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ABSTRACT: Two regional climate models (RCMs) participating in the CORDEX–Coordinated Output for Regional
Evaluations (CORDEX-CORE) project feature a dipole-type rainfall bias during March–May (MAM) and September–
November (SON) over central equatorial Africa (CEA), consisting of positive bias in west central equatorial Africa
(WCEA) and negative bias in east central equatorial Africa (ECEA). One is the Regional Model version 2015
(REMO2015) and the other is the fourth version of the Regional Climate Model (RegCM4-v7). RCMs are nested in three
Earth system models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), and in the reanalysis
ERA-Interim, at ∼25-km spacing grid resolution. This study highlights misrepresented underlying physical processes asso-
ciated with these rainfall biases through a process-based evaluation. Both RCMs produce a weaker Congo basin cell, asso-
ciated with a weaker land–ocean zonal surface pressure gradient. Consequently, less water vapor enters the region, and
little is transported from WCEA to ECEA, resulting in higher moisture availability in the west than in the east. This leads
to an unevenly distributed moisture across the region, favoring a stronger atmospheric instability in WCEA where the
moist static energy (MSE) anomalously increases through an enhanced latent static energy (LSE). Moisture arrives at a
slower pace in ECEA, associated with the weak cell’s strength. The intensity of ascent motions in response to the oro-
graphic constraint is weak to destabilize atmospheric stability in the lower layers, necessary for initiating deep convection.
Therefore, the convection is shallow in ECEA related to underestimating the MSE due to the reduced LSE.

KEYWORDS: Atmospheric circulation; Hadley circulation; Walker circulation Atmosphere-land interaction; Water
vapor; Surface pressure; Rainfall; Model evaluation/performance

1. Introduction

The region of central equatorial Africa (CEA) is home
to the Congo rain forest, the world’s second-largest, which
actively absorbs carbon dioxide (CO2) and modulates the
global climate system (Baccini et al. 2012; Dargie et al.
2017). Its dense forest is highly sensitive to climate vari-
ability and change (Zhou et al. 2014; Bell et al. 2015; Malhi
2018; Garcin et al. 2018; Jiang et al. 2019), and the region is
expected to experience the highest level of warming world-
wide (King and Harrington 2018; Weber et al. 2018; Fotso-
Nguemo et al. 2021). However, climate models feature
large ranges of uncertainties in this domain. Even in the
new generation of regional climate models (RCMs; Dosio
et al. 2021a; Sørland et al. 2021; Ilori and Balogun 2021)
participating in the CORDEX-CORE project (Coordi-
nated Regional Climate Downscaling Experiment–Coordi-
nated Output for Regional Evaluations; Giorgi et al. 2009;
Jones et al. 2011; Gutowski et al. 2016), significant precipi-
tation biases persist. As part of the CORDEX-CORE pro-
ject, the capability of these RCMs must be thoroughly
assessed to 1) improve existing RCMs, 2) deepen our
understanding of regional precipitation drivers, which is
required for model physical and dynamical formulations,
and 3) ensure the accuracy of projected climate change
information forwarded to decision-makers.
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Climate modeling studies over CEA have progressed con-
siderably in recent years despite the complexity of the area’s
hydrological cycle, the diversity of local and remote physical
processes, mechanisms that drive the region’s climate system,
and the lack of reliable observational data needed to effi-
ciently constraint model outputs (Rowell 2013; Washington
et al. 2013). Numerous studies, particularly on model evalua-
tion, have shifted away from the traditional performance-
based approach (Gleckler et al. 2008) to a process-oriented
approach (James et al. 2018). This is because the perfor-
mance-based method simply compares the model’s statistical
metric to observational measures without identifying the sour-
ces of the model’s inaccuracy and providing guidance for
improvement. However, the process-based approach addi-
tionally determines if the simulated climatology of a diagnos-
tic variable is linked to regional climate system factors, which
affects a model’s credibility in simulating current or future
climatology.

According to studies using a process-based approach, the
pattern of the CEA’s rainfall in coupled models participating
in phase 5 of the Coupled Model Intercomparison Project
(CMIP5; Taylor et al. 2012) is as a result of a number of local,
regional, and large-scale processes. For instance, the way
models describe moisture convergence and divergence is
directly linked to their rainfall climatologies (Washington et al.
2013; Creese and Washington 2016; Hua et al. 2019; Tamoffo
et al. 2019). Pokam et al. (2012) highlighted the relationship
between the spatiotemporal variability of the moisture con-
vergence and that of the northern branch of the African east-
erly jet (AEJ-N) during March–May. The link between the
September–November rainfall maximum and the southern
component of the AEJ (AEJ-S), which enhances mesoscale
convective systems (MCSs), was proven by Jackson et al.
(2009). Large differences in the spatial distribution of CMIP5
rainfall between the western and eastern CEA were identified
by Creese and Washington (2016), which were linked to a
chain of drivers such as the South Atlantic high pressure sys-
tem, strengthened low-level westerlies, sea surface tempera-
ture (SST) anomalies, enhanced coastal evaporation, and
strengthened or weakened Walker-like circulation (Pokam
et al. 2014; Creese and Washington 2018; Zhao and Cook
2021). Longandjo and Rouault (2020) recently proposed the
presence of the Congo basin cell in the region throughout the
year, set up by the land–ocean thermal contrast between the
warm central African landmass and the cold eastern equato-
rial Atlantic Ocean, inducing moisture convergence. The
Indian Ocean also contributes to the region’s supply of water
vapor (Dyer et al. 2017). The largest source of water vapor
from the Indian Ocean to central Africa would be nocturnal
low-level jets (LLJs) emanating from the East African Rift
Valley system (Munday et al. 2021). The model’s capacity to
capture this process, however, is dependent on its ability to
correctly reflect the topography, with higher results obtained
when the horizontal resolution is#60 km, as they reported.

Despite the fact that the process-based methodology can
effectively expose the sources of model errors, previous
research has mainly relied on ESM simulations. ESMs have a
lower horizontal resolution and are hence subject to a number

of drawbacks. Munday et al. (2021), for instance, showed that
coarse-resolution CMIP5 rainfall biases across the continent
are linked to their misrepresentation of LLJs. The trustwor-
thiness of climate information produced from CMIP5 ESMs
would be severely harmed as a result of a poor representation
of orographic forcings. Raghavendra (2020, see chapter 5
therein) demonstrated that orography regulates the beginning
of convection subsequent development into MCSs using a
high-resolution convection-permitting simulation over the
Congo. As a result, reducing the spacing grid resolution of
ESMs appears to be a promising solution. The downscaling is
intended to improve the representation of smaller-scale phys-
iographic processes while also adding local topographical
information (Moufouma-Okia and Jones 2015; Giorgi and
Gutowski 2015; Vondou and Haensler 2017). However, sys-
tematic differences between results from RCMs and observa-
tions may not necessarily be smaller than those for ESMs.
Added values do not always arise from the improvement of
regional processes (Tamoffo et al. 2020).

Even though several studies (e.g., Haensler et al. 2013;
Dosio and Panitz 2016; Weber et al. 2017; Fotso-Nguemo et al.
2017; Taguela et al. 2020) have used downscaling to mimic the
African climate and found significant enhanced utility when
compared to conventional ESMs, the majority of these studies
were merely descriptive and did not investigate the causes of
RCM biases. Little is known about the mechanisms in RCMs
that lead to underperformance in CORDEX-CORE simula-
tions, yet their outputs will be used to drive impact models,
which will help prepare the upcoming IPCC reports; this is a
crucial knowledge gap for trust in their projections.

In light of these considerations, the current study ana-
lyzes rainfall biases in CEA using simulations from two
CORDEX-CORE RCMs and the process-based evaluation
technique. The goal of the research is to highlight mislead-
ing mechanisms in models that lead to errors in rainfall cli-
matology. We hope that by doing so, we can encourage the
improvement of these RCM performances so that they can
more accurately simulate the current and future climate
systems of the region, thereby improving the quality of cli-
mate data that will guide disaster preparedness, adaptation
planning, and mitigation strategies. The next section (sec-
tion 2) describes models, reanalysis, satellite, and gauge-
based data used throughout the paper, the rainfall clima-
tology is presented in section 3, and the land–atmospher-
e–ocean feedbacks are examined in section 4. In section 5,
we look at how models of rainfall biases and atmospheric
dynamics interact. Section 6 looks at how local convections
react to atmospheric circulations, and section 7 wraps up
and examines the findings.

2. Data and methods

a. Data

Outputs of two CORDEX-CORE RCMs were used in this
study. One is the Regional Model version 2015 (REMO2015;
Jacob and Podzun 1997; Jacob 2001), developed at the Max
Planck Institute for Meteorology in Hamburg, Germany, and
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currently maintained at the Climate Service Center Germany
(GERICS) in Hamburg. Details of the original model setup,
based on the ECHAM4.5 ESMs, are provided in Roeckner
et al. (1996), and the most recent updates can be read in
Remedio et al. (2019). The other is the fourth generation of
the Regional Climate Model (RegCM4-v7), originally devel-
oped at the National Center for Atmospheric Research
(NCAR; Dickinson et al. 1989; Giorgi 1989), and is currently
maintained in the Earth System Physics (ESP) section of the
International Centre for Theoretical Physics (ICTP; Giorgi
et al. 2012). The two models were chosen for analyses in this
work, based on the availability of the entire column atmo-
spheric data necessary for the diagnostic evaluation.

These hydrostatic dynamical core versions are run over the
CORDEX-Africa domain (AFR-22) at 0.22° 3 0.22° and over
27 vertical layers for REMO2015 and 23 for RegCM4-v7, fol-
lowing the configurations described in Table S1 in the online
supplemental material, and using two forcing modes: the
quasi-perfect forcing mode and the imperfect forcing mode.
The term “quasi-perfect forcing mode” or the “evaluation/
control simulation” here refers to the fact that the reanalysis
data [the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA-Interim data; further details are pro-
vided in Table 1] are supposed to provide relative real
boundary conditions because they are obtained by data assimi-
lation from in situ observations using a reanalysis model. How-
ever, over central Africa, measuring stations are rare and very
scattered. Therefore, over areas where in situ data are missing,
reanalysis results tend to be mainly influenced by the reanaly-
sis model (Washington et al. 2013). The purpose of the
“evaluation” experiment is to distinguish systematic biases
(RCM internal errors) from those transmitted from large-scale
boundary forcing. This mode was integrated from January
1981 through December 2010 (Remedio et al. 2019). The sec-
ond set is an imperfect forcing mode, with boundary condi-
tions from three CMIP5 (HadGEM2-ES, MPI-ESM-LR/MR,
and NCC-NorESM1; for more details see Table 2). The term
“imperfect forcing mode” here refers to the fact the boundary
conditions are extracted from simulations (ESMs), which are
themselves the approximations of the Earth system climate by
means of climate models. This mode aims to highlight the
RCM sensitivity responses to different large-scale atmospheric
forcings. These historical simulations were performed from
1970 to 2005 (Teichmann et al. 2020).

Numerous observational, satellite-derived, and reanalysis
products have been included in analyses (institutional, spacing
grid resolution, and reference information are provided in
Table 1). This is because the observed data display discrepan-
cies across the CEA (Washington et al. 2013; Dosio et al.
2021b), coupled with the fact that satellite algorithms and the
reanalysis model physics are different. Therefore, using multi-
ple sources of observational data might help get an insight
into the state-of-the-art regional rainfall climatology, as well
as account for uncertainties between products.

For all datasets, variables utilized include precipitation,
SSTs, mean sea level pressure (MSLP), evaporation, zonal
and meridional wind (u, y), the vertical velocity (v), the spe-
cific humidity (q), surface pressure (sp), air temperature (ta),

and geopotential height (z), all at a monthly time step and
spanning from 1980 to 2005, except ARC2 and CHIRPS2 pre-
cipitation available on a daily basis, and for which the analysis
periods are 1983–2005 and 1981–2005, respectively.

b. Methods

The CEA (10°N–10°S; 10°–35°E, red boxes; Fig. 1) clima-
tology consists of two wet seasons from March to May
(MAM) and from September to November (SON), and two
dry seasons from December to February (DJF) and from
June to August (JJA). In this study, the focus is on the wet
seasons, which encompass the majority of mechanisms driving
the region’s climate system. The ability of the RCMs to repre-
sent the observed spatial patterns and seasonality of rainfall
was first assessed. This made it possible to subdivide the study
area into western CEA (WCEA; black box in the fourth
panel, Fig. 1) and eastern CEA (ECEA; black box in the fifth
panel, Fig. 1), based on the spatial pattern of rainfall biases.
To understand the reasons behind RCMs’ biases, we use a
number of better-known drivers to assess the models. These
include land–sea interactions through SST, MSLP, and sur-
face pressure variabilities (Dezfuli and Nicholson 2013; Nich-
olson and Dezfuli 2013); regional atmospheric circulations
such as low-level westerlies (Pokam et al. 2014), the Congo
basin cell (Longandjo and Rouault 2020), the Hadley-like cir-
culation (Stachnik and Schumacher 2011), dynamics of mid-
tropospheric jets (Nicholson and Dezfuli 2013; Kuete et al.
2019), moisture transport (Pokam et al. 2012; Dyer et al. 2017;
Hua et al. 2019), and vertical motions (e.g., convection; Dez-
fuli et al. 2015; Cook and Vizy 2016). The methods used for
estimating the regional moisture convergence/divergence, the
Congo low-level cell, and the Hadley-like circulation are
documented in the appendices.

3. Model outputs of rainfall and selection of regions of
quantitative analyses

We first highlight similarities and differences (biases) in
rainfall seasonal patterns between reanalysis (since they are
used to diagnose the circulation fields) and RCM data as seen
in Fig. 1. The remapped ARC2 combined product is used as a
reference owing to its closer native resolution (0.10°) to that
of simulations (0.22°), as well as to minimize errors from the
interpolation process. Note that there is an agreement
between ARC2 and other observational/combined measures
of the region’s climatology (see Figs. S1a, S2a, and S3 in the
online supplemental material). In addition, similar models’
structural bias is obtained when GPCC-v8 and CHIRPS2 are
used as reference data (not shown).

In MAM (Fig. 1a), reanalysis products generally model
higher rainfall over major parts of the region. ERA5 shows
the weakest biases, with positive rainfall biases prevalent in
most parts of the region. MERRA-2 features the strongest
positive rainfall biases along the western, southern, and east-
ern borders of the CEA, and negative rainfall biases along the
northern edge. Apart from the negative precipitation biases
located from the center to the northern edge of the region,
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NCEP2 shows positive precipitation biases elsewhere. Experi-
ments of both REMO and RegCM4 display quasi-similar spa-
tial polarity of biases. They feature wet biases in the major
part of WCEA and dry biases in ECEA.

In SON (Fig. 1b), ERA5 presents quasi-homogeneous posi-
tive rainfall biases. MERRA-2 features strong wet biases
throughout the western and eastern frontiers, but moderate
dry biases in the center and along the northern and southern
borders. NCEP2 simulates strong wet biases in most parts of
the region and dry biases in a small portion of the northwest-
ern sector. Experiments always feature the bipolar character

of rainfall bias patterns as in MAM season, but with some dif-
ferences. For instance, REMO-ERA shows lower biases in
SON than in MAM. RegCM4-ERA features dry biases in
coastal areas and wet biases in the interior of WCEA. Runs
resulting from the imperfect forcing mode intensify wet
biases, which propagate farther toward the eastern border in
SON than in MAM.

It is worth noting that the differences in the rainfall clima-
tology among reanalysis data over CEA are associated with
their differences in simulating the lower and midlayer tropo-
spheric circulation (Hua et al. 2019). By comparing control

TABLE 1. Description of reanalysis and satellite/gauge datasets employed for the evaluation in this study.

Dataset Institution Horizontal resolution Periods used Reference

CRU-TS4.04 Center for Atmospheric Research
(NCAR) Climate Research Unit,
University of East Anglia

0.5° 3 0.5° 1980–2005 Harris et al. (2020)

GPCC-v8 Global Precipitation Climatology
Centre

0.5° 3 0.5° 1980–2005 Schneider et al. (2013)

Udel-v4.01 University of Delaware data 0.5° 3 0.5° 1980–2005 Legates and Willmott
(1990)

NIC131 New rainfall datasets recently
developed for equatorial Africa

2.5° 3 2.5° 1980–2005 Nicholson et al. (2019)

CHIRPS2 Climate Hazards Infrared
Precipitation with Stations

0.05° 3 0.05° 1981–2005 Funk et al. (2015)

UGDP Unified Gauge-Based Analysis of
Global Daily Precipitation

0.5° 3 0.5° 1980–2005 Janowiak and Xie
(2011)

GPCP-v3.2 Global Precipitation Climatology
Project World Climate Research
Programme (WCRP)

2.5° 3 2.5° 1980–2005 Huffman et al. (2009)

ARC2 African Rainfall Climatology, version
2

0.1° 3 0.1° 1983–2005 Novella and Thiaw
(2013)

ERA5/ERA-Interim European Centre for Medium-Range
Weather Forecasts

0.25° 3 0.25° 1980–2005 Hersbach et al. (2020)/
Dee et al. (2011)

MERRA-2 The Modern-Era Retrospective
Analysis for Research and
Application, version 2

0.5° 3 0.66° 1980–2005 NASA (2016)

NCEP2 National Centers for Environmental
Prediction (NCEP) and the
National Center for Atmospheric
Research (NCAR)

2.5° 3 2.5° 1980–2005 Kanamitsu et al. (2010)

HadISST2 Met Office Hadley Centre 1.0° 3 1.0° 1980–2005 Titchner and Rayner
(2014)

ERSST-v5 NOAA National Centers for
Environmental Information

2.0° 3 2.0° 1980–2005 Huang et al. (2017)

TABLE 2. Details of driving ESMs and names of RCM experiments used in this study.

Institution ESMs
RCMs (0.22° 3

0.22°) Run names Periods used Reference

Met Office Hadley
Centre

HadGEM2-ES
(1.25° 3 1.875°)

REMO2015
RegCM4-v7

REMO-HadGEM2
RegCM4-HadGEM2

1980–2005 Collins et al. (2011)

Max Planck
Institute for
Meteorology

MPI-ESM-LR/
MPI-ESM-MR

(1.865° 3 1.875°)

REMO2015
RegCM4-v7

REMO-MPI-LR
RegCM4-MPI-MR

1980–2005 Popke et al. (2013)/
Stevens et al.

(2013)
Norwegian Climate

Center
NCC-NorESM
(1.894° 3 2.5°)

REMO2015
RegCM4-v7

REMO-NorESM1
RegCM4-NorESM1

1980–2005 Bentsen et al.
(2013)
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simulations with imperfect runs, it emerges that the RCMs’
internal physics strongly influences the transmitted boundary
conditions from ESMs. For instance, for the two RCMs, the
control runs REMO-ERA and RegCM4-ERA represent a
spatial structure of biases similar to those of imperfect forc-
ings (combination RCM–ESMs). This implies that RCM
biases are mainly systematic. However, the effects of bound-
ary conditions from ESMs still exist but are less important
because they only influence the magnitude of biases. For
instance, in SON, the control simulation REMO-ERA shows
weak wet biases in WCEA and strong dry biases in ECEA.
At the same time, imperfect experiments from the same
RCM have strong wet biases in WCEA and reduce the area
of dry biases in ECEA considerably. Therefore, control and
imperfect runs are treated in the same way in the rest of
analyses.

Based on these spatial configurations of rainfall biases, we
subdivided the region into WCEA (10°–25°E, 10°S–10°N)
and ECEA (25°–35°E, 10°S–10°N). In WCEA, overall simula-
tions and reanalyses capture well the bimodal distribution
mode of rainfall with peaks in MAM and SON but show
important intensity differences (Fig. S1b). REMO-ERA and
RegCM4-ERA shift the MAM rainfall peak to March, rather
than April as usual, but the overall runs agree on the SON
rainfall peak observed in October. The spreads between the
wettest and the driest experiments are respectively 2.5 mm
day21 in MAM and 3 mm day21 in SON. Moreover, runs
exhibit a strong inconsistency in the latitudinal spread of the
rainband (Figs. 2a,c). For instance, the majority of experi-
ments start the rainband north of 10°S in MAM (Fig. 2a),
although they are all consistent with observations in the
north. Inconsistencies occur both in north and south in SON

FIG. 1. Long-term mean (1983–2005) rainfall biases (RCM-runs/reanalysis data minus ARC2; mm day21), for the (a) MAM and (b)
SON seasons. The ARC2 dataset is used as a point of reference to assess the two RCM experiment (REMO2015 and RegCM4-v7) and
reanalysis product biases. The stippling highlights the grid points where the rainfall bias of the dataset under consideration is statistically
significant at the 95% confidence level using the Student’s t test. Here the CEA (red boxes) is split into the WCEA (10°–25°E, 10°S–10°N;
with wet biases; black box in the fourth panel) and the ECEA (25°–35°E; 10°S–10°N; with dry biases; black box in the fifth panel).
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(Fig. 2c). Some of them overestimate the width of the rain-
band whereas others underestimate it. Rainfall intensity differ-
ences along latitudes between observations and model outputs
are up to 3.5 mm day21. There are strong discrepancies with
regards to the latitudinal position of rainfall peaks in the two
seasons. The southernmost peak is positioned around 4°S by
REMO-HadGEM2 (∼9 mm day21) and the northernmost
around 2°N by REMO-MPI-LR (∼9 mm day21), whereas
observations locate the peak around 2°S (∼6 mm day21).

In ECEA, there are large disparities among datasets, with
the spread between the wettest and the driest reaching 5 mm
day21 during the first rainfall peak in MAM, and 3.5 mm
day21 during the second peak in SON (Fig. S2b). Also, there
is large bandwidth in the latitudinal spread of the rainband
both in north and south during the two seasons (Figs. 2b,d).
Here most runs shift the rainband southward both in MAM
and SON seasons, with a higher rainfall amount in SON (Fig.
2b) than in MAM (Fig. 2d). Along the latitudinal migration,
experiments feature stronger differences compared to obser-
vations. The driest run shows a 3 mm day21 rainfall deficit
(within 2°–4°S by RegCM4-HadGEM2), and the wettest
shows a 2 mm day21 rainfall surplus (within 0°–2°S by
REMO-HadGEM2) during MAM. The driest run features a
2 mm day21 deficit (within 0°–2°S by REMO-ERA) and the
wettest features a 3 mm day21 surplus (within 0°–2°S by
REMO-HadGEM2) during SON.

Such a rainfall pattern was recently found across CMIP5
ESMs over CEA, with some models featuring peak rainfall in
the western area and others in the eastern area in SON
(Creese and Washington 2018). In this study, RCMs display
their rainfall maxima in WCEA (overestimation) and minima
in ECEA (underestimation), more markedly in MAM than in
SON. Furthermore, these authors found western rainfall cor-
relating with eastern rainfall in the months April–July, and
conversely a lack of correlation during the months of
August–November. They argued about the possible common
processes related to rainfall in these subregions in April–July,
and different mechanisms driving rainfall in August–Novem-
ber. In performing a similar analysis using observed and mod-
eled rainfall (Fig. S4), it is found that, consistent with these
previous findings, observed WCEA and ECEA rainfall fea-
ture a relationship in MAM (r $ 0.52), but this is not the case
in SON (r # 0.40), except for the ARC2 dataset (r = 0.75).
None of the RCM experiments feature this relationship in
both MAM and SON (r # 0.50). However, caution is still
needed in drawing conclusions, given the recent findings of
plausible mechanisms responsible for the variability of rainfall
in this region (e.g., Pokam et al. 2014; Dezfuli et al. 2015;
Longandjo and Rouault 2020). This is further discussed in sec-
tions 5 and 6. Likewise, strong feedbacks between both the
Atlantic and Indian Oceans and the CEA’s rainfall regime
have been widely discussed (e.g., Wahl et al. 2009; Toniazzo
and Woolnough 2013; Cook and Vizy 2016; Creese and Wash-
ington 2016; Dyer et al. 2017). To understand the reasons for
RCM biases as well as their spatial polarity, we investigated
how RCMs model these land–atmosphere–ocean retroactions
through local SSTs and MSLPs.

4. Land–atmosphere–ocean feedbacks: SSTs and MSLPs

Figure 3 shows the mean climatology of MAM (Fig. 3a)
and SON (Fig. 3b) SSTs over the eastern Atlantic and western
Indian Oceans. It is worth noting that SSTs in RCMs are
taken from corresponding driving ESMs. However, it is not
necessary to show the SSTs from ESMs and RCMs. The SSTs
from the ESMs would be enough. The climatological spatial
distribution consists of warmer SSTs across the equatorial
regions (between 10°S and 10°N) than southern oceans (south
of 10°S), as shown by observations and reanalysis data from
HadISST, ERA5, and ERSST. Also, MAM SSTs are gener-
ally warmer than SON ones, coherently represented by the
three reference datasets. Driving ESMs seem to have strong
controls on the spatial pattern of SST biases as experiments
with common lateral boundary conditions feature semblable
SST bias patterns. In MAM, the control experiments REMO-
ERA and RegCM4-ERA show the weakest warm SST biases.
Runs driven by HadGEM2 simulate strong warm SST biases
along Atlantic coastlines, and cold biases both toward the
interior of the Atlantic and over the whole west Indian
Ocean. Downscaled experiments with MPI-ESM-LR/MR
exhibit strong warm SST biases over major parts of the east-
ern Atlantic Ocean, while REMO-MPI-LR models strong
cold biases over the western Indian Ocean. RegCM4-MPI-
MR reproduces moderate cold biases over the same domain.
Simulations conducted with NorESM1 display warm SST
biases over areas closer to Guinea Gulf and which propagate
along coastlines toward the south; however, cold SST biases
are recorded in most parts of the southern Atlantic Ocean. At
the same time, almost the western Indian Ocean features cold
SST biases.

In SON, the two “evaluation” runs, REMO-ERA and
RegCM4-ERA, also reproduce the weakest warm biases. The
two RCM-HadGEM2 runs extend more warm biases over the
Atlantic Ocean than in MAM, thus reducing areas of cold
biases. Likewise, they model warm biases north of the western
Indian Ocean and cold biases in the south. Experiments
driven by MPI-ESM-LR/MR reproduce similar bias patterns
observed in MAM with a slight extension of areas of cold
biases in the Atlantic Ocean and rather warm biases in the
Indian Ocean. In contrast, downscaled runs using NorESM1
as boundary conditions do the same, but with a slight reduc-
tion of areas of cold biases over the Atlantic Ocean, and con-
trastingly a slight extension of areas of warm biases over the
Indian Ocean.

The nonlinear feedback controls exercised by the Atlantic,
Indian, and Pacific Ocean SSTs on African precipitation sys-
tems are known (e.g., Todd and Washington 2004; Cook and
Vizy 2016; Hua et al. 2016). Coupled models from CMIP3 and
CMIP5 had difficulties capturing these relationships, thus
impacting their outputs of rainfall (e.g., Cook and Vizy 2006;
Rowell 2013). We evaluated the performances of each RCM
experiment to model these teleconnections, in computing the
time series’ linear correlations between regional WCEA (Fig.
S5) and ECEA (Fig. S6) rainfall and both ocean SSTs. This
analysis can be read in Text S1 in the online supplemental
information.
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The complexity of the relationship between SSTs and CEA
rainfall is known (e.g., Balas et al. 2007; Dezfuli and Nichol-
son 2013; Nicholson and Dezfuli 2013; Creese and Washing-
ton 2018). Owing to the limited geographical area used in
dynamical downscaling, some processes resulting from these
teleconnections cannot be diagnosed or can only be partly
analyzed in this study, although they might be important driv-
ers of rainfall biases, such as the tropical Walker circulation
(Hua et al. 2016). Other factors not analyzed in this study
may also be sources of uncertainty and model biases such as
the tropical waves (e.g., Kelvin waves), the Madden–Julian
oscillation (MJO), and the tropical convection (Hung et al.
2013; Sinclaire et al. 2015; Raghavendra et al. 2019). Further-
more, from Fig. 3 it emerges that simulated remote forcings
(investigated in section 5) could be stronger or weaker

depending on the sign and the robustness of the teleconnec-
tion. However, a direct consequence of warm SSTs is a poten-
tial increase in evaporation over oceans, which in turn could
enhance advected water vapor into the region in intensifying
low-level westerlies (LLWs), thereby increasing rainfall
amount through the local convection. Cold SSTs would
induce opposite effects (Creesse and Washington 2018).
Inland positive evaporation biases would presumably acceler-
ate the hydrological cycle in accentuating the moisture recy-
cling process; negative evaporation biases would slow down
the hydrological cycle, thus reducing the moisture availability
(Pokam et al. 2012, Dyer et al. 2017). Therefore, we have
investigated models of evaporation (Fig. S7) both over oceans
and land, as shown in Text S2 in the online supplemental
information.

FIG. 2. Latitudinal spread of the rainband in (top) MAM and (bottom) SON over (a),(c) WCEA and (b),(d)
ECEA. Data used include the rain gauge, satellite, and combined products, and from the REMO2015 and RegCM4-
v7 experiments. The data cover the period 1980–2005, apart from ARC2 dataset, which covers the period 1983–2005,
and the CHIRPS2 dataset, which covers the period 1981–2005. The shaded light-blue band is the standard deviation
and uses the CRU, GPCC, NIC131-gridded, ARC2, and CHIRPS2 ensemble mean, from 1983 to 2005. An experi-
ment out of the standard deviation band is considered to have failed to simulate the latitudinal migration of the
rainband.
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Likewise, overall RCM runs model weaker MSLPs in the
two seasons (Fig. 4). A direct impact of this underestimation
is the weakening of the intensity of the tropical zonal circu-
lation, which strongly governs the rainfall variability over
CEA (Nicholson and Dezfuli 2013; Longandjo and Rouault
2020) and is also investigated in section 5. It should be noted
that the relationships between rainfall and MSLP over
WCEA and ECEA (not shown) are not necessarily similar
to those with SST. In fact, although MSLP variations are
associated with variations in SSTs, the distribution of one is

not only influenced by the other parameter. So, it is not pos-
sible to have systematic bias correspondences. Other atmo-
spheric or oceanic forcings play an important role in MSLP
anomalies such as oceanic oscillations (Morioka et al. 2014).
These SST and MSLP biases could have strong consequen-
ces on wind dynamics (Creese and Washington 2018), there-
fore prompting the analysis of simulated atmospheric
circulation. The Saharan and the Angolan low pressure sys-
tems also exercise a strong control on the CEA circulation
(Chen 2004; Kuete et al. 2019 ; Cook et al. 2020). Thus, we

FIG. 3. Mean (1980–2005) seasonal SST climatology (in the top row) and SST biases (in the
middle and bottom rows) for (a) MAM and (b) SON. The climatology is obtained from reanaly-
sis data (HadISST, ERA5, and ERSST). The biases are computed relative to ERA5 reanalysis,
from the REMO2015 and RegCM4-v7 experiments. The stippling occurs where the difference
between the dataset under consideration and the ERA5 reanalysis dataset is statistically signifi-
cant at the 95% confidence level by means of the Student’s t test. The black boxes indicate
the CEA.
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also analyzed the RCMs of land surface pressure (sp) out-
puts (not shown) to outline whether model runs feature
particular behaviors over these areas. Ensuing results show
slight modeled weak surface pressure across all land
regions, more pronounced in REMO runs than RegCM4
runs. However, none of the RCM experiments features
particular aspects over the Saharan thermal low or the
Angolan low. This suggests that low pressure systems did
not play any major role in determining models’ wetness or
dryness.

5. Links with dynamics of atmospheric circulation

The present section aims at detecting atmospheric circula-
tion behaviors associated with rainfall biases, and links with
land–atmosphere–ocean feedback biases. The emphasis is
placed on how models represent transient zonal (QZ) and
meridional (Qm) regional moisture across CEA, and how they
affect the total column (QT) moisture convergence, as well as
the moisture transport (e.g., Dyer et al. 2017; Tamoffo et al.
2021). Note that reanalysis data are used here for qualitative

FIG. 4. Mean (1980–2005) seasonal SLP climatology (in the top row) and SLP biases (in the
middle and bottom rows) for (a) MAM and (b) SON. The climatology is obtained from reanaly-
sis data (ERA5, MERRA-2, and NCEP2). The biases are computed relative to ERA5 reanaly-
sis, from REMO2015 and RegCM4-v7 experiments. The stippling occurs where the difference
between the dataset under consideration and the ERA5 reanalysis dataset is statistically signifi-
cant at the 95% confidence level by means of the Student’s t test. The black boxes indicate the
CEA.
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rather than quantitative purposes, as they were not used as a refer-
ence for calculating the precipitation bias of RCM experiments.

a. Regional moisture convergence or divergence

The diagnostic of the vertical profile of water vapor (Fig. 5)
provided insight into how RCMs model moisture transport
across various pressure levels of the CEA. This helps high-
light which circulation dominates the moisture supply and
where the moisture surplus or deficit probably originates.
Overall, the experiments feature great performances in cap-
turing variabilities into the tropospheric column moisture con-
tent in the two directions and in both seasons, although
differences in terms of intensity are obvious, which in turn
bias the total moisture balance. Notably, simulations outper-
form in the zonal direction compared to the meridional. This
alerts the state of the models of Walker- and Hadley-like cir-
culations and is investigated in sections 5b and 5c. As

demonstrated in Pokam et al. (2012), QZ acted as the most
significant contributor to the convergent peak around 850 hPa
in QT, as Qm is generally weaker. Likewise, QT is divergent in
the midlayers (700–600 hPa), stronger in MAM (Fig. 5a) than
in SON (Fig. 5b), resulting from the higher divergent QZ

than convergentQm. However, although model outputs of the
vertical profile of moisture are promising, this does not ensure
that moisture transport is properly distributed in the different
layers of the troposphere across the region.

From Fig. 6, it explicitly appears that, at the bottom layers
(1000–850 hPa) and in MAM (Fig. 6a), relative to reanalysis
products, REMO runs produce stronger LLWs (and therefore
stronger advected moisture) from the Atlantic Ocean toward
the equatorial western boundary of the Congo Basin. RegCM4
runs do the least. However, the analysis of the zonal integrated
moisture transport (Qu) reveals underestimated and less latitu-
dinally extended moisture into inland areas. As a consequence,

FIG. 5. Vertical profile of the regional moisture convergence/divergence (kg m21 s21) across the CEA, divided into the (left) zonal (QZ)
and (center) meridional (Qm) directions, in (a) MAM and (b) SON. (right) The total column moisture convergence/divergence (QT);
MD = moisture divergence (negative values) and MC = moisture convergence (positive values). Data used are from reanalyses ERA5,
MERRA-2, and NCEP2, and from experiments REMO2015 (solid lines) and RegCM4-v7 (dashed lines) over the period 1980–2005.
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weaker moisture is transported from WCEA to ECEA. RCMs
model stronger moisture originating from the southwest Indian
Ocean. These southeasterlies recurve into southerlies while
crossing the southern border and feed the WCEA, thus increas-
ing the amount of moisture availability. The topographic forcing
effect that constrains the supply of moisture originating from

the Indian Ocean to central Africa in the lower troposphere
through the eastern border of ECEA (Munday et al. 2021)
seems well captured by all runs, as they show a good represen-
tation of transient moisture across this frontier. In SON (Fig.
6b), both the REMO and RegCM4 simulations overestimate
the strengthening of LLWs. As a result, moisture transport

FIG. 6. Mean (1980–2005) seasonal climatology of (a) MAM and (b) SON lower-layer (1000–850 hPa) zonal vertically integrated mois-
ture flux (Qu; kg m21 s21; shaded) superimposed with vertically integrated (1000–850 hPa) total moisture transport (QT; kg m21 s21; vec-
tors). Data used are from reanalyses (ERA5, MERRA-2, and NCEP2) and from the REMO2015 and RegCM4-v7 experiments. Negative
values indicate easterly flows and positive values are westerly flows. Black boxes denote the CEA.
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from the Atlantic is higher, thus increasing moisture availability
both in WCEA and ECEA. These dynamic features of the
moisture transport indicate that in the two seasons the moisture
availability is more important in WCEA than ECEA, matching
with spatial patterns of model rainfall biases.

A similar analysis performed in midlayers (700–600 hPa;
not shown) shows that downscaled ESMs represent well the
basic structure of midtropospheric moisture transport, but
with some differences in terms of intensity of outflows at the
western and inflows at the eastern borders. Given the modula-
tor effect of AEJs on the circulation in these layers (Nichol-
son and Grist 2003; Jackson et al. 2009), we examined the
ability of RCMs in simulating these easterlies. Figure 7 shows
that in MAM (Fig. 7a), except for RegCM4-MPI-MR, the
other runs correctly detect the positioning of the AEJ-N core.
This is not the case in SON (Fig. 7b) where none of the
RCM–ESM combinations succeeded in distinctly positioning
the two cores of AEJ-N and AEJ-S. Most runs strongly
underestimate the intensity of the AEJ-S component or fail to
detect it neatly. Inconsistencies occur within models of AEJ
intensity, with some showing weaker jet cores both in MAM
and SON (e.g., RegCM4-MPI-MR) and other stronger jet
cores (e.g., REMO/RegCM4-ERA, REMO/RegCM4-Nor-
ESM1). Differences in the amounts of advected moisture in
these layers, particularly in MAM, are found associated with
AEJ core biases because it is the time of strong moisture
advection into the Congo basin via the AEJ-N, as demon-
strated in Pokam et al. (2012) and Hua et al. (2019). Also,
REMO/RegCM4-MPI-LR/MR, which features lower rainfall
dry biases in MAM, also shows weaker AEJ-N intensity. In
SON, REMO/RegCM4-NorESM1, which propagated stron-
ger rainfall dry biases, also simulates a single, but stronger
AEJ-N intensity that is more intense than both AEJ-N and
AEJ-S intensities in some experiments. This corroborates pre-
vious findings by Dezfuli and Nicholson (2013), who showed
that over the WCEA wet composites feature weaker midtro-
pospheric jets than dry ones. Recently, Longandjo and Rou-
ault (2020) demonstrated the relationship between AEJs and
the low-level circulation through the Congo basin cell. They
showed that the seasonality of AEJs and that of the Congo
basin cell intensity, width, and its eastward extension are all
controlled by the near-surface land–ocean thermal contrast,
via the zonal surface pressure gradient. Also, the Congo basin
cell is found to be a crucial driver of the region’s precipitation
system because it controls the zonal positioning of maximum
rainfall. Therefore, would the presence of biases in the models
of AEJs indicate biased simulations of the Congo basin cell?

b. The Congo basin cell

In the preceding section, we found that although RCM runs
simulate strong moisture transport over the Gulf of Guinea
and coastal areas of WCEA, a smaller quantity penetrates
inland to reach the highlands of eastern Ethiopia. Dezfuli et al.
(2015) showed that this moisture generally rises the up-branch
of the Walker-like cell over Rift Valley highlands around
33°E, then enters the mesoscale convective systems (MCSs)
embedded within AEJs, which move westward and are

responsible for much of the convective rainfall over the
region. Figure 8 confirms that the low moisture penetration
inland, especially in MAM (Fig. 8a), is associated with biases
in the western and eastern edge positions, width (zonal
extent), and intensity of the Congo basin cell. Except for
REMO-ERA, and inconsistently with all reanalyses that
show a cell starting around 2.5°E, other simulations show a
cell starting from a farther west position (exceeding west of
20°W) and ending once it crosses the western border of the
basin at 10°E. This is better marked in REMO experiments,
as there is not the 1000-hPa pressure level available for
RegCM4 simulations and which, however, would have
allowed better visualization of the cell on the surface. Yet two
of the three reanalysis products, namely ERA5 and NCEP2,
show a cell extending to 25°E. All REMO-ESM simulations
produce a wider cell, but with the western and eastern edges
abnormally too westward. In terms of intensity (obtained by
vertically integrating the zonal cZ mass-weighted streamfunc-
tion from the surface up to 850 hPa, then filtering and retain-
ing only the negative values over the longitude band of the
Congo basin), reanalysis data feature a Congo basin cell
strength within the range from 214.3 (MERRA-2) to 281.7
3 109 kg s21 (ERA5). REMO-ERA shows a cell intensity of
234.7 3 109 kg s21, which is within the range of reanalyses,
thus outperforming other simulations, and which, presumably,
would be linked to good boundary conditions received from
the ERA-Interim reanalysis. All REMO-ESM experiments
feature a weaker Congo basin cell strength relative to the
three reanalyses, with values within the range from 29.3
(REMO-NorESM1) to 214.92 3 109 kg s21 (REMO-
HadGEM2). In SON (Fig. 8b), all downscaled ESMs both
from REMO and RegCM4 feature a more realistic modeled
cell. For instance, consistently with the three reanalysis prod-
ucts, REMO runs present a cell starting around 0° that slightly
crosses the longitude 25°E. Although the 1000-hPa surface
pressure level is not available in RegCM4, this also seems to
be the case for its runs. Experiments and reanalyses are
almost coherent on the width of the cell, with the western
edge included within longitudes 3°W and 3°E, and the eastern
one between 25° and 27°E. The Congo basin cell strengthens
in SON. Reanalyses exhibit intensity values ranging from
267.4 (MERRA-2) to 2145.7 3 109 kg s21 (ERA5). The
REMO-ERA run features the strongest cell with an intensity
of 2194.4 3 109 kg s21. REMO runs do so within the range
from 2119.0 (REMO-NorESM1) to 2159.7 3 109 kg s21

(REMO-HadGEM2). As seen in Fig. 1b, the weakening of
simulated rainfall dry biases in ECEA in SON is associated
with the better representation of the cell in models that,
owing to the strengthening of the cell, import more moisture
from the Atlantic Ocean toward inland areas than in MAM.

The aforementioned results are supported by previous find-
ings by Longandjo and Rouault (2020) because the spatiotem-
poral pattern of rainfall biases corroborates well with the
ones of the Congo basin cell. These authors also showed that,
although there is not a direct relationship between local rain-
fall and the Congo basin cell, the cell nevertheless influences
the zonal rainfall maximum positions. Likewise, they demon-
strated that the cell is modulated by the zonal surface pressure
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gradient (∇P) via the near-surface land–ocean thermal con-
trast (∇T): an enhanced ∇T strengthens ∇P, which in turn,
intensifies the Congo basin cell and increases its width by
extending more eastward the eastern edge. To understand the

causality of simulated Congo basin cell biases and to assess
the credibility of these mechanisms to drive the spatiotempo-
ral patterns of modeled rainfall biases, we have also investi-
gated simulated ∇T and ∇P as shown in Fig. 9. Although our

FIG. 7. Latitude–height cross sections of (a) MAM and (b) SON zonal wind (u wind; m s21; shaded), averaged over longitudes 10°–30°E
[following Nicholson and Grist (2003)]. Overlaid dashed contours indicate the mean seasonal location of AEJs (wind speed # 26 m s21).
Data used are from the reanalyses ERA5, MERRA-2, and NCEP2 and the experiments REMO2015 and RegCM4-v7, from 1980 to 2005.
The stippling occurs where the difference between the dataset under consideration and the ensemble mean of the three reanalysis products
is statistically significant at the 95% confidence level by means of the Student’s t test. The black bars delimit the CEA latitudinal band.
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FIG. 8. Mean (1980–2005) seasonal climatology of (a) MAM and (b) SON zonal mass-weighted streamfunction
(cZ; contours in 31011 kg s21) and mean zonal wind (shaded; m s21). Data used are from reanalysis data (ERA5,
MERRA-2, and NCEP2) and from the REMO2015 and RegCM4-v7 experiments. Solid lines denote positive values
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analysis is focused on seasons MAM and SON, in the first-
order assessment we found that the shape of the annual cycle
is common for reanalyses and model outputs both in ∇T (Fig.
9a) and ∇P (Fig. 9b). All datasets agree on months of maxima
and minima in ∇T. Such is not the case in ∇P between the
reanalyses themselves on the one hand and between the rean-
alyses and the models on the other. For instance, MERRA-2
and NCEP2 place the MAM peak of ∇P in April–May,
whereas ERA5 does so in March. Some RCM runs (e.g.,
RegCM4-MPI-MR, REMO/RegCM4-ERA) feature the
MAM peak of ∇P in April–May; others (e.g., RegCM4-
HadGEM2/NorESM1, REMO-MPI-LR) do so in May.

Consistently with modeled weaker Congo basin cell in
MAM as seen in Fig. 8a, all RCMs simulate a weaker ∇P
relative to all reanalyses, with most RegCM4 runs showing
rather lower MSLPs than land surface pressure. We found
previously that the Congo basin cell was better simulated in
SON than in MAM. Also, ∇T and ∇P are better simulated
in SON than in MAM, with all datasets agreeing on months
of maximum and minimum both in ∇T and ∇P. Likewise,
models produce a strengthened cell in SON, associated with
an enhanced ∇P. Therefore, ∇T and ∇P biases correlate
with Congo basin cell biases, which attests to the plausibility
of these mechanisms.

←−
of mass-weighted streamfunctions, and dashed lines are negative values. The green line is the zero contour of the
mass-weighted streamfunction (cZ = 0) and delimits the Congo basin cell. Contour intervals are223 1011 kg s21 for
negative values and 10 3 1011 kg s21 for positive values. The stippling highlights the grid points where the difference
between the dataset under consideration and the ensemble mean of the three reanalysis products is statistically signif-
icant at the 95% confidence level using the Student’s t test. The cyan bars delimit the WCEA and the green ones the
ECEA.

FIG. 9. Seasonality of the near-surface (a) land–ocean temperature difference (thermal con-
trast; ∇T; K) and (b) land surface pressure and ocean sea level pressure difference (∇P; hPa)
between the interior of the continent (15°–30°E, 5°S–5°N) and the equatorial eastern Atlantic
Ocean (5°W–5°E, 5°S–5°N), for the ERA5, MERRA-2, and NCEP2 reanalysis data, and for
the REMO2015 (solid lines) and RegCM4-v7 (dashed lines) experiments, over the period
1980–2005.
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c. The Hadley-like circulation

To complete the diagnostic of the modeled atmospheric cir-
culation, we also analyzed simulated Hadley-like circulation,
using the meridional cM mass-weighted streamfunction as
shown in Figs. 10 and 11. Wet biases dominate the WCEA
and dry biases the ECEA. It is hypothesized that factors
responsible for rainfall biases in the two areas might be differ-
ent. Therefore, the analysis of the Hadley-like cell is con-
ducted separately in the two regions.

In WCEA (Fig. 10) and in MAM (Fig. 10a), the three rean-
alysis datasets agree on the pattern of the cell, consisting of an
ascending branch entering the basin through the southern lati-
tudes that is wide in the lower troposphere but progressively
narrower toward the upper layers. The northern descending
component occupies a part of the basin in the upper tropo-
sphere, then exits from 700 to 925 hPa, where it recurves into
northerlies. The southern sinking branch is far from the basin.
Slightly larger in the upper troposphere, it progressively
shrinks while moving toward lower layers until 700 hPa,
where it recurves into southerlies. REMO experiments cap-
ture well the basic structure of the Hadley circulation,
although they strongly narrow the band of the ascending
branch (REMO-ESMs). Two of them, REMO-ERA and
REMO-NorESM1, which simulate a stronger rising branch,
simulate a stronger southern descending component but
rather a weaker northern sinking one. The other two,
REMO-HadGEM2 and REMO-MPI-LR, produce weaker
values in major parts of the cell. RegCM4 runs feature the
weakest performance in representing the cell: they strongly
underestimate the ascending branch, overestimate the south-
ern sinking branch, and completely fail to reproduce the
northern descending branch. In SON (Fig. 10b), reanalyses
show that the upward component weakens and moves farther
outward from the basin through the southern latitudes. At the
same time, the northern downward component intensifies,
and the southern one limits around 600 hPa (ERA5 and
NCEP2) and 300 hPa (MERRA-2). REMO simulations fail in
capturing the SON Hadley-type circulation: they strongly
underestimate the part of the ascending branch inside the
region. Some of them (e.g., REMO-ERA and REMO-Nor-
ESM1) better capture the two sinking branches, whereas
others (e.g., REMO-HadGEM2 and REMO-MPI-LR) under-
estimate them. Even RegCM4 simulations model a weaker
upward branch including the part outside the basin. They fea-
ture a better captured southern downward component than
northern one.

In ECEA (Fig. 11) and in MAM (Fig. 11a), the rising com-
ponent penetrates the domain between 925 and 500 hPa for
ERA5, from 925 hPa to the top of the troposphere for
MERRA-2, and between 925 and 600 hPa for NCEP2; the
northern descending branch, which is also very strong, is visi-
ble and consistently represented by the three reanalysis prod-
ucts. Apart from REMO-NorESM1 (which makes visible a
small part of the southern downward branch and shrinks the
band of the upward component), other REMO experiments
feature a similar cell pattern. However, these runs model
stronger values of the ascending branch inside the region.

Likewise, except for RegCM4-NorESM1, which behaves like
its counterpart REMO-NorESM1, the rest of the RegCM4
simulations show a similar cell with reanalyses. However,
some runs (e.g., RegCM4-ERA, RegCM4-HadGEM2, and
RegCM4-NorESM1) produce a weaker cell intensity, whereas
the other (RegCM4-MPI-MR) shows values within the range
of reanalyses. In SON (Fig. 11b), reanalyses show that a part
of the southern downward branch appears and part of the
northern branch slightly weakens compared to what is
observed in MAM. REMO-ERA features a stronger southern
descending branch and similar ascending and northern down-
ward branches with reanalyses. Other REMO-ESMs display a
weaker and narrow rising component in midlayers (700–500
hPa). RegCM4-ERA and RegCM4-HadGEM2 highly under-
estimate the SON Hadley cell elsewhere. RegCM4-MPI-MR
and RegCM4-NorESM1 model a stronger southern down-
ward component, and a weaker and shrinking ascending
branch.

The hypothesis of a better integrated Walker-type cell in
RCMs relative to the Hadley-like circulation, made in section
5a, is confirmed. RCMs broadly outperform in representing
cz. Given the known link between the Hadley circulation and
the convection over central Africa, the biased Hadley circula-
tion may also introduce biases in simulated convection,
because the convection is the ascending branch of the Hadley
cell over central Africa (Fierro et al. 2009). Kamae et al.
(2011) showed that over the tropics (10°S–15°N), the weaken-
ing of the Hadley circulation is the response of strong deep
convection. Also, the climatological variability of the Hadley
cell strongly correlates with the zonal mean annual total pre-
cipitation (Stachnik and Schumacher 2011). Therefore an
anomalously modeled weak or strong Hadley cell might sug-
gest an anomalously modeled strong or weak convection. This
is assessed below.

6. The local convection

Precipitation over CEA mainly originates from convection
(Washington et al. 2013; Cook and Vizy 2016). This section
ends analyses by assessing the feedback of simulated local
convection to modeled zonal and meridional atmospheric cir-
culation. It should be noted that in these hydrostatic versions
of REMO2015 and RegCM4-v7, convection is parameterized
and not explicitly resolved. Therefore here we are analyzing
the wind vertical velocity, which can be associated with con-
vection. Some physical and thermodynamic drivers are also
investigated to understand the reasons behind simulated con-
vection characteristics. The analysis is also separated into the
WCEA and ECEA, based on different behaviors of models
of the atmospheric circulation over the two areas (Figs. 8, 10,
and 11). There are no vertical velocity data available from
RegCM4-v7. Therefore, analyses are done only with
REMO2015 outputs. However, based on previous analyses
and on the REMO2015 results of the convection, conclusions
could be reached.

In WCEA (Fig. 12; see also Fig. S8) and in MAM (Fig. 12;
see also Fig. S8a), vertical motion is weak in the lower layers
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FIG. 10. Zonal average of the long-term seasonal mean (1980–2005) (a) MAM and (b) SON meridional mass-
weighted streamfunction values (cM; contours in 31011 kg s21) over the WCEA (longitudes 10°–25°E). Data used
are from reanalysis ERA5, MERRA-2, and NCEP2, and for the REMO2015 and RegCM4-v7 experiments. Positive
values (solid contours) represent the counterclockwise circulation while negative values are the clockwise circulation.
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(,700 hPa) and becomes strong in the upper layers (.700
hPa), provoking deep convection up to 200 hPa, consistently
represented by the three reanalyses. MERRA-2, which fea-
tures a higher rainfall rate, also features higher omega (v) val-
ues (20.23 m s21). NCEP2, characterized by a weaker rainfall
rate, also shows weaker v values (20.007 m s21). All REMO
experiments, which overestimated precipitation over this
area, also simulated strong values of v, within the range
20.17 m s21 (REMO-ERA) to 20.23 m s21 (REMO-
HadGEM2). A rainier SON (Fig. 12b; see also Fig. S8b) than
MAM, associated with intensification of the convection, presents
in the three reanalyses (with values reaching 20.20 m s21 for
ERA5, 20.25 m s21 for MERRA-2, and 20.13 m s21 for
NCEP2). REMO runs generally behave in the same way as rean-
alyses but with the largest values of vertical motion included in
the range 20.17 m s21 for REMO-ERA and 20.31 m s21 for
REMO-MPI-LR.

In ECEA (Fig. 13; see also Fig. S8), the observed pattern of
the convection is somewhat identical to what is observed in
WCEA in the two seasons (Figs. 13a,b and S8a,b), but with a
slightly more intense intensity (values within the from range
20.007 m s21 for NCEP2 to 20.25 m s21 for MERRA-2 in
MAM; between 20.13 m s21 for NCEP2 and 0.27 m s21 for
MERRA-2 in SON), corresponding to high precipitation. All
REMO simulations fail in capturing the ECEA convection.
They present stronger subsidences in lower layers (1000–850
hPa) over the southern latitudes, and stronger but shallow
ascents in the midtroposphere, which are less precipitating.
These shallow ascents intensify in SON while lower-layer sub-
sidence decreases, justifying slight increases in rainfall
amount.

Thus, the model patterns of the convection both in WCEA
and ECEA match well with their dipole rainfall biases. How-
ever, it should be noted that although an increase in vertical
motion is a strong indication of tropical convection, enhanced
convection does not necessarily mean a strengthened rainfall
over the Congo basin (WCEA; Hamada et al. 2015; Ragha-
vendra et al. 2018; Alber et al. 2021). These studies showed
increased thunderstorms over the WCEA, but contrastingly
with the observed drying trend. To understand the reasons for
RCMs’ convection biases, we first explored biases in the simu-
lated physical forcing which is the topography as shown in
Fig. 14. One of the advantages of downscaling is the better
representation of the orography. To get an insight into the fit-
ness of the downscaling, surface altitudes are computed from
the annual mean surface pressure prognostic variable, using
the barometric levelling equation, instead of directly using
outputs of models of orography static variables. It emerges
that the downscaling affords a substantial added value, as all

RCM runs are capable to represent highlands of the WCEA
(∼15°E) and ECEA (the Rift Valley system; 30°–40°E)
despite a slight underestimation of mountaintops relative to
the GTOPO30 digital elevation model. The coarse-resolution
NCEP2 is not able to capture mountaintops. A recent work
by Munday et al. (2021) also showed that comparable coarse-
resolution CMIP5 ESMs fail in capturing the majority of high-
lands of eastern and southern Africa with adverse effects on
the circulation. Therefore, the topography would not play an
important role in modeled convection biases, especially in
ECEA where vertical motion is mainly topographically
constrained.

To this, we turned our attention to the thermodynamic con-
ditions associated with the thermal state of atmospheric stabil-
ity or instability (shallow or deep convection). The moist
static energy (MSE) is a useful metric for the purpose and is
defined as

MSE � CpT1 gz1Lq (1)

with the first two terms on the right-hand side representing
the dry static energy (DSE) input; CpT is the sensible heat, gz
is the potential energy and Lq is the latent static energy
(LSE); Cp is the specific heat at constant pressure, T is the air
temperature, g is the gravitational constant, z is the geopoten-
tial height, L is the latent heat of condensation, and q is the
specific humidity. Figures 15 and 16 exhibit results respec-
tively over WCEA, area of wet biases, and over ECEA, area
of dry biases. Note that for all datasets, the equivalent poten-
tial temperature ue (Fig. S9 and Fig. S10) features a very simi-
lar vertical structure to that of MSE.

REMO products display high values of MSE over the
WCEA and in the two seasons (Fig. 15), with values included
in the range of reanalyses (the two datasets featuring values
within the range 337.2 # MSE # 342.7 kJ kg21 in MAM, and
338.5 # MSE # 341.6 kJ kg21 in SON). RegCM4 simulations
exhibit weaker MSE quantities, with values ranging from
333.7 kJ kg21 (RegCM4-MPI-MR) to 337.8 kJ kg21

(RegCM4-ERA) in MAM, 334.5 kJ kg21 (RegCM4-MPI-
MR) to 336.4 kJ kg21 (RegCM4-ERA) in SON, matching
their weaker convection amounts and patterns compared to
REMO and reanalyses. The important role of thermodynamic
biases in contributing to convection biases is highlighted. For
instance, in MAM, the REMO/RegCM4-MPI-LR/MR runs
that feature the weakest rainfall rate also show the narrowest
convection band as indicated by the 330-K ue contour. Like-
wise, models generally better capture the convection band
than the MSE and ue, which stands for the lesser important
role of the convection band biases. Over the ECEA and in

←−
The solid red line is the cM = 0 value. Contour intervals are 24 3 1011 kg s21 for negative values and 10 3 1011 kg
s21 for positive values. The stippling appears where the difference between the dataset under consideration and the
ensemble mean of the three reanalysis products is statistically significant at the 95% confidence level by means of the
Student’s t test. The blue bars delimit the latitudinal band of the WCEA.
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FIG. 11. As in Fig. 10, but for the ECEA (longitudes 25°–35°E).
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the two seasons (Fig. 16), all experiments model weaker MSE
relative to all reanalyses, corresponding to the weaker convec-
tion rate recorded. Reanalyses feature MSE values within the
ranges of 340 # MSE # 342.4 kJ kg21 in MAM and 338.6 #

MSE # 341 kJ kg21 in SON. REMO runs do so, ranging from

336.1 kJ kg21 (REMO-MPI-LR) to 340 kJ kg21

(REMO-ERA), and RegCM4 experiments have values
between 333.3 kJ kg21 (RegCM4-MPI-MR) and 337 kJ kg21

(RegCM4-ERA) in MAM, and between 336.7 kJ kg21

(REMO-MPI-LR) and 338.8 kJ kg21 (REMO-ERA), and

FIG. 12. Height–latitude cross section averaged over WCEA (longitude band 10°–25°E) of the vertical velocity (v; Pa s21; shaded), zonal
wind (u; m s21; overlaid light-blue shaded areas), the vertical motion of meridional wind and omega (vectors), and the monthly precipita-
tion (mm day21; red lines) in (a) MAM and (b) SON seasons. Data used are from ERA5, MERRA-2 and NCEP2 reanalysis data, and
from the REMO2015 and RegCM4-v7 experiments over the period 1980–2005. The vertical velocity data are not available for RegCM4-v7
experiments. The stippling indicates the grid points where the difference between the dataset under consideration and the ensemble mean
of the three reanalysis products is statistically significant at the 95% confidence level using the Student’s t test. The cyan bars delimit the
WCEA latitudinal band.
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RegCM4 experiments between 334 kJ kg21 (RegCM4-MPI-
MR) and 335.6 kJ kg21 (RegCM4-ERA) in SON. Apart from
REMO-ERA, other runs show a more shrunken convection
band than in reanalyses.

During the two seasons and both west and east CEA, all
datasets feature consistent DSE (not shown), thus suggesting
its irrelevance in the model biases. However, models simulate
strong specific humidity in WCEA, and weak in ECEA (not
shown), which would lead, correspondingly, to a modeled
higher and lower LSE over the respective areas. This means

that the LSE component has played a crucial role in deter-
mining models of atmospheric instability or stability, and
therefore models’ wetness or dryness.

7. Conclusions and discussion

This study explored misrepresented mechanisms associ-
ated with CORDEX-CORE (REMO2015 and RegCM4-v7)
rainfall biases over CEA. The motivation is based on the

FIG. 13. As in Fig. 12, but for the ECEA (longitude band 25°–35°E).
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need to assess the credibility of these RCMs in modeling the
CEA’s climate system and stimulate discussions about chal-
lenges and opportunities of their application for climate
change evaluations. Analysis was focused on some of its bet-
ter-known climate system drivers, comprising land–sea
interactions through local SSTs, MSLPs, and changes in the
surface pressure, and regional atmospheric circulations such
as low-level westerlies, the Congo basin cell, the Hadley-
like circulation, midlevel easterly jets, and convection. A
dipole-like rainfall bias is found at rainfall peaks (MAM
and SON) in all experiments, consisting of positive biases in
WCEA and negative biases in ECEA. Throughout the anal-
yses, the two RCMs featured similar characteristics of ana-
lyzed processes, although some of them have not been
diagnosed (e.g., convection) or have only been partially
diagnosed (e.g., the 1000-hPa level of the Congo basin cell)
for the RegCM4 RCM, owing to the lack of necessary data.
Potential mechanisms to be drivers of the western and east-
ern CEA precipitation biases in the two RCMs are as fol-
lows (see Fig. 17 for the schematic illustration):

1) RCM experiments generally simulate weaker MSLPs,
including the South Atlantic high pressure system. As a
first consequence, less moisture is transported from the
Atlantic Ocean toward coastal regions of the basin.

2) The second impact of simulated weaker MSLPs is the
modeling of a land–ocean ∇P not strong enough for
REMO runs or underestimated for RegCM4 ones, neces-
sary for importing important moisture amounts from the
western border toward the eastern.

3) Given that ∇P is not strong enough (in REMO) or
weaker (in RegCM) in MAM, the modeled Congo basin
cell intensity is also weaker (corresponding to slower
LLWs) and is in a farther west position at this time of the
year. Although this position is favorable to the advection
of large amounts of moisture (Longandjo and Rouault
2020), the cell intensity is weak, resulting in low penetra-
tion of moisture into the region. Otherwise, the strength
of the cell is low to move the amount of moisture required
eastward, therefore provoking an uneven distribution of
moisture across the region. Beside this, are advected
southeasterlies that recurve into southerlies while crossing
the southern border and overfeed the western sector.
Consequently, moisture availability is stronger over the
WCEA than ECEA. Models of ∇P slightly intensify in
SON, which accentuates inward moisture, thus increasing
the moisture availability into the domain, both in west
and east.

4) The local evaporation might have also contributed to the
rainfall dry biases over the ECEA through the recycling.
As shown in Fig. S7, all RCM runs produce stronger evap-
oration dry biases over the eastern than western CEA.

5) The atmospheric instability is high in all experiments in
WCEA but is strongly underestimated in ECEA. In fact,
mass convergence is slow due to a weak Congo basin cell
strength and thereby weak LLWs. As a result, the moist air
accumulates much more to the west of the region, increasing
the atmospheric instability through the increased moist static
energy (MSE), and which leads to convection. A weak
Congo basin cell may also have contributed to little moisture
transported toward the eastern border where it arrives at a
slower pace. This leads to a weaker MSE. Therefore, the
intensity of uplifted moisture is low to destabilize the atmo-
spheric stability in bottom layers, which is needed to initial-
ize upward motions and thus the convection.

6) Hadley-like circulation biases are associated with convec-
tive biases. The intense convection in the western part of
the CEA weakens the ascending branch of the Hadley cir-
culation over the same area, while the reduced convection
over the eastern part, in contrast, strengthens the cell
over the corresponding region (Kamae et al. 2011).

7) The role of AEJs is not marginal, especially in SON.
Whether AEJ-N has been relatively correctly reproduced
by most RCM runs in MAM, the positioning and intensity
of both AEJ-N and AEJ-S cores are misrepresented in
SON. Here, RCM experiments simulating a single and
stronger AEJ-N also simulate stronger northern and east-
ern rainfall dry biases. In fact, a stronger jet induces intense
moisture divergence across the region (Dyer et al. 2017),
which in turn would reduce MCSs due to reduced moisture
availability, thereby suppressing the convection (Jackson
et al. 2009). Other runs that produce a single and relatively
normal AEJ-N or equatorward jet, and thus broadly
weaker midlevel jets, model a higher rainfall amount,
related to the increased midlevel moisture availability that
feeds the convection (Dezfuli and Nicholson 2013).

FIG. 14. Longitudinal cross section of surface elevation (in m)
across the CEA, averaged over latitudes 5°S–5°N, for reanalysis
data MERRA-2, ERA5, and NCEP2 and for REMO2015 (solid
lines) and for the RegCM4-v7 (dashed lines) experiments. The
NASA GTOPO30 (black line) is used as a point of reference. Sur-
face altitudes are computed from the surface pressure data, using
the barometric levelling equation.
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The complexity of modeling the Congo basin climate sys-
tem lies beforehand in the multitude of physical processes
that interact at various scales (local, regional, and large
scales). Although they are accounted for during the downscal-
ing process, some large-scale phenomena (e.g., ENSO, the
Indian Ocean dipole, the MJO) unfortunately cannot be

diagnosed owing to the limited geographical area. They would
have played a determining role in rainfall biases at a local or
regional scale. In addition, this region features one of the
most understudied climate systems, and whose physical driv-
ers and mechanisms are progressively documented. Based on
this observation, we cannot claim to have highlighted all the

FIG. 15. Latitude–height cross sections of the moist static energy (MSE; kJ kg21) in (a) MAM and (b) SON seasons over the WCEA
(averaged over longitudes 10°–25°E). Data used are from reanalysis data (ERA5, MERRA-2, and NCEP2) and from the REMO2015 and
RegCM4-v7 experiments over the period 1980–2005. The 330-K contour of the equivalent potential temperature (ue; black line) highlights
the convection band. The red lines are latitudinal migration of the rainband (mm day21). The stippling occurs where the difference
between the dataset under consideration and the ensemble mean of the three reanalysis products is statistically significant at the 95% confi-
dence level by means of the Student’s t test. The cyan bars delimit the CEA latitudinal band.
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misrepresented mechanisms associated with simulated rainfall
biases over CEA. Nevertheless, RCMs used in this study real-
istically represent the basic structures of already known mech-
anisms modulating its climate system. Since climate model
outputs are imperfect, the process-based assessment approach
is very useful for selecting models that can project plausible
future climate change signals. James et al. (2018) argued that
models that produce uncoupled diagnostic variables with
associated dynamics cannot be considered reliable for simu-
lating future climate; rather, the plausibility of a modeled cli-
mate change signal is conditioned by the ability of the model

to reproduce the corresponding change signal in the observed
related mechanism. These conclusions are relevant in the use
of above RCM projections of future rainfall in the region
under anthropogenic climate change. Another important limi-
tation of this study lies in the RCMs’ configuration. For
instance, the convection is parameterized, and RCMs are not
coupled with an ocean model, as they do not physically mod-
ify SSTs prescribed by ESMs. Further studies could be con-
ducted with convection-permitting RCMs and regionally
coupled atmosphere–ocean RCMs. These could prompt the
next steps of our study.

FIG. 16. As in Fig. 15, but for the ECEA (averaged over longitudes 25°–35°E).
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ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. The ERA5
reanalysis is produced within the Copernicus Climate Change
Service (C3S) by the ECMWF and is accessible via the link
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
pressure-levels-monthly-means?tab1/4form. The MERRA-2
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data/gridded/data.gpcp.html; the CRU-v4.04 dataset is available at
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products/CHIRPS-2.0/global_daily/netcdf/. The corresponding
author is available for providing NIC131 data upon request.
ARC2 data are available at http://iridl.ldeo.columbia.edu/

FIG. 17. Three-dimensional schematic of topography (m; shaded, using data from the NASA GTOPO30) and wind
flow over central equatorial Africa. Red arrows indicate low-level circulation. Purple arrows show the ascent motion.
The two large blue arrows highlight the area of interaction of the two components of the African easterly jet (AEJ),
the northern branch (AEJ-N), and the southern branch (AEJ-S).
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SOURCES/.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.
ARC2/.daily/. The UGDP is available at https://psl.noaa.gov/data/
gridded/data.cpc.globalprecip.html. The HadISST SST data are
available at https://www.metoffice.gov.uk/hadobs/hadisst/data/
download.html. Finally, the ERSST-v5 SST data are available at
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html.

APPENDIX A

The Regional Moisture Convergence/Divergence
Calculations

The vertically integrated moisture transport is obtained
using the following equation:

QV � 1
g

�Ptop

sp
qVdp, (A1)

where QV can be rewritten as

QV � (Qu,Qy), (A2)

where Qu (kg m21 s21) is the zonal moisture transport
and Qy (kg m21 s21) is the meridional moisture transport;
also, V (m s21) is the total wind field, decomposed into its
zonal u and meridional y components, g is the gravita-
tional acceleration (m s22), q is the specific humidity
(g kg21), sp is the surface pressure, and Ptop is the pres-
sure of the top level (Pa). To highlight sources of mois-
ture surplus or deficit, the transient regional moisture con-
vergence or divergence across each CEA border and at
each pressure level was estimated. In a given region, the
total moisture convergence/divergence is the sum of
inflows/outflows across frontiers, which can be split into
the zonal (west–east; Ql) and the meridional (south–-
north; Qf) directions as follows:

Ql � 1
g

�
qudl (A3)

and

Qf � 1
g

�
qydf, (A4)

where l are longitudes and f latitudes. The region can
be considered as a rectangle of length X and width Y,
with X and Y being a set of segments dl through which,
the atmospheric moisture is inwards and outwards.
Thereby, transient moisture across west (Qlwest ), east
(Qleast ), south (Qfsouth

), and north (Qfnorth
) can be

expressed as follows:

Qlwest �
�
lwest

Qldl and Qleast �
�
least

Qldl, (A5)

Qfsouth
�
�
lsouth

Qfdl and Qfnorth
�
�
lnorth

Qfdl, (A6)

where

dl � u3
p

180
3R, (A7)

with u being the dataset’s horizontal resolution in the zonal
or meridional direction, and R (m) Earth’s radius, and

lwest � 10◦E; least � 35◦E, lsouth � 10◦S; and lnorth � 10◦N:

The net zonal (Qz), meridional (Qm), and total (QT) mois-
ture are calculated as

Qz � Qlwest 2Qleast and Qm � Qfsouth
2Qfnorth

, (A8)

QT � Qz 1Qm: (A9)

APPENDIX B

Estimating the Congo Low-Level Cell and the Hadley-
Like Circulation

Because of the crucial importance of regional circula-
tions for modulating the CEA precipitation system, we
have diagnosed the state of zonal low-level and meridio-
nal cells associated with their drivers (Kamae et al. 2011;
Longandjo and Rouault 2020) in RCM experiments. Note
that these cell systems summarize the majority of pro-
cesses depicted as mediators of low-level circulations
(e.g., Dezfuli and Nicholson 2013; Nicholson and Dezfuli
2013; Pokam et al. 2014; Dezfuli et al. 2015; Cook and
Vizy 2016). For this purpose, the water vapor mass trans-
ported within the mean zonal (cZ) and mean meridional
(cM) circulations are estimated by the means of the mass-
weighted streamfunctions (c; e.g., Stachnik and Schu-
macher 2011) using respectively the following equations:

cZ � 2pR
g

�P

sp
[u]dp, (B1)

and

cM � 2pRcosf
g

�P

sp
[y]dp, (B2)

where p is a circular constant, sp the surface pressure, and P
∈ [1000–100 hPa], while the square brackets indicate a zonal
or meridional average. Using these two indices enables one to
get an insight into the way the models reproduce regional-
scale Walker- and Hadley-like circulations (Oort and Yienger
1996; Stachnik and Schumacher 2011; Kamae et al. 2011) over
the region, both in terms of strength and width.
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