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Abstract

Waterlogging is a widespread limiting factor for wheat production throughout the world specially irrigated and high rainfall
environments. The important biological consequence of waterlogging is the deficiency (hypoxia) or complete absence (anoxia) of
oxygen in soil environment which restricts the growth, development and finally yield in wheat. The tolerant genotypes of wheat can
adapt to transient waterlogging by developing mechanisms related to morphology and metabolism to cope with the stress. The
morphological mechanisms include the development of adventurous roots with well formed aerenchyma and sometimes with a
barrier for ROL. Aerenchyma is a continuous gas filled channel, which provides a low resistance internal pathway for the movement
of O2 from the aerobic shoots to anaerobic roots to respire aerobically under hypoxia or anoxia. However, lack of oxygen induces the
anaerobic roots to shift the energy metabolism from aerobic to anaerobic mode. Greater activities of glycolytic and fermentative
enzymes, increased availability of soluble sugars, and involvement of antioxidant defense mechanism against post-stress oxidative
damages are the main metabolic mechanisms for waterlogging tolerance in wheat.

Keywords: aerenchyma, anoxia, carbohydrate reserves, hypoxia, oxidative stress, waterlogging tolerance, wheat.
Abbreviations: ASA, ascorbate; ACC, 1-aminocyclopropane-1-carboxylic acid; ADH, alcohol dehydrogenase; GSH, glutathione;
HPT, hypoxic pre-treatment; LDH, lactate dehydrogenase; NADPH, nicotinamide adenine dinucleotide phosphate-reduced; PDC,
pyruvate decarboxylase; ROL, radial oxygen loss; ROS, reactive oxygen species; SS, sucrose synthase; TCA, tri carboxylic acid.

Introduction

Waterlogging occurs over a vast regions throughout the world
(Kozlowski, 1984) adversely affecting approximately 10% of
the global land area (FAO, 2002). It usually occurs when
rainfall or irrigation water deposits on the soil surface or
subsoil for prolonged period of time. It can also occur when the
amount of water added through rainfall or irrigation is more
than what can percolate into the soil within one or two days.
Waterlogging occurs in many wheat growing regions
throughout the world, especially irrigated and high rainfall
environments. About 10-15 million ha of the world’s wheat
growing areas are affected by waterlogging each year (Sayer et
al., 1994) representing 15-20% of the 70 million ha annually
cultivated for wheat production (Settler et al., 2003). The
effects of waterlogging are most widespread in rice-wheat
rotation commonly followed in south and south-east Asia
including Bangladesh, Pakistan, India, Nepal and China
(Samad et al., 2001). Soils are generally puddled to restrict
water percolation for rice cultivation which leads to develop a
soil pan. The soil pan is often left undisturbed at cultivation for
wheat that follows rice and may create a barrier for water
movement causing waterlogging in case of excessive irrigation
or rainfall. Waterlogged plants are affected by various stresses,
such as limitations to gas, and mineral nutrient deficiencies and
microelement toxicities (Setter and Waters, 2003; Setter et al.,
2009). The wheat plant responds to waterlogging by restricting
root growth, reducing the dry matter accumulation, prematurely
senescing leaves, reducing tillering, wilting, producing sterile
florets, and lowering kernel weights and finally grain yield
(Cannell et al., 1980; van Ginkel et al., 1992; Sayre et al., 1994;

Zhang et al., 2006; Jiang et al., 2008 Hossain et al., 2011)).
These responses in wheat grown under natural conditions can
be reproduced in a hypoxic or anoxic nutrient solution
produced by continuous flushing with nitrogen gas (Trought &
Drew, 1980a, b). Root hypoxia or anoxia is the major cause of
reduced plant growth under waterlogging stress (Trought &
Drew, 1980a, b; Drew, 1991; Huang et al., 1994a, b). Although
wheat is one of the most intolerant crops to soil waterlogging
(Thomson et al., 1992; Musgrave 1994) there is a wider genetic
diversity in tolerance to soil waterlogging among cultivars of
wheat (Thomson et al., 1992; Sayre et al., 1994; Settler and
Waters, 2003). The tolerance of wheat to waterlogging depends
on the ability to change its morphological and metabolic traits
in response to the stress for its survival and growth. The
intolerance of wheat to waterlogging presumably results from
its lacking, or having only a low expression of traits associated
with tolerance to waterlogging (Thomson et al., 1992; Huang et
al., 1997). Here we attempted to review the mechanisms of
tolerance of wheat to waterlogging emphasizing the
morphological and metabolic adaptive mechanisms under
oxygen deficit environment, hypoxia and anoxia.

Hypoxia and anoxia

Hypoxia or oxygen depletion is a phenomenon that occurs in
soil environments as oxygen in soil air becomes reduced to a
point below optimum level. In plant physiological studies, the
term "hypoxia" is reserved for situations in which the oxygen
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concentration is a limiting factor (Morard and Silvestre, 1996).
It is the most common form of stress in wet soils and occurs
during short-term flooding when the roots are submerged under
water but the shoot remains in the atmosphere. It may also
occur in roots near the surface of long-term flood water
(Sairam et al., 2008). Anoxia, the extreme form of hypoxia, is
used to qualify the complete lack of oxygen in physiological
experiments (Morard and Silvestre, 1996). It is usual form of
stress in soil that experiences long-term flooding or
waterlogging. It occurs in plants completely submerged by
water, and in deep roots below flood waters (Sairam et al.,
2008).

How does waterlogging induce hypoxia and anoxia?

One of the most important properties of soil is soil aeration
which relates to the ability of soils to exchange gases with the
atmosphere. This exchange is usually achieved primarily
through diffusion of gasses from and to the soil via pore spaces
in the soil. In most well drained soils, the air-filled pore spaces
make up 10 to 40% of total soil volume. Waterlogging
eliminates these gas-filled pore spaces and cuts the supply of
oxygen to the roots to a large extent (Ponnamperuma, 1972). In
the waterlogged soil, micro channels for gas diffusion among
soil particles or aggregations become sealed with water, which
results the gas diffusivity in soil 104 times lower than in
well-drained soil (Armstrong, 1979; Ponnamperuma, 1984).
The lower gas diffusivity between ambient air and waterlogged
soil results in low O2 concentration (hypoxia) and high toxic
gas concentration, such as CO2 and reduced gases
(Ponnamperuma, 1972, 1984). Moreover, gases formed by soil
metabolism, including carbon dioxide, start to accumulate near
root surfaces (Setter and Belford, 1990). The gas exchange
between soil and atmosphere almost stops as soon as the
waterlogging sets in. The soil microbes and plant roots use up
the oxygen trapped in the soil and therefore, the roots may
become exposed to complete lack of oxygen (anoxia) (Jackson
and Drew, 1984). However, under natural conditions, oxygen
concentration decreases gradually, and hence, anoxia is always
preceded by hypoxia (Setter and Waters, 2003) in waterlogged
environment.

Mechanisms of tolerance of wheat to waterlogging

Waterlogging tolerance is defined as the survival or the
maintenance of plant growth at high rates under waterlogged
conditions relative to well drained conditions. It may be
defined as the maintenance of relatively high grain yields under
waterlogged conditions relative to non- or less-waterlogged
conditions (Setter and Waters, 2003). The plant species tolerant
to waterlogging can develop some morphological traits or can
alter the metabolism in response to oxygen shortage to survive
or to maintain their growth. The mechanisms of waterlogging
or hypoxia tolerance includes: i) the maintenance of high
internal aeration through constitutive aerenchyma and creation
of an oxidized zone around root tips through radial O2 loss
(Armstrong et al., 1994), ii) metabolic adaptation that maintain
energy production under hypoxia (Brandle and Crawford,
1987) with the substantial storage of carbohydrates for
fermentation under hypoxia (Brandle, 1991). Mechanisms of
tolerance to waterlogging in wheat are discussed here in main
two heads: (A) morphological adaptation, and (B) metabolic
adaptation.

A. Morphological adaptation

i) Root growth

A common adaptation of plants to waterlogging is the survival
and growth of seminal roots and production of numerous
adventitious roots with aerenchyma (Belford, 1981; Trought
and Drew, 1982; Drew, 1983; Smirnoff and Crawford, 1983;
Justin and Armstrong, 1987; Barrett-Lennard et al., 1988;
Thomson et al., 1992; Huang et al., 1994a). The root growth in
waterlogging intolerant genotypes is drastically suppressed by
waterlogging stress. However, the tolerant genotypes have the
ability to continue their root growth under the stress in some
extent. Huang et al. (1994a) reported a drastic decrease
(42-50%) in length of the longest seminal root and also in total
length of seminal roots by 14 d hypoxia for waterlogging
intolerant genotypes (Bayles, BR34, Coker-9766 and FL302).
The above hypoxic stress had no significant effect on the
growth of seminal roots for tolerant genotypes (Gore and
Savannah). Total root dry mass was reduced for all genotypes
except for Savannah (Huang et al., 1994a). However, the
waterlogging tolerance of a plant is determined not only by its
capability to undergo morphological adaptations, but also by
the ability to recover from transient waterlogging or hypoxia of
the root system (Krizek, 1982; Huang et al., 1994a, 1997). The
growth of many species that are tolerant to hypoxic conditions
can also be reduced when the roots are waterlogged, but unlike
sensitive ones, tolerant species rapidly resume their growth a
short period after the resumption of aeration in roots (Crawford,
1982). In a hypoxic experiment with two Japanese cultivars,
Daichinominori (adapted to wet areas in Japan and supposed to
be a less waterlogging sensitive cultivar) and Haruyutaka
(adapted to dry areas in Japan and supposed to be a more
waterlogging sensitive cultivar), similar suppressive root
growth was observed during 20d hypoxic stress for both
cultivars. However, the difference in recovery between the
cultivars was observed. The less sensitive cultivar,
Daichinominori showed complete recovery in root growth
while the more sensitive cultivar, Haruyutaka showed partial
recovery by 10d after the resumption of aeration (recovery)
(Hossain et al., unpublished data).

ii) Aerenchyma formation and increased root porosity

Aerenchyma is a special tissue which consists of continuous
gas filled channels or much enlarged gas spaces, and root
porosity is volume of gas-filled spaces in relation to the total
tissue volume. Aerenchyma provides a low resistance internal
pathway for the movement of O2 from the shoots to the roots
(Armstrong, 1979; Armstrong and Webb, 1985; Drew et al.,
1985). Aerenchyma tissue in roots allows the roots to respire
aerobically and to maintain growth under hypoxic conditions.
Moreover, a part of oxygen transported to plant root tips
through the aerenchyma leaks out into the surrounding soil and
results in a small zone of oxygenated soil around the roots
providing an aerobic environment for microorganisms that can
prevent the influx of potentially toxic soil components (Visser
et al., 1997; Armstrong and Armstrong 1988; Colmer, 2003)
such as nitrites and sulphides of Fe, Cu and Mn. Therefore,
aerenchyma formation is thought to be one of the most
important morphological adaptations for the tolerance to
hypoxic or anoxic stress. The aerenchyma in stems and roots
can be distinguished into lysigenous and schizogenous
aerenchyma on the basis of the process of formation (Jackson
and Armstrong, 1999; Evans, 2003; Visser and Voesenek,
2004).
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Lysigenous aerenchyma is created through cell disintegration
(death) in the primary cortex of adventitious roots (Drew et al.,
1979, 1981; Justin and Armstrong, 1991; Huang et al., 1997;
Haque et al., 2010), whereas the schizogenous aerenchyma is
formed by the separation of cells from each other, often
accompanied by cell divisions and normal expansion (Jackson
and Armstrong, 1999; Colmer et al., 2004). Under oxygen
deficient condition, ethylene production is accelerated which in
turn stimulates aerenchyma formation in adventitious roots and
induces the growth of the roots (Drew et al., 1979; Jackson,
1989). The immediate precursor of ethylene is 1-amino
cyclopropane 1-carboxylic acid (ACC), which is synthesized to
a large extent in roots (Bradford and Yang, 1980). The activity
of ACC synthase is stimulated in roots under flooding
conditions (Cohen and Kende, 1987). However, the conversion
of ACC to ethylene requires oxygen and the conversion
reaction is blocked in an anaerobic root cell. The ACC is
therefore, translocated from the anaerobic root cells towards the
more aerobic portions of the root or to the shoot. The lower
portions of the stems are usually the site of highest ACC
accumulation and in the presence of oxygen ethylene is
released (Sairam et al., 2008). Formation of aerenchyma has
been observed in the roots of wheat when grown under low O2

concentrations (Benjamin and Greenway, 1979; Trought &
Drew, 1980b, c; Belford, 1981; Erdmann & Wiedenorth, 1986;
Barrett-Lennard et al., 1988; Thomson et al., 1990, 1992; Drew,
1991; Huang et al., 1994a, b; Watkin et al., 1998; McDonald et
al., 2001a, b; Haque et al., 2010). Aerenchyma formation
increases the porosity of roots above the usual levels
contributed by intercellular spaces (Colmer, 2003). The
aerenchyma is usually formed within five to seven days of the
onset of hypoxia in wheat (Thomson et al., 1990). Increased
root porosity or anatomical investigation may be the evidence
of aerenchyma formation. The increase in root porosity of
tolerant genotypes in response to waterlogging stress could
represent adaptation to anaerobic or hypoxic conditions. High
porosity in root tissue increases the possibility of O2 diffusion
from shoots to roots (Haldemann & Brändle, 1983). Wheat
genotypes with well-formed aerenchyma are more tolerant to
waterlogging stress than genotypes with smaller aerenchyma
(Huang et al., 1994a, b). The poorly developed adventitious
root system and relatively low root porosity of hexaploid wheat
are thought to contribute to its sensitivity to waterlogging
(Thomson et al., 1992). Boru et al. (2003) reported 12 to 20%
(v/v) root porosity for tolerant wheat genotypes (Ducula,
Prl/Sara, and Vee/ Myna) and 6 to 8% for sensitive genotypes
(Seri-82 and Kite/Glen) under hypoxia. They also reported that
the root porosities of Ducula and Prl/Sara increased 425% and
493%, respectively under hypoxia. Under similar conditions,
Huang and Johnson (1995) observed the increase in root
porosity of waterlogging tolerant wheat genotype ‘Jackson’ and
waterlogging sensitive genotype ‘Coker 9835’ by 185% and
53%, respectively. Barrett-Lennard et al. (1988) reported a two-
to three-fold increase in root porosity of the cultivar Gamenya
when grown hypoxically. Thomson et al. (1990) also observed
similar increase in porosity in Gamenya. In cross sections of
adventitious roots, aerenchyma occupies 19% and 30% of the
cross sectional area in more waterlogging sensitive genotype
‘Bayles’ and less sensitive genotype ‘Savannah’, respectively
under waterlogged sand culture (Huang et al., 1994).

iii) Barriers to radial oxygen loss

Oxygen in aerenchymatous roots may be consumed by
respiration or be lost to the rhizosphere via radial diffusion
from the root. The flux of oxygen from roots to rhizosphere is
termed as radial oxygen loss (ROL) which usually oxygenates
the rhizosphere of the plants growing in waterlogged soils

(Armstrong, 1979). However, ROL decreases the amount of O2

supply to the apex of roots that solely depends on
aerenchymatous O2 and, therefore, would decrease the root
growth in hypoxic or anoxic environment (Armstrong, 1979;
Jackson and Drew, 1984).  The roots of many wetland plants
contain a complete or partial barrier to ROL in their epidermis,
exodermis or sub epidermal layers (Armstrong, 1971; Jackson
and Drew, 1984; Jackson and Armstrong, 1999), whereas in
non-wetland plants usually are lacking or having a partial
barriers resulting considerable loss in aerenchymatous O2 in
root through ROL. Wheat plants can form aerenchymatous
adventitious root, in response to waterlogging, which contains a
partial barrier to ROL and can consume only 20% of the total
O2 entering a root through aerenchyma (Thomson et al., 1992).
It is suggested that the loss in internal O2 contributes the poor
growth of adventitious roots and intolerance of wheat to
waterlogged soil (Thomson et al., 1992). In contrary,
waterlogging tolerant rice not only has a larger volume of
aerenchyma, but it also has a strong barrier to ROL in basal
regions of its adventitious roots and therefore deeper root
penetration into waterlogged soil (Armstrong, 1971; Thomson
et al., 1992; Colmer et al., 1998). However, some wheat
genotypes can increase suberin or lignin on epidermis or
exodermis of root which may acts as barriers to ROL and
results in increased tolerance to waterlogging (Arikado, 1959;
Jackson and Drew, 1984; Watkin et al., 1998; McDonald et al.,
2001b).

B. Metabolic adaptation

The plant tissue under hypoxia or anoxia suffers from energy
crisis (Gibbs and Greenway, 2003) due to reduced root
respiration in both waterlogging-tolerant and intolerant plants
(Marshall et al., 1973; Lambers, 1976; Drew 1983, 1990). The
tolerant plant species cope with the energy crisis through
metabolic adaptation to oxygen deficiency. The metabolic
adaptations to oxygen deficiency includes: anaerobic
respiration, maintenance of carbohydrate supply for anaerobic
respiration, avoidance of cytoplasmic acidification and
development of anti-oxidative defense system (Davies, 1980;
Armstrong et al., 1994; Drew, 1997; Setter et al., 1997).

i) Anaerobic respiration

Plant cells produce energy in presence of oxygen through
aerobic respiration which includes glycolysis, TCA or Krebs
cycle and oxidative phosphorylation (Fig. 1). In absence of
oxygen (under anoxic condition), Krebs cycle and oxidative
phosphorylation are blocked, and cells inevitably undergo
anaerobic respiration to fulfill the demand for energy (Davies,
1980). Anaerobic respiration includes glycolysis and
fermentation (Fig 1). Generation of energy under anaerobic
condition is largely achieved through glycolysis. For the
continued operation of glycolytic pathway, the regeneration of
NAD+, a cofactor from NADH is essential (Drew, 1997). Large
quantities of pyruvate generated in glycolysis as an end-product
must be converted to alternative products to recycle NADH to
NAD+. Ethanolic Fermentation or lactate fermentation is the
most important process by which NADH can be recycled to
NAD+ during oxygen deficiency (Kennedy et al., 1992; Perata
and Alpi, 1993; Ricard et al., 1994). In ethanolic fermentation,
pyruvate is the substrate of pyruvate decarboxylase (PDC)
yielding CO2 and acetaldehyde, which reduced to ethanol with
the oxidation of NADH to NAD+ by alcohol dehydrogenase
(ADH). In lactic fermentation, pyruvate is the substrate of
lactate dehydrogenase (LDH) yielding lactate with the
oxidation of NADH to NAD+. The efficacy of energy
production by glycolysis and fermentation is much lower than



1097

Sugar (1 Glucose)

Glycolysis

2CO2,  2 Ethanol
2ATP (net)

2 Lactate
2ATP (net)

2 Acetaldehyde
PDC

ADHLDH

2 Acetal CoA

TCA
cycle

6CO2, 6H2O
38ATP (Net)

+O2 -O2

-O2

Fermentation

Oxydative
phosphorylation

2 Pyruvate

Fig 1. Shift of aerobic respiration to anaerobic respiration

that of aerobic respiration (Fig. 1). Moreover, the end-products
of glycolytic and fermentative pathway, such as ethanol, lactic
acid and carbon dioxide pose an additional hazard to the cell.
It is well reported that the maintenance of an active glycolysis
and an induction of fermentative metabolism are adaptive
mechanisms for plant tolerance to anoxia (Kennedy et al.,
1992; Ricard et al., 1994; Drew, 1997; Sairam et al., 2008). In
waterlogged environment, anoxia is always preceded by
hypoxia (Setter and Waters, 2003) and hypoxia is considered
as hypoxic pre-treatment (HPT) before exposing the plants to
anoxia (Waters et al., 1991). Hypoxia accelerates the induction
of glycolytic and fermentative enzymes, for example aldolase
and enolase (Bouny and Saglio, 1996; Germain et al., 1997),
ADH and PDC (Johnson et al., 1989; Albrecht et al., 2004).
This induction can improve or at least sustain the glycolytic
rate in anoxic plants contributing higher tolerance to anoxia.
In wheat, increased activities of ADH and PDC have been
found in response to hypoxia resulting higher ethanol
production contributing greater tolerance to anoxia (Waters et
al., 1991). Anoxic cells may undergo lactic fermentation rather
ethanolic fermentation onset of anoxia, though ethanol rather
than lactate is the less deteriorating end product of
fermentation (Davies, 1980). An accumulation of lactate
promotes acidification of the cytoplasm (Roberts et al., 1984)
of anoxia sensitive plants, such as maize, wheat and barley
(Menegus et al., 1989, 1991). However, the enhanced lactate
transport out of the roots into the surrounding medium may
help to avoid cytoplasmic acidification (Xia and Saglio, 1992).
Moreover, lowered cytoplasmic pH leads to the activation of
PDC and inhibition of LDH (Davis, 1980) resulting a shift
from lactate fermentation to ethnolic fermentation.

ii) Increased availability of soluble sugars

Due to shifting of energy metabolism from aerobic to
anaerobic mode under hypoxia or anoxia the energy
requirements of the tissue is greatly restricted as very few
ATPs are generated per molecule of glucose. A high level of
anaerobic metabolism in hypoxic or anoxic roots is therefore
very important to supply the energy charge high enough which
can sustain metabolism in roots for the survival of plants
(Jackson and Drew, 1984). Thus, maintaining adequate levels

of readily metabolizable (fermentable) sugars in hypoxic or
anoxic roots is one of the adaptive mechanisms to
waterlogging or oxygen deficient environment (Setter et al.,
1987; Xia and Saglio, 1992; Sairam et al., 2009). The amount
of root sugar reserve and activity of sucrose hydrolyzing
enzymes are important determinants for waterlogging
tolerance of crop plants (Sairam et al., 2009). Zeng et al.
(1999) reported that of the two enzymes involved in sucrose
hydrolysis, the activity of invertase is down-regulated, while
that of sucrose synthase (SS) is up-regulated in hypoxic maize
seedlings. The roots of comparatively tolerant genotypes
contain greater sugar content (total, reducing and
non-reducing sugar) than in susceptible genotypes of pigeon
pea. Moreover, waterlogging induces to increase the content
of reducing sugar through increased activity of SS in tolerant
genotypes. The tolerant genotypes show increased expression
of mRNA for SS while susceptible genotypes show very little
expression under waterlogged condition (Sairam et al., 2009).
Therefore, the availability of sufficient sugar reserves in the
roots with the increased activity of SS to provide reducing
sugars for anaerobic respiration is one of the important
mechanisms of waterlogging tolerance. The concentration of
soluble carbohydrate in roots and shoots of wheat is increased
when the crop is subjected to long-term oxygen deficit
(Barret-Lennard et al., 1988; Albrecht et al., 1993). In anoxic
wheat roots, carbohydrates accumulate during HPT (Waters et
al., 1991; Albrecht et al., 1993, 2004; Mustroph and Albrecht,
2003). The accumulation of sugars has been attributed to the
fact that growth is inhibited in hypoxically treated roots, while
photosynthetic reactions are still active in the less challenged
leaves (Mustroph and Albrecht, 2003). Wheat genotypes
tolerant to waterlogging accumulate more sugar in their roots
in response to hypoxia compared to sensitive genotypes
(Huang and Johson, 1995). This carbohydrate accumulation
might support fermentation of HPT roots over a long period of
anoxic stress, and could enhance tolerance against oxygen
deficiency leading to a higher tolerance to anoxia. Moreover,
exogenous supply of glucose prolongs the retention of root
elongation potential under anoxic condition (Waters et al.,
1991). The ratio of the root to shoot sugar increases for
waterlogging tolerant wheat genotypes under hypoxia (Huang
and Jonhson, 1995). The relatively large amount of sugars
transported to root facilitates the energy supply for root
respiration and ion uptake (Huang, 1997).
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Fig 2. Schematic diagram showing morphological and metabolic adaptive traits for waterlogging tolerance in wheat

iii) Antioxidant activities

Exposure of plants to most adverse conditions like hypoxia or
anoxia causes oxidative stress, which affects plant growth due
to the production of reactive oxygen species (ROS) such as
superoxide radicals, hydroxyl radicals and hydrogen peroxide
(Mittler et al., 2004). These ROS are very reactive and cause
severe damage to membranes, DNA and proteins (Bowler et
al., 1992; Foyer et al., 1997). Hypoxia stress triggers the
formation of ROS and induces oxidative stress in plants (Yan
et al., 1996; Geigenberger, 2003; Narayanan et al., 2005).
Moreover, re-exposure to air after a period of oxygen
deprivation can induce such stress causing serious injury
(Monk et al., 1987; Crawford, 1992). To counter the
hazardous effects of oxygen radicals, all aerobic organisms
evolve a complex antioxidative defense system consisting of
both antioxidants like ascorbate (AsA), glutathione (GSH),
phenolic compounds, etc., and antioxidative enzymes such as
superoxide dismutase, catalase, peroxidases, gluthatione
reductase and ascorbate peroxidase (Zhang and Kirkham,
1994; Foyer et al., 1997; Garnczarska, 2005). A higher level
of antioxidants and an increase in the activity of antioxidative
enzymes are assumed to be adaptive mechanisms in
overcoming certain stress situations (Foyer et al., 1995;
Mishra et al., 1995). The tolerance to the stress may be
improved by increased antioxidant capacity. Many recent
attempts to improve stress tolerance in plants have been made
by introducing and expressing genes encoding enzymes
involved in the antioxidative defense system ( Gupta et al.,

1993；Foyer et al., 1995). The roots of young wheat plants are
able to cope with the deleterious effects of oxygen radical
generation induced by re-aeration after anoxia by means of
their antioxidative defense system including increased
capacity to scavenge radicals and elevated activities of
enzymes of the AsA-GSH cycle to enable the restoration of
the essential, highly reduced state of the antioxidants, AsA and
GSH (Albrecht and Wiedenroth, 1994; Biemelt et al., 1998).

Conclusion and future perspectives

Hypoxia or anoxia, consequences of waterlogging, results
energy crisis in waterlogged cells which triggers the tolerant
genotypes to develop different traits associated with
waterlogging tolerance at least to survive under the stress as
summarized in Fig. 2. The study of regulatory mechanisms
and signaling events responsible for triggering responses to
hypoxia or anoxia in wheat plants is a prospective area of
research. Many questions remain to be answered about the
response of individual cells. What might be the basis for the
differential response between waterlogging-tolerant and
intolerant wheat genotypes? Do these responses differ in
cellular signaling and response mechanisms? It needs to be
understood what signaling transduction pathways are involved
to control adaptive responses? How do cells in roots and shoot
communicate over a long distance when there is an energy
crisis in the root cells? Understanding the cell to cell and
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long-distance signaling mechanisms which determine the
organ and whole plant response to hypoxia or anoxia, viz.,
aerenchyma formation and adventitious root growth is another
interesting area for research. So far we only know a little part
of the unfolded story, with many more phenomena still
unknown. Exploring these phenomena will be of relevance to
waterlogging tolerance of wheat and will provide knowledge
of the fundamental nature of the crops under anaerobiosis.
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