nucleus) have toxic properties in afflicted neurons 

[14–18]. Whether or not the nuclear inclusion bodies are 

the major source of nuclear protein toxicity, nuclear dys-

functions such as transcriptional alteration and impaired 

nucleocytoplasmic transport are evident in many cases of 

neurodegenerative diseases [19, 20].

As described above, polyQ diseases may be repre-

sentative neurodegenerative diseases associated with 

nuclear protein toxicity [21]. There are at least nine polyQ 

diseases, including HD, dentatorubral–pallidoluysian atro-

phy (DRPLA), spinal bulbar muscular atrophy (SBMA), 

and the spinocerebellar ataxias (SCAs) 1, 2, 3, 6, 7, and 

17 [7]. Each of these nine polyQ diseases is caused by 

CAG (Q) repeat expansion mutation in each of the disease-

responsible genes [e.g., the huntingtin (htt) gene mutation 

for HD]. Upon expansion of the Q repeats, the disease-

responsible proteins, most of which mis-localize to the 

nucleus, gain a propensity to aggregate and multimerize 

with numerous target proteins. For instance, although 

normally a cytoplasmic de-ubiquitinase protein, ataxin-3 

predominantly localizes to the nucleus upon expansion 

mutation in SCA3. Similarly, various animal models pre-

sent nuclear aggregation of mutant htt in neurons [22]. 

Of note, however, the nuclear accumulation of mutated 

polyQ proteins is not always closely associated with the 

pathogenesis of diseases. In case of SCA2, it has been 

shown that nuclear localization of the SCA2 protein is not 

necessary for SCA2 pathogenesis in mice or humans [23].

PolyQ NIs are often co-localized with ubiquitin, heat 

shock proteins, and numerous target proteins [21]. Some 

proteins, such as cAMP response element-binding protein 

(CREB)-binding protein (CBP), have been identified as 

the target of polyQ proteins in a number of different polyQ 

diseases, suggesting that their interaction with polyQ pro-

teins may be dependent on the expanded Q repeat region, 

rather than the flanking regions, of the polyQ proteins. 

The detection of various transcription factors, such as CBP 

[24–27], TATA-binding protein (TBP) [28], nuclear co-

repressor (NCoR) [29], and RE1-silencing transcription 

factor/neuron-restrictive silencer factor (REST/NRSF) 

[30], within polyQ NIs suggests a sequestration mecha-

nism by which polyQ proteins may induce transcriptional 

dysregulation. Notably, many of the proteins sequestered 

by polyQ proteins function as epigenetic regulators that 

may be responsible for the system-wide transcriptional 

dysregulation in a subset of polyQ diseases [20, 31]. Con-

sistently, a previous study reported that the mutant htt and 

ataxin-3 proteins could directly bind to histone acetyl-

transferases, such as CBP and p300/CBP-associated factor 

(P/CAF), thereby impairing histone acetylation in neurons 

[32, 33]. However, the reduction of histone acetylation 

by mutant htt remains disputed [20]. Aside from histone 

modification, direct epigenetic changes to the DNA have 

also been reported in HD. Previous studies reported hypo-

methylation of DNA with CpG-poor regions in the HD cell 

culture model [34] and a decreased level of 7-methylgua-

nine (7mG) by mutant htt proteins in mouse and human 

patient samples [35]. Furthermore, a direct interaction 

between mutant htt proteins and methyl-CpG-binding 

protein 2 (MeCP2) has been reported, the interaction of 

which enables mutant htt to bind directly to the methylated 

DNA regions [36].
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Table 1  Summary of protein toxicity based upon the subcellular localization of toxic disease proteins

Diseases Toxic proteins Phenotypes Human/iPSC Mouse Fly Cell culture Others References

Nucleus

SCA3 PolyQ-expanded 

ataxin-3

Epigenetic and 

transcriptional 

dysfunction

O [26, 33]

HD PolyQ-expanded 

huntingtin

Epigenetic and 

transcriptional 

dysfunction, and 

nuclear aggrega-

tion

O O O O Sheep, rhesus 

monkey

[21, 22, 24, 

25, 28, 30, 

32, 34, 35, 

41–43]

HD PolyQ-expanded 

huntingtin

Nucleocytoplasmic 

transport dysfunc-

tion

O O O O [53, 54]

DRPLA PolyQ-expanded 

atrophin-1

Mouse behavioral 

and survival 

phenotypes from 

histone hypoa-

cetylation and 

cellular toxicity 

from interference 

of CBP- mediated 

transcription

O O O [24, 44]

SCA1 PolyQ-expanded 

ataxin-1

Transcriptional 

dysfunction

O O [40]

SBMA PolyQ-expanded 

androgen receptor

Cellular toxicity 

arising from CBP 

sequestration into 

NI

O O O [26]

SCA7 PolyQ-expanded 

ataxin-7

CBP and RORα1-

mediated 

transcriptional 

repression

O [27]

ALS/FTD Poly-PR repeat 

protein

Nucleocytoplasmic 

transport dysfunc-

tion

O O Frog X. laevis 

oocyte

[56, 57]

Cytoplasm

Prion diseases Prion protein toxic 

β-sheet isoforms

Blockage of sub-

strate entry into 

20S proteasome

O O [59]

AD Hypophosphoryl-

ated Tau oligom-

ers

Synaptic Tau 

interacts with 26S 

proteasome

O [60]

PD α-Synuclein A53T 

and A30P

Perturbation of 

CMA via blocak-

age of lysosomal 

translocation of 

substrates

O [75]

HD PolyQ-expanded 

huntingtin frag-

ment

Autophagy dys-

function

O O O [80, 81]

HD PolyQ-expanded 

huntingtin frag-

ment

Axonal transport 

dysfunction

O O O [107– 109]

ALS Mutant SOD1 Axonal transport 

dysfunction

O O O O  Squid giant axon [102–106]

IBMPFD/ALS Mutant VCP Protein degradation O [62]
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The entry ’O’ in Table 1 affirms the experimental models used to support the listed phenotypes for each diseases

Table 1  (continued)

Diseases Toxic proteins Phenotypes Human/iPSC Mouse Fly Cell culture Others References

Mitochondria

AD Amyloid beta Amyloid beta binds 

to mitochondrial 

proteins such as 

ABAD and CypD 

to induce ROS 

generation, mPTP 

opening, and 

mouse behavioral 

defects

O O O [112, 113]

AD Amyloid precursor 

protein

Mitochondrial 

protein import 

dysfunction

O O O [114, 115]

HD PolyQ-expanded 

huntingtin

Defects in mito-

chondrial protein 

import, traffick-

ing, MPTP open-

ing, and calcium 

regulation

O O O [122–125]

PD Mutant and WT 

α-synuclein

VDAC blockage 

and mitochondrial 

protein import 

dysfunction

O O Rat, yeast [129, 130]

ALS/FTD Mutant and WT 

TDP-43

TDP-43 binds to 

respiratory com-

plex I subunits 

and induce defects 

in mitochondrial 

protein translation

O O O Yeast [131, 132]

ALS/FTD Poly-GR repeat 

protein

Poly-GR binds 

mitochondrial 

ribosomal pro-

teins and induce 

defects in mito-

chondrial protein 

translation

O O O [133]

Stress granules

ALS Mutant profilin 1 Altered SG dynam-

ics

O Yeast [143]

ALS/MSP Mutant hnRNPA1/

A2

Altered SG dynam-

ics

O O O [144]

ALS/FTD Mutant FUS Altered SG assem-

bly and dynamics

O [145]

ALS/FTD Mutant TIA1 Altered SG dynam-

ics

O O [146]

ALS/FTD Mutant and WT 

TDP-43

Altered SG dynam-

ics

O [147]

ALS Mutant SOD1 Altered SG dynam-

ics and morphol-

ogy

O [148]

IBMPFD/ALS Mutant VCP Altered SG quality 

control

O [149]

HD PolyQ-expanded 

huntingtin

Increased SG for-

mation

O [152]
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Transcriptional and epigenetic alterations have been 

shown to contribute to the broad spectrum of neuronal phe-

notypes ranging from early neuropathic features to late-stage 

neuronal cell death in polyQ diseases [31]. For instance, 

recent studies showed that polyQ proteins induced early 

changes to the dendrite morphology through the perturba-

tion of RNA granule formation and transcriptional cascades 

regulating the ER-to-Golgi (COPII) pathway [37–39]. In the 

SCA1 mouse model, the translational repressor Capicua was 

shown to be critically involved [40], and in HD and DRPLA 

mouse models, treatment with histone-deacetyltransferase 

(HDAC) inhibitors (sodium butyrate, 4-phenylbutyric acid 

sodium salt, and suberoylanilide hydroxamic acid) was 

shown to ameliorate neurotoxicity [41–44]. These results 

demonstrate a crucial contribution of transcriptional and 

epigenetic alterations in at least a subset of polyQ diseases.

In addition to polyQ diseases, transcriptional dysregula-

tion is also observed in other neurodegenerative diseases, 

such as AD [45–47] and PD [48, 49], although they are not 

generally accompanied by nuclear accumulation of toxic 

proteins. Similar to polyQ diseases, AD and PD also mani-

fest epigenetic alterations, though the mechanisms of which 

remain to be elucidated [20, 31]. Nevertheless, treatment 

with certain epigenetic drugs, such as HDAC inhibitors, 

ameliorated AD and PD phenotypes in animal models [31], 

indicative of the relevance and importance of epigenetic 

alterations in the disease pathogenesis.

In addition to the transcriptional and epigenetic altera-

tions, nucleocytoplasmic transport defects have emerged as 

one of the principal nuclear dysfunctions manifested in neu-

rodegenerative diseases such as ALS/FTD, HD, and AD [19, 

50]. The mechanisms by which nucleocytoplasmic transport 

Fig. 1  A schematic overview of protein toxicity. Accumulation of 

toxic disease proteins is shown to induce dysfunctions in speci-

fied compartments such as the nucleus, mitochondria, cytoplasm, 

and stress granules. They can also propagate into other nearby cells, 

spreading the disease pathology
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becomes disrupted range from sequestration of nuclear pore 

complex (NPC) molecules by toxic RNA or proteins [19, 

51–56] to direct blockage of nuclear pores by toxic disease 

proteins [57]. Some excellent reviews on this topic have 

recently been published, which we recommend for detailed 

discussion [19, 50].

Protein toxicity in the cytoplasm

Many of the disease proteins are prone to accumulate in the 

cytoplasm, in which the pool of potential target molecules 

differs significantly from that of the nucleus. For example, it 

is the cytoplasm in which the protein quality control (PQC) 

system mostly resides, not in the nucleus. The cytoplasm 

also contains a more elaborate cytoskeleton compared to the 

nucleus. Hence, due to the physical proximity, cytoplasmic 

protein toxicity can directly impinge on the PQC system and 

cargo transport via cytoskeleton disruption. In this section, 

we will focus on the cytoplasmic protein toxicity associated 

with the PQC system and the cytoskeleton.

The accumulation of misfolded proteins in neurodegen-

erative diseases inevitably burdens the PQC system, which 

comprises the ubiquitin–proteasome system (UPS), chap-

erone-mediated autophagy (CMA), macroautophagy, and 

ER-associated degradation (ERAD) [58]. UPS impairment 

is considered to be one of the major contributing factors 

of neurodegenerative disease pathogenesis. Previous stud-

ies showed that aggregated beta-sheet-rich prion proteins 

and aggregated Tau in AD could block the 20S and 19S 

proteasome particles, respectively, which impaired UPS-

mediated degradation [59, 60]. Consistently, genetic muta-

tions of UPS components such as E3 ligase Parkin, deubiq-

uitinating enzyme ubiquitin carboxy-terminal hydrolase L1 

(UCH-L1), and ATPase valosin-containing protein (VCP), 

can lead to neurodegeneration [61, 62]. In addition, over-

expression of certain components of UPS could ameliorate 

the disease phenotypes in neurons in many neurodegenera-

tive disease models [63–66]. For example, PD-associated 

G2019S LRRK2 mutant proteins can be ubiquitinated by 

E3 ligase C-terminus of HSP70-interacting protein (CHIP), 

whose overexpression enhances the ubiquitin proteasomal 

degradation of LRRK2 mutant proteins [67]. Consist-

ently, CHIP knockout mice displayed exacerbated polyQ 

pathology [68]. Furthermore, mutant htt has been shown 

to undergo ubiquitin proteasomal degradation via E3 ligase 

UBE3A [69], the activity of which is down-regulated by 

UBR5 [70], a genetic modifier for HD [71]. Moreover, most 

of the protein inclusions in neurodegenerative diseases are 

positive for ubiquitin and chaperones, both of which become 

depleted in the afflicted neurons [72]. Conversely, a recent 

study by Nucifora and colleagues suggested that ubiquitina-

tion could be a mechanism by which protein inclusions are 

formed [73]. They showed that WSB1 could induce aggre-

gation of G2019S LRRK2 via K27 and K29 ubiquitination, 

which appeared to be neuroprotective [73]. Ubiquitination 

may thus protect against protein toxicity by either inducing 

degradation or aggregation of toxic proteins.

CMA is a selective protein degradation system that 

eliminates proteins harboring a pentapeptide KFERQ-like 

motif, which is found in approximately 30% of cytosolic 

proteins [58]. When folded properly, the KFERQ motif is not 

exposed to the surface. However, misfolding of these pro-

teins exposes the motif that can be subsequently recognized 

by the heat shock cognate protein 70 (HSC70) chaperone 

and CMA adaptor lysosomal membrane-associated protein 

2A (LAMP-2A). Several disease-associated proteins such as 

LRRK2 and α-synuclein also harbor KFERQ-like motifs that 

are recognized by CMA for degradation [74, 75]. A previous 

study showed that α-synuclein proteins in PD could bind 

to LAMP-2A with an unusually high affinity. This strong 

binding in turn resulted in a “traffic jam” during cargo trans-

location across the lysosomal membrane, thereby inhibit-

ing CMA [75]. As for LRRK2, its binding to the lysosomal 

membrane is enhanced by certain mutations, thereby facili-

tating accumulation of α-synuclein among other CMA sub-

strates [74]. Moreover, PD-associated mutations in UCHL1 

also interfere with the CMA process [76]. These results sug-

gest that CMA is one of the central processes by which PD-

associated proteins are degraded and that interfering with 

the CMA process may result in α-synuclein accumulation. 

In a few other studies, the augmentation of CMA was shown 

to enhance the removal of pathogenic disease proteins in 

various neurodegenerative diseases [77–79], suggesting that 

CMA may be an important therapeutic target for diseases 

associated with protein toxicity. Since aggregation-prone 

proteins can be efficiently eliminated by macroautophagy, 

its role in neurodegenerative diseases has been extensively 

pursued. In HD, macroautophagy activity is reduced due 

to the failure in cargo recognition by autophagic vacuoles 

[80]. In addition, a certain species of mutant htt proteins 

has been shown to be selective-autophagy resistant, likely 

due to its unconventional conformation that is unfavorable 

for cargo recognition by autophagic vacuoles [81]. In many 

neurodegenerative diseases, autophagy can be induced as 

a compensatory response to the failure of UPS in afflicted 

neurons [82–84]. However, it appears that the compensa-

tory induction of autophagy is not enough to overcome the 

accumulation of ubiquitin-positive toxic proteins in HD. 

Consistent with this, it was shown that further genetic or 

pharmacological activation of autophagy has obvious thera-

peutic benefits in various disease models [85].

Protein toxicity commonly produces ER stress; in turn, 

ER stress can cause up-regulation of chaperones, ERAD 

and apoptotic genes, global protein translational arrest, and 

stress granule formation [86]. ER stress can be caused in 
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a number of ways; one of these causes is ERAD failure. 

For instance, VCP, a necessary component of ERAD, was 

shown to be sequestered by mutant htt [87, 88]. In another 

study, overexpression of VCP was shown to rescue ERAD 

failure caused by mutant htt [89]. Interestingly, the seques-

tration of VCP by polyQ proteins occurs in at least four other 

polyQ diseases (SCA1, SCA3, SCA7, and SBMA) [90, 91], 

in which the loss of VCP function may be a common patho-

genic mechanism.

Pathological inclusions of cytoskeletal proteins, such as 

neuronal intermediate filament (IF) proteins or the micro-

tubule-associated protein tau (MAPT), are neuropathologi-

cal signatures in various neurodegenerative diseases [92]. 

Specifically, tau-associated microtubule defects are linked 

to a range of neurodegenerative diseases known as “tauopa-

thies” [93]. Changes in F-actin structures have also been 

reported in polyQ diseases [38] and AD [94]. Furthermore, 

formation of ADF/cofilin-actin filament bundles (rods) that 

can occlude neurites and block vesicle transport has been 

implicated in neurodegenerative diseases [95]. In addition 

to these changes in cytoskeletal structures, accumulation of 

toxic disease proteins can lead to defects in axonal trans-

port [96–101]. For example, defective axonal transport was 

reported to be a key early feature of pathogenesis prior to 

neurodegeneration in various SOD1 animal models of ALS 

[102–106]. Various animal models of HD also showed 

abnormalities in both anterograde and retrograde axonal 

transport [107–109].

Cytoplasmic protein toxicity encompasses a whole array 

of neuronal phenotypes, many of which are shared among 

neurodegenerative diseases. Hence, therapeutically neutral-

izing cytoplasmic protein toxicity may be beneficial, pro-

vided that the toxic proteins remain static in the cytoplasm. 

However, from the cytoplasm in which toxic disease proteins 

are first made, these proteins can be transported to other 

organelles such as the nucleus (discussed above), the stress 

granules (discussed later), or the mitochondria (discussed 

next), all of which can complicate any attempts to remedy 

cytoplasmic protein toxicity. Thus, closer examination of 

protein toxicity in the organelles in which toxic proteins tend 

to accumulate is warranted.

Protein toxicity in the mitochondria

The importance of the mitochondria to cell survival can 

easily be envisaged, as they are the organelles primarily 

responsible for ATP production in eukaryotic cells. Thus, 

mitochondrial dysfunction can be detrimental for cell sur-

vival, which can be catastrophic particularly to the brain, 

for the following reasons. First, most neurons cannot be 

replaced and thus need to be maintained due to their post-

mitotic nature. This will inevitably lead to the accumulation 

of mitochondrial toxicity, by which the irreplaceable neurons 

will eventually succumb to death. Second, the excitability 

of neurons allows for significant influx of calcium ions that 

are buffered by mitochondria, the dysfunction of which will 

lead to excitotoxicity. Third, the elongated morphology of 

neurites entails a local supply of ATP by the mitochondria, 

the dysfunction of which will perturb growth and main-

tenance of neurites [110]. Hence, it is not surprising that 

mitochondrial dysfunction is one of the cardinal features of 

neurodegenerative diseases.

Mitochondrial dysfunction can be both primary and sec-

ondary drivers of neurodegeneration. In this section, we will 

mainly deal with the cases in which mitochondrial dysfunc-

tion is clearly a direct primary consequence of protein tox-

icity in the mitochondria. The following six toxic disease 

proteins that accumulate in mitochondria will be discussed: 

amyloid beta, amyloid precursor protein (APP), α-synuclein, 

mutant htt, TDP-43, and poly-GR DPRs.

Extracellular amyloid beta accumulation is one of the key 

pathological hallmarks of AD, in which mitochondrial dys-

function is often observed [111]. No direct mechanistic link 

between amyloid beta and mitochondrial dysfunction was 

identified until Lustbader et al. showed in 2004 that amy-

loid beta can localize to the mitochondria and directly bind 

to amyloid beta-binding alcohol dehydrogenase (ABAD) to 

induce mitochondrial toxicity [112]. Amyloid beta has also 

been shown to interact with cyclophilin D (CypD), an inte-

gral component of the mitochondrial permeability transition 

pore (mPTP), which sensitizes the opening of mPTP in both 

AD patients and mAPP mice brains [113].

APP, from which amyloid beta is derived, has also been 

shown to produce mitochondrial toxicity in models of, and 

patients with, AD. Anandatheerthavarada and colleagues 

showed that APP has a leader sequence with which APP 

localizes to the mitochondria in HCN-1A cells. The large 

acidic domain residues of APP (220–290) were found to clog 

the pores of TOM40 and TIM23, mitochondrial translocase 

of outer and inner membrane, respectively [114, 115]. When 

the authors experimented with postmortem human brain 

samples, they found that mitochondrial APP was observed 

only in AD brains [115]. Why APP does not localize to mito-

chondria under normal condition is currently unknown. In 

any case, this evidence strongly suggests that physical inter-

action of APP and amyloid beta with mitochondrial proteins 

is sufficient to generate oxidative stress, reduce ATP pro-

duction, depolarize mitochondrial membrane potential, and 

sensitize mPTP opening, all of which contribute strongly 

to the mitochondrial dysfunction manifested in AD [110, 

111, 116]. A recent study that shows reduction in amyloid 

beta toxicity by promoting mitochondrial proteostasis under-

scores the contribution of mitochondrial dysfunction in AD 

pathogenesis [117].
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Mitochondrial dysfunction is not unique to AD. In HD, 

an energy-deficit related to mitochondrial dysfunction 

was first observed more than two decades ago [118]. The 

mechanisms by which mutant htt proteins induce mito-

chondrial dysfunction have been shown to be as diverse 

as that in AD. Aside from the mutant htt perturbing tran-

scription of genes related to mitochondrial biogenesis and 

function in the nucleus [119, 120], it could also directly 

interact with mitochondrial proteins [121]. The N-termi-

nal fragment of mutant htt localizes to the mitochondria 

[122–124] both in vivo and in vitro, and it interacts with 

the TIM23 complex, thereby clogging the mitochondrial 

import process [125]. These toxic interactions of mutant 

htt with mitochondrial proteins perturb calcium regulation, 

sensitize mPTP opening, depolarize mitochondrial mem-

brane potential, and ultimately lead to neuronal demise 

[122–125].

Many genetic mutations linked to PD have been shown to 

cause mitochondrial dysfunction [126]. α-Synuclein, which 

is the central aggregating component of the Lewy bodies 

found in PD and Lewy body diseases, has high affinity for 

negatively charged lipids, including mitochondrial mem-

branes [127–129]. In addition, α-synuclein has been shown 

to bind to several mitochondrial proteins such as the volt-

age-dependent anion channel (VDAC) in a monomeric form 

[129] and to TOM20 in an oligomeric form [130]. These 

interactions hinder the exchange of ATP/ADP between the 

mitochondria and the cytosol and impair mitochondrial pro-

tein import, both of which undermine mitochondrial func-

tion [129, 130].

ALS and FTD are diseases that manifest different clinical 

symptoms and yet share overlapping etiology. The patho-

logical hallmark of ALS/FTD is the cytoplasmic mis-local-

ization of TDP-43, but the mechanism by which TDP-43 

proteins cause toxicity in the cytoplasm remains unclear. 

Wang et al. proposed a novel mode of toxicity by show-

ing that TDP-43 possesses internal mitochondrial target-

ing signals that can direct TDP-43 into the mitochondria. 

The mitochondrial targeting becomes enhanced in ALS or 

FTD patients, which perturbs oxidative phosphorylation 

by means of binding to mitochondria-transcribed ND3 and 

ND6 mRNA and prohibiting their translation [131]. Con-

versely, Kawamata et al. reported that disease-associated 

mutant TDP-43 (TDP43 A315T) expression did not lead 

to any aberrant mitochondrial functions aside from calcium 

dysregulation [132]. These conflicting data warrant further 

investigation for us to assess more accurately the potential 

relevance of the mechanism described above. Interestingly, 

one of the arginine-rich DPRs (poly-GR repeats) derived 

from the hexanucleotide expansion mutation of C9ORF72 

has also been shown to localize to the mitochondria and 

interact with mitochondrial ribosomal proteins, thereby 

causing mitochondrial dysfunction [133]. These recent 

findings suggest the mitochondria to be the primary driver 

of neurodegeneration in ALS/FTD as well.

How and for what purpose do these disease-associated 

toxic proteins accumulate in the mitochondria? Such het-

erogeneity of disease-associated proteins targeting mito-

chondria suggests non-specific mechanisms in which mito-

chondria act as cellular waste bins for toxic and presumably 

misfolded disease proteins. Ruan et al. recently proposed, in 

a rather timely manner, the mechanism by which misfolded 

cytoplasmic proteins accumulate inside the mitochondria to 

be degraded [134]. Ruan et al. showed that upon heat stress, 

misfolded cytoplasmic proteins enter mitochondria via 

mitochondrial translocase Tom70/Tom40 and are degraded 

by Pim1 in yeast [134]. Given that most toxic disease pro-

teins are prone to misfolding, the potential relevance of this 

mechanism may be far-reaching in understanding the mito-

chondrial pathology common to most neurodegenerative 

diseases.

Protein toxicity in the stress granules

Neurons undergoing degeneration display immense stress 

to which multifaceted responses are launched to mitigate it. 

One of the key processes that occur in response to cellular 

stress is the formation of stress granules (SGs) [135]. Upon 

stress induction, cap-dependent translational processes are 

aborted and the messenger ribonucleoproteins (mRNPs) 

disengaged from the ribosomes begin to coalesce [136]. 

The RNA-binding proteins (RBPs) in these mRNPs interact 

electrostatically with one another through low complexity 

domains (LCDs) [137]. These interactions eventually facili-

tate liquid–liquid phase separation (LLPS) from the cyto-

plasm, thereby forming SGs. Concomitant to the formation 

of SGs, chaperones such as HSP70 are up-regulated via 

 m6A-mediated cap-independent translation [138] to defuse 

stress by promoting refolding or degradation of misfolded 

proteins. Once the stress is resolved, the chaperones [139], 

along with autophagy [140], become instrumental in the dis-

assembly of SGs [141].

In some neurodegenerative diseases, such as ALS or 

FTD, the SGs are infiltrated by disease-associated proteins 

that elicit an improper stress response. Many of the ALS 

genes encode proteins that are associated with SGs, such 

as Profilin-1, hnRNPA1/A2, fused in sarcoma (FUS), T 

cell-restricted intracellular antigen-1 (TIA1), and TDP-43, 

several of which are also linked to FTD [135, 142–147]. 

Increased cytoplasmic concentration or a mutation in the 

LCD of these proteins seems conducive to the initial LLPS, 

with subsequent stabilizing effect of SGs beyond the physi-

ological necessity. The stabilized SGs that persist may then 

evolve into pathological fibrils [141].
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Other ALS or FTD-associated proteins, such as super-

oxide dismutase-1 (SOD1) and valosin-containing protein 

(VCP), also impinge on the SGs, albeit by mechanisms that 

are independent of LCD [136, 148]. SOD1 variants asso-

ciated with ALS form aggregates around the SGs, which 

suggests that SG formation precedes SOD1 aggregation 

[148]. Encapsulated by mutant SOD1, SGs display reduced 

dynamics and irregular morphology [148]. Such perturbed 

SG dynamics can be effectively combatted by the PQC sys-

tem, of which VCP is a prominent member [136]. VCP is an 

ubiquitin segregase that uses ATP to extract ubiquitinated 

proteins from complexes to which they belong [136]. Stress 

induces SUMOylation of the VCP N-terminal domain by 

Ubc9, and it is one of the mechanisms by which VCP local-

izes to the SGs [149]. Mutations of VCP in the N-terminal 

domain thus have been shown to hinder SUMOylation, the 

modification without which hampers VCP from infiltrating 

SGs to extract ubiquitinated misfolded proteins for degra-

dation [149]. Hence, SG disassembly fails with VCP muta-

tion and the property of these SGs slowly transforms from 

dynamic liquid droplet like to pathological fibrils.

Whether or not SG pathology is associated with HD is 

still controversial. One study showed that mutant htt forms 

stress bodies, but not SGs [150]. Another study showed that 

both normal and mutant htt proteins can bind to SG-related 

factors such as Caprin-1 and G3BP1 [151]. Under normal 

conditions, neither normal nor mutant htt co-localized with 

the SG marker TIA1, whereas after arsenite treatment, both 

normal and mutant htt co-localized with TIA1; no differ-

ence in SG dynamics could be observed between normal and 

mutant htt in striatal precursor cells with or without arsenite 

treatment [151]. Similarly, another study reported that both 

normal and mutant htt interact with Caprin-1 and G3BP1; 

however, this study showed that the size and number of SGs 

were larger in striatal precursor cells expressing mutant htt 

compared to cells expressing normal htt [152]. These studies 

focused on mis-localization of mutant htt into SG to dis-

rupt its dynamics; the results of these studies were mixed. 

Some studies suggest that rather than mutant htt localizing to 

SGs to cause their dysfunction, SG-related factors may mis-

localize to mutant htt inclusions [153]. Time-lapse images in 

AD293 cells showed the formation of mutant htt inclusions 

with subsequent TIA-1 recruitment [154]. Another study 

showed that less than 1% of the interactors of mutant htt also 

interacted with SGs [155], which seems to support the view 

that mutant htt inclusions recruit certain SG-related factors.

Although the link between SG pathology and neurode-

generation has been well established, there is a lack of lit-

erature on the mechanism by which pathological SGs pre-

cipitate neurodegeneration. It has been a commonly accepted 

notion that SG formation upon stress induction contributes 

substantially to the global translational shutdown. However, 

a recent study using RNA-sequencing and single-molecule 

fluorescence in situ hybridization (smFISH) showed that 

only 10–12% of total mRNA molecules are localized to 

SGs [156], which does not support the notion that SGs are 

indispensable for global suppression of translation. Indeed, 

a previous study showed global translational shutdown upon 

stress induction in cells with G3BP mutations that prohibit 

SG formation [157]. This evidence supports the notion that 

SGs are dispensable for global suppression of translation. If 

it is not global translational shutdown, what then is the major 

function of SGs during stress, and how do pathological SGs 

precipitate neurodegeneration? Several studies showed that 

SG formation could impinge on intracellular signaling by 

sequestering key signaling molecules such as mammalian 

target of rapamycin (mTORC1) [135, 158, 159]. Thus, one 

of the mechanisms by which pathological SGs precipitate 

neurodegeneration may be through chronic impediment of 

intracellular signaling. Henceforth, elucidating the mecha-

nistic link between pathological SGs and neurodegeneration 

should be one of the major focal points of research.

Propagation of toxic disease proteins

One of the interesting features often observed in neurode-

generative diseases is the gradual expansion of brain regions 

affected by pathogenic protein aggregates over time. In post-

mortem brains of PD patients, histopathological analyses 

have revealed the stereotypical progression of pathogenic 

inclusions from the autonomic nervous system, and from 

the dorsal motor and anterior olfactory nuclei to the sub-

stantia nigra, basal forebrain and the locus coeruleus, as 

well as to the hippocampus, neocortex, and basal ganglia 

[160] (Fig. 2a). In the postmortem brains of AD patients, 

tau inclusions initially appear in the transentorhinal cortex 

and later emerge in the hippocampal formation and neo-

cortex [161] (Fig. 2b). These observations have led to an 

intriguing hypothesis that the expansion of the damaged 

brain regions is due to the gradual “prion-like” intercellular 

transmission of aggregates rather than the cell-autonomous 

accumulation of neuronal aggregates [162–164]. Sup-

porting this hypothesis, clinical studies have shown that 

healthy embryonic mesencephalic neurons implanted into 

the striatum of patients with advanced PD developed scat-

tered α-synuclein- and ubiquitin-positive inclusions many 

years after transplantation [165]. Similarly, healthy neurons 

implanted into the striatum of transgenic mice overexpress-

ing human α-synuclein exhibited an accumulation of Lewy 

body-like inclusions [166–169]. In addition, the implemen-

tation of either patient-derived fibroblasts or pluripotent 

stem cells carrying mutant htt into the brain of neonatal 

wild-type mice was shown to induce cell-to-cell propagation 

of the mutant protein, a progressive loss of host cells, and 
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behavioral deficits characteristic to HD [170]. These results 

suggest that pathological aggregates can transfer between 

diseased and healthy cells in humans and animals.

The more direct evidence supporting the mobility of 

aggregates between cells has been provided by studies 

either employing an intracerebral application of exogenous 

aggregates derived from diseased humans and animals or 

ectopic overexpression of α-synuclein and tau in a popu-

lation of neurons to examine whether the aggregates can 

spread through the brain connectome [166, 171–173]. For 

example, an intracerebral injection of brain extracts prepared 

from the symptomatic P301S tau transgenic mice was shown 

to be sufficient for inducing neurofibrillary tangles in pre-

symptomatic P301S tau transgenic mice at the injection site 

as well as in the distant brain regions that are physically 

separated by one or more synapses from the injection site 

[166, 174]. Similarly, within 6–12 months after the inocula-

tion of amyloid beta-containing brain extracts derived from 

either AD patients or aged APP transgenic mice into the 

hippocampus and neocortex of young APP transgenic mice, 

amyloid beta deposition and its associated pathology were 

widespread in the brain [175–177]. Likewise, an intracer-

ebral administration of brain or spinal cord homogenates 

prepared from symptomatic α-synuclein transgenic mice 

facilitated the appearance and spread of Lewy pathology 

in presymptomatic recipient transgenic mice [171]. The 

spread of pathological changes was recapitulated by a local 

injection of synthetic α-synuclein fibrils or tau filaments in 

presymptomatic transgenic mice, suggesting that aggregates, 

but not other factors in the brain homogenates, are sufficient 

for the spreading of the pathological changes in the brain 

[171, 178–180]. Finally, selective overexpression of trans-

genic tau, amyloid beta, or α-synuclein in a population of 

neurons could trigger the spread of misfolded proteins to the 

interconnected brain regions in transgenic mice [181–186].

Several lines of evidence suggest that peripherally intro-

duced aggregates can lead to the accumulation of misfolded 

proteins in the central nervous system (CNS). For instance, 

transgenic mice expressing a mutant human α-synuclein 

exhibited pathogenic inclusions and neuroinflammatory 

responses throughout the CNS within 2–4 months after an 

intramuscular injection of recombinant α-synuclein fibrils. 

Those animals also displayed a debilitating motor impair-

ment, which is one of the clinical symptoms characteris-

tic of PD [187]. However, when the sciatic nerve, which 

connects the muscles to the spinal cord, is severed in those 

same mice, the development of the pathogenic inclusions 

and neuroinflammatory responses in the CNS was signifi-

cantly delayed. This suggests that the retrograde transport 

of misfolded proteins via the peripheral nerve is required for 

disease propagation, at least in this mouse model. A recent 

study has shown that α-synuclein fibrils injected into the 

olfactory bulb of wild-type mice propagate transneuronally 

to distant brain regions and induce progressive olfactory 

deficits [188]. Similarly, mutant htt ectopically expressed 

in sensory receptor neurons in Drosophila can spread trans-

cellularly to neuronal and glial cells in the brain [189–191]. 

Another study has demonstrated that an intestinal applica-

tion of either the brain lysate from human PD patients or 

recombinant α-synuclein in rats could elicit α-synuclein 

inclusions in the dorsal motor nucleus of the vagus nerve in 

the brainstem [192]. Moreover, systemic treatment of aggre-

gates, such as repeated injections of α-synuclein fibrils into 

the tail vein and an intraperitoneal inoculation of tau extracts 

or amyloid beta seeds, was sufficient to cause accumulation 

of deposits in the brain [193–196].

There are several varying molecular mechanisms by 

which pathogenic aggregates can transfer between cells 

(Fig. 2c). Exocytosis is one of the main secretory mecha-

nisms involved in releasing aggregates from donor cells, 

which occurs in an intracellular calcium- and endosome-

dependent manner [197–199]. Alternatively, the misfolded 

proteins can be released into the extracellular space within 

secretory vesicles called exosomes [200–202]. Exosomes are 
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vesicles of 50–100 nm diameter that normally mediate inter-

cellular transportation of mRNA, small regulatory RNA, and 

specific proteins between the cells [203]. A number of stud-

ies have demonstrated that exosome-mediated propagation 

is implicated in the spreading of pathogenic inclusions in 

neurodegenerative diseases. Studies using immunofluores-

cence and immunoelectron microscopy have revealed that 

the exosomes are associated with amyloid beta peptides, 

phosphorylated tau, and other related molecules [204]. 

Furthermore, exosomes isolated from diseased transgenic 

animals or human patients were shown to have an ability to 

nucleate oligomerization of endogenous proteins in recipient 

cells [205, 206]. Accordingly, pharmacological inhibition 

of key regulatory enzymes mediating secretion and synthe-

sis of the exosomes significantly reduced both the amyloid 

plaque formation in the AD mouse model and the secretion 

and propagation of tau from microglia in vitro and in vivo 

[182, 207]. Finally, pathogenic inclusions can be transferred 

through tunnel-like structures called tunneling nanotubes 

that connect the cytosolic compartments between neighbor-

ing cells to facilitate intercellular material exchange for com-

munication [208]. The diameter of nanotubes ranges from 

50 to 200 nm, and their lengths can reach up to several cell 

diameters [209]. In vitro studies have shown that α-synuclein 

fibrils can be transferred via tunneling nanotubes to lys-

osomes of recipient cells, such as mouse catecholaminergic 

cells and human primary brain pericytes, and subsequently 

induce the aggregation of cytosolic α-synuclein [208, 210].

In sum, the progressive accumulation of specific protein 

aggregates along anatomical connections is a common hall-

mark of major neurodegenerative diseases such as AD and 

PD. Extensive evidence from in vitro and in vivo studies 

suggests that one of the fundamental pathogenic mecha-

nisms by which neurodegeneration transpires is the inter-

cellular transmission of protein aggregates in synaptically 

connected brain networks.

As describe above, disease propagation model is sup-

ported by a number of preclinical evidence, but there are 

also some observations that cannot be fully explained by 

this model. For example, a fetal graft implanted in some 

PD patients was found to be without pathology in autop-

sies performed two decades following transplantation [211, 

212]. In addition, proteins associated with neurodegenera-

tive diseases are unlikely to transmit between individuals 

as a disease-causing infectious agent [213, 214]. Finally, a 

recent study showed that brain regions manifesting Lewy 

pathology neither fully correlate with the synaptic connec-

tion patterns revealed by connectome mapping [215] nor fol-

low the spatiotemporal spread patterns described by Braak 

et al. Thus, further research is required to fully understand 

the clinical relevance of the aggregate propagation model 

versus the cell-autonomous model.

Selective neuronal vulnerability

Most of the genes whose mutations cause neurodegenera-

tive diseases are ubiquitously expressed in all developmental 

stages of life. However, developmental defects are minimal 

in patients with neurodegenerative diseases such as AD, HD, 

PD, or ALS. In addition, neurodegenerative disease patients 

tend to manifest late-onset, cell-type-specific neurodegen-

eration [216]. Due to their post-mitotic nature, neurons may 

be more vulnerable to cellular toxicity than other cell types 

which are capable of regeneration. Furthermore, neurons 

are generally more ATP dependent than other cell types, 

rendering neurons more vulnerable to energy crises caused 

by membrane potential changes and mitochondrial dysfunc-

tion. Nevertheless, two important questions remain to be 

answered. First, what accounts for the selective neuronal 

toxicity? Second, why does such toxicity stay dormant dur-

ing development, but become damaging with age?

Both sporadic and familial disease cases present with 

selective neuronal vulnerability. This selective neuronal 

vulnerability is often indistinguishable between patients 

with sporadic and familial etiology, but is distinct from dis-

ease to disease [217]. Hence, we speculate that selective 

neuronal vulnerability may arise from genetic predisposi-

tion or environmental factors that chiefly affect certain neu-

rons. For instance, PD is often associated with mutations in 

genes that are involved in mitochondrial function and also 

with exposure to environmental mitochondrial toxins [126]. 

Whether caused by genetic or environmental factors, PD 

involves selective degeneration of the substantia nigra pars 

compacta (SNpc). Thus, we deduce that the SNpc may be 

particularly vulnerable to mitochondrial dysfunction. What 

makes SNpc especially vulnerable to mitochondrial dysfunc-

tion is unclear, though the unique properties of those neu-

rons, such as the oxidation of dopamine neurotransmitters 

and the pacemaking activity of  Cav1.3 L-type  Ca2+ channels 

[218], are likely contributors. Nonetheless, the possibility of 

other factors contributing to the selective SNpc degeneration 

should not be excluded.

Similarly, both sporadic and familial ALS are associated 

with RNA metabolism [219], the dysfunction of which may 

selectively render upper and lower motor neurons vulnerable 

to degeneration. Interestingly, RNA metabolism is also com-

promised by the activation of human endogenous retrovirus 

k [220], which is associated with ALS [221]. Hence, RNA 

metabolism dysfunction may be associated with ALS, but 

whether it can cause selective motor neuron degeneration 

is still unclear.

PolyQ disease patients tend to exhibit cerebellar atrophy 

[222]. This outcome suggests that the cerebellum is particu-

larly vulnerable to protein toxicity mediated by the expanded 

polyQ proteins. We speculate that the cerebellum may have 
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a weaker defense system against polyQ toxicity or that it 

expresses a disproportionate amount of proteins that are 

polyQ targets. Interestingly, fetal alcohol exposure primar-

ily causes cerebellar pathology, which is linked to reduced 

CBP expression in the cerebellum [223]. In addition, Rubin-

stein–Taybi syndrome, which is caused by a CBP loss-of-

function mutation, involves cerebellar pathology [224]. 

Since many different polyQ proteins have been shown to 

sequester and to interfere with CBP [225, 226], we speculate 

that a polyQ-induced loss of CBP function may contribute to 

the selective cerebellar pathology in polyQ diseases.

There are many possible explanations for minimal devel-

opmental defects in patients who later develop neurodegen-

erative diseases. We believe that the following are the three 

most viable explanations: (1) the PQC system may mitigate 

protein toxicity early in life but may fail later in life, (2) pro-

tein toxicity eventually reaches a critical threshold, beyond 

which defense mechanisms start to collapse, or (3) envi-

ronmental factors or epigenetic alterations during and after 

development contribute to the disease onset later in life. We 

believe that all of these processes may contribute to the late 

onset of neurodegenerative diseases. Thus, we propose that 

development is the critical window within which therapeu-

tics should be applied to prevent or delay disease initiation.

Discussion and future perspectives

Neurodegenerative diseases, for which there are no rem-

edies, correlate well with age, and this is a major conun-

drum with which we are confronted in an aging society. With 

years of massive research efforts carried out in laboratories 

around the globe, much knowledge of the nature of neuro-

degenerative diseases has been accrued with only a minimal 

progress in the actual development of effective therapeutics. 

To bridge the gap between our current understanding of the 

disease and the application thereof to the development of 

effective therapeutics, in this review, we have systematically 

analyzed and summarized the mechanistic underpinnings 

of protein toxicity (Table 1; Fig. 1), which is central to the 

development and progression of a vast array of neurodegen-

erative diseases such as AD, PD, ALS, FTD, and HD. We 

have discussed a number of toxic disease proteins within 

their respective subcellular contexts in an attempt to com-

pare and contrast their pathogenic mechanisms in a localized 

area.

In this review, we have focused on the mechanisms of 

protein toxicity in neurodegenerative diseases, but protein 

toxicity can also be observed in psychiatric disorders such 

as schizophrenia. Recently, schizophrenia has been asso-

ciated with genes such as Neuronal PAS Domain Protein 

3 (NPAS3), Disrupted-in-schizophrenia 1(DISC1), and 

TRIO binding protein-1 (TRIOBP-1); translocation or point 

mutations in these genes may cause protein aggregation 

[227–229]. NPAS3-V304I proteins form aggregates, into 

which normal NPAS3 proteins are sequestered; NPAS3 

loss of function then leads to decreased transcription of 

its downstream target, VGF [228]. A DISC1 translocation 

mutation produces a truncated DISC1 protein, which can 

form aggregates and can act in a dominant negative manner. 

Three polymorphisms of DISC1 have also been associated 

with major depression and schizophrenia [229]. TRIOBP-1 

has been found in insoluble aggregates within brain lysates 

of schizophrenia patients’ brains. Amino acids 324–348 of 

TRIOBP-1 are thought to be critical for aggregation; TRI-

OBP-1 aggregation may affect actin dynamics and neurite 

growth [230]. Interestingly, the TRIOBP mutation is associ-

ated with deafness, which is often associated with psychi-

atric disorders. One study identified a family with schizo-

phrenia and hearing impairment; for this family, the locus in 

which the causative mutation lies includes TRIOBP [231]. 

In addition to NPAS3, DISC1, and TRIOBP-1, CRMP1 and 

dysbindin can also form protein aggregates in schizophrenic 

patients [229, 232]; therefore, we infer that protein toxic-

ity may be one of the mechanisms by which schizophrenia 

occurs. Interestingly, schizophrenia has been suggested to 

be linked to polyQ diseases as well [233]. It has been shown 

biochemically that DISC1 binds to mutant htt more strongly 

than it binds to normal htt [234]. This binding sequestered 

DISC1 away from PDE4, thereby increasing its activity. 

Overexpressing modified DISC1, which can interact with 

PDE4 but not with mutant htt, ameliorated anhedonia in 

a mouse model of HD [234]; anhedonia is one of the core 

features of schizophrenia. Many neurodegenerative disease 

patients also display mental or psychiatric symptoms such 

as depression and hallucinations [235, 236]; however, the 

molecular link between neurodegeneration and psychiatric 

symptoms remain undefined.

Increased life expectancy and the prevalence of neuro-

degenerative diseases in the twenty-first century are driv-

ing therapeutic research. However, currently there are only 

palliative drugs available to treat these diseases. The task 

of drug development is formidable; it has been estimated 

that AD drug development efforts face a 99.6% failure rate 

[237]. Hence, Pfizer (one of the leading pharmaceutical 

companies) recently announced its exit from the field of 

neuroscience [238]. However, as basic research is slowly 

helping us to understand the complexity of the brain, new 

treatment strategies against neurodegenerative diseases are 

being formulated.

One of the fastest-growing treatment strategies is anti-

body utilization [239]. For neurodegenerative diseases that 

involve protein toxicity, elimination of toxic proteins is an 

efficient way in which toxicity can be mitigated. Hence, anti-

bodies against toxic disease proteins such as α-synuclein 

and amyloid beta are being developed. Recently, Biogen Inc. 
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developed aducanumab, which was shown to reduce both 

amyloid plaques and cognitive decline in patients with mild 

form of AD after a 12-month trial [240]. However, another 

amyloid beta antibody (solanezumab) did not mitigate cogni-

tive decline or reduce amyloid plaque in AD patients [241]. 

There are a few explanations that may account for this dis-

crepancy. First, solanezumab administration may have been 

below the effective dose. Second, solanezumab may have 

bound to the wrong target. Third, the disease of patients in 

the solanezumab study may have been too advanced for the 

treatment to have been beneficial. Although only approx-

imately 0.1% of the antibodies are known to traverse the 

blood–brain barrier [239], intravenous infusion of 400 mg 

every 4 weeks [241] seems to be a substantial dosage. Solan-

ezumab targets amyloid beta monomers [241], whereas adu-

canumab targets oligomers and fibrils [240]; recent studies 

suggest that the oligomeric form may be the most toxic form 

[242]. This suggests that therapeutic target may have been 

at fault. Nevertheless, disease progression could perhaps be 

delayed if solanezumab was administered before any sub-

stantial oligomers or fibrils were formed. In any case, we 

can learn from these two examples, which highlight the sig-

nificance of identifying the key drug target, correct dosage, 

and the disease stage at which to intervene.

Antibody treatment has its own drawbacks, however. As 

they cannot freely traverse across membranes, intracellular 

targeting of antibodies is very difficult, and intra-organellar 

targeting, even more so. Thus, antibody-based treatments 

have been more successful with extracellular targets (such 

as amyloid plaques) instead of intracellular targets (such as 

mutant htt and α-synuclein). Nevertheless, there are a few 

notable antibody-based drugs (RO7046015 from Roche and 

BIIB054 from Biogen) undergoing clinical tests targeting 

cell-to-cell transmission of α-synuclein [243]. Although 

there are various methods whereby antibody-based drugs 

can be delivered intracellularly in vitro and ex vivo [239], 

delivery in vivo often still poses insurmountable challenges. 

Hence, we believe that undertaking the challenge of target-

specific delivery will be crucial in advancing the develop-

ment of effective therapeutics against neurodegenerative 

diseases.

Our review discussed the mechanisms and the sites at 

which protein toxicity occurs to assist in the identification 

of druggable targets. We have also briefly discussed poten-

tial mechanisms of cell-to-cell propagation of toxic proteins 

and selective neuronal vulnerability in neurodegenerative 

diseases. We hope that by enhancing our understanding in 

these areas of research, more effective therapeutic strategies 

will be developed in the future.
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