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Abstract: Within 1 millisecond of action potential arrival at presynaptic terminals voltage–gated Ca2+

channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone
proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis,
(2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various
types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent
vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold
proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and
even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I
summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release,
rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after
the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic
plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-
dependent endocytosis.

Keywords: action potential; active zone; Ca2+ channels; Ca2+ sensor proteins; exocytosis; endocytosis;
presynaptic short-term plasticity; synaptic vesicle

1. Introduction

Synaptic transmission is mediated by the exocytosis of neurotransmitters filled within
synaptic vesicles (SVs) towards postsynaptic receptors [1,2]. This process is initiated by
a presynaptic action potential (AP) that opens voltage-gated Ca2+ (CaV) channels com-
posed of a neurotransmitter release site termed the active zone (AZ) [1,2]. Ca2+ sensor
proteins expressed on the SV membrane and the SV fusion machinery of the soluble
N-ethylmaleimide-sensitive-factor attachment receptor proteins (SNAREs) complex co-
operationally mediates the fusion of neurotransmitter-containing SVs with the presynaptic
plasma membrane [1,2]. The AZ is a highly organized structure composed of protein
complex [1–3] that regulates the rapid replenishment of neurotransmitter release sites with
SVs after exocytosis, for sustainable synaptic transmission [4]. This process is followed by
various types of endocytosis, dependent on the pattern of AP firing, to retrieve the plasma
membrane or the fused synaptic vesicle for vesicle reuse [5,6]. These time-dependent
vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating AZ scaffold
proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes,
and even Ca2+ channels, following the decay of Ca2+ concentration after AP(s), which
contributes to presynaptic short-term plasticity [7].

This review introduces, at first, the current models for AZ protein assembly [8–10],
and then the recent findings in exocytosis [11,12]. I also discuss the temporal regulation
of defined states of SV within 100 msec of AP following the evoked exocytosis [13]. Re-
plenishment of the AZ with release-ready SVs is Ca2+ dynamics-dependent, and involves
multiple protein reactions, including calmodulin binding [14] and phosphorylation [15,16].
These protein reactions modulate exocytosis, and induce presynaptic short-term plastic-
ity [9,12–14] and homeostatic synaptic plasticity [17–19]. I finally discuss new aspects of
endocytosis [5–7].
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2. Structure and Function of Presynaptic Neurotransmitter Release Sites

Within a synapse, neurotransmitter release is restricted to specialized presynaptic
structures called AZs [4,8]. The AZ is a highly organized structure composed of sophisti-
cated protein machinery (Figure 1) [1–3]. The AZ serves as a platform for SV exocytosis.
Synaptotagmins, Ca2+ sensor proteins expressed on the SV membrane, mediate SV exocyto-
sis cooperating with the SNAREs complexes, fusion machinery proteins, near CaV channels
(Figure 1). The tight spatial organization enables to induce the synchronous SV fusion upon
Ca2+ entry, and sets the synaptic strength [20].

2.1. AZ Structure

AZ proteins, including Munc13, RIM, RIM-BP, CAST/ELKS, Bassoon, Piccolo, and
Liprin-α [21–28], are all relatively large proteins, and form a large macromolecular complex
interacting with each other via significant domain structures (Figure 1) [1]. RIM (Rab3-
interacting molecules) [28] and RIM-BP (RIM-binding protein) [29] are essential for the
inclusion of CaV channels [30,31]. A molecular complex consisting of RIM and the C-
terminal tails of the CaV channels, which determines the recruitment of CaV2 channels to
the AZ, includes RIM-BP and CAST (cytomatrix at the active zone-associated structural
protein) [24]/ELKS [32]. In contrast, interaction of RIM, RIM-BP, and CAST/ELKS may be
essential for the constitution of the AZ structure: RIM and ELKS double deletion induces
the loss of Munc13-1, Bassoon, Piccolo, RIM-BP2, and the CaV2 channels [3]. CAST controls
CaV channel density [33], AZ size [34,35], and SV docking [15]. The disruption of CAST
interaction with RIM impairs synaptic transmission [25]. Among four Liprin-α, Liprin-3α,
which is strongly expressed in the brain, has recently been reported to control the co-
recruitment of RIM and Mun 13 via protein kinase C (PKC)-mediated phosphorylation [36].

Figure 1. Presynaptic active zone assembly model and synaptic vesicle fusion machinery proteins.
Diagram represents active zone (AZ) proteins’ complex in a liquid droplet (gray) and a docked
synaptic vesicle (SV). A recent in vitro study indicates that SVs coat the surface of condensed liquid
droplets [37]. In the droplet, the AZ is a highly organized structure that recruits voltage-gated Ca2+

channel and docks SV. Reproduced with permission from ref. [3]. Copyright 2016, Wang et al. Priming
factors promote proper assembly consisting of the pre-fusion state of the fusion machinery protein
complex and SNAREs/synaptotagmin/complexin (not shown) [38]. The tight spatial organization
ensures fast exocytosis upon Ca2+ entry, and it provides molecular machinery to set and regulate
synaptic strength, presynaptic short-term plasticity, and homeostatic synaptic plasticity. For detailed
order of events of vesicle tethering, docking and fusion, please refer to reviews [11,39].
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2.2. AZ Proteins Control SV States

The AZ proteins play a central role in neurotransmitter release by localizing CaV
channels in the release sites as discussed above, and also in setting the defined states of
SVs termed as tethering, docking, priming, and fusion [1]. Bassoon and Piccolo mediate
SV tethering and regulate SV reloading [40–42]. RIM seems to be a key protein for SV
dynamics [43,44]. RIM mediates the linkage of docked SV via Rab3/Rab27, synaptic vesicle
proteins and members of the family of low-molecular weight guanosine triphosphatases
(GTPases) [39,45,46], and CaV channels in the neurotransmitter release site [47] (Figure 1).
Removing RIM removes SV docking and slows down the exocytosis speed [3]. RIM also
mediates SV priming [48,49], leading to a SV that can rapidly fuse upon Ca2+ stimula-
tion [39]. SV priming is also mediated by ELKS, RIM-BP, and Munc13 [48–51]. In addition,
the involvement of Mover, another AZ protein, in the super-priming of SVs, was recently
reported [52]. Munc13 and Munc18 interact with the fusion machinery and regulate ex-
ocytosis [53–57] (see Section 3.3). For more complete reviews on molecular mechanisms,
please refer to recent articles [4,8].

2.3. AZ Protein Complex Formation

To explore AZ assembly models AZ protein interactions have long been examined
(Figure 1) [1,3]. Except for RIM and RIM-BP, which are required for CaV channel cluster-
ing [30,58], however, deletion of single-AZ proteins causes only mild effects on the AZ
structure, suggesting that individual protein interactions unlikely have a major role in the
AZ assembly [8]. A recent in vitro study has proposed a new model whereby AZ assembly
relies on liquid–liquid phase separation principles [59]. RIM, RIM-BP, and CaV channels
form dense clusters on the supported lipid membrane bilayers via phase separation. Liprin-
3α, which co-recruits RIM and Mun 13 via PKC-mediated phosphorylation, also undergoes
phase separation in transfected HEK cells [36]. The new model suggests that multiple
low-affinity interactions very likely drive AZ formation [8], as the suggested models of
droplet-like condensate formation with protein interactions in clustering of SVs [60,61] and
postsynaptic density [62]. Liquid–liquid phase separation or low-affinity interaction can
contribute to membrane anchoring [37,60].

2.4. A Possible Model for SV Pools Formation

In presynaptic terminals or boutons four functional pools of SVs are organized: the
readily releasable pool (RRP), the recycling pool, and the reserve and resting pools [5,63].
To maintain sustainable neurotransmitter release, the RRP has to be replenished constantly
with SVs. During prolonged neuronal activity the replenishment is achieved by either the
rapid reuse of fused vesicles, or the recruitment of new SVs from the reserve pool [5]. All
SVs which participate in activity-induced neurotransmitter release comprise the recycling
pool [63].

The AZ proteins RIM, RIM-BP, and ELKS form condensed liquid droplets via phase
separation. SVs from rat brains and small unilamellar vesicles (SUVs) coat the surfaces
of the condensed liquid droplets [37]. The SUV-coated RIM/RIM-BP condensates enable
to cluster CaV channels anchored on membranes. Strikingly, synapsin/SUV condensates
wrap SUV-coated RIM/RIM-BP condensates. The formation of two distinct SUV pools is
likely the reserve and tethered SV pools in presynaptic boutons [37]. These studies provide
a possible model for SV pools formation reconstituting a presynaptic bouton-like structure
that mimics the RRP with the SV-tethered AZ and the connected reserved pool with the
synapsin-clustered SV condensates.

2.5. AZ Assembly Stability

Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination
and degradation. The aberrant degradation of multiple presynaptic proteins is induced
by loss of Bassoon and Piccolo. Loss of Bassoon and Piccolo also lead to synapse degen-
eration, mediated in part by the E3 ubiquitin ligase Siah1 that is an interacting partner of
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Bassoon and Piccolo [64]. In boutons lacking Bassoon and Piccolo the destruction of SVs is
associated with presynaptic autophagy, a process dependent on poly-ubiquitination. The
gain or loss of function of Bassoon alone suppressed or enhanced presynaptic autophagy,
respectively, indicating a fundamental role for Bassoon in the local regulation of presynaptic
autophagy [41]. Bassoon and Piccolo are critical regulators for stabilizing the AZ assembly
by inhibiting degradation.

3. Synaptic Vesicle Exocytosis

SV fusion is a series of events, and its flow is controlled by a number of protein–protein
interactions: Fusogenic SNAREs, the Ca2+-sensor synaptotagmin, the activator/regulator
complexin, the assembly factors Munc18 and Munc13, and the disassembly factors NSF
and SNAP have been identified as key factors of the core synaptic fusion machinery [11].

3.1. SV Fusion Complex—A Model where Ca2+ Releases Inhibition of SV Fusion

Synaptotagmins expressed on the SV membrane cooperating with the SNAREs com-
plex has been implicated to mediate the fusion of neurotransmitter-containing SVs with
the presynaptic plasma membrane [1,2]. Recent structural and functional studies suggest
that AP-evoked sub-millisecond SV fusion occurs with the release of inhibition by Ca2+

binding to synaptotagmin [38,65]. Complexin, a cytoplasmic protein that is crucial for the
regulation of neurotransmitter release [66,67], contributes to the inhibition process. The
structure of SNAREs, synaptotagmin-1, and complexin-1 complex clarifies two interfaces:
the primary interface between synaptotagmin-1 and SNAREs, and a tripartite interface
between SNAREs, complexin-1, and synaptotagmin-1. These two interfaces of the complex
suggest the cooperation of all three components in the evoked SV fusion [11]. The tripar-
tite complex of SNAREs/complexin/synaptitagmin-1 is formed in the absence of Ca2+,
suggesting a prefusion complex inhibiting SV fusion [11].

Synaptotagmins contain cytoplasmic C2A and C2B domains [68,69]. The structure of
SNAREs, complexin-1, and synaptotagmin-1 complex clarifies a tripartite interface between
one synaptotagmin-1 C2B domain, SNAREs and complexin-1 [65]. This tripartite interface
formation is promoted by complexin-1 binding to SNAREs. The second synaptotagmin-1
C2B domain simultaneously interact with the other side of the SNAREs via a pairwise
interface. Synaptotagmin-1 C2B residues is responsible for the Ca2+-triggered synchronous
neurotransmitter release and the suppression of spontaneous release. Synaptotagmin-1
C2B residues are involved in both the tripartite interface of SNAREs, complexin-1 and
synaptotagmin-1 and the primary interfaces of SNAREs and synaptotagmin-1 [11,65,70].

Synaptotagmin-2, at the calyx of the Held synapse and in some GABAergic neurons,
regulates neurotransmission redundantly with synaptotagmin-1 [71,72]. Synaptic trans-
mission depends on synaptotagmin-1 in the early postnatal calyx of the Held synapses,
but later switches to synaptotagmin-2 [72], suggesting dynamic changes in synaptotagmin
content at the synapses during development. In the hippocampal neurons, synaptotagmin-
7 acts redundantly with synaptotagmin-1 in the maintenance of the RRP of SVs [73].
The loss of synaptotagmin-1 function in immature neurons can compensate with the
expression of synaptotagmin-7 [12]. The structural study of the tripartite complex of
SNAREs/complexin/synaptitagmin-1 has not yet been applied for synaptotagmin-2 or -7
in the fusion machinery.

3.2. Asynchronous SV Fusion

Ca2+-triggered evoked SV fusion causes synchronous neurotransmitter release, which
occurs within tens of microseconds of a stimulus and completes within several millisec-
onds [74], transmitting a fast and reliable signal. The evoked SV fusion also causes asyn-
chronous neurotransmitter release, which sets in more slowly and can persist for tens or
hundreds of milliseconds [75,76], and has influences on network parameters, including
the efficacies of neurotransmission, synchronicity, and plasticity [77–79]. Synaptotagmin-
7 [73,79] and Doc2 [80,81] are reported as being high-affinity Ca2+ sensors for asynchronous
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release. Both Doc2 and synaptotagmin-7 exhibit the slow Ca2+-regulated membrane-
binding kinetics and high affinities required for asynchronous release [80,82,83].

Synaptotagmin-7 mediates asynchronous release in cultured hippocampal neurons [73],
and in granule cell synapses as well as in inhibitory synapses formed between basket cells
and Purkinje neurons in the cerebellum [84,85], and in excitatory neocortex synapses formed
between pyramidal cells and Martinotti neurons [86]. The role of synaptotagmin-7 in asyn-
chronous release is usually only apparent when more than one stimulus is applied [73,85].
At the neuromuscular junction of Caenorhabditis elegans, synaptotagmin-3 triggers delayed
Ca2+-dependent neurotransmitter release following fast synaptotagmin-1-mediated release.
The fast and slow properties of neurotransmitter release are due to essentially different C2
domains in synaptotagmin-1 and -3 [87].

Synaptotagmin-7 underlies phasic somatodendritic dopamine release and its Ca2+

sensitivity in the substantia nigra pars compacta. In contrast, synaptotagmin-1, underlying
axonal dopamine release, plays a role in tonic dopamine release. However, synaptotagmi-1
can facilitate phasic dopamine release after synaptotagmin-7 deletion [88]. These results
indicate that synaptotagmin Ca2+ sensors subserve different aspects of the transmitter
release processes.

Doc2α mediates asynchronous release in cultured hippocampal neurons, both after
single AP and during AP trains [80,83,89,90]. Loss of asynchronous release in Doc2α
deficient neurons can be rescued by Doc2β [80]. Inconsistently, Purkinje cells to deep
cerebellar nuclei synapses [91], nor autaptic cultured hippocampal neurons lacking Doc2
shows no significant changes in asynchronous release [81]. At excitatory synapses in
mouse hippocampus, the major Ca2+ sensor for asynchronous release is Doc2α, while
synaptotagmin-7 supports this process through the activity-dependent docking of SVs [92].

3.3. Regulation of the Prefusion Complex

Munc18 binds to free syntaxin-1A, and the heterodimeric complex prevents the ternary
SNAREs formation [93,94]. The syntaxin/Munc18 complex is forwarded to the ternary
trans-SNAREs catalyzed by Munc13 [54,95,96]. Munc13 promotes the assembly of the
SNAREs in cooperation with Munc18, forming the parallel configuration of all components
of the SNAREs [50], suggesting that Munc13 and Munc18 are assembly factors for estab-
lishing the ternary SNAREs. Both syntaxin-1A (membrane SNARE) and synaptobrevin-2
(vesicle SNARE) weakly interact with the MUN domain of Munc13 [50,55,97,98]. An inter-
action between synaptobrevin-2 in the membrane proximal region and Munc13 in the MUN
domain is essential for the function of Munc13 [55]. The efficiency of Ca2+-triggered SV
fusion is significantly increased by Munc18 and Munc13 in a reconstituted fusion assay [50].

3.4. Disassembly of the Postfusion SNAREs

After SV fusion, the ternary SNARE complex is disassembled for recycling the indi-
vidual SNARE proteins. The ATPase NSF disassembles the ternary SNARE complex, with
ATP hydrolysis cooperating with the adaptor protein, SNAP [99–101]. These catalyzing
molecules of NSF and SNAPs interacting with ternary SNAREs form the so-called 20S
complex, for starting state of the disassembly process. However, the molecular mechanism
for NSF-mediated SNARE complex disassembly is not yet clarified [11].

High-resolution reconstruction of the NSF, αSNAP, and the full-length soluble neu-
ronal SNARE complex (composed of syntaxin-1A, synaptobrevin-2, SNAP-25A) demon-
strated the molecular interactions between NSF and αSNAPs with the SNAREs as fol-
lows. [102] Electrostatic interactions by which two αSNAP molecules interface with a
specific surface of the SNARE complex. This interaction positions the SNAREs such that
the 15 N-terminal residues of SNAP-25A are loaded into the ring pore of NSF via a spiral
pattern of interactions between a conserved tyrosine NSF residue and SNAP-25A backbone
atoms. This loading process likely precedes ATP hydrolysis. Subsequent ATP hydroly-
sis then drives complete disassembly. Details of the molecular mechanisms for SNARE
complex disassembly machinery have been reported in a review [11].
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4. Replenishment of Release Site with Synaptic Vesicles
4.1. SV Dynamics after AP

The ‘zap-and-freeze’ method, generating an AP and following high-pressure freezing
at defined time points, can enable characterization of the spatial and temporal organization
of the SV fusion sites following an AP firing [13]. With this technical approach, SV dynamics
were morphologically analyzed at milliseconds time points after AP in presynaptic termi-
nals of mouse hippocampal neurons in culture. 2% of the synaptic profiles in unstimulated
synapses showed exocytic pits in the AZ. Within 5 msec after AP, the synchronous fusion
of multiple SVs occurred throughout a single AZ. During synchronous fusion, docked SVs
reduced by ~40%, in contrast, SVs close to the membrane (between 6 and 10 nm) slightly
increased. Such SVs are possibly in a “loose state”, with SNAREs, synaptotagmin-1, and
Munc13 still being engaged [103]. At 5 msec, 18% of the synaptic profiles showed exocytic
pits in the AZ. By 11 msec, fused SVs collapsed into the plasma membrane. From 5 to
11 msec, asynchronous fusion followed in the center of the AZ. During asynchronous
fusion, the docked SVs are not further depleted in spite of their ongoing fusion, suggesting
an active recruitment of SVs during this process. At 14 msec, the docked SVs are fully
restored to prestimulus levels with newly docked SVs. This fast recovery of docked SVs is
Ca2+-dependent, and temporary lasting for 100 msec or less. During the recovery period,
newly docked SVs undock or fuse, indicating that the sequence of rapid redocking and
subsequent slow undocking may underlie the synaptic facilitation.

The series of snapshot images taken by the ‘zap-and-freeze’ method demonstrated
millisecond SV dynamics, such as synchronous and asynchronous fusion, undocking, and
docking, which are regulated by AZ proteins as discussed in Section 2.2, following transient
Ca2+ elevation, with the opening of CaV channels accompanying AP.

4.2. AZ Proteins

AZ proteins contribute to the establishment of multiple functionally definable stages
of the SV state, as discussed in Section 2.2. For the replenishment of release site with SVs,
possible functions of RIM-BP, CAST, Bassoon, and Piccolo have been reported.

RIM-BP, interacting with RIM and CaV channels [58], organizes the SV release site
topography [37,60]. RIM-BP in Drosophila supports a rate-limiting stage required for the
replenishment of high release-probability SVs that follows depletion of SVs [104]. In a
mammalian auditory synapse of the cochlear nucleus RIM-BP controls both the release
probability and the SV replenishment [31]. Loss of RIM-BP2 lowered the release probability,
due to a slowed down of the Ca2+-dependent fast SV replenishment. The ultrastructural
studies revealed reduced docked SVs and proximal SVs, in addition to an impaired CaV
channels topography in the AZ [31]. CaV2.1 channel localization in the AZ is specifically
controlled by RIM-BP binding to Bassoon [105]. Thus, it is likely that RIM-BP, interacting
with Bassoon via RIM, controls the rate of Ca2+-dependent fast SV replenishment at the
fast central auditory synapse [31].

CAST/ELKS also controls SV replenishment [15]. In cultured sympathetic presynaptic
terminals, CASTS45 is phosphorylated in an activity-dependent manner. Expression of the
phosphomimetic-CAST reduced the SV number in the RRP. The paired-AP protocol experi-
ments indicate that the phosphorylation of CASTS45 causes paired-EPSP depression with a
time window of 30–120 msec after the first AP. Overexpression of the phosphonegative-
CAST reduced the paired-EPSP depression (<200 msec), suggesting that phosphorylated
CASTS45 downregulates SV reloading shortly after AP, but not over a longer period. The
possible kinase is a serine/threonine kinase SAD-B, a presynaptic kinase that is associated
with the AZ cytomatrix and SVs, and that phosphorylates CASTS45 in vitro [15]. Acute
deletion of CAST significantly delayed the rate of fast SV reloading, following the RRP
depletion with AP bursts. These results indicate that CAST is required for fast SV reloading;
however, the phosphorylated CAST, within 200 msec after AP, brakes transmitter release by
slowing down SV reloading. The braking of SV reloading may save SVs for an incoming AP
to the presynaptic terminal. RIM1, a binding partner of CAST, interacting with Munc13-1, is



Biomedicines 2022, 10, 1593 7 of 20

implicated in SV docking and priming [106]. These protein interactions are likely involved
in the CAST-mediated fast replenishment of release sites with release-ready SV.

Bassoon participates in the reloading of SVs to release sites in excitatory synapses
of cerebellar mossy fiber connecting to granule cell [40]: Bassoon knockout enhanced
short-term synaptic depression during sustained high frequency stimulation, halving the
SV reloading rate, whereas it caused no effect on basal synaptic transmission. At the
central endbulb synapse in Bassoon knockout mice, SV replenishment rate was slowed
down, whereas vesicle number and the accompaniment were normal [19]. These results
suggest a role for Bassoon in speeding up high activity-dependent SV tethering, leading
to the rapid replenishment of release sites. At the rat calyx of the Held synapse, Bassoon
and Piccolo separately or simultaneously share functions in the SV replenishment during
high-frequency synaptic activity [41]. In Piccolo-lacking calyxes, the recruitment of slowly
releasing SVs in the RRP, that is normally invisible for AP-induced release, is visible during
high-frequency stimulation, indicating a role for Piccolo in establishing a sub-pool of the
RRP for preventing depletion of release-ready SVs during prolonged and intense firing
activity [41]. Additive roles of Piccolo and Bassoon in SV replenishment are revealed in
the fast central auditory synapse: Piccolo unlikely influence the release probability, while
Bassoon likely regulate it [42].

4.3. Motor Proteins

For filling up the RRP during sustained neural signals of AP, motor proteins are
proposed to translocate SVs from a larger SV cluster, called the recycling pool or reserve
pool [107,108]. However, electrophysiological studies on the calyx of Held synapses [109]
and the cerebellar synapses of the parallel fiber and the molecular layer interneuron [110]
demonstrated that myosin II controls SV dynamics in the RRP. In these synapses, the
RRP consist of two pools, a fast- and a slow-releasing pool [110,111]. In response to AP
trains, myosin II translocates SVs with a rapid rate constant from slow-releasing SVs to
fast-releasing ones [109,110]. The fast- and slow-releasing SVs pools may correspond to the
docked SVs and the undocked SVs observed morphologically after a single AP [13]. These
two SVs pools can be defined under the APs train: A single fast component exists at train
onset, while both a fast and a slow component exist later in the train [110].

We have demonstrated roles for myosin isoforms in transmitter release from presynap-
tic terminals of sympathetic neurons, where myosin IIB and myosin VI are specifically ex-
pressed [112,113]. Myosin IIB is activated by myosin light chain kinase via Ca2+/calmodulin
(CaM), while VI is directly activated by Ca2+/CaM. Myosin IIB or VI participation in replen-
ishment of the RRP with SVs can be predicted from the recovery kinetics of release-ready
SVs under various firing patterns [113]. Application of the paired-AP protocol shows
synaptic depression at short intervals of APs within 120 msec. Myosin IIB deletion shows
no change in the paired-EPSP size, while myosin VI deletion potentiates the decrease in
the paired EPSP at ≥50 msec intervals. These observations indicate that an AP within
50 msec activates myosin VI (Figure 2), but not myosin IIB, and that, within 120 msec of
the AP, myosin VI completes refilling of the release site with release-ready SVs. Application
of AP train at 10 Hz, revealed that myosin IIB takes 200 msec or needs two APs for the SV
replenishment, while myosin VI reloads SVs within 100 msec of AP. More frequent APs
seem to activate myosin IIB.

Our studies indicate that, during and after intense firing in sympathetic neurons, the
SV replenishment of release sites is achieved through distinct pathways (Figure 2). The
SV reloading kinetics displays fast and slow phases, due to different molecular contribu-
tions [113–117]. Myosin IIB deletion moderates the fast recovery, but not the slow recovery,
whereas VI deletion accelerates the fast recovery and decelerates the slow recovery [113].
Both deletion substantially delay both the fast and slow recoveries [113]. Thus, myosin IIB
and VI mediate the SV replenishment through the fast and slow SV resupply pathways,
respectively, during and after repetitive APs.
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Figure 2. Schematic drawing of a possible linkage of endocytosis to exocytosis through activity-
dependent distinct synaptic vesicle recycling pathways in presynaptic sympathetic neurons. (Left)
After single action potential (AP), within 20 msec, an endocytic protein, dynamin-3, mediates ultrafast
endocytosis, and within 50 msec, a motor protein, myosin VI, resupplies synaptic vesicles (SVs) to the
release site. For ultrafast endocytosis, synaptotagmin-7 likely acts as a Ca2+ sensor. (Right) During
and after repetitive APs, recovery pathways of release-ready vesicles with distinct kinetics involves
dynamin isoforms, Ca2+ sensors, and myosin isoforms. For fast recovery, dynamin-1 and myosin IIB
are involved, and synaptotagmin-1, -2, and -7 can be mediators for endocytosis. In contrast, for the
slow recovery pathway, dynamin-3 and myosin VI are involved, and synaptotagmin-1 and -2 can be
mediators for endocytosis. Adapted from Lu et al., 2009 [116], Tanifuji et al., 2013 [114], Mori et al.,
2014 [117], Hayashida et al., 2015 [113], and Tanifuji’s unpublished data.

5. Presynaptic Plasticity
5.1. Presynaptic Short-Term Plasticity

During and after repetitive presynaptic AP activity presynaptic short-term synaptic
plasticity occurs on a timescale of milliseconds to minutes, and it modulates synaptic
efficacy changing the release probability and the RRP size [118].

RIM1 participates in presynaptic short- and long-term synaptic plasticity [119,120].
At cerebellar parallel-fiber synapses, RIM1α deletion decreases the release probability, in
consequence enhances short-term facilitation, whereas the long-term plasticity is fully
intact [120]. In hippocampal neurons, RIM1α function depends on different synapses:
At the CA1 region Schaffer-collateral excitatory synapses and in GABAergic synapses,
RIM1α is required for short-term plasticity, while, in excitatory CA3-region mossy fiber
synapses and cerebellar parallel fiber synapses, RIM1α is required for presynaptic long-term
plasticity. This long-term plasticity depends on the phosphorylation of RIM1α, suggesting
that RIM1α acts as a ‘phosphoswitch’ for setting the synaptic strength [119]. In addition to
RIM1, RIM-BP may participate in short-term plasticity by controlling the Ca2+-dependent
fast SV replenishment [31].

As described above the release probability is controlled by RIM, while enlargement of
the SV pool size depends on Munc13 action [106]. The participation of Munc13 to presy-
naptic short-term plasticity has been proposed [14,103]: Calmodulin binding to Munc13
proteins increases its priming activity and RRP sizes in autaptic synapses of hippocampal
neurons. The Ca2+ sensor/effector complex, that is activated by residual Ca2+ elevation
during and after repetitive AP, shapes short-term plasticity [14]. In the calyx of the Held
synapses, the Ca2+ sensor/effector complex also determinate the characteristics of short-
term synaptic plasticity [103]. Furthermore, calmodulin-activated Munc18-1 contributes
to presynaptic short-term plasticity, such as paired-pulse facilitation, in sympathetic neu-
rons [121]. In addition to Munc13 and Munc18, other AZ proteins are possibly targets of
Ca2+–calmodulin during and after repetitive AP, and could promote facilitation of trans-
mitter release. Activation of Munc13 by phorbol esters is also reported an essential reaction
for synaptic potentiation [122]. Phorbol esters are analogues of diacylglycerol that activates
PKC, however, Munc13-mediated synaptic potentiation in hippocampal autaptic neurons
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is PKC-independent [123]. Instead, Munc18-1 mediates the synaptic potentiation as a
downstream target in the PKC pathway [123].

Bassoon and Piccolo modulate short-term depression during high AP activity in the rat
calyx of the Held synapse and in the cerebellar mossy fiber to granule cell synapse [40,41].
In the calyx of the Held synapse Piccolo contributes to the slow-releasing SVs replenishment
that is unengaged in AP-induced release during high-frequency stimulation. Therefore,
control of the SV reloading into the RRP during sustained synaptic activity in the calyx of
the Held synapse is shared by functions of Bassoon and Piccolo, whereas Bassoon seems to
be more efficient [41].

During sustained high-frequency synaptic activity, RIM1, Munc13, Munc18, Bassoon,
and Piccolo participate in the short-term synaptic plasticity. In contrast, CAST and CASTS45

phosphorylation by SAD-kinase contribute to milliseconds short-term depression after a
single AP in cultured sympathetic neuron synapses. CASTS45 phosphorylation potentiates
the paired-pulse depression (see Section 4.2) [15].

5.2. Presynaptic Long-Term Plasticity

Post-tetanic potentiation (PTP) has been traditionally described as being a form of
short-term plasticity that decays within tens to hundreds of seconds [118]. However, re-
cent reports of PTP studied in the hippocampal mossy fiber synapses termed it as being
presynaptic long-term plasticity. Recent morphological studies with the “flash and freeze”
analysis demonstrated rapid rearrangement of ultrastructure at potentiated synaptic bou-
tons: SVs spread in the bouton and accumulated in the AZ, and the AZ density and synaptic
complexity increased as well. Thus, the induction of PTP, which increases synaptic strength,
relies on the rapid ultrastructural remodeling [124]. An increase in docked SVs and that
in the size of the RRP has been proposed as a mechanism for PTP [125] that is dependent
on the presynaptic increase of cAMP [124,126]. Two-dimensional time-gated stimulated
emission depletion microscopy showed an increase in the P/Q-type Ca2+ channel cluster
size near the release sites, suggesting a potential mechanism for the cAMP-dependent
increase in transmission at hippocampal mossy fiber synapses, namely an accumulation of
the Ca2+ channels in the AZ [127]. RIM1, a priming factor as described in Section 2.2, is
crucial for cAMP-dependent long-term potentiation [128]. Furthermore, the trans-synaptic
modulation of presynaptic shot-term plasticity in hippocampal mossy fiber has recently
reported [129].

5.3. Presynaptic Homeostasis Plasticity

Bruchpilot, a Drosophila orthologue of CAST/ELKS and essential for Ca2+ channel
integrity and AZ structural conservation [130,131], has been proposed to participate in
homeostatic presynaptic potentiation. Bruchpilot forms normally a ring comprising a T-bar
per AZ; however, it forms multiple rings in the AZ of the glutamate receptor-deficient
synapse [17]. In response to changes of synaptic activity synaptic connections undertake
homeostatic readjustment to secure a stable and flexible nervous system. Homeostatic
signaling has demonstrated in both the central and peripheral nervous systems in various
species from Drosophila to humans [17,129,132–134]. At the endplates of myasthenia gravis
patients, for example, to keep muscle excitation reduced postsynaptic sensitivity is balanced
out by upregulated neurotransmitter release [135]. Thus, AZ proteins could functionally
participate in the homeostatic regulation system by regulating the SV localization and the
SV states.

Among AZ proteins, RIM [18,136], RIM-BP [104], and Bassoon [19] have been reported
to contribute to homeostasis plasticity. During homeostatic synaptic plasticity at the
Drosophila neuromuscular junction, RIM participates in the RRP enlargement [18]. RIM-
BP is essential for the homeostatic neurotransmitter release modulation as well, and it
participates in both the Ca2+ influx enhancement and the RRP enlargement [104]. RIM-BP
is required for the normal refilling of high release-probability SVs, which is independent
of the Ca2+ influx and the RRP size modulation [104]. Thus, a presynaptic vesicle pool
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of high release-probability SVs locating near Ca2+ channels and RIM-BP in the AZ might
be a target of the presynaptic homeostatic mdulation. The high release-probability SV
might comparable to the primed SV in mammalian synapses (see Section 2.2). In the fast
central endbulb synapse of auditory nerve fibers to bushy cells of the cochlear nucleus,
the Bassoon dysfunction slows down the SV replenishment and induces homeostatic
plasticity [19]. There, although SV replenishment and RRP are reduced, quantal size,
vesicular release probability, and postsynaptic densities are increased, suggesting that
presynaptic dysfunction drives homeostatic plasticity both in presynaptic and postsynaptic
functions for synaptic upscaling.

6. Synaptic Vesicle Endocytosis

SVs are recycled within nerve terminals. After exocytosis, SVs are recovered by either
fusion pore closure at the AZ [137,138], later termed as “kiss-and-run” [139], or clathrin-
mediated endocytosis directly from the plasma membrane at the periphery of the AZ [140].
In addition to these classical observations, ultrafast endocytosis at the edge of the AZ
provides SVs from the synaptic endosome at low neural activity [141,142]. During high
neuronal activity, bulk endocytosis retrieves the internalized plasma membrane [143], and
SVs are regenerated from the bulk endosome [144]. It is possible that all four mechanisms
co-exist in nerve terminals and are used differently, depending on the activity levels or the
synapse types [145].

6.1. Kiss-and-Run

Using electron microscopy, Ceccarelli et al. reported that clear vesicles were potentially
internalized at the AZ in the electrically stimulated frog neuromuscular junction [137,138],
and proposed that SVs can be recycled by the reversal of an exocytic fusion pore, a model
that was later termed “kiss-and-run” [139]. Kiss-and-run is a mode of the SV fusion and
rapid retrieval without the full collapse of the SV [146,147]. The high-speed imaging of
quantum dots was employed to explore the single-SV collapse and reuptake [148], and
supported this mode of endocytosis. Loading individual SVs with single quantum dots into
hippocampal neurons, Tsien and coworkers demonstrated that kiss-and-run dominated at
the beginning of stimulus trains, reflecting the preference of vesicles with a high release
probability. Its incidence was increased by rapid firing, a response that was appropriate
for shaping the kinetics of neurotransmission during a wide range of firing patterns [148].
Other optical approaches also demonstrated kiss-and-run endocytosis at mammalian
central synapses [5,149] which maintains its molecular identity bypassing the need for the
endocytic sorting of SV proteins or their passage through endosomal intermediates [150].

6.2. Clathrin-Mediated Endocytosis

Using electron microscopy, Heuser and Reese reported that SVs are regenerated
locally by the formation of clathrin-coated vesicles at the periphery of the AZ in the
electrically stimulated frog neuromuscular junction [140]. This mode of endocytosis has
been extensively studied in invertebrates such as nematodes, fruit fly, and squid; and
in vertebrates such as lampreys and rodents [5]. In contrast to kiss-and-run, clathrin-
mediated endocytosis is retrieval of the full collapsed SVs into the plasma membrane for
the regeneration of SVs. Clathrin-mediated endocytosis is relatively slow (10–30 s), in
contrast to the fast kiss-and-run (<1–2 s) [5], and requires a set of proteins, clathrin and
clathrin-associated proteins [151,152]. Details of the molecular mechanisms for clathrin-
mediated endocytosis have been reported in reviews [151–153].

Recently, it is suggested that, at a physiological temperature in mammalian neurons,
endocytosis occurs without formation of clathrin-coated vesicles [144,154,155]. Endo-
cytosis proceeds within the neuron knocked-down clathrin heavy chain or its adaptor,
AP-2 [144,156,157]. The clathrin-coated vesicles are proposed to regenerate SVs from
endosomes [6,144].
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6.3. Ultrafast Endocytosis

Ultrafast endocytosis completes in as fast as 50 msec after evoked exocytosis, and
continues stochastically for seconds [141,142,154]. This mode of endocytosis, demonstrated
in the Caenorhabditis elegance neuromuscular junction [142] and mouse hippocampal neu-
rons [141,154], is predominant at a physiological temperature. The membrane at the lateral
edges of the AZ invaginates and forms a large endocytic vesicle (approximately 80 nm)
which is immediately delivered to the synaptic endosomes. From the synaptic endosome,
SVs are regenerated by budding in a clathrin-coated form. Ultrafast endocytosis seems to
rely on the proper maintenance of membrane tension [158], and on the immediate clearance
of the AZ membrane [159,160].

Ultrafast endocytosis shares many molecular players with other endocytosis processes,
including the clathrin-mediated process. Forming a narrow neck on the budding vesicle
from the membrane, synaptojanin-1 [161] and endophilin-A [162] coordinately tubulate the
invaginated membrane [145]. Its pinch-off is mediated by dynamin-1 and actin [141,142].
This endocytosis is strongly influenced by membrane fluidity, which is under the control of
temperature [144].

6.4. Bulk Endocytosis

Single-SV retrieval modes, such as clathrin-mediated endocytosis, predominate under
mild synaptic activity. In contrast, under intense activity, additional SV retrieval mode,
termed the activity-dependent bulk endocytosis, is activated [163]. It is the dominant
and a high-capacity SV retrieval mode under higher synaptic activity, and plays key roles
in neurotransmission [157]. [163]. This mode of endocytosis is observed at invertebrate,
amphibian, and mammalian synapses [143,145,164,165], and in vivo, at a central synapse
in awake rats [166].

A large area of invaginated membrane is retrieved within 1–2 s, and forms a bulk
endosome (average 150 nm) [153,163], from which functional SVs are generated [167].
This membrane retrieval is clathrin-independent, but dependent on calcineurin, a Ca2+-
dependent protein phosphatase [153]. Actin is required for the large area of membrane
invagination [155,168]. SV proteins such as VAMP2, synaptophysin, and vesicular gluta-
mate transporter are retrieved by this mode of endocytosis [157,169]; in contrast, some SV
proteins such as VAMP4 are accumulated by activity-dependent bulk endocytosis [169].
Noncanonical v-SNAREs such as VAMP4 [170] or VAMP7 [171,172] drive spontaneous SV
fusion, suggesting a possible retrieval system for each SV protein.

6.5. Ca2+-Sensors Link Exocytosis to Endocytosis

The four modes of endocytosis summarized above are neuronal activity-dependent.
Ultrafast endocytosis can be triggered by a single AP [13]. Although the other modes of
endocytosis were triggered by trains of APs, kiss-and-run dominated at the beginning of
the stimulus trains [148]. These observations suggest low-affinity Ca2+ sensors likely link
exocytosis to endocytosis. Synaptotagmin-1 dysfunction impairs SV endocytosis in the
Drosophila neuromuscular junction [173]. In rat hippocampal neurons synaptotagmin-1 is
also required for single- as well as multi-vesicle endocytic events [174]. Synaptotagmin-7, a
Ca2+ sensor for asynchronous release [73,175,176], is in charge of the slowed endocytosis
seen under synaptotagmin-1 dysfunction [174].

Dynamin, a key protein in most modes of endocytosis [177], mediates the fission
of internalized plasma membrane, and vesicle scission from synaptic endosomes [5]. A
possible linkage of Ca2+ sensors to vesicle endocytosis was examined in presynaptic sym-
pathetic neurons. There, dynamin-3 is responsible for the ultrafast endocytosis that is
activated within 20 msec of a single AP (Figure 2) [114]. For this ultrafast endocytosis,
synaptotagmin-7 likely act as a Ca2+ sensor (Tanifuji and Mochida, unpublished data). The
synaptotagmin-7 deletion potentiated the paired-pulse depression to a similar degree of
the potentiation caused by dynamin-3 deletion. Both synaptotagmin-7 and dynamin-3
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deletion remarkably induced the failure of paired EPSP, supporting a possible role for
synaptotagmin-7 in triggering ultrafast endocytosis.

During and after repetitive APs, dynamin-1 mediates the fast SV recycling, while
dynamin-3 mediates the slow SV recycling (Figure 2) [114]. The fast SV recycling was
similarly delayed with synaptotagmin-1, -2, or -7 deletion, while the slow SV recycling
was delayed with synaptotagmin-1 or -2 deletion. Taken together, both synaptotagmin-1
and -2 are related to endocytosis under physiological frequency neuronal activity, while
synaptotagmin-7 is mainly required for the ultrafast endocytosis after a single shot of
AP. These distinct mediations of the SV recycling (Figure 2) might be due to specialized
localizations of Ca2+ sensors: Synaptotagmin-1 and -2 are expressed on the SV membrane,
while synaptotagmin-7 is more concentrated on the presynaptic plasma membrane or
internal membrane [178,179].

7. Conclusions

The AZ protein assembly promotes SV states of tethering, docking and priming,
and it sets release-ready SVs nearby Ca2+ channels in the RRP [1]. The release-ready
primed SV proceeds to SV fusion by AP. Exocytosis is a series of events controlled by
protein–protein interactions: Fusogenic SNAREs, the Ca2+-sensor synaptotagmin, the acti-
vator/regulator complexin, the assembly factors Munc18 and Munc13, and the disassembly
factors NSF and SNAP are the core molecules of the fusion machinery [11]. AP-evoked sub-
millisecond SV fusion occurs releasing the complexin-mediated inhibition by Ca2+-bound
synaptotagmin [38,65]. Synaptotagmin-1 mediates fast and synchronous SV fusion [38,65].
Synaptotagmin-2, at the calyx of the Held synapse and in some GABAergic neurons,
also mediate fast and synchronous SV fusion redundantly with synaptotagmin-1 [71,72].
Synaptotagmin-3 [87] and -7 [73,79], and Doc2 [80,81] are high-affinity Ca2+ sensors for
slow and asynchronous SV fusion.

AP triggers SV dynamics in the AZ, following millisecond Ca2+ dynamics that control
SV states, synchronous and asynchronous fusion, and undocking, redocking, and prim-
ing [13]. The undocking, redocking, and priming of SV states contribute to presynaptic
short-term plasticity [13]. AP-induced millisecond Ca2+ dynamics activate multiple pro-
tein cascades via Ca2+-sensor molecules [180] to control the replenishment of the release
site with release-ready SVs [7]. Neurotransmitter release probability, controlling SV/Ca2+

channel coupling, is regulated by RIM and RIM-BP, which are required for clustering the
Ca2+ channel at the release site [29–31]. The RRP size, which controls the SV states of
docking and priming, is regulated by CAST/ELKS and Munc13, respectively [15,53,106].
During and after repetitive AP firing, Bassoon and Piccolo play a role in SV tethering under
sustained high AP activity, to maintain sustainable synaptic transmission [19,40,42].

Presynaptic plasticity is dependent on flexible neurotransmitter release. Residual
Ca2+-dependent regulation of the release probability via SV fusion machinery has been
proposed for the generation of presynaptic plasticity [118]. However, as reviewed in this
article, the contribution of AZ proteins to presynaptic plasticity is significant [119–128].
Synaptic connections undergo homeostatic readjustment in response to changes in synaptic
activity, to ensure a stable and flexible nervous system [17,129,132–134]. Important roles
of RIM [18], RIM-BP [104], and Bassoon [19] in presynaptic homeostatic plasticity, which
control the release probability and the RRP, have been proposed so far. Stable and flexi-
ble homeostatic synaptic transmission for non-stop signaling is likely supported by the
coordinated functions of RIM, RIM-BP, Bassoon, and other AZ proteins.

SVs are recycled within nerve terminals. After exocytosis, the SVs are recovered via
either fusion pore closure “kiss-and-run” [139] at the AZ [137,138], or via clathrin-mediated
endocytosis directly from the plasma membrane at the periphery of the AZ [140]. In addi-
tion to these classical observations, ultrafast endocytosis at the edge of the AZ provides
SVs from the synaptic endosome at a low level of neural activity [141,142]. Ultrafast endo-
cytosis is highly temperature sensitive. During high neuronal activity, bulk endocytosis
retrieves the internalized plasma membrane [143], and the SVs are regenerated from the
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bulk endosome [144]. Under lower levels of activity and significantly lower than physi-
ological temperature, the most endocytic membrane retrieval is clathrin-mediated. At a
physiological temperature clathrin-mediated budding may be relocated to rapidly formed
endosomes [144]. All four endocytic mechanisms possibly co-exist in presynaptic terminals,
and are activated under different conditions of neuronal activity and temperature [145].

For summarizing this review discussing the mechanisms of SV exo- and endocytosis,
molecular players act in the presynaptic release site AZ, the exocytosis, the replenishment
of the release site with SVs, and the endocytosis are listed in the Table 1.

Table 1. Molecular players act in the presynaptic release site active zone, synaptic vesicle exocytosis,
replenishment, and endocytosis.

Function Protein References
CaV channel recruitment RIM, RIM-BP, CAST/ELKS [30,31,33]
liquid droplet formation RIM, RIM-BP, ELKS [37,59]AZ assembly

stabilization and degradation Bassoon, Piccolo [64]
tethering Bassoon, Piccolo [40–42]
docking RIM, CAST/ELKS [3,15]
priming ELKS, RIM, RIM-BP, Munc13 [48–51]

super-priming Mover [52]
SV states

fusion Munc13, Munc18 [53–57]

AZ protein complex

Fusion machinery interaction fusion machinery regulation Munc13, Munc18 [53–57]
fusion machinery SNAREs [1,2,11,39]

Ca2+ sensor
Synaptotagmin-1
Synaptotagmin-2
Synaptotagmin-7

[1,2,11,38,39,65]
[71,72]

[73]
regulator Complexin-1 [65–67,70]

assembly factor Munc13, Munc18 [50,53–57,93–96]

SV fusion complex

disassembly factor NSF, SNAP [99–102]

Synaptic vesicle
exocytosis

Asynchronous SV fusion Ca2+ sensor
Synaptotagmin-7
Synaptotagmin-3

Doc2α

[73,84–86]
[87]

[80,83,89,90,92]
facilitation RIM-BP, Bassoon, Piccolo, [31,40,41,104]AZ proteins
inhibition CAST phosphorylation [15]
facilitation Myosin II [109,110,113]

Synaptic vesicle
replenishment

Motor proteins
facilitation Myosin VI [113]

short-term plasticity RIM1α, Munc13 [14,103,106,119,120,122]
post-tetanic potentiation Munc18 [123]

control of depression Bassoon, Piccolo [40,41]
Short-term plasticity

depression CAST phosphorylation [15]

Long-term plasticity cAMP-dependent increase
in transmission RIM1, P/Q-type Ca2+ channel [119,120,124,126–128]

Presynaptic plasticity

RRP enlargement RIM [18,136]
promotion of SV priming RIM-BP [104]homeostatic plasticity

promotion of SV replenishment Bassoon [19]
kiss-and-run [5,139,146–149]

clathrin-mediated Clathrin-associated proteins [5,140,151–153]

ultrafast endocytosis Synaptojanin-1, endophilin-A
Dynamin, Actin [141,142,145]

bulk endocytosis Calcineurin, Actin [153,155,168]

Synaptic vesicle
endocytosis

Ca2+ sensors Synaptotagmin-1
Synaptotagmin-7

[173,174]
[174]
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Abbreviations

AP action potential
AZ active zone
CAST cytomatrix at the active zone-associated structural protein
CaM calmodulin
CaV channels voltage-gated Ca2+ channels
EPSPs excitatory postsynaptic potentials
PKC protein kinase C
PTP post-tetanic potentiation
RIM Rab3-interacting molecules
RIM-BP RIM-binding protein
RRP readily releasable pool
SNAREs soluble N-ethylmaleimide-sensitive-factor attachment receptor proteins
SUVs small unilamellar vesicles
SVs synaptic vesicles
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