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Abstract

Multivalent glycolipid binding toxins such as cholera toxin have the capacity to cluster glycolipids, a process thought to be
important for their functional uptake into cells. In contrast to the highly dynamic properties of lipid probes and many lipid-
anchored proteins, the B-subunit of cholera toxin (CTxB) diffuses extremely slowly when bound to its glycolipid receptor
GM1 in the plasma membrane of living cells. In the current study, we used confocal FRAP to examine the origins of this slow
diffusion of the CTxB/GM1 complex at the cell surface, relative to the behavior of a representative GPI-anchored protein,
transmembrane protein, and fluorescent lipid analog. We show that the diffusion of CTxB is impeded by actin- and ATP-
dependent processes, but is unaffected by caveolae. At physiological temperature, the diffusion of several cell surface
markers is unchanged in the presence of CTxB, suggesting that binding of CTxB to membranes does not alter the
organization of the plasma membrane in a way that influences the diffusion of other molecules. Furthermore, diffusion of
the B-subunit of another glycolipid-binding toxin, Shiga toxin, is significantly faster than that of CTxB, indicating that the
confined diffusion of CTxB is not a simple function of its ability to cluster glycolipids. By identifying underlying mechanisms
that control CTxB dynamics at the cell surface, these findings help to delineate the fundamental properties of toxin-receptor
complexes in intact cell membranes.
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Introduction

The role of cholesterol-dependent membrane domains have

been intensively investigated as a mechanism involved in the

regulation of membrane trafficking and signaling in cells [1].

Initially envisioned to exist as stable platforms, such domains are

now thought to consist of transient nanoscopic assemblies of

proteins, glycolipids, and cholesterol [2]. As such, current models

suggest that mechanisms that crosslink components of these

domains may be important for facilitating their functions [2], as

well as to alter membrane mechanics and deform membranes [3].

Bacterial toxins in the AB5 family, including Shiga toxin and

cholera toxin, are an example of a class of proteins with the

intrinsic capacity to crosslink glycolipids via their multivalent

membrane binding B-subunits [4–11]. The ability of cholera toxin

B-subunit (CTxB) and related molecules such as Shiga toxin B-

subunit to cluster glycolipids and organize membrane domains has

been linked to their functional uptake into cells by clathrin-

independent, cholesterol-dependent endocytic pathways

[3,7,12,13]. Recently, it has become evident that the accessibility

of glycolipids to toxin binding is itself regulated by cholesterol

within both model membranes and cell membranes, as a

significant fraction of glycolipids is masked and inaccessible to

toxin binding [14,15]. Thus, a picture is emerging in which the

ability of toxin to bind glycolipids is controlled in a cholesterol-

dependent manner [14,15] and the presence of bound toxin itself

also leads to changes in underlying membrane domain structure

[3,9–11,16].

An important question raised by these findings is how the

structure and dynamics of the complex formed upon binding of

toxins to the accessible pool of their glycolipids receptors are

regulated in cells. For the case of cholera toxin, one striking feature

of the CTxB/GM1 complex is that it diffuses extremely slowly

within the plasma membrane compared to many other proteins

and lipids [13,17–22]. This result is surprising given that lipids

themselves typically diffuse rapidly in cell membranes, as do many

lipid-anchored proteins [22–28]. This suggests that the movement

of the CTxB/GM1 complex within the plasma membrane is

regulated by fundamentally different mechanisms than those that

control the dynamics of other types of cell surface molecules under

steady state conditions.

The underlying mechanisms that contribute to the slow

diffusion of CTxB are not yet fully understood. However, several

factors could potentially account for this behavior. For example,

there is some evidence that CTxB is confined by actin-dependent

barriers [17]. CTxB could potentially associate with nanoclusters

that form via an energy- and actin-dependent process, similar to

those reported for other lipid-tethered proteins [29]. CTxB has

also been reported to associate with caveolae [30–33], flask-shaped

invaginations of the plasma membrane which themselves are

immobilized within the plane of the membrane [34,35]. The
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intrinsic ability of CTxB to cluster glycolipids could potentially

lead to the formation of slowly diffusing CTxB/GM1 complexes. If

they became large enough, such complexes could also potentially

impact the diffusional mobility of other molecules, by either

forming barriers to their diffusion or by trapping them within the

same domains [36,37]. In the current study, we investigated the

contributions of these various factors to the confined diffusion of

CTxB within the plasma membrane of living cells using confocal

FRAP.

Results

Confocal FRAP assay and cell surface markers examined
in this study
To measure the diffusion of CTxB on the plasma membrane,

we took advantage of a quantitative confocal FRAP-based assay

that yields accurate diffusion coefficients for both rapidly and

slowly moving molecules [38,39]. In FRAP, lateral diffusion is

described by two parameters, the diffusion coefficient (D),

reflecting the average rate of diffusion, and the mobile fraction

(Mf), a measure of fraction of molecules that are free to recover

over the time course of the experiment.

To quantify the diffusional mobility of CTxB at the cell surface,

COS-7 cells were labeled briefly with saturating levels of CTxB

(1 mM) (Figure 1B), washed, then shifted onto the microscope

stage. We visualized a portion of the plasma membrane, and

FRAP measurements were carried out using a circular bleach

region (Figure 1A). Although CTxB was endocytosed to the

perinuclear region in a time-dependent manner, a substantial

fraction of CTxB remained associated with the plasma membrane

over time, enabling measurements of its cell surface mobility by

confocal FRAP over at least 30 minutes after shifting cells to the

microscope stage at 37uC. Care was taken to exclude any FRAP

data in which non-surface attached, mobile endocytic vesicles were

inside the ROI at any time during the FRAP experiment. The

recovery curves were well fit by a pure diffusion model, implying

that the recovery process is dominated by lateral diffusion

(Figure 1C). In addition, the diffusional mobility of CTxB

remained constant over time, suggesting that the properties of

the cell surface pool of CTxB do not change significantly even

while some of the toxin is being actively endocytosed (Figure 1D).

In order to understand what aspects of the regulation of CTxB’s

diffusion are specific for molecules that cluster glycolipids, we

examined of the diffusional mobility of several additional cell

surface markers in parallel in our study: a representative GPI-

anchored protein, YFP-GL-GPI [40], a single pass transmem-

brane protein, YFP-GT46 [41], and a fluorescent lipid analog,

DiIC16 (Figure 1E). Our rationale for studying these markers was

severalfold. GPI-anchored proteins are linked to cell membranes

via a lipid anchor, and also have been shown to associate with

cholesterol-dependent nanoclusters [29,42] that could potentially

organize glycolipids as well. We chose to study YFP-GT46 because

transmembrane proteins are often subjected to different types of

constraints to their diffusion than are lipid-anchored proteins

[23,27]. DiIC16 was selected for these studies to control for the fact

that CTxB binds to a lipid receptor at the cell surface. In general,

lipids diffuse much more rapidly than proteins do in cell

membranes [23–27]. Because CTxB clusters multiple glycolipids,

it would not necessarily be expected to behave like a simple

reporter of lipid diffusion.

Previous studies have shown that CTxB diffuses significantly

more slowly than YFP-GL-GPI, YFP-GT46, and DiIC16 when

directly compared in the same cell line [22,28]. We confirmed this

in control FRAP experiments (Figure 1F). The fastest value of D

was measured for DiIC16 (2.5460.78 mm2/s, mean 6 SD). D for

YFP-GL-GPI (1.1860.49 mm2/s) was slower than for DiIC16 but

faster than that of YFP-GT46 (0.5460.18 mm2/s), while CTxB

diffused the most slowly of all (0.1760.12 mm2/s). Mf was ,90%

for YFP-GL-GPI, YFP-GT46, and DiIC16, and ,80% for CTxB

(Table S1). These data indicate the diffusion of CTxB is selectively

constrained at the cell surface relative to these other classes of

molecules. We next investigated possible mechanisms underlying

the slow diffusion of CTxB. For the purpose of these studies, we

focused on understanding the properties of CTxB bound to its

accessible pool of glycolipid receptors [14,15].

CTxB diffusion is confined by the actin cytoskeleton
The actin cytoskeleton is a well-known barrier to the diffusion of

a number of cell surface molecules [27,43–46]. Two previous

observations suggest that actin may play a role in controlling the

diffusional mobility of CTxB. First, biochemical studies indicate

that cholera toxin co-fractionates with actin [47]. Second, CTxB

diffusion was shown to be enhanced following actin disruption

[17]. However, the latter study did not evaluate how actin

disruption affected the mobility of other proteins and lipids,

leaving open the question of how specific this effect was. We

therefore sought to directly compare the impact of disrupting the

actin cytoskeleton on the diffusion of CTxB relative to its effect on

other proteins and lipids at the cell surface using latrunculin A

(LatA), which inhibits actin polymerization by sequestering

monomeric actin.

In control experiments, we confirmed that LatA treatment led

to a loss of F-actin within cells as assessed by phalloidin staining of

fixed cells, as expected (Figure 2E). Disruption of actin has also

been shown previously to lead to the formation of tubular

invaginations of the plasma membrane [48]. We verified that

similar tubules were apparent in living cells labeled with CTxB or

DiIC16, as well as in cells expressing YFP-GL-GPI or YFP-GT46

(Figure 2A–D).

Next, we used confocal FRAP to measure the diffusional

mobility of CTxB in LatA-treated and mock-treated cells

incubated in media containing DMSO (Figure 2F). For compar-

ison, we monitored the effects of these treatments on the

diffusional mobility of YFP-GL-GPI, YFP-GT46, and DiIC16

under identical conditions, avoiding regions where plasma

membrane tubules were present in these measurements. The

results of these experiments showed D for CTxB was significantly

increased by LatA treatment from 0.2160.10 mm2/s to

0.3560.18 mm2/s. In contrast, the diffusion of YFP-GL-GPI,

YFP-GT46, and DiIC16 was unaffected in the presence of LatA

(Figure 2F). These results suggest the diffusional mobility of CTxB

is selectively slowed either directly or indirectly as the result of its

interactions with the actin cytoskeleton. However, even in cells in

which actin was disrupted, the diffusion of CTxB was considerably

slower than that of other cell surface molecules, suggesting

additional factors are involved in slowing its lateral diffusion. We

therefore asked if the interaction of CTxB with other types of

domains might impede its mobility.

Diffusion of CTxB and a transmembrane protein, but not
a GPI-anchored protein is enhanced in ATP-depleted cells
Previous studies have reported that certain proteins associate

with nanoclusters that maintain a fixed size and a fixed ratio of

monomeric to clustered molecules over a wide range of

concentrations, implying these domains are actively maintained

and require cellular energy for their generation [42,49]. GPI-

anchored proteins are immobilized within these nanoclusters,

indicating these domains have the capacity to impact the dynamics

Cell Surface Dynamics of CTxB
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of cell surface molecules [29]. It is currently unknown if CTxB

associates with actively maintained nanoclusters. We reasoned that

ATP depletion might disrupt the interactions of molecules with

such structures, thereby leading to an increase in their overall

diffusional mobility. To test this, COS-7 cells were depleted of

ATP by a 15 minute incubation with 0.02% sodium azide and

50 mM 2-deoxy-D-glucose, or mock-depleted prior to labeling

with CTxB. For comparison, we performed similar experiments in

ATP-depleted cells expressing YFP-GL-GPI (which is predicted to

associate with nanoclusters) or YFP-GT46, or labeled with DiIC16.

ATP depletion led to several marked changes in the

morphology of the plasma membrane and the underlying

cytoskeleton. First, ATP depletion led to the formation of

protrusions of the plasma membrane that were never observed

in control cells (Figure 3A–E). Some of these protrusions were

localized to the edges of cells and may represent retraction fibers.

Needle-like protrusions were also seen projecting above cells into

the media, as visualized in x-z sections. These protrusions were

labeled with CTxB and for the other cell surface markers such as

YFP-GL-GPI (Figure 3B, C, E). Second, in some ATP depleted

cells tubular invaginations of the plasma membrane enriched in

CTxB were observed (Figure 3C). Similar invaginations have been

proposed to correspond to sites of clathrin-independent endocy-

tosis induced by Shiga toxin B-subunit binding that tubulate in an

ATP independent manner but whose scission is ATP dependent

[7,8], and have also been reported to form in cells labeled with

CTxB [50]. Tubular invaginations were only observed in cells

labeled with CTxB and not other cell surface markers, although

the extent of invagination formation varied between cells. Because

ATP depletion has been previously reported to increase levels of F-

actin in cells [51–53], we also examined actin organization under

these conditions by phalloidin staining. We found that F-actin

staining was markedly enhanced in ATP-depleted cells (Figure 4).

In addition, the plasma membrane protrusions also appeared to be

enriched in actin, suggesting that the changes in actin organization

Figure 1. Confocal FRAP assay. COS-7 cells were transfected with the indicated constructs or left untransfected and labeled with Alexa546-CTxB
or DiIC16. FRAP was performed at 37uC using a 4.1 mm diameter bleach spot. (A) Representative images of Alexa546-CTxB during a FRAP experiment.
Bar, 10 mm. (B) Average fluorescence intensity of Alexa546-CTxB labeling of COS-7 cells incubated with A546-CTxB concentrations ranging from
0.1 nM to 1 mM (mean6 SD for 59–151 cells). (C) Example of a normalized recovery curve for a cell labeled with 1 mM Alexa546-CTxB after correcting
for fluorescence decay during imaging, along with fitted FRAP curve. (D) Representative example of D for CTxB as a function of time after labeling.
Each value of D was obtained for a different cell on the same coverslip from a single experiment. (E) Representative whole cell images of YFP-GT46,
YFP-GL-GPI, and DiIC16 in COS-7 cells. Single confocal slices are shown. The spotty appearance of DiIC16 on the background is due to the presence of
dye aggregates. Bar, 10 mm. (F) Representative FRAP curves for Alexa546-CTxB, YFP-GT46, YFP-GL-GPI, and DiIC16 (n = 8–13 cells for each).
doi:10.1371/journal.pone.0034923.g001
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that occur in response to ATP depletion may be responsible for

their formation.

We next performed confocal FRAP analysis in ATP depleted

cells. For these studies, we chose bleach ROIs on regions of the

plasma membrane that did not include visible membrane

protrusions or invaginations. The results of these experiments

showed no change in D for YFP-GL-GPI or DiIC16 in ATP

depleted versus mock-depleted cells (Figure 3F). We did note

however that the rate of diffusion of DiIC16 in both mock ATP

depleted and ATP depleted cells was significantly higher than that

of DiIC16 under any of the other conditions examined. This effect

was reproducible across days, and therefore likely arises from

differences in the media used for various treatments.

In contrast to the lack of effect of ATP depletion on DiIC16 or

YFP-GL-GPI, CTxB and YFP-GT46 both showed a significant

increase in D in ATP depleted cells relative to controls (Figure 3F).

We also observed a small but significant increase in Mf for DiIC16

and CTxB, and decrease in Mf for YFP-GT46 in ATP-depleted

cells (Table S1). Thus, diffusion of CTxB is normally confined by

an ATP-dependent mechanism. Because the diffusion of YFP-GL-

GPI, which is predicted to associate with nanoclusters, was

unaffected under these conditions, it seems unlikely that the

increased mobility of CTxB is due to disruption of its association

with actively maintained nanoclusters. Instead, the enhanced

diffusion of CTxB under these conditions may reflect the

substantial changes in the organization of actin that occur in

response to ATP depletion (Figure 4), allowing for it to decouple

from CTxB.

Diffusion of CTxB and other cell surface molecules is
identical in the presence and absence of caveolae
Caveolae are another structural feature of cell membranes with

the potential to restrict the diffusion of CTxB. CTxB is sometimes

enriched within caveolae, suggesting it has a specific affinity for

these domains [30–33]. Since caveolae are immobile within the

plane of the membrane [34,35], even transient interactions of

CTxB with caveolae would be expected to constrain its lateral

mobility. In agreement with this possibility, several studies have

reported that interactions of CTxB with caveolin-1 (Cav-1) itself

slow the diffusion of CTxB both at the plasma membrane and

within early endosomes at neutral pH [19,31,54]. However, these

experiments either used a knockdown approach or examined the

dynamics of CTxB in enlarged endosomes containing caveolin-1-

GFP. Therefore, to more directly assess the effect of caveolae on

CTxB mobility, we measured CTxB diffusion in Cav-12/2 and

Cav-1+/+ mouse embryonic fibroblast (MEF) cells.

All of the markers studied localized correctly to the plasma

membrane in the Cav-12/2 cells (Figure 5A). Levels of CTxB

binding to the cell surface were also equivalent in the Cav-1+/+

and Cav-12/2 MEFs, similar to previous reports [55]. Confocal

FRAP analysis revealed there was no significant difference in D or

Mf between CTxB in Cav-1+/+ and Cav-12/2 MEFs, suggesting

that CTxB is not diffusionally trapped within caveolae (Figure 5B,

Figure 2. CTxB diffusion is confined by the actin cytoskeleton. (A–D) Subcellular distribution of (A) Alexa546-CTxB, (B) YFP-GL-GPI, (C) YFP-
GT46 and (D) DiIC16 in live COS-7 cells under control conditions or following LatA treatment as described in the Material and Methods. A zoom of the
boxed area in LatA treated cells is shown on the right for each marker. (E) Rhodamine phallodin staining in fixed COS-7 cells under control conditions
or following LatA treatment. Bar, 10 mm. (F) COS-7 cells were treated with 1 mM LatA or mock-treated with 0.1% DMSO (‘‘control’’) for 5 minutes prior
to imaging, and FRAP analysis was performed in the continued presence of LatA. Diffusion coefficients were measured for Alexa546-CTxB, YFP-GL-
GPI, YFP-GT46 and DiIC16 in control and LatA treated COS-7 cells at 37uC (mean 6 SD for 13–23 cells). ** p,0.01, Student t-test.
doi:10.1371/journal.pone.0034923.g002
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Table S1). Furthermore, both the D and Mf values obtained for

CTxB in MEFs were similar to those measured in COS-7 cells,

which contain abundant caveolae, further suggesting that the slow

diffusion of CTxB is not due to its interactions with caveolae.

Analysis of the cell surface dynamics of YFP-GL-GPI, YFP-GT46,

and DiIC16 also showed no differences in Cav-1+/+ and Cav-12/2

cells (Figure 5B). These results suggest caveolae do not specifically

confine the cell surface dynamics of CTxB, and also do not

generally impact the diffusional mobility of other proteins or lipids.

The diffusional mobility of other proteins and lipids at
the cell surface is unaffected by the presence of bound
CTxB
In the experiments described above, we focused on how

structural components of the plasma membrane modulate the

dynamics of CTxB. However, binding of CTxB to membranes

could itself potentially alter the organization of the plasma

membrane organization in a way that influences either its own

diffusion, or that of other molecules. For example, binding of

CTxB to cells could potentially create crowding effects that cause

it to diffuse slowly [56]. Alternatively, the addition of CTxB to cells

could lead to the formation of sub-resolution domains that

influence the distribution and dynamics of other proteins and

lipids, by analogy to its ability to form macroscopic domains in

model systems [9,10]. Cellular proteins with affinity for these

domains might become trapped within or transiently interact with

these structures, consequently slowing their diffusion as well [37].

Conversely, if such domains were sufficiently abundant and

connected, other proteins could potentially become ‘‘trapped’’

within islands surrounded by a cluster of domains formed by

CTxB binding [36]. Each of these models predicts that in the

presence of CTxB, diffusion of other proteins and lipids should be

slowed compared to the absence of CTxB.

To test this, we measured the diffusional mobility of DiIC16,

YFP-GL-GPI, and YFP-GT46 in the presence or absence of

saturating levels of CTxB (Figure 6, Table S1). Experiments were

carried out at both 22uC and 37uC in order to test for the presence

of temperature-dependent membrane percolation threshold [36].

Interestingly, the diffusion of both proteins (YFP-GL-GPI and

YFP-GT46) was unaltered by the addition of CTxB at both

temperatures. DiIC16 diffusion was also unchanged in the presence

of CTxB at 37uC, but was significantly increased at 22uC. This

implies that if microdomains are formed upon binding of CTxB to

the cell surface, they are not sufficiently abundant or large enough

Figure 3. CTxB diffusion is confined by ATP-dependent barriers. (A–E) Subcellular distribution of Alexa555-CTxB and YFP-GL-GPI in control
and ATP-depleted COS-7 cells. Images show the projection of a series of confocal slices through live cells. Arrows mark the position of an xz-section
(shown below.) Scale bar = 10 mm. (A, D) Typical morphology of cells labeled with Alexa555-CTxB or expressing YFP-GL-GPI under control conditions.
(B, E) In ATP depleted cells, in addition to labeling the bulk of the plasma membrane, Alexa555-CTxB and YFP-GL-GPI label protrusions of the plasma
membrane found close to the coverslip, as well as protrusions projecting above the surface of the cells into the media. (C) Example of an ATP
depleted cell in which CTxB accumulates in tubular plasma membrane invaginations in addition to protrusions. (F) COS-7 cells were ATP depleted or
mock-depleted (‘‘control’’) for 15 minutes prior to labeling and FRAP was performed in the continued presence of ATP depletion or control medium.
Diffusion coefficients were measured for Alexa546-CTxB, YFP-GT46, YFP-GL-GPI or DiIC16 (mean 6 SD from 24–32 cells). Cells were labeled with 1 mM
Alexa546-CTxB. FRAP was performed at 37uC. ** p,0.01, Student t-test.
doi:10.1371/journal.pone.0034923.g003
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to influence the diffusion of our test proteins at physiological

temperature. However, they do appear to influence the mobility of

DiIC16 at lower temperatures, raising the possibility that CTxB

binding may impact the viscosity or order of the membrane at

lower temperatures, perhaps by perturbing underlying lipid

organization [16].

The diffusional mobility of AB5 toxins is not correlated
with their capacity to cluster glycolipids
Our findings raise the question of whether the confined

diffusion we observed for CTxB is a general feature of proteins

with the intrinsic ability to cluster glycolipids. The B subunit of

Shiga toxin (STxB) is another example of a bacterially derived

toxin with a homopentameric structure that binds a glycolipid

receptor (in this case, Gb3) [4]. While there is no apparent

similarity in the amino acid sequences of these two proteins, their

structures are highly homologous [4]. Importantly, STxB can bind

up to 15 Gb3 molecules per homopentamer [57]. We therefore

predicted that STxB would diffuse even more slowly than CTxB if

the extent of glycolipid clustering is a major determinant of their

cell surface dynamics.

To test this, we initially sought to measure the diffusional

mobility of STxB in the plasma membrane of unperturbed COS-7

cells. We found that COS-7 cells normally label poorly with STxB.

Therefore, to enable STxB binding, COS-7 cells were transfected

with Gb3 synthase [58]. We next attempted to perform FRAP

analysis of STxB at the cell surface. However, within minutes after

labeling, STxB was rapidly internalized from the cell surface into

numerous small, rapidly moving vesicles and tubular structures

(Figure 7A), precluding FRAP analysis. We therefore took

advantage of the fact that ATP depletion, a condition we used

to study the regulation of the diffusion of CTxB (Figure 3), inhibits

the internalization of STxB [7] and CTxB (this study) as a way to

compare the dynamics of CTxB and STxB on the plasma

membrane.

For these experiments, COS-7 cells expressing Gb3 synthase

were preincubated in ATP depletion medium for 15 min prior to

labeling with Alexa 488-STxB and subsequently imaged in the

continued presence of ATP depletion medium. In ATP depleted

cells, STxB often accumulated in tubular plasma membrane

invaginations (data not shown), similar to those reported

previously [7]. In some cells, STxB could also be found in

protrusions induced by ATP depletion (data not shown), similar to

those observed for other cell surface markers. Importantly, under

these conditions, a substantial fraction of STxB remained trapped

at the cell surface, enabling us to use confocal FRAP to assess the

dynamics of the plasma membrane pool of the toxin. Remarkably,

the cell surface pool of STxB diffused significantly faster than

CTxB, with a characteristic D of ,0.5 mm2/s and Mf of 8167%.

In fact, this was significantly faster than the diffusion of CTxB

under any of the conditions we examined. These data indicate that

confined diffusion is not a general property of glycolipid binding

toxins, and suggest that in cells, the diffusional properties of CTxB

and STxB are not correlated in a simple way with their capacity

for clustering multiple glycolipids.

Figure 4. ATP depletion induces actin polymerization. Rhodamine-phalloidin labeling in mock-depleted and ATP depleted COS-7 cells (A)
labeled with Alexa488-CTxB or (B) expressing YFP-GL-GPI. A single confocal section is shown for each. A zoom of the boxed area is shown on the
right. The merged images show phalloidin staining in red and CTxB or YFL-GL-GPI staining in green. The spotty appearance of CTxB and YFP-GL-GPI is
the result of fixation and permeabilization conditions. Scale bar = 10 mm.
doi:10.1371/journal.pone.0034923.g004
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Discussion

In contrast to the highly dynamic properties of lipids and many

lipid-anchored proteins, CTxB diffuses extremely slowly when

bound to its accessible pool of glycolipid receptors in the plasma

membrane of living cells. In the current study, we analyzed the

regulation of the dynamics of CTxB, with the goal of identifying

mechanisms that confine the lateral diffusion of the CTxB/

receptor complex.

To dissect how the cell surface dynamics of CTxB are

controlled, we used a confocal FRAP assay [38,39]. This

technique can be used to quantitatively measure the diffusional

mobility of a wide range of molecules in cells, from slowly diffusing

membrane proteins like CTxB to rapidly diffusing proteins like

soluble EGFP [38,39]. An ensemble technique, confocal FRAP

reports on the average rate of diffusion of a population of particles

across micrometer distances, over timescales of seconds to minutes.

Other approaches such as single particle tracking and fluorescence

correlation spectroscopy, which report on the short-range diffusion

of a small number of particles at one time, have also been used to

study the diffusional mobility of CTxB. Like FRAP, these

techniques also report that the diffusion of CTxB is highly

confined [13,17–22]. This indicates that the barriers that restrict

the long-range motion of CTxB are conserved over smaller spatial

and temporal scales.

We sought to understand how the cell surface dynamics of

CTxB are regulated compared to a lipid-anchored protein,

transmembrane protein, and lipid probe. Our results highlight

several important differences in the behavior of these various

classes of molecules. For example, although previous studies have

Figure 5. Caveolae have little effect on CTxB diffusion at the

cell surface. (A) Subcellular distribution of Alexa546-CTxB, YFP-GL-GPI,
YFP-GT46, and DiIC16 in live Cav-1+/+ and Cav-12/2 MEF cells. Bar,
10 mm. (B) Diffusion coefficients of Alexa546-CTxB, YFP-GL-GPI, YFP-
GT46 and DiIC16 in Cav-1+/+ and Cav-12/2 MEF cells (mean 6 SD from
22–47 cells). Cells were labeled with 1 mM Alexa546-CTxB. FRAP was
performed at 37uC.
doi:10.1371/journal.pone.0034923.g005

Figure 6. CTxB binding has little effect on the diffusion of other
cell surface molecules. COS-7 cells expressing YFP-GL-GPI or YFP-
GT46, or stained with DiIC16 were labeled with 1 mM Cy5-CTxB (YFP-GL-
GPI and YFP-GT46) or Alexa488-CTxB (DiIC16) for 5 minutes at room
temperature and washed prior to FRAP studies. Diffusion coefficients
were measured for YFP-GL-GPI, YFP-GT46, and DiIC16 in the presence
and absence of 1 mM Cy5 CTxB (mean 6 SD for n = 16–32 cells). FRAP
data were collected at both 20uC and 37uC. ** p,0.01, Student t-test.
doi:10.1371/journal.pone.0034923.g006
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indicated that the dynamics of many lipid-anchored molecules are

unaffected by disruption of the actin cytoskeleton [27], actin plays

an important role in constraining the diffusion of CTxB. The

dependence of CTxB diffusion on actin organization may seem

surprising given that CTxB binds a glycolipid receptor and thus

lacks the ability to directly couple to actin. However, the CTxB/

GM1 complex could potentially interact indirectly with actin in

several ways. The diffusion of CTxB could be impeded by the

presence of transmembrane ‘‘post’’ proteins that are attached to

actin-based corrals [43,59]. Alternatively, clustering of GM1 by

CTxB could initiate signaling events that in turn transiently

connect the CTxB/GM1 complex to actin with the help of

currently unknown transmembrane proteins, by analogy to how

crosslinked GPI-anchored proteins are thought to interact with

actin [60–63]. The formation of a ‘‘textured’’ lipid phase in

response to CTxB binding may contribute to signaling across the

bilayer leaflets [16]. There is also evidence from freeze-fracture

immunolabeling electron microscopy that GM1, the high affinity

glycolipid receptor for CTxB, associates with actin-dependent

clusters in cells [64]. Thus, GM1 itself may be coupled to actin,

providing an indirect link between CTxB and the cytoskeleton.

Our results also indicate the diffusion of CTxB is normally

confined by ATP-dependent processes. Initially, we set out to test

the effects of this treatment as a way to assess the possible

interaction of CTxB with actively maintained nanoclusters, a class

of domains previously shown to lead to the local enrichment and

immobilization of GPI-anchored proteins [29]. Despite the known

interaction of GPI-anchored proteins with such structures, ATP

depletion had little influence on the overall mobility of a

representative protein, YFP-GL-GPI. We speculate this may be

the case because only a relatively small fraction of GPI-anchored

proteins associates with these domains [29]. However, ATP

depletion also had a profound effect on actin organization and

membrane structure. In particular, we observed a dramatic

increase in F-actin staining close to the plasma membrane in

response to ATP depletion, accompanied by the formation of

needle-like protrusions. Based on these observations, we propose

remodeling of actin to form longer filaments may increase the

dimensions of the actin-defined compartments that normally

confine protein and lipid diffusion at the cell surface [65],

therefore increasing the mobility of CTxB in response to ATP

depletion. This model might explain why ATP depletion and LatA

treatment have similar effects on CTxB dynamics, even though

they have much different effects on overall actin organization.

Other changes in membrane structure and composition known to

occur in response to ATP depletion, including inhibition of

phosphoinositide synthesis and the release of some small GTPases

from the plasma membrane [66], could also contribute to the shift

in CTxB diffusion. This multiplicity of effects of ATP depletion

may also explain why diffusion of the transmembrane protein

YFP-GT46 was enhanced following ATP depletion, but unaffect-

ed by actin disruption following LatA treatment.

Our results suggest actin organization/dynamics alone are

clearly not the only source of the low diffusion rate observed for

CTxB, since even in the presence of LatA the bound toxin diffuses

much more slowly than any of the other molecules examined. One

possibility is that CTxB may recognize additional binding partners

[67–69]. If one of these binding partners were a transmembrane

protein, this could explain the slow diffusion of the toxin and

would also provide a clear model for why CTxB diffusion is

sensitive to cortical actin. It is also possible that CTxB diffusion is

regulated by flotillin, which has been shown to modulate the

diffusional mobility of other sphingolipid-binding molecules [70].

Because flotillin itself has been shown to interact with actin [71], it

could also potentially serve to couple CTxB/GM1 complexes to

the cytoskeleton.

Caveolae have been shown to become enriched in and

internalize CTxB, although they are not required for its endocytic

uptake into cells [55]. We therefore tested for a potential role of

caveolae in controlling the overall diffusion of CTxB at the cell

surface. We found that the absence of caveolae had no effect on

the diffusion of CTxB, or for that matter on any of the other cell

surface markers examined. D was also very similar for all the

molecules examined in COS-7 cells (which contain caveolae) and

in caveolin-12/2 MEFs, further indicating that caveolae per se do

not strongly influence the mobility of the molecules examined

here. Taken together, we conclude from these studies that

caveolae are not a major barrier to the diffusion of CTxB, and

also do not function as general regulators of protein or lipid

diffusion. This does not rule out the possibility that specific

proteins or lipids interact with caveolae, especially following

crosslinking [62]. Caveolae could also potentially become

saturated with CTxB, as CTxB has been reported to be selectively

taken up by caveolae when present at very low labeling

concentrations [31]. The effects of caveolae and caveolin-1 on

the diffusion of proteins like CTxB may also not necessarily be

identical, since caveolin-1 can exist at the cell surface as small

oligomers under conditions where caveolae per se are not present

Figure 7. STxB, another homopentameric glycolipid-binding toxin, diffuses more rapidly than CTxB. (A) Subcellular distribution of CTxB
and STxB in control cells approximately 5 minutes after labeling and shifting to 37uC. (B) Diffusion coefficients of STxB vs. CTxB in ATP depleted COS-7
cells (mean 6 SD from 30 and 28 cells, respectively). Cells were labeled with 1 mM Alexa546-CTxB or 75 nM A488-STxB. FRAP was performed at 37uC.
** p,0.01, Student t-test.
doi:10.1371/journal.pone.0034923.g007
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[19]. This may explain the difference between our current results

and those of a previous study examining the effects of caveolin-1

on CTxB diffusion utilizing a knock down approach, that may

have left these residual caveolin-1 oligomers on the cell surface

[19,54]. However, it is also formally possible that the role of

caveolae and caveolin-1 in modulating the diffusion of CTxB are

different in adipocytes and mammary tumor cells [19,54] than in

MEFs.

Because CTxB binding itself can potentially alter the organi-

zation of the plasma membrane by clustering glycolipids, we

investigated its effects on the diffusion of other proteins and lipids.

The results of these experiments showed very little change in

protein or lipid diffusion in the presence of bound CTxB at

physiological temperature. This result immediately rules out the

possibility that CTxB binding causes crowding effects that slow its

own diffusion [56]. They further imply that if CTxB forms small

domains in intact cells, these domains do not incorporate either

YFP-GL-GPI or YFP-GT46 [37], and also are not sufficiently

large to form barriers to the diffusion of other proteins or lipids

[36]. Our observation that CTxB binding does not alter the

diffusion of YFP-GL-GPI is consistent with a recent near field

scanning microscopy study showing that GPI-anchored proteins

are in close proximity to CTxB, but do not directly colocalize with

CTxB-enriched domains [72]. They somewhat differ, however,

from data reported by Pinaud and colleagues [73]. In that study,

the effects of CTxB on the diffusional mobility of an artificial GPI-

anchored protein consisting of avidin attached to the membrane

via a GPI-anchor, Av-GPI, were investigated in some detail using

single quantum dot tracking [73]. A modest decrease in mobility of

a slowly diffusing population of Av-GPI was reported to occur in

cells labeled with CTxB. However, under steady state conditions,

even the ‘‘fast’’ values of D reported for Av-GPI are almost two

orders of magnitude slower than our measured D for YFP-GL-GPI

(0.038 mm2/s for Av-GPI versus ,1 mm2/s for YFP-GL-GPI). It

thus seems likely that Pinaud et al. detected interactions of CTxB

with a subset of partially immobilized GPI-anchored proteins,

rather than a freely diffusing population of GPI-anchored proteins.

To better understand how the diffusional mobility of CTxB

depends on its ability to cluster glycolipids, we compared its

diffusion to that of the B-subunit of Shiga toxin, STxB. While the

structures of these two toxins are very similar and therefore should

have similar hydrodynamic radii, the fact that STxB binds 3 fold

more lipids that CTxB would predict that STxB will have a

stronger potential for cross-linking glycolipids than CTxB.

However, in ATP depleted cells, the diffusion of STxB was faster

than that of CTxB, suggesting that neither the size of the CTxB/

GM1 complex nor the extent of glycosphingolipid clustering are

the cause of CTxB’s slow diffusion. The lack of correlation

between the number of bound lipids and the rate of diffusion

between these toxins mirrors a previous study in which we

examined the role of crosslinking by comparing the diffusion of

wild type CTxB to that of a chimeric form of cholera toxin with a

mutant B-subunit containing only 1 or 2 GM1 binding sites instead

of its usual 5 [13]. In that study, we found only a small difference

in the rate of diffusion between wild type CTxB and mutant

cholera toxin on the plasma membrane of COS-7 cells. Thus, it

appears that the number of glycolipids bound by AB5 toxins has

little effect on their cell surface dynamics. In addition, confined

diffusion does not appear to be a conserved feature of these toxins.

We found that several of the treatments we examined, such as

ATP depletion, caused detectable changes in the topology of the

plasma membrane. Because the presence of surface roughness can

cause simple diffusion processes to be underestimated [74], these

topological changes alone could in principle lead to significant

changes in diffusion. If this were the case, we would have expected

to observe similar effects of these treatments on all of the cell

surface molecules studied. Our results indicate that instead, the

effects of these treatments most strongly altered the diffusional

mobility of CTxB. Therefore, it seems unlikely that potential

subresolution changes in cell surface topology accounted for the

changes we observed in CTxB diffusion; rather, we propose these

differences in diffusion were the result of lateral heterogeneity not

directly related to cell surface topology. Further work is certainly

needed to examine the interplay between membrane topology and

lateral heterogeneity, as well as membrane topology and diffusion.

Until recently, it was assumed that GM1 levels at the cell surface

control the extent of CTxB binding. Recent studies now indicate

that the local microenvironment of glycosphingolipids is an

important determinant of their accessibility to toxin binding, and

CTxB binding thus cannot be considered as a reporter of all of the

GM1 present in the plasma membrane [14,15]. Interestingly,

cholesterol depletion was shown to increase the levels of CTxB

binding to cells. This suggests the masked fraction of GM1, rather

than the fraction of GM1 normally accessible to CTxB, may be

intrinsically associated with cholesterol-dependent membrane

domains. The published literature on CTxB and related

glycolipid-binding toxins such as STxB will need to be re-

interpreted in light of these findings. In the current study, we did

not attempt to separate out the effects of CTxB bound to different

classes of GM1, instead focusing on the properties of complex

formed upon binding of CTxB to the accessible population of

GM1. In principle, one way to compare the properties of the toxin-

accessible and toxin-inaccessible pool of GM1 would be to

examine the effects of cholesterol depletion after unmasking the

inaccessible pool by cholesterol depletion. However, cholesterol

depletion itself can have profound effects on membrane structure.

For example, in previous work we showed that cholesterol

depletion using methyl-ß-cyclodextrin leads to a systematic slowing

of the diffusion of multiple cell surface markers, including CTxB

[22]. Thus, further work will be required to decouple the effects of

cholesterol on glycosphingolipid masking, toxin accessibility, and

the dynamics of specific CTxB/GM1 complexes.

In conclusion, our results are consistent with a model in which

in cells, the diffusional mobility of CTxB/GM1 complexes is

restricted by F-actin dependent as well as ATP-dependent

processes, which may also be linked to the maintenance of actin

organization. Coupling of these complexes to actin could

potentially occur either with the help of currently unidentified

proteins, or by trapping of small CTxB-enriched domains within

actin-defined corrals. Indirect interactions of CTxB with the

cytoskeleton could in turn provide a mechanism that facilitates

toxin uptake by clathrin-independent endocytic mechanisms

[8,47].

Materials and Methods

Cells and reagents
COS-7 cells, caveolin-1+/+ mouse embryonic fibroblasts (MEF),

and caveolin-12/2 MEFs were acquired from ATCC (Manassas,

VA). Cell lines were maintained in Dulbecco’s modified Eagle

medium (DMEM) containing 10% fetal bovine serum at 37uC and

5% CO2. Cells were plated on coverslips two days prior to

experiments.

Cholera toxin B subunit from Vibrio cholerae (Sigma-Aldrich, St.

Louis, MO) was labeled with Alexa546 using an Alexa546

fluorophore protein labeling kit (Invitrogen, Carlsbad, CA). Cy5-

CTxB was produced using Cy5 monoreactive dye packs

(Amersham Bioscience, Piscataway, NJ). Alexa488-CTxB,
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Alexa555-CTxB and DiIC16 (1,19-dihexadecyl-3,3,39,39-tetra-

methylindocarbocyanine perchlorate) were obtained from Invitro-

gen (Carlsbad, CA). Rhodamine phalloidin was from Invitrogen-

Molecular Probes (Carlsbad, CA). Yellow fluorescent protein

(YFP) tagged versions of a model GPI-anchored protein (YFP-GL-

GPI) and transmembrane protein (YFP-GT46) have been

previously described [22,40,41]. Alexa488-STxB and a plasmid

encoding Gb3 synthase [58,75] were gifts from Dr. Ludger

Johannes (Institut Curie, Paris, France). Transfections were

performed 24 hours prior to imaging using FuGENE 6 as per

the manufacturers instructions (Roche Diagnostics, Indianapolis,

IN).

Cell labeling
Cells were rinsed twice with imaging buffer (composed of

phenol red-free DMEM supplemented with 25 mM HEPES

(Sigma-Aldrich), and 1 mg/ml albumin bovine serum (Sigma-

Aldrich)), and then incubated for 5 minutes at room temperature

with the indicated concentration of CTxB (1 nM–1 mM), 5 mg/ml

DiIC16 or 75 nM STxB. Cells were then rinsed twice with imaging

buffer and imaged. For phallodin staining, cells were fixed in 3.7%

PFA for 15 min at RT. They were then washed, permeabilized

with 0.1% saponin in PBS containing 1 mg/ml bovine serum

albumin for 15 min at room temperature (RT), and labeled with

rhodamine-phalloidin (1:40) for 30 min at RT, washed, and

mounted in Fluoromount G (Southern Biotech, Birmingham, AL)

supplemented with 25 mg/ml DABCO (1,4 diazabicyclo[2.2.2]oc-

tane) (Sigma-Aldrich) and allowed to solidify overnight prior to

imaging.

Actin depolymerization
Cells were washed with imaging buffer, incubated for 5 minutes

in either 1 mM Alexa546-CTxB or 5 mg/ml DiIC16 in imaging

buffer, and washed again. Actin depolymerization was then

performed by incubating the cells at 37uC for 5 min in imaging

buffer containing 1 mM Latrunculin A (LatA) (Sigma-Aldrich).

Control cells were incubated in imaging buffer containing 0.1%

DMSO. Cells were maintained in their respective buffer during

imaging and all imaging was performed within 30 minutes of

treatment. Alternatively, they were fixed and labeled with

rhodamine phalloidin as indicated above.

ATP depletion
ATP depletion was performed by pre-incubating cells at 37uC

and 5% CO2 for 15 min in ATP depletion medium, composed of

phenol-red free DMEM containing 50 mM 2-deoxy-D-glucose

(Sigma-Aldrich), 0.02% sodium azide (Amersham Pharmacia

Biotech), 25 mM HEPES (Sigma-Aldrich), and 1 mg/ml bovine

serum albumin (Sigma-Aldrich)), as described in [76]. Control cells

were incubated in ATP control medium (composed of phenol-red

free DMEM with 50 mM D-(+)-glucose (Sigma-Aldrich), 25 mM

HEPES, and 1 mg/ml BSA). Cells were then washed with their

respective medium, incubated for 5 minutes in 1 mM Alexa546-

CTxB, 5 mg/ml DiIC16 or 75 nM Alexa488-STxB (in either ATP

depletion or control medium), washed again, and then imaged in

the continued presence of ATP depletion or control medium.

Imaging was completed within 45 minutes of labeling.

Microscopy-based CTxB binding assay
1 mM stock of Alexa546-CTxB was prepared in imaging buffer

and lower concentration stocks prepared by serial dilution. Cells

were labeled with CTxB for 5 min at room temperature, washed,

mounted live in imaging buffer, and visualized at 37uC. Images

were taken on a Zeiss LSM 510 confocal microscope (Carl Zeiss

Microimaging, Inc, Thornwood, N.Y.) with a 40X 1.4 NA Zeiss

Plan-Neofluar objective at 0.76zoom to acquire multiple cells per

field. Fluorescence was excited at 543 nm with HeNe laser and

detected with a preset Cy3 channel filter set provided by the

manufacturer. The confocal pinhole was set at 2.17 Airy units.

5126512 pixel images were collected in 8 bit with line averaging

of 8. Laser intensity and detector gain were set near pixel

saturation for the 1 mM CTxB labeled cells and left unchanged

across all concentrations. For lower concentrations duplicate

images of the same field were taken at higher detector gain to

validate ROI selection. Individual ROI’s were drawn for each cell

and for the background region, for images at matched laser

intensity and detector gain, and mean pixel intensities in the ROI’s

collected using ImageJ (NIH, Bethesda, Maryland). Cell fluores-

cence was background corrected and then the mean and standard

deviations computed for all cells at a given concentration.

Confocal microscopy and confocal FRAP
Confocal microscopy and confocal FRAP experiments were

carried out on a Zeiss LSM 510 confocal microscope (Carl Zeiss

MicroImaging, Inc., Thornwood, NY) using a 40X 1.4 NA Zeiss

Plan-Neofluar objective. Cells were maintained in phenol-red free

DMEM containing 1 mg/ml albumin bovine serum and 50 mM

HEPES supplemented with the indicated drugs for live-cell

imaging experiments. Cells were maintained at 37uC using a

stage heater and objective heater. EYFP and Alexa488 were

excited using the 488 nm line of a 40 mW Argon laser, and

Alexa546, Alexa555, rhodamine, or DiIC16 were excited at

543 nm of a HeNe laser and detected using filter sets provided

by the manufacturer. For presentation purposes images were

exported in tiff format and brightness and contrast was adjusted

using Adobe Photoshop.

Z-sections were compiled using serial confocal images taken at 1

Airy unit. The confocal slices were taken with an optimal overlay

of 0.46–0.48 mM. The images were collected using a 40X 1.4 NA

Zeiss Plan-Neofluar objective with digital zoom of 2.2 to 3.06.

Images were collected either in 12 bit mode with line averaging of

4 or in 8 bit mode with line averaging of 8. To adjust for

differences in cell size, the number of slices was varied while the

degree of overlap between slices was held constant. Slices were

then compiled into 3D projections and z-sections in LSM Image

Browser (Carl Zeiss MicroImaging, Inc., Thornwood, NY).

For FRAP measurements, cells were imaged at 4X digital zoom

with the confocal pinhole set between 1.01 and 1.99 Airy units.

Full frame (5126512 pixel) images were collected for FRAP

analysis of CTxB, YFP-GL-GPI, YFP-GT46, and STxB. For

DiIC16 FRAP experiments, the imaging window was reduced to a

4.168.1 mm rectangle to speed image acquisition. Photobleaching

of a circular bleach region 4.1 mm in diameter was performed by

repetitively scanning the bleach region 10 times using the 488 nm

laser line or both the 488 nm and 514 nm laser lines at full power.

Prebleach and postbleach images were collected at lower laser

power (typically 3% transmission or less) with either no line

averaging or with line averaging of 2. FRAP measurements were

carried out at 22uC, or at 37uC using an objective heater and

heated stage insert.

FRAP data analysis
Confocal FRAP data analysis was performed using a recently

described method that corrects for diffusion that occurs during the

photobleaching event [38] assuming a free diffusion model (as

opposed to anomalous diffusion or reaction-diffusion type

behavior). FRAP analysis was carried out essentially as described
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in [39], except that FRAP curves and post bleach intensity profiles

were analyzed individually and that prior to fitting, FRAP curves

were corrected for photobleaching during imaging by normalizing

to the whole cell fluorescence over time as described previously

[77]. Datasets in which endocytic vesicles were observed to pass

through the bleach region were discarded. Mobile fractions were

calculated as described previously [22] using the average of the last

three time points as F‘ and the average of the three prebleach

images as Fo. Statistics were calculated with a Student t-test using

OriginPro 8.5 (OriginLab Corp; Northampton, MA).

Supporting Information

Table S1 Mobile fractions (%) of Alexa546-CTxB, YFP-GT46,

YFP-GL-GPI, and DiIC16 following various treatments.

(DOC)
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