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Abstract: Gap junctions and connexin hemichannels mediate intercellular and extracellular commu-

nication, respectively. While gap junctions are seen as the “good guys” by controlling homeostasis,

connexin hemichannels are considered as the “bad guys”, as their activation is associated with the

onset and dissemination of disease. Open connexin hemichannels indeed mediate the transport of

messengers between the cytosol and extracellular environment and, by doing so, fuel inflammation

and cell death in a plethora of diseases. The present mini-review discusses the mechanisms involved

in the activation of connexin hemichannels during pathology.

Keywords: connexin hemichannel; pathology; mechanism

1. Introduction

Although the cell plasma membrane features an impermeable double phospholipid
layer structure, cross-membrane trafficking of biomolecules and ions is essential to control
various cell processes [1]. Cell plasma membrane transport proteins include different
membrane proteins that enable such transfer. Among those are gap junctions, which form
cell-to-cell junctions that facilitate direct intercellular communication between cells by
allowing the passage of small and hydrophilic molecules, including glucose, glutamate,
glutathione, adenosine triphosphate (ATP), cyclic adenosine monophosphate, inositol
triphosphate and ions, such as calcium, sodium and potassium [1]. These communicating
cell-to-cell junctions serve as gatekeepers for many physiological processes [2,3]. They
arise from the interaction of two hemichannels, which in turn are built up by six connexin
proteins at the cell plasma membrane surface of adjacent cells. Today, more than 20 different
connexin species have been identified. The connexin family members share a common
structure consisting of four transmembrane domains, two extracellular loops, one cytosolic
loop, one cytosolic carboxyterminal tail and one cytosolic amino tail (Figure 1). The
different connexin family members are designated based upon their molecular weight
as predicted by cDNA sequencing. In this respect, connexin43 (Cx43), which is the most
abundantly expressed connexin variant, has a molecular mass of 43 kDa [1–3].

Over the past two decades, it has become clear that connexin hemichannels also
provide an autonomous communication pathway for communication on their own, inde-
pendent of their role as structural precursors of gap junctions [4]. While gap junctions
mediate intercellular communication, connexin hemichannels support the transport of
messengers between the cytosol and the extracellular environment. Unlike gap junc-
tions, connexin hemichannels become predominantly active under pathological conditions
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(Table 1) [2,3,5]. The current mini-review provides an overview of the machinery involved
in connexin hemichannel opening in disease.
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Figure 1. Architecture of gap junction, connexin hemichannels and connexin proteins. Gap junctions

arise from the interaction of two connexin hemichannels of adjacent cells. A connexin hemichannel

is built up by six connexin proteins. A connexin protein consists of four transmembrane domains

(TM1-4), two extracellular loops (EL1-2), one cytosolic loop (CL), one cytosolic carboxyterminal tail

(CT) and one cytosolic amino tail (NT).

Table 1. Mechanisms underlying connexin hemichannel activation in disease.

Pathological Condition Connexin Species
Mechanism of Connexin
Hemichannel Activation

References

Bone remodelling processes Cx43 Mechanical stimulation [6–8]

Cardiac ischemia/reperfusion injury Cx43
Phosphorylation of connexin

proteins
[9–12]

Cataract Cx50 Oxidative stress [13]

Charcot-Marie-Tooth disease Cx32

Extracellular calcium ion
concentration

[14,15]

Changes in transmembrane
voltage

[16,17]

Keratitis-ichthyosis-deafness syndrome Cx26 pH fluctuation [18–23]

Neuroinflammatory
conditions

Cx43
Intracellular calcium ion

concentration
[24]

Systemic inflammatory
response

Cx43
Intracellular calcium ion

concentration
[25]
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2. Role of Connexin Hemichannels in Inflammation and Cell Death

2.1. Inflammation

The involvement of connexin hemichannels in inflammation and cell death has been
well documented in a variety of studies using genetic knock-out animals, knockdown of
connexin expression and connexin hemichannels inhibitors [26–28]. Both processes result
from tissue responses against infections, chemical insults and physical injury [29,30]. In-
flammation is a cohesion of reaction mechanisms that initiates the process of pathogen clear-
ance and tissue repair. At the cellular level, canonical inflammasome activation requires
two signals (Figure 2). The interaction of damage-associated and pathogen-associated
molecular patterns with Toll-like receptors of immune cells induces inflammation [31]. This
promotes the transfer of nuclear factor (NF)-κβ to the nucleus to activate gene expression.
Consequently, the genes encoding the premature forms of interleukin (IL)-1β and IL-18 are
transcriptionally activated, and the proteins are cleaved to their mature form by caspase 1
in the cytosol. The latter requires a second signal, as nucleotide-binding oligomerization
domain leucine rich repeat and pyrin domain-containing protein 3 (NLP3) inflammasome
formation leads to activation of caspase 1. Connexin hemichannels play a prominent role
in the initiation of inflammation, because they act as activators of the NLP3 inflamma-
some pathway by releasing ATP [31,32]. Pathogenic stimuli drive the opening of connexin
hemichannels, whereby extracellular ATP molecules can stimulate P2X7 receptors. The
activation of these P2X7 receptors results in a decrease of intracellular potassium ions,
which is a trigger of NLP3 inflammasome activation [33]. In this way, purinergic P2X7
receptors promote activation of the inflammasome pathway to release IL-1β and IL-18 in
the extracellular environment and influence the production of other inflammatory media-
tors, such as IL-6, tumour necrosis factor (TNF)-α and nitric oxide [31,32,34]. This interplay
between connexin hemichannels and NLP3 inflammasome activation plays a pivotal role
in initiation of disease pathology. In this respect, it has been well documented that aberrant
Cx43 hemichannel activity underlies renal damage in chronic kidney disease. Biopsy
material from patients with diabetic nephropathy, an inflammatory-associated disease that
represents approximately half of patients with end-stage kidney failure, show an upregula-
tion of Cx43 protein production in the tubular epithelia. This increased expression of Cx43
mediates the onset of this disease by mediating the extracellular release of ATP molecules.
Thus, P2X7 signalling and NLP3 inflammasome activation are stimulated. In this way, Cx43
hemichannel activity provokes inflammatory damage and phenotypic changes that pre-
dispose tubular injury in chronic kidney disease [35,36]. Similarly, activation of the NLP3
inflammasome pathway contributes to diabetic retinopathy, a complication of diabetes that
can results in vision loss. By blocking Cx43 hemichannels in an ex vivo human organotypic
retinal culture model of diabetic retinopathy, it was seen that NLP3 inflammasome activa-
tion was hindered. Consequently, Cx43 hemichannel modulation turns down the release
of pro-inflammatory cytokines [37]. In addition, other triggers of NLP3 inflammasome
activation, including, pH fluctuation, oxidative stress and calcium ion mobilization, are
well-known regulators of connexin hemichannels [38,39].
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Figure 2. Role of connexin hemichannels in canonical inflammation activation. Canonical inflam-

masome activation requires two signals. (1) Damage-associated molecular patterns (DAMPs) and

pathogen-associated molecular patterns (PAMPs) interact with Toll-like receptors of immune cells to

induce inflammation. The binding of DAMPs and PAMPs promotes the transfer of nuclear factor

(NF)-κβ to the nucleus to activate gene expression. Thus, the transcription of the genes encoding

premature forms of interleukin (IL)-1β and IL-18 is triggered. (2) Pathogenic stimuli drive the

opening of connexin hemichannels, promoting the extracellular release of adenosine triphosphate

(ATP). Extracellular ATP molecules stimulate P2X7 receptors, leading to nucleotide-binding oligomer-

ization domain leucine rich repeat and pyrin domain-containing protein 3 (NLP3) inflammasome

activation. NLP3 inflammasome activation triggers the onset of caspase 1, which influences the

inflammatory process by cleaving pro-IL-1β and pro-IL-18 to their mature form and producing other

pro-inflammatory cytokines.

The inflammatory environment on its own is another triggering factor for connexin
signalling and can contribute to disease progression. As such, pro-inflammatory cytokines
act as activators of Cx43 hemichannels of mouse astrocytes. While pro-inflammatory treat-
ment reduces gap junction-mediated intercellular communication, a mixture of IL-1β and
TNF-α increases Cx43 hemichannel activity in murine astrocytes. This induced opening
of Cx43 hemichannels affects the trafficking of glucose molecules. Thus, activated Cx43
hemichannels enhance the cellular uptake of glucose, which might explain the metabolic
changes of astrocytes involved in brain inflammation [40]. Similarly, promoted Cx43
hemichannel activity is seen after treating human endothelial cells with IL-1β and TNF-α
in combination with glucose, a condition that occurs in cardiovascular diseases [41]. The
opening of Cx43 hemichannels is associated with extracellular ATP release, which stimu-
lates mitogen-activated protein kinases, nitric oxide production, cyclo-oxygenase-2 and
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purinergic and prostaglandin receptors. Thus, several signalling cascades are triggered,
leading to endothelial dysfunction and cell damage [41]. The involvement of connexin chan-
nels in inflammation is also demonstrated by the differential effects of lipopolysaccharide,
the major component of the outer membrane of Gram-negative bacteria, on gap junctions
and connexin hemichannels. Lipopolysaccharide induces an inflammatory response by
activating the arachidonic acid pathway. This arachidonic acid pathway regulates inflam-
matory responses through forcing the biosynthesis of prostaglandins and thromboxane A2
from arachidonic acid. While lipopolysaccharide inhibits gap junctions, the response of
connexin hemichannels depends on the balance between kinase-mediated phosphorylation
of connexins and arachidonic acid effects [42]. In this respect, predominance of the arachi-
donic acid effect can support pathogenic-pore behaviour by stimulating paracrine ATP
signalling [42]. For readers who want to learn more about the details and specific aspects
on the involvement of connexin hemichannels in inflammation and associated diseases,
references to papers that extensively describe and discuss the prominent role of connexin
hemichannels in inflammation have been provided [33,34,43]. In short, studies show that
the passage of calcium ions and ATP through connexin hemichannels stimulates inflam-
matory signalling pathways in different acute and chronic diseases, like acetaminophen-
induced liver failure, lung inflammation and diabetic retinopathy [33,34,43]. In this respect,
it has become clear that connexin hemichannels mediate cellular communication underly-
ing inflammatory diseases in several organs [33,34,43].

2.2. Cell Death

Connexin hemichannels can participate in cell death in many ways. The opening
of connexin hemichannels has been observed in different types of cell death, including
apoptosis, necrosis, necroptosis and ferroptosis [44–47]. As such, connexin hemichannels
participate in the cellular release and uptake of essential metabolites and toxic substances.
Thus, Cx32 hemichannels are involved in neurotoxicity. Mouse microglia, treated with
TNF-α, are more prone to cell death as the induced opening of Cx32 hemichannels causes
the release of glutamate, which promotes neurotoxicity [48]. Vice versa, cell death also
affects connexin hemichannels. Human lens epithelial cells feature functional connexin
hemichannels at the cell plasma membrane by expressing Cx32, Cx46 and Cx50 proteins.
Exposure of these cells to linoleic acid results in an induction of cell death. Connexin
hemichannels are involved in initiation of apoptosis, since treatment of lens cells with
linoleic acid opens connexin hemichannels. This leads to elevations in intracellular cal-
cium ion concentrations [49]. Such overload of calcium ions can contribute to cell death
via signalling cascades leading to phagocytosis, endoplasmic reticulum stress, mitochon-
drial permeabilization and nuclear changes. Influx of calcium ions also affects connexin
hemichannels and associated transfer of vital molecules [49,50]. Another role of connexin
hemichannels in cell death includes communication of messages towards surrounding cells
in a paracrine manner [51,52]. Rat glioma cells transfected with cx43 can be triggered with
cytochrome C to undergo apoptosis. Comparison with non-transfected cells demonstrated
that both gap junctions and Cx43 hemichannels contribute to the spatial spreading of
apoptosis through calcium ion fluxes. While gap junctions can only mediate apoptotic
cell death in close proximity, Cx43 hemichannels also affect healthy cells beyond the ‘gap
junction-associated area’ [51]. This bystander signalling effect of Cx43 hemichannels has
also been shown in brain microvascular endothelial cells that were isolated from mice.
X-rays can cause DNA damage and cell death in surrounding cells, and connexin hemichan-
nels are associated with these radiation-induced bystander effects. The opening of Cx43
hemichannels propagates damage to non-irradiated cells by participating in signalling
cascades involving calcium ions, reactive oxygen species (ROS), ATP and nitric oxide [52].
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3. Regulation of Connexin Hemichannels

3.1. Mechanical Stimulation

Evidence for the opening of connexin channels in response to mechanical stimulation
has been predominantly shown in chicken and murine osteocytes. Osteocytes, the most
abundant cells present in skeletal adult bone tissue, are regulators of bone remodelling
processes. Bone remodelling is involved in the reshaping and replacement of bone fol-
lowing injury, including fractures. An imbalance of bone remodelling processes results in
major bone loss and osteoporosis in patients. Osteocytes play a central role in the initia-
tion of bone remodelling, as they are mechanosensitive cells that sense stress within the
bone [53,54]. Mechanical stimulation of bone induces fluid flow in the lacuna canalicular
network and osteocytes respond to this shear stress by releasing intracellular prostaglandin
E2 (PGE2) via Cx43 hemichannels [6]. Cx43 hemichannel activity in response to mechanical
stimulation in osteocytes is adaptive. The opening of Cx43 hemichannels is correlated with
the magnitude of fluid flow shear stress [55]. Fluid flow shear stress initiates interaction
between integrin α-5, a cell plasma membrane protein, and the carboxyterminal tail of
Cx43 [7]. The interplay between these 2 proteins is enhanced by protein kinase B-mediated
phosphorylation of Cx43 on serine373. This modification stabilizes complex formation
with 14-3-3θ, an adapter protein that regulates Cx43 hemichannel activity by stimulating
translocation towards the cell plasma membrane surface [56]. By doing so, the opening
of Cx43 hemichannels is enhanced. However, continuous shear stress leads to a gradual
closing of Cx43 hemichannels [55]. It has been shown that closure of Cx43 hemichannels
is regulated by one of its substrates. The release of PGE2 initiates an accumulation effect
that leads to closure of hemichannels by promoting Cx43 phosphorylation through ex-
tracellular signal-regulated kinases [8]. Thus, the mechanical stimulation of osteocytes
results in open and closed Cx43 hemichannels, and controls extracellular PGE2 levels.
PGE2 does not only regulate Cx43 hemichannel activity, but also acts as mediator for the
prevention of bone related diseases. PGE2 preserves osteocyte viability, inhibits osteoclast
functionality and stimulates differentiation of osteoblasts to increase bone formation [57].
However, the prominent role of PGE2 in bone pathology remains difficult to unravel, as
it stimulates osteoclast formation at high concentrations as well [58]. This biphasic effect
seems to be important in health and disease. Endogenous levels of prostaglandins regulate
bone physiology whereas abnormalities in PGE2 quantities are linked with pathology [59].
Consequently, the connection between Cx43 hemichannel activity through mechanical
stimulation and release of PGE2 by osteocytes may be of paramount importance in bone
pathology.

3.2. pH Fluctuation

The keratitis-ichthyosis-deafness (KID) syndrome is a rare disorder characterized by
skin lesions, hearing loss and vascularizing keratitis. KID is associated with mutations in
the cx26 gene that lead to excessive opening of Cx26 hemichannels [18]. One of the Cx26
KID mutations substitutes a valine for alanine at amino acid position 40 (alanine40valine)
and affects activity of Cx26 hemichannels. Xenopus oocytes expressing human Cx26 pro-
teins show sensitivity towards pH fluctuation, as adjusting extracellular pH values from
8.0 to 6.5 decreases Cx26 hemichannel currents. Furthermore, this inhibitory effect on
Cx26 hemichannels by pH is less recorded with oocytes harbouring the alanine40valine
mutant [19]. Given that physiological pH levels reduce Cx26 hemichannel activity and
Cx26 protein levels control dermal homeostasis by regulating keratinocyte differentiation
and proliferation, it is hypothesized that insensitivity of Cx26 hemichannels towards pH
might underlie skin disorders in KID patients [20–22]. While the epidermis is slightly acidic,
the environment of the deeper layers of the skin is more neutral. Since the alanine40valine
point mutation at the boundary of the first transmembrane domain and the first extracellu-
lar domain of Cx26 results in abnormal opening of Cx26 hemichannels in this pH range,
aberrant Cx26 hemichannel activity of keratinocytes in the basal layers might contribute to
the development of hyperkeratosis [19]. Open Cx26 hemichannels give rise to leakage of
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essential biomolecules, like ATP, and the resulting ionic imbalance mediated by these leaky
Cx26 hemichannels is associated with abnormal proliferation of keratinocytes and patho-
logical features [19,21,22]. However, the mechanism of pH-mediated Cx26 hemichannel
activity remains elusive. Protonation of Cx26 could promote activation of its hemichannels,
since an acidic pH drives a conformational change of Cx26 proteins to reform channels
from a closed to an open transition state [23]. However, increasing the extracellular pH can
also trigger hemichannel opening. In this respect, human cervical cancer cells transfected
with cx43 show sensitivity towards alkalinization. Raising extracellular pH values from
7.4 to 8.5 leads to an enhanced Cx43 hemichannel activity, which was measured through
ethidium uptake, compared to wild-type cervical cancer cells [60].

3.3. Calcium Concentration

Another regulator of connexin hemichannel activity is the amount of calcium ions
present in the extracellular environment and cytosol. Physiological conditions preserve
sufficient high concentrations of surrounding calcium ions to keep connexin hemichan-
nels in a closed state [61]. For hemichannels composed of Cx26, Cx32 and Cx43, it has
been shown that reducing the calcium concentration at the extracellular side leads to
activation. As such, the cascading decrease of calcium concentration is accompanied by a
gradual enlargement of the pore diameter [14,61,62]. This reversible process is explained
by the ability of calcium ions to bind extracellular parts of the connexin hemichannel to
unbalance the open hemichannel configuration. So, the removal of calcium ions allows
rearrangement of connexin proteins, which induces connexin hemichannel-mediated dif-
fusion processes [61]. The interaction between calcium ions and Cx32 hemichannels is
mediated by aspartic amino acids present in the second extracellular loop. Two aspartic
amino acids of each Cx26 protein are responsible for the formation of a ring of 12 aspartic
amino acids in the hemichannel configuration, which is an extracellular region for docking
of surrounding calcium ions. In this respect, mutants harbouring site-directed point muta-
tions of human Cx32 at aspartic acid169 or aspartic acid178 in oocytes from Xenopus laevis
generate hemichannels that are less sensitive towards calcium-ion dependent triggering
compared to wild-type hemichannels [14]. This aberrant connexin hemichannel activity
is also linked with pathological conditions. The naturally occurring mutation in the cx32
gene replaces aspartic acid for tyrosine at position 178. This amino acid substitution is
known as one of the 260 different mutations causing X-linked Charcot-Marie-Tooth disease,
an inherited form of demyelinating neuropathy. Since this mutation is associated with
calcium ion dysregulation, uncontrolled opening of hemichannels can induce disturbance
of transportation of ions and small molecules across the cell plasma membrane of Schwann
cells and underlies the pathogenesis of neuropathy [14,15]. Furthermore, intracellular
calcium ions are involved in connexin hemichannel opening as well. As a consequence of
larger cytosolic calcium ion concentrations, a calmodulin-depending cascade is activated
to open connexin hemichannels via intermediate signalling steps [63,64]. The implication
of Cx43 hemichannels and intracellular calcium ions in pathological conditions has been
demonstrated by injecting mice with TNF-α to induce a systemic inflammatory response
syndrome characterized by overproduction and secretion of cytokines and chemokines into
the circulation. Whereas blocking Cx43 hemichannels protects mice against TNF-α-induced
mortality, hypothermia and vascular permeability alterations, stimulation of hemichannel
opening has the opposite effect. Whole-cell voltage clamp experiments on human cervical
cancer cells overexpressing Cx43 show that TNF-α induces Cx43 hemichannel opening
depending on calcium [25]. The interplay between intracellular calcium ions and connexin
hemichannels is also associated with several neuroinflammatory conditions. As such, open
Cx43 hemichannels contribute to degranulation processes in mast cells in Alzheimer’s
disease, amyotrophic lateral sclerosis and harmful stress conditions [24].
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3.4. Changes in Transmembrane Voltage

The voltage regulation of connexin hemichannel activity is mainly a consequence of
voltage-driven changes in connexin protein conformation. Differences in electrical potential
between the cytoplasmic and extracellular environment change the position of amino acids,
whereby gating properties are affected [65]. The voltage-mediated activity of connexin
hemichannels shows 2 distinct forms of hemichannel gating, namely a fast and a slow gat-
ing mechanism, which are associated with transitions between open and sub-conductance
states, and transitions between the open and closed state through intermediate conductance
states, respectively [65,66]. This sensitivity towards transmembrane voltage is underscored
by voltage sensors that are present in connexin proteins. As such, the slow gating mech-
anism induces conformational changes of connexin proteins by coordinating a rotation
of the first transmembrane domain and a tilt of connexin subunits [66,67]. In this respect,
the asparagine amino acid at position 159 of Cx26 proteins is responsible for forming
voltage-activated hemichannels. Electrophysiology measurements in xenopus oocytes and
murine neuroblastoma cells expressing rat, sheep or human Cx26 proteins show that the
single evolutionary amino acid change at position 159 of the rodent protein accounts for
voltage insensitive hemichannels. Furthermore, the introduction of a structural change by
substituting aspartic acid with asparagine in rat Cx26 restores voltage dependency. Given
that mutations within the cx26 gene affects the functionality of its hemichannels under
physiological control of transmembrane voltage, the role of Cx26 mutants and associated
hemichannels in pathological activity may be critical [16]. For Cx32, serine85cysteine
mutants, which are associated with X-linked Charcot-Marie-Tooth disease, generate more
voltage-sensitive connexin hemichannels. Current-voltage relations observed with xenopus
oocytes expressing human Cx32 protein and its serine85cysteine mutant show an increased
open probability for mutant Cx32 hemichannels present at the cell plasma membrane sur-
face. Since Cx32 is expressed by Schwann cells, the serine85cysteine mutation may cause
dysfunction of these cells by abnormalities in trafficking of ions and small metabolites and
lead to clinical manifestations of X-linked Charcot-Marie-Tooth disease [17].

3.5. Oxidative Stress

Oxidative stress is a critical determinant in the pathogenesis of various diseases, such
as ischemia, atherosclerosis and neurodegenerative disorders. The oxidative stress state is
characterized by increased ROS formation and impaired antioxidant systems [68–70]. When
cellular metabolism is stimulated to produce additional ROS, oxidative stress can drive
pathological processes by compromising DNA, disrupting membranal layers, inactivating
membrane-bound proteins, triggering proteases and affecting signal transduction mech-
anisms [71]. Cigarette smoke extract and hydrogen peroxide cause opening of connexin
hemichannels. Measurements with rat fibroblastoid cells expressing Cx43 and connexin
deficient mouse neuroblastoma cells implicate that activation of these hemichannels is
evoked by depolarisation of the cell plasma membrane. Oxidative stress and associated
hemichannel opening predispose cells to cell death. Following treatment of neuroblastoma
cells with cigarette smoke extract, apoptotic changes are observed, while incubation with
connexin hemichannel blockers prevents early cell death, cell shrinkage and the formation
of apoptotic bodies [72]. In contrast, lens fibre cells benefit from activation of connexin
hemichannels. Chicken embryo fibroblast cells transfected with cx50 are opened by hydro-
gen peroxide to significantly reduce the level of apoptosis. Counterparts with the Cx50
proline88serine construct, a mutation that is associated with cataract, are rather impeded
and no reduction of apoptosis occurs. The protective effect of Cx50 hemichannels against
oxidative stress is mediated by the cellular uptake of the antioxidant glutathione [13]. Cx43
hemichannels are also involved in preserving cells against osmotic stress induced-damage.
During skeletal aging, which is associated with accumulation of ROS and osteocyte cell
death, bones become fragile and more likely to break. The critical role for Cx43 hemichan-
nels in this pathogenesis has been demonstrated by treating murine osteocyte-like cells
with hydrogen peroxide. The latter evokes cell death, but a dose-dependent effect on Cx43
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hemichannel activity was seen as well. Since blocking of Cx43 hemichannels exacerbates
cell death, a protective role for open Cx43 hemichannels has been shown in osteocytes [73].

3.6. Phosphorylation

Connexin proteins can undergo several posttranslational modifications, including
phosphorylation [74,75]. In fact, phosphorylation is a major regulator of connexin hemichan-
nel opening [76,77]. With the exception of Cx26, all connexins are phosphoproteins. Connex-
ins are substrates for many kinases and the outcome of this posttranslational modification
depends on the nature of the kinase and connexin as well on the cellular context [5,75]. In
this context, phosphorylation of serine at position 368 of Cx43 controls connexin hemichan-
nel communication. Following injection of Xenopus laevis oocytes with Cx43 cRNA, uptake
of carboxyfluorescein measurements show that blocking of protein kinase C, a member
of the mitogen-activated protein kinase family, increases connexin hemichannel perme-
ability [77]. As expected, the phosphorylation status of Cx43 proteins plays a critical role
during disease [9]. Cx43 phosphorylation and dephosphorylation are associated with
cardiac ischemia/reperfusion injury. Ischemia leads to dephosphorylation of Cx43 and
redistributes gap junction constituents away from intercalated disks. In this way, Cx43
proteins lose their supportive role of coordinating contractile activation and trigger ar-
rythmias in the ischemic heart [10]. Furthermore, relocated Cx43 may operate as open
hemichannels. Preventing the loss of critic metabolites, restoring ionic imbalance, hinder-
ing cellular swelling and cell rupture via blocking these channels all are protective against
myocardial ischemia/reperfusion injury [11,12]. However, it remains difficult to deter-
mine a general mechanism for the effects of phosphorylation on connexin hemichannel
activity as there is a difference between the connexin family members. Whereas protein
kinase C-mediated phosphorylation induces the closure of Cx30 hemichannels in Xenopus
laevis, Cx43 hemichannels were unaffected. In this regard, the phosphorylation-dependent
regulation of connexin hemichannels is seen as a connexin specie-specific process [78].
Furthermore, protein kinase C-isoforms can differentially modulate connexin hemichannel
activity as well. Patch clamp analysis with cells, which were derived from human em-
bryonal kidney cells and transfected with cx43, shows a difference in Cx43 hemichannel
electrical conductance upon treatment with various protein kinase inhibitors [79].

4. Conclusions and Perspectives

Connexins have been detected in virtually all cell types and organs. They gather in
a hexameric hemichannel configuration at the cell plasma membrane surface. Connexin
hemichannels become predominantly active in pathological conditions, and support inflam-
mation and cell death. Hereby, open connexin hemichannels are involved in a wide array
of pathologies [2,10,80,81]. Different mechanisms underly connexin hemichannel activity,
as reviewed in this manuscript. However, gaining more in-depth insight into the molecular
mechanism remains challenging. Since gap junctions and connexin hemichannels are com-
posed of the same connexin building blocks and allow the passage of identical molecules
and ions, it is difficult to distinguish between both channel types. Thus far, techniques
monitoring extracellular release of messengers, like ATP, or cytosolic uptake of tracer dyes,
such as Lucifer Yellow, are widely used to study connexin hemichannel activity, yet the
presence of many other cell plasma membrane transport proteins can interfere with these
read-outs [82]. Most importantly, this research area lacks robust connexin hemichannel
blockers [2]. At present, connexin hemichannel research still largely relies on the use of
peptide-based inhibitors that reproduce specific amino acid sequence in the structure of
connexin proteins. In this regard, Gap19 is a synthetic nonapeptide (KQIEIKKFK) target-
ing the cytoplasmic loop of Cx43. Gap19 prevents interaction between the cytoplasmic
loop and carboxyterminal tail, leading to inhibition of Cx43 hemichannels, while leaving
Cx43-based gap junctions unaffected [83]. Similarly, Gap24 (GHGDPLHLEEVKC) imitates
a sequence in the cytoplasmic loop of Cx32 and inhibits its hemichannels [83]. Despite
the promising potential of these mimetic peptides both in vitro and in vivo, their short
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half-life impedes clinical application [84]. Several groups are therefore currently focusing
on novel strategies to overcome this issue, including improving stability and selectivity of
connexin mimetic peptides [84]. The design of peptides that mimic the carboxyterminal
tail of connexin proteins seems particularly interesting for future development of con-
nexin hemichannel inhibitors. Given that amino acid sequences of the carboxyterminal
tail differ considerably among connexin species and that this region controls opening of
connexin hemichannels, the carboxyterminal tail is considered as a major potential target
for peptide-based inhibitors. This is underscored by the αCT1 peptide, which is currently
being tested in clinical trials for the treatment of diabetic foot and venous leg ulcers by
switching off Cx43 hemichannel signalling [84]. In parallel, antibodies specifically targeting
connexin hemichannels are being explored [85]. An additional strategy to develop connexin
hemichannel inhibitors includes the modulation of existing drugs. Since it was recently
found that aminoglycosides, which are broad-spectrum antibiotics, can act as inhibitors of
connexin hemichannels, the idea of using small-molecule drugs for the development of new
connexin hemichannel inhibitors is gaining more attention [86,87]. In this respect, the gen-
eration of kanamycin derivatives has yet resulted in the identification of a lead compound
for Cx43 hemichannel inhibition [88]. Another promising small-molecule that regulates
connexin hemichannel activity is tonabersat, a member of the benzoylamino-benzopyran
family. Tonabersat is a compound that has been identified as Cx43 hemichannel blocker and
shows great potential to impede the role of open connexin hemichannels in inflammation.
The drug product of tonabersat, which is currently in clinical trials for the treatment of
diabetic retinopathy and age-related macular degeneration, is applicable for oral adminis-
tration and aims to hinder Cx43-mediated ATP release promoting NLP3 inflammasome
activation [89]. Research in these directions should be strongly encouraged, as this may
lead to a new generation of drugs to treat a plethora of connexin hemichannel-related
pathologies.
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