
“fphar-04-00056” — 2013/4/27 — 13:53 — page 1 — #1

REVIEW ARTICLE
published: 30 April 2013

doi: 10.3389/fphar.2013.00056

Mechanisms of resistance to chemotherapeutic and
anti-angiogenic drugs as novel targets for pancreatic
cancer therapy
AnnaTamburrino1, Geny Piro2, Carmine Carbone1, GiampaoloTortora 2 and Davide Melisi 1*

1 Digestive Molecular Clinical Oncology Research Unit, Section of Medical Oncology, Department of Medicine, Università degli studi di Verona, Verona, Italy
2 Laboratory of Oncology and Molecular Therapy, Department of Medicine, Università degli studi di Verona, Verona, Italy

Edited by:

Andrea Sartore-Bianchi, Ospedale
Niguarda Ca’ Granda, Italy

Reviewed by:

Marc Poirot, Institut National de la
Santé et de la Recherche Médicale,
France
Hervé Emonard, Centre National de la
Recherche Scientifique, France

*Correspondence:

Davide Melisi, Digestive Molecular
Clinical Oncology Research Unit,
Section of Medical Oncology,
Department of Medicine, Università
degli studi di Verona, Piazzale L.A.
Scuro 10, 37134 Verona, Italy.
e-mail: davide.melisi@univr.it

Pancreatic cancer remains one of the most lethal and poorly understood human malignan-
cies and will continue to be a major unsolved health problem in the 21st century. Despite
efforts over the past three decades to improve diagnosis and treatment, the prognosis for
patients with pancreatic cancer is extremely poor with or without treatment, and incidence
rates are virtually identical to mortality rates. Although advances have been made through
the identification of relevant molecular pathways in pancreatic cancer, there is still a critical,
unmet need for the translation of these findings into effective therapeutic strategies that
could reduce the intrinsic drug resistance of this disease and for the integration of these
molecularly targeted agents into established combination chemotherapy and radiotherapy
regimens in order to improve patients’ survival. Tumors are heterogeneous cellular entities
whose growth and progression depend on reciprocal interactions between genetically
altered neoplastic cells and a non-neoplastic microenvironment. To date, most of the
mechanisms of resistance studied have been related to tumor cell-autonomous signaling
pathways. However, recent data suggest a putative important role of tumor microenvi-
ronment in the development and maintenance of resistance to classic chemotherapeutic
and targeted therapies. This present review is meant to describe and discuss some of
the most important advances in the comprehension of the tumor cell-autonomous and
tumor microenvironment-related molecular mechanisms responsible for the resistance of
pancreatic cancer to the proapoptotic activity of the classic chemotherapeutic agents and
to the most novel anti-angiogenic drugs. We present some of the emerging therapeutic
targets for the modulation of this resistant phenotype.
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INTRODUCTION
Despite efforts over the past three decades to improve diagnosis
and treatment, pancreatic cancer remains one of the most lethal
and poorly understood human malignancies. It ranks fourth in the
leading causes of cancer-related mortality among adults in Western
countries (Siegel et al., 2012). The poor prognosis for patients with
pancreatic cancer could be mainly attributed to the early metastatic
behavior demonstrated along the progression of the disease, its
aggressive course, and the limited efficacy of available systemic
treatments (Vaccaro et al., 2011).

The vast majority of patients are diagnosed with locally
advanced unresectable or metastatic disease, and only 15–20%
of patients are eligible for initial resection (Gillen et al., 2010).
In patients who undergo surgery and post-operative therapy
relapse remains common and no more than 20% of patients
achieve long term survival (Neoptolemos et al., 2010). For patients
with advanced disease, the overall 5-years survival rate is less
than 1%.

At any of these stages, pancreatic cancer has a very poor
response to systemic treatments [reviewed in single topic issue
(Melisi and Budillon, 2012)]. The main obstacle to the clinical

efficacy of cancer treatments is the pre-existence of or the
development of cellular drug resistance (DeVita and Chu, 2008),
and pancreatic cancer obeys this rules.

The proposed molecular mechanisms responsible for resistance
of pancreatic cancer to current treatments range from tumor
cell-intrinsic mechanisms, such as activation of anti-apoptotic
signaling pathways, to extrinsic mechanisms, such as the role
of stromal cell compartment in drug uptake and activation of
alternative escape pathways (El Maalouf et al., 2009).

In this review we discuss the rationale behind some of the tumor
cell-autonomous and tumor microenvironment-related molecu-
lar mechanisms responsible for the resistance of pancreatic cancer
to the pro-apoptotic activity of classic chemotherapeutic agents
and to the most novel anti-angiogenic drugs.

PANCREATIC CANCER RESISTANCE TO CLASSIC
CHEMOTHERAPEUTIC AGENTS
Although recent meta-analyses suggest an advantage for
chemotherapy over best supportive care for patients affected by
advanced pancreatic cancer (Sultana et al., 2007), current sys-
temic treatments offer only a modest benefit in tumor-related
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symptoms and survival. Over the past decade, gemcitabine has
been considered to be the reference treatment in advanced pancre-
atic cancer. After its approval, a number of randomized controlled
trials have been conducted pitting several cytotoxic and targeted
agents against, or in combination with gemcitabine and none of
these studies showed a clinically significant survival benefit com-
pared with gemcitabine as single agent treatment (Giuliani et al.,
2012).

Only very recently, the combination of gemcitabine with the
new taxane nab-paclitaxel (Von Hoff et al., 2012), or FOLFIRI-
NOX (Conroy et al., 2011) – a three-drug combination regimen
not including gemcitabine – were able to provide a survival
improvement over gemcitabine in monotherapy. Although these
results represent the first steps forward in many decades of clinical
research for this disease, during the treatment pancreatic can-
cer become invariably resistant to these polychemotherapeutic
regimens so that median overall survival for metastatic patients
remains less than 1 year.

Recent data suggest a critical role of tumor microenvironment
in the development and maintenance of resistance to therapies.
Cancer-related inflammation is one of the main features of the
tumor microenvironment and the connection between inflamma-
tion and cancer is now accepted as enabling some of the most
relevant characteristics of cancer, including chemoresistance.

CONSTITUTIVE ACTIVATION OF NF-κB AS A TUMOR
CELL-AUTONOMOUS MECHANISMS OF RESISTANCE
The ability of certain cancers to resist the cytotoxic effects of cancer
chemotherapy appears to be closely connected to alterations in
key pathways involved in cell-cycle checkpoint control and, most
importantly, apoptosis.

Several autocrine and/or paracrine pro-inflammatory factors
as well as pro-apoptotic stimuli – including chemotherapy and
radiotherapy – lead to the activation of different transcription
factors involved in apoptosis control. Nuclear Factor κB (NF-κB)
is the most relevant of these transcription factors by represent-
ing a key mechanistic link between inflammation and cancer
chemoresistance (Melisi and Chiao, 2007).

NF-κB aberrant activation plays a key role in the initiation
and promotion of cancer by contributing to cell proliferation,
angiogenesis and stimulation of invasion/metastasis. In particular,
NF-κB activation can potently suppress cell death pathways, since
it activates expression of several anti-apoptotic genes, including
some Bcl-2 family members, TNF receptor- associated factor 1
(TRAF1) and TRAF2, and c-IAP1 and c-IAP2 (Ben-Neriah and
Karin, 2011). Because the cytotoxicity of chemotherapeutic agents
is attributed largely to apoptosis, the activation of NF-κB can
effectively suppress the apoptotic potential of chemotherapeutic
agents, thus contributing a crucial obstacle to effective treatment
of pancreatic cancer.

The initial evidences for the constitutive activation of NF-κB
in pancreatic cancer were provided by seminal studies led by the
research group of Paul Chiao at the MD Anderson Cancer Center.
They firstly reported a constitutive activation of NF-κB signaling in
14 out of 20 pancreatic adenocarcinomas and in 9 out of 11 human
pancreatic tumor cell lines (Wang et al., 1999). In a larger cohort
of non-malignant and malignant pancreatic specimens, nuclear

RelA staining was detected in 57% of pancreatic cancer samples.
By contrast, RelA was detected in the cytoplasm of benign ducts
from 96% patients. However, nuclear RelA staining was observed
in a minority only (26%) of these benign ducts (Vimalachandran
et al., 2005). In a different series of 82 pancreatic adenocarci-
nomas a strong cytoplasmic or nuclear expression of RelA/p65
was observed in 42 and 37 samples, respectively. High cytoplas-
mic and nuclear expression of RelA/p65 had negative prognostic
impact with 2-year survival rates for patients without cytoplasmic
or nuclear RelA/p65 positivity of 41 and 40% and rates for patients
with strong cytoplasmic or nuclear RelA/p65 expression of 22 and
20%, respectively (Weichert et al., 2007).

Constitutive activation of NF-κB in pancreatic cancer seems to
be not primarily determined by mutations of genes involved in its
regulation, but rather by pro-inflammatory cytokines autocrine
loops. interleukin-1α (IL-1α) and IL-1β are between the most
potent cytokines that primarily affects inflammation, immunity
and hematopoiesis (Dinarello, 1996; Apte et al., 2006). Niu et al.
(2004) recently demonstrated that autocrine secretion of IL-1α,
but not IL-1β, primarily induced by activator protein-1 (AP-1)
activity, leads to the activation of NF-κB in metastatic pancre-
atic cancer cell lines but not in non-metastatic ones. In turn,
NF-κB activation induces expression of IL-1α initiating the for-
mation of a positive feedback loop and establishing a mechanism
for the constitutive NF-κB activation in this disease. This autocrine
secretion of IL-1α induced in turn a metastatic behavior in vivo
as demonstrated by the higher incidence of liver metastases and
ascites in an orthotopic mouse model (Melisi et al., 2009). More
recently, Ling et al. (2012) generated a mutant mouse strain with
pancreas-specific expression of KrasG12D and inactivation of
IKK2/β demonstrating that NF-κB activity is required for onco-
genic Kras-induced pancreatic cancer. Kras (G12D)-induced AP-1
transcription induced IL-1α, which, in turn, activates NF-κB and
its target genes IL-1α and p62, to initiate an IL-1α/p62 feedforward
loops for inducing and sustaining NF-κB activity. IL-1α overex-
pression correlated with Kras mutation, NF-κB activity, and poor
survival in pancreatic cancer patients.

Several studies demonstrated that the resistance of pancreatic
carcinoma cells to chemotherapy is indeed due to their constitu-
tive NF-κB activity rather than a transient induction of NF-κB by
different anti-cancer drugs (Arlt et al., 2001). In pancreatic cancer
cell lines the uptake or intracellular targeting of gemcitabine was
not altered, thus excluding a failure of drug uptake or metabolism
as being responsible for the resistance of these cell lines against
gemcitabine. Thus, the mechanism by which these cell lines are
able to survive gemcitabine treatment only relies on an elevated
basal NF-κB activity (Arlt et al., 2003). A complete inhibition of
NF-κB activation by blocking degradation of both IκBα and IκBβ

proteins is critical in order to suppress a potential NF-κB feedback
reactivation induced by various anti-cancer agents, and in turn
sensitize pancreatic cancer cell lines to apoptosis induced by these
drugs (Dong et al., 2002).

Because of the experimental findings that inhibition of NF-
κB alone or in combination with cancer therapeutic agents
induces tumor cell death or inhibits tumor growth, NF-κB
inhibition become an attractive strategy for novel chemopre-
ventive and chemotherapeutic approaches. A large number
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of compounds with a putative NF-κB inhibiting activity have
been identified, including a variety of natural and synthetic
molecules, antioxidants, kinase inhibitors, peptides, and small
molecules. However, direct targeting of NF-κB for cancer ther-
apy still faces enormous challenges and most of these strategies
remain thus far confined to the pre-clinical stage and very
few of them have entered clinical trials for pancreatic cancer
therapy (Carbone and Melisi, 2012).

In last years, we focused our efforts to identify cytosolic medi-
ators of the activation of NF-κB that could represent relevant
therapeutic targets for the inhibition of this pathway. Transform-
ing growth factor-β (TGF-β)-activated kinase 1 (TAK1, also called
MAP3K7) is a serine/threonine kinase in the mitogen-activated
protein kinase kinase kinase (MAP3K) family. In the last decade,
TAK1 has been clearly demonstrated to be a key player in the
inflammatory responses and cell survival control, as it integrates
signals from various cytokines – including IL-1, TGF-β, and toll-
like receptors (TLRs) – controlling, in turn, the activation of
different transcription factors, including AP-1, and NF-κB (Saku-
rai, 2012). In this regard, TAK1 represents a strong candidate to be
the missing link between a proinflammatory tumor microenviron-
ment and the resistance of cancer cells to the apoptotic potential
of chemotherapeutic agents. We have recently demonstrated that
silencing the expression or targeting the activity of TAK1 dra-
matically suppresses the DNA-binding activity of NF-κB leading
to a proapoptotic phenotype in pancreatic cancer cells and in
turn to their statistically significantly higher sensitivity to the anti-
tumor activity of chemotherapeutic drugs. More importantly, we
demonstrated that targeting the kinase activity of TAK1 with the
selective inhibitor LYTAK1 enhanced the anti-tumor activity of
chemotherapeutic drugs in vivo in an orthotopic model of pancre-
atic cancer, indicating that the inhibition of the kinase activity of
TAK1 could be a valid approach to reverting the intrinsic chemore-
sistance of pancreatic cancer (Melisi et al., 2011). Targeting TAK1
as a non-redundant cytosolic mediator of the activation of NF-
κB could represent a novel approach to modulate the intrinsic
and acquired chemoresistance and make a difference in pancreatic
cancer addicted to the activity of this transcription factor.

EXTRINSIC MECHANISMS OF RESISTANCE: THE ROLE OF TUMOR
STROMA
Beside tumor-cell autonomous mechanisms of resistance, recent
data suggest an important role for tumor microenvironment in the
development and maintenance of resistance to classic chemothera-
peutic and targeted therapies. Tumor stroma, in particular, seems
to significantly limit the ability of drugs to penetrate and reach
tumor cells at therapeutically relevant concentrations.

To reach all viable cells in the tumor, anti-cancer drugs must
be delivered efficiently through the tumor vasculature, cross the
vessel wall, and traverse the tumor tissue (Tredan et al., 2007).
Compared with normal tissues, the tumor stroma is associated
with an altered extracellular matrix and an increased number of
fibroblasts that synthesize growth factors, chemokines, and adhe-
sion molecules. Moreover, tumor stroma is characterized by an
increased interstitial fluid pressure, which leads to a decreased
uptake of drugs into the tumor, lowering thus their therapeutic
efficiency (Heldin et al., 2004).

Pancreatic cancer is one of the human tumors most rich in
stroma with a dynamic assortment of extracellular matrix compo-
nents and non-neoplastic cells including fibroblastic, vascular, and
immune cells (Feig et al., 2012). One of the most relevant signaling
pathways involved in microenvironment-related chemotherapy
resistance in pancreatic cancer is the hedgehog (HH) pathway.
HH signaling between tumor and stromal cells brings about a
desmoplastic reaction where the stromal fibroblasts secrete colla-
gen in higher amounts and result in fibrosis of the surrounding
stromal tissue. Studies using genetically engineered mouse mod-
els of pancreatic cancer highlighted the role of HH pathway in
drug resistance by inducing a desmoplastic reaction, decreasing
the mean vascular density around the tumor tissue and thus the
delivery of gemcitabine to the tumor (Olive et al., 2009). Use of
HH signaling targeting agents like cyclopamine derivatives inhib-
ited transcriptional activation of target genes, preventing in turn
development of desmoplastic matrix and increasing intratumoral
perfusion and drug delivery.

Despite encouraging results from phase I studies, HH path-
way inhibitor IPI-926 (saridegib) was not beneficial when added
to gemcitabine in a randomized phase II study in patients with
metastatic pancreatic cancer, showing a disappointing outcome
with difference in patient survival favoring the placebo plus gem-
citabine arm. A recent phase Ib study presented at the 2012 ASCO
annual meeting proposed the combination of IPI-926 with a more
intensive chemotherapy platform (mFOLFIRINOX) in patients
with advanced pancreatic cancer, showing good safety and efficacy
data (Ko et al., 2012).

Different agents with anti-fibrotic effects have shown promis-
ing results in pre-clinical models of pancreatic cancer (Erkan et al.,
2012). Hyaluronic acid (HA) demonstrated to be one of the most
relevant matrix determinant of vascular collapse in pancreatic can-
cer models. The systemic administration of an enzymatic agent
PEGPH20 that ablates stromal HA from murine pancreatic cancer
models normalized interstitial fluid pressures, and re-expanded
the microvasculature. Removing these barriers permitted higher
concentrations of chemotherapy to reach the tumor, resulting
in improved survival and revealing an unappreciated sensitivity
of the disease to conventional cytotoxic agents like gemcitabine
(Provenzano et al., 2012).

Furthermore, the pre-clinical utility of PEGPH20 in com-
bination with gemcitabine was also assessed by short-term
and survival studies in a genetically engineered mouse model.
In these models PEGPH20 not only rapidly induced the re-
expansion of blood vessels, but it also triggered fenestrations and
interendothelial junctional gaps in tumor endothelia and pro-
moted a tumor-specific increase in macromolecular permeability,
which results in intratumoral accumulation of two chemother-
apeutic agents, doxorubicin, and gemcitabine (Jacobetz et al.,
2013).

The tumor microenvironment in pancreatic cancer is largely
immunosuppressive, restraining anti-tumor immunity. A strat-
egy proposed to overcome stromal desmoplasia is depletion of
tumor-associated fibroblasts by using CD40 agonists. Because
CD40 activation can reverse immune suppression and drive
anti-tumor T cell responses, the combination of an agonist
CD40 antibody with gemcitabine chemotherapy was tested in
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a small cohort of patients with advanded pancreatic cancer.
CD40-activated macrophages infiltrated the tumor and became
not only tumoricidal but also facilitated the depletion of tumor
stroma, inducing tumor regressions in some patients as well as
in a genetically engineered mouse model of pancreatic cancer
(Beatty et al., 2012).

Beside the impairment in drug delivery, several studies high-
lighted an important active role for stromal cellular components.
Among them, pancreatic cancer cells promote the activation,
proliferation and motility of a particular subpopulation of stro-
mal cells, pancreatic stellate cells (PSCs). Activated PSCs can
transdifferentiate into a myofibroblast-like phenotype and secrete
extra cellular matrix proteins and factors which mediate tumor
growth, invasion, metastasis, and resistance to chemotherapy
(Vonlaufen et al., 2008; Erkan, 2012). Similarly, recent studies
observed reduced response to gemcitabine of pancreatic cancer
cells in co-culture systems with stromal cells (Straussman et al.,
2012), as well as in pancreatic cancer cells treated with stromal cell
conditioned medium (Hwang et al., 2008).

Overall, these studies suggest that stromal cells within tumor
microenvironment promote chemoresistance and represent a crit-
ical constituent of pancreatic cancer that should be critically
evaluated for an optimal therapeutic development.

PANCREATIC CANCER RESISTANCE TO ANTIANGIOGENIC
AGENTS
Tumor angiogenesis represents a hallmark of cancer (Hanahan
and Weinberg, 2011), and thus multiple approaches have been
pursued to block or at least reduce the extent of aberrant vessel
formation. One prominent player in this process is the vascu-
lar endothelial growth factor (VEGF) signaling pathway (Tortora
et al., 2004). VEGF targeting agents are particularly attractive
because of the multiple roles of VEGF in tumor biology not
only on tumor vasculature but also on tumor cell proliferation
(Ciardiello et al., 2004; Ellis and Hicklin, 2008). In pancre-
atic carcinoma, overexpression of VEGF and its receptors has
been associated with poor prognosis and increased metastatic
potential (Seo et al., 2000). The expression of VEGF correlates
with advanced stage and predicts early recurrence after resection
(Niedergethmann et al., 2002).

The first anti-angiogenic drug to be approved for the treat-
ment of several metastatic cancers was bevacizumab, a humanized
monoclonal VEGF-neutralizing antibody. In a randomized phase
II clinical trial, bevacizumab showed promising activity in com-
bination with gemcitabine in patients with advanced pancreatic
cancer (Kindler et al., 2005). However, this activity was not
confirmed in the CALGB study 80303 phase III clinical trial
comparing gemcitabine alone to gemcitabine with bevacizumab
(Kindler et al., 2010). In the phase III AviTA trial, evaluat-
ing the addition of bevacizumab to gemcitabine plus erlotinib,
bevacizumab prolonged patients’ progression free survival, but
not overall survival (Van Cutsem et al., 2009). Similarly, other
anti-angiogenic agents – Aflibercept, a VEGF-trap antibody, or
Axitinib, a VEGFR small molecule inhibitor, did not prolong
patients’ survival over gemcitabine as single agent treatment in
clinical trials for the treatment of metastatic pancreatic cancer
(Ebos and Kerbel, 2011).

The current view explaining resistance to anti-angiogenic ther-
apies is based on two modalities: an intrinsic resistance to the drug
when tumors do not respond ab initio, and an evasive resistance for
those tumors that recur after a short period of response (Bergers
and Hanahan, 2008).

Some of the molecular bases of these two resistance modalities
are shared, being them a peculiar characteristic of the tumor cells
or caused by anti-angiogenic drug-derived hypoxia in the stroma.
Common explanations for the refractoriness to anti-angiogenic
therapies can be: (a) redundancy of proangiogenic stimuli; (b)
recruitment in the tumor environment of myeloid cells producing
inflammatory and proangiogenic cytokines (Shojaei et al., 2007);
and (c) absence of neo-angiogenesis when tumors take advantage
of pre-existing normal vessels. These mechanisms of resistance
could co-exist in a certain tumor type.

It has been proposed that failure of anti-angiogenic therapy
in the case of pancreatic cancer is more likely due to an intrinsic
independency from the vascular related effects of VEGF. Indeed,
pancreatic cancers are hypovascularized and feature a desmo-
plastic stroma. Besides its histological setting, pancreatic cancer
frequently features p53 mutations which confer the ability to sur-
vive even in highly hypoxic condition. The reason for the lack of
a sustained angiogenesis program in pancreatic cancer, a striking
difference compared to other solid tumors, is unknown. Despite
the lack of vascularization though, pancreatic cancer are still good
candidates to the treatment with anti-angiogenic drugs. Indeed,
late stage pancreatic cancer patients often present with high vol-
ume of ascites, so normalization of the balance between vascular
permeability and lymphatic drainage through anti-angiogenic
drugs could reduce the effect of excessive tumor burden which
also prevents the activity of chemotherapy.

Data from our lab (Carbone et al., 2011) are in support of the
hypothesis that actually the resistance to anti-VEGF therapy is
mediated by tumor cells autonomous secretion of chemokines that
have both paracrine and autocrine effects. Gene expression pro-
files of our bevacizumab resistant model highlighted an increased
production of chemokines that are important for the attraction
of myeloid cells and mobilization of their precursors from bone
marrow. These cells have a role both in promotion of tumor
angiogenesis (Murdoch et al., 2008) as well as in maintenance
of an inflammatory environment that sustains tumor progres-
sion (Coussens et al., 2013). These observations can explain the
lack of efficacy of anti-VEGF agents since the positive effect of
blood supply reduction is counteracted by indirect pro-angiogenic
and pro-inflammatory effect, thus suggesting the possibility to
add anti-inflammatory agents in the therapy of pancreatic can-
cer. In this scenario the evaluation of targeted therapies that block
inflammatory pathways activated in the context of anti-angiogenic
treatment would be important to select candidate drugs to be
tested in the clinic.

Another caveat against the use of anti-angiogenic therapy is the
emerging possibility of a more aggressive phenotype in anti-VEGF
treated cells and increased frequencies of metastatic lesions (Loges
et al., 2009). In our model we observed epithelial mesenchymal
transition (EMT) characteristic changes in anti-VEGF resistant
cells which could account for an increased metastasis rate. Beva-
cizumab resistant cells featured increased motility and invasion
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compared to sensitive cells, up-regulated expression of Zeb1, Zeb2,
and SMAD3 genes, that are components of an EMT transcrip-
tional signature. Additionally E-cadherin epithelial marker was
strongly down-regulated as opposed to up-regulation of Vimentin
mesenchymal marker. Differently, a recent study performed in
genetically engineered mouse models of solid tumors, among them
KRAS driven pancreatic cancer, did not confirm an increased
metastases frequency in anti-VEGF antibody treated mice, nei-
ther in monotherapy nor in combined therapy with gemcitabine
(Singh et al., 2012). This topic is controversial since different
groups report distinct results, also depending on the anti-VEGF
approach. Clarifying this subject is particularly important in light
of antiangiogenic approaches in pancreatic cancer and it should be
addressed whether anti-VEGF antiangiogenic therapy can deter-
mine a more invasive phenotype only when targeting VEGFR by
receptor tyrosine kinase inhibitors or it could also be a drawback
of the use monoclonal antibodies directed against VEGF.

CONCLUSION
Pancreatic cancer resistance to chemotherapeutic and anti-
angiogenic agents is attributable to intrinsic tumor cell charac-
teristics as well as to extrinsic factors, such as properties of tumor
microenvironment.

Constitutive activation of NF-κB in pancreatic cancer repre-
sents the main intrinsic mechanisms of resistance due to suppres-
sion of apoptosis. Experimental pre-clinical evidences support
the potential efficacy of anti-NF-κB strategies, but to date there
are no direct NF-κB inhibitors available for patients treatment.
However, the possibility to inhibit NF-κB seems to be pursued

indirectly by using inhibitors of mediators for NF-κB activation.
In this regard the use of TAK1 inhibitor has proven successful to
overcome chemoresistance in pancreatic cancer models.

Extrinsic regulators of chemoresistance are represented by cel-
lular components of the stroma, and the extracellular matrix that
they produce. Abundant desmoplastic stroma may represent a bar-
rier for chemotherapetic drugs delivering to the tumor. However,
approaches to inhibit the signaling pathways that regulate colla-
gen secretion by fibroblast, such as HH signaling inhibitors did
not reach advanced stage of clinical trials so far.

Resistance to anti-angiogenic therapy in pancreatic cancer
occurs through secretion of proinflammatory cytokines that
recruit myeloid cells, which in turn concur to sustain inflamma-
tion. The outcome of persistent inflammation may be not only
tumor resistance but rather recurrence characterized by a more
aggressive phenotype.

In conclusion, we have summarized the main aspects in the
current knowledge about drug resistance in pancreatic cancer.
Further researches to clarify the main regulators of these mech-
anisms will be important to provide the rationale to develop
effective combination treatment strategies for pancreatic cancer
patients.
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