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Human mesenchymal stem cells (hMSCs) are considered a promising cell source for regenerative medicine, because they have
the potential to differentiate into a variety of lineages among which the mesoderm-derived lineages such adipo- or osteogenesis
are investigated best. Human MSCs can be harvested in reasonable to large amounts from several parts of the patient’s body and
due to this possible autologous origin, allorecognition can be avoided. In addition, even in allogenic origin-derived donor cells,
hMSCs generate a local immunosuppressive microenvironment, causing only a weak immune reaction. There is an increasing
need for bone replacement in patients from all ages, due to a variety of reasons such as a new recreational behavior in young
adults or age-related diseases. Adipogenic differentiation is another interesting lineage, because fat tissue is considered to be a
major factor triggering atherosclerosis that ultimately leads to cardiovascular diseases, the main cause of death in industrialized
countries. However, understanding the differentiation process in detail is obligatory to achieve a tight control of the process for
future clinical applications to avoid undesired side effects. In this review, the current findings for adipo- and osteo-differentiation
are summarized together with a brief statement on first clinical trials.

1. Stem Cells

Stem cells are defined as a type of pluripotent or multipotent
cells, which have two typical features: self-renewal and have
the potential to differentiate into several different cell lin-
eages. According to the source they are obtained from, stem
cells can be classified into embryonic stem cells (ESCs) which
are isolated from the inner cell mass of blastocysts and adult
stem cells found in various tissues of the mature organism.
Adult stem cells are divided mainly into hematopoietic
stem cells (HSCs) and mesenchymal stem cells (MSCs), but
various other stem- and precursor cells have been found in
a variety of different organs or tissues in the last years such
as neural stem cells or skin stem cells [1–4]. Compared to
ESCs that have the potency to differentiate into all kinds of
cells lineages, these adult stem cells can only differentiate

into several lineages. For instance, HSCs can differentiate

into the cells blood which is composed of monocytes,

neutrophils, lymphocytes, erythrocytes, and platelets [5].

More recently, a new and interesting source of stem cells has

been created by Takahashi and Yamanaka named induced

pluripotent stem cells (iPS) [6]. iPS are obtained by genetic
reprogramming of differentiated somatic cells of adult tissue
using pluripotent factors like Oct4, Sox2, Klf4, and c-myc
[7, 8] or Oct4, Sox2, Lin28, and Nanog [9]. Depending on
the tissue source, they can even be generated by only one
factor [10, 11]. They are regarded as a promising stem cell
source for future repair of tissues or organs, especially since
they are ethically not problematic. However, together with
ESCs, iPS can easily form teratomas [12] and seem to be
immunogenetically active after transplantation into the host
[13]. In contrast, MSCs show some unique features: they are
immunosuppressive and immunoprivileged [14]. They also
show no detectable teratoma formation, high migration and
motility and further display feasibility and safety use in vivo
in clinic trials so far [15–18].

2. Multilineage Differentiation Potential of
Mesenchymal Stem Cells

2.1. The Mesenchymal Stem Cell Character. MSCs are
adult stem cells, which can self-renew and stay in the
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Figure 1: Multipotent Differentiation of Mesenchymal Stem Cells from Different Sources. MSCs can be obtained from skeleton muscle,
bone marrow, tendon, adipose tissue, placenta, umbilical cord, and umbilical cord blood. MSCs have the potential to generate mesodermal
lineages such as adipocytes, osteoblasts, and chondrocytes; on the other hand, they can also trans-differentiate into some cells lineages
from other germ layers such as adipocytes, osteocytes, chondrocytes, cardiac muscle cells smooth muscle cells, and endothelial cells form
mesodermal layer, neural cells from ectodermal layer, and hepatic cells and pancreatic cells from endodermal layer.

“undifferentiated” state due to some intrinsic or extrinsic
suppressed factors until activated [19–22]. MSCs have been
originally isolated from bone marrow (BM) [23, 24], and
later similar populations were successfully harvested from
other adult tissues such as adipose tissue (AT), tendon,
peripheral blood (PB), skeleton muscle (SM), and recently
from the trabecular bone [25–28]. At the same time, they
can be generated from some neonatal tissues, umbilical cord
(UC), umbilical cord blood (UCB), and particular parts
of the placenta [29, 30] (see Figure 1). Although MSCs
derived from bone marrow (BM-MSC) were first obtained
and largely studied and used, MSC generated from AT (AT-
MSC), PB (PB-MSC), and UCB (UCB-MSC) do not need an
invasive procedures for isolation compared to BM-derived
cells [31]. However, with the rising number of isolation
procedures and the use of different sources, there is an
important and urgent issue that need to be solved to compare
the outcomes: the definition of an international standard for
the MSC character [32]. In 2006, the International Society
of Cellular Therapy (ISCT) proposed minimal criteria for
defining mesenchymal stem cells: these cells can adhere to
the plastic under standard culture condition. They posi-
tively express CD73 (SH2), CD90, and CD105 (SH3) and

negatively express CD34, CD45, CD14 or CD11b, CD79α,
or CD19 and HLA-DR. In addition, they should have the
multipotency to differentiate into osteoblasts, adipocytes,
and chondrocytes in vitro as demonstrated by specific
stainings [33].

2.2. Source Difference and Comparison of the MSCs from
Different Sources. MSCs derived from different sources pose
same or similar features. However, many publications have
reported that they have some differences in their prolifer-
ation rates, surface marker expressions, multipotency, and
some other specific markers. This might be used to find
the best source of MSCs to address specific qualities for
replacement strategies in regenerative medicine [34, 35].
Generally, MSCs obtained from neonatal tissues have the
significant advantage of avoiding invasive procedures which
are usually accompanied with infection risk if compared
to those from adult tissues [31]. They also show higher
expansion and engraftment capacities compared to MSCs
derived from BM [36, 37]. On the other hand, the success rate
of isolation was only 63% from UCB if compared to those
derived from BM and AT. Interestingly, MSCs derived from
UCB seem not to have the capacity to differentiate towards
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the adipogenic lineage [38, 39]. The proliferation capacity
was higher in UC-MSCs than in BM-MSCs, and contact
inhibition was observed in BM-MSCs but not in UC-MSCs
[40, 41]. MSCs derived from cartilage exhibited the highest
resistance against hydrogen peroxide-induced apoptosis, and
AT-MSCs pose the highest proliferation rate and tolerance
to serum deprivation-induced apoptosis [42]. The doubling
time of population of AT-MSCs is 3/4 of BM-MSCs. AT-
MSCs also have different doubling times if derived from
different regions [43, 44]. For example, AT-MSCs derived
from omental regions proliferated slower than those from
subcutaneous region [45]. MSCs from BM and placenta were
shown to have a higher migration capacity than those from
UC. This seemed to be regulated by increased expression
of cathepsin B, cathepsin D, prohibitin and decreased
expression of plasminogen activator inhibitor-1 (PAI-1), and
manganese superoxide dismutase [46]. UCB-MSCs need
shorter time to differentiate into osteogenic lineages than
BM-MSCs [47]. Compared to adult-tissue-derived MSCs,
neonatal MSCs also have a stronger immunosuppressive
capacity and show lower immunogenicity. Therefore, they
seemed to be a very reasonable source for therapeutic ap-
plications [48].

BM-MSC and AT-MSC are the two most frequently
investigated MSCs. AT-MSCs can be obtained as a popula-
tion of 5000 cells from one gram adipose tissue compared
to only about 0.01% cells isolated from the interface after
density gradient centrifugation of bone marrow aspirates.
This means 500 times more cells can be obtained from AT
than from equal amounts of BM [3, 49]. No remarkable
difference in their morphology and immune phenotype was
observed in BM-MSC and AT-MSCs [50]. But later Peng and
colleagues reported that BM-MSCs are larger than AT-MSC
[42], and that their proliferative activity is higher than BM-
MSCs [42, 51]. Some surface antigen expressions differ in
BM-MSC and AT-MSC: CD49d, CD54, CD34, and CD106.
CD49d was expressed only in AT-MSC, and the expression of
CD106 was detected only in BM-MSCs [26, 52]. The expres-
sion of chemokine receptors such as CCR1, CCR7, CXCR4,
CXCR6 was increased in AT-MSCs compared to BM-MSCs
[53]. By using a human genome microarray, 25 genes
were predominantly up-regulated in BM-MSCs, AT-MSCs
and UCB-MSCs compared to fibroblasts [54]. Additionally,
they found that the mesoderm-specific transcript homolog
(MEST) is expressed highest in BM-MSC and the connective
tissue growth factor (CTGF), and the BMP antagonist 1
expressions are highest in UCB-MSC. At the same time,
cyclin B2 (CCNB2), cell division cycle associated 8 (CDCA8),
and Ki-67 were higher expressed in AT-MSC, which indicates
that AT-MSC might have the highest proliferative capacity.
This result may explain the above findings that AT-MSCs
multiplied faster than BM-MSCs [42, 51]. Meanwhile cell
population, maximal life span, and multipotential of BM-
MSC decrease with increasing the donor’s age [55, 56]. These
differences of MSCs (summarized in Table 1) could be due to
the region they are derived from or due to different isolated
methods. In summary, MSCs isolated from adipose tissue
can express all typical markers, simultaneously be isolated
in large amount without additional pain or highly invasive

procedures, and show strong apoptosis tolerance. Therefore,
they are used and investigated as important and promising
stem cells for regenerative medicine [57].

2.3. Mesodermal Differentiation and Transdifferentiation.
Due to mainly mesodermal origin derived, mesenchymal
stem cells always were regarded as an attractive source for
differentiating into cells of this source such as osteoblasts
(bone), adipocytes (fat tissue), and chondrocytes (cartilage)
[35]. Recently some publications reported that MSCs also
have the potential to differentiate into several additional cell
lineages from the mesoderm. For example, MSCs derived
from different regions showed myogenic potential and can
differentiate into muscle lineages like skeleton muscle cells
[58–60], smooth muscle cells [61–63], and cardiac muscle
cells [64]. Interestingly, MSCs can differentiate into cells
derived from other germ layers as well (see Figure 1).
For example, MSCs can differentiate into neuron-like cells
in vitro [65, 66], and into astrocytes and neurons after
implanting into the mouse brain in vivo [67]. Hepatocyte-
like cells can also be generated from MSCs in vitro and
in vivo [68, 69]. MSCs pose the ability to differentiate
into endothelial cells too [61, 70]. They have also been
considered a good source for insulin producing cells, which
could be applied for diabetes therapy [71, 72]. The reason
for this might be that although MSCs are originated from
mesoderm, they have parts which are originated from other
germ layers as well. Other authors describe this phenomenon
as “transdifferentiation”, meaning that stem cells differentiate
into cells from another germinal layer the stem cells are
derived from. Transdifferentiation, although not applicable
to mesenchymal stem cells, is a widely used term often to
doubt a specific differentiation since lineage commitment
is thought to be not reversible until iPS came up [73].
On the other hand, the physical properties of the scaffold
can also determine MSC differentiation [74]. For example,
MSCs cultured in stiff scaffolds are easily differentiated into
osteoblasts, and with the decrease of elasticity, MSCs showed
the potential of myogenic, adipogenic and neurogenic differ-
entiation, respectively [75]. To make a long story short, MSC
fate is influenced by their environment, including growth
factors, mechanical or physical stimulation, cell-cell attach-
ment or interactions, and cell density [76]. However, this
multipotency of MSCs might also be due to another reason,
which is also postulated for UCB and wildly discussed. MSCs
might not be pure and specific adult stem cells, but instead
they might be a diverse mixture of many specific lineage
progenitor cells [77].

2.4. Osteogenic Differentiation of MSCs. Multipotent stem
cells such as MSCs express markers of multiple cell lineages
[78]. These markers keep the cells in an undifferentiated state
through negative feedback mechanisms. To commit the cells
towards a specific lineage cytokines in vivo and induction
factors in vitro is necessary. To induce in vitro osteogenesis of
MSCs, combinations of different induction factors have been
suggested (Table 2). In addition to supplements added to
the basal medium, other techniques to optimize osteogenic
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Table 1: Comparison of MSCs derived from different sources.

Bone marrow Adipose tissue Other sources

Isolated methods
painful with invasive
procedure

not additional pain; less invasive
procedure

no pain; no invasive procedure
from UCB, CB placenta

100% success rate 100% success rate 63% success rate

Surface antigens or markers
CD106 MEST higher
expression

CD49b, CD54, CD34; Ki-67,
CDCA8, CCNB2 higher
expression; chemokine receptors

CTGF, BMP antagonist 1 high
expression in UC-MSCs

Differentiation potential not restricted not restricted
stronger osteogenic differentiation
of UCB-MSCs; no adipogenic
differentiation of UCB-MSCs

Proliferation lowest highest high in CB-MSCs

Migration capacity high high
high in placenta-MSCs, low in
UC-MSCs

Morphology larger normal normal

Apoptosis tolerance not high high not high

Table 2: Osteogenic differentiation factors.

Protocols Reference

0.01 µM 1,25-dihydroxyvitamin D3, 50 µM
ascorbate-2-phosphate, 10 mM β-glycerophosphate

[26, 113]

10 mM β-glycerophosphate, 0.1 mM ascorbic acid,
1 µM dexamethasone and a pulsed electromagnetic
field (PEMF)

[80]

50 µg/mL ascorbic 2 phosphate, 10−8 mM
dexamethasone and 10 mM β-glycerol-phosphate and
Matrigel

[92]

3D type I collagen matrices and 10% or 12% uniaxial
cyclic tensile strain at 1 Hz for 4 h/day

[93]

Artificial extracellular matrices containing collagen and
chondroitin sulfate with hydrostatic pressure (HP)

[81]

induction have been investigated as well. In some studies,
mechanical stress [79], pulsed electromagnetic field (PEMF)
[80], and hydrostatic pressure (HP) [81] were added to the
osteogenic factors, while in others these factors were used
to stimulate osteogenic differentiation without osteogenic
induction supplements.

Dexamethasone is a potent stimulator of in vitro osteo-
genesis and induces the expression of the runt-related
transcription factor 2 (Runx2), Osterix (Osx), and bone
matrix proteins [82]. Ascorbic acid and β-glycerophosphate
increase type I collagen secretion [83].

Jansen and colleagues cultured BMSCs in osteogenic
medium and treated them with a pulsed electromagnetic
field (PEMF). PEMF treatment increased the intensity of
osteogenic differentiation [80, 84]. PEMF has been suggested
to enhance DNA synthesis through which it affects in vitro
proliferation and differentiation of bone cells [85, 86]. Dur-
ing differentiation, it increases the bone marker gene expres-
sions and also promotes calcified matrix production [87].

To investigate the effect of extracellular matrix (ECM)
proteins on osteogenic differentiation of hMSCs, Salasznyk
and coworkers coated tissue culture plates with repetitive
collagen I and collagen IV, laminin-I, and vitronectin. These

ECM proteins were found in bone marrow. This study
showed that culturing of hMSCs on purified vitronectin
and collagen I without osteogenic medium was sufficient
to induce osteogenic differentiation [88]. Collagen I has
been suggested to induce calcification of the stromal cell
matrix [89]. Both, collagen type I and vitronectin have been
reported to promote osteogenic differentiation of MSCs [90].

Eslaminejad and colleagues coated plastic surfaces of
culture plates with matrigel. Matrigel is composed of
laminin, collagen IV, proteoglycan, heparin sulfate, entactin,
nidogen, and growth factors like transforming growth factor
beta (TGF-beta), epidermal growth factor (EGF), insulin-like
growth factor 1, bovine fibroblast growth factor (bFGF), and
platelet-derived growth factor (PDGF) [91]. These factors
create a microenvironment that regulates the proliferation
and differentiation of hMSCs. HMSCs were cultured on
matrigel-coated and plastic surface and induced towards
the osteogenic lineage. It has been reported that hMSCs on
matrigel-coated culture plates showed significantly stronger
osteogenic differentiation if compared to hMSCs on plastic
surface [92].

In another study, MSCs were cultured in linear 3D type
I collagen matrices and subjected to different uniaxial cyclic
tensile strain for 7 or 14 days. The results of this study showed
that BM-MSCs in 3D collagen matrices under cyclic strain
can differentiate towards osteogenic lineage without the
addition of osteogenic supplements [93]. Whereas Yourek
and colleagues reported that shear stress stimulates MSCs
towards an osteoblastic phenotype in the absence of chemical
induction [79].

Hess and coworkers investigated the effect of hydrostatic
pressure (HP) stimulation on MSCs seeded on collagen-
based artificial extracellular matrices. They coated artificial
extracellular matrices generated from collagen and chon-
droitin sulfate onto polycaprolactone-co-lactide substrates.
MSCs were seeded and subjected to cyclic HP at various
time points during 21 days to investigate the effects of
biochemical, mechanical, and combined biochemical and
mechanical stimulations. Both HP and coated artificial
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Figure 2: Change and differentiation of mesenchymal stem cells towards osteoblasts. Runx2 commits MSCs towards osteogenic lineage and
inhibits adipogenic differentiation. After commitment, MSCs are differentiated into preosteoblasts which express runt-related transcription
factor 2 (Runx2), distal-less homeobox 5 (Dlx5), and msh homeobox homologue 2 (Msx2). Preosteoblasts differentiate into immature
osteoblasts. Immature osteoblasts express bone morphogenetic protein 2 (BMP2), Osterix (Osx), β-catenin, bone matrix proteins, bone
sialoprotein, osteopontin and develop into mature osteoblasts. Mature osteoblasts express osteocalcin, alkaline phosphatase, and type I
collagen.

matrices containing collagen and chondroitin sulfate pro-
moted the osteogenic differentiation of MSCs individually,
and a combination of both showed a synergistic effect on
osteogenic induction of MSCs on scaffolds [81].

Sundelacruz and colleagues investigated the effect of a
membrane potential on hMSCs differentiation towards the
osteogenic lineage. Stem cells show a unique electrophysio-
logical profile during their undifferentiated state [94]. Ionic
currents and channels have been found to play a role in
stem cell differentiation [95, 96]. Sundelacruz showed that
treatment of hMSCs with hyperpolarizing reagents increased
the strength of osteogenic differentiation [97].

Taken together, all these studies show that chemical
supplements and physical or mechanical factors can induce
osteogenic differentiation of MSCs. A combination of these
factors can be used to achieve an optimal differentiation
potential of MSCs towards the osteogenic lineage.

The commitment and differentiation of MSCs towards
osteogenic lineage is regulated by a certain group of factors

[98]. Among these factors, the initial and most specific
marker is Runx2. Runx2 activates and regulates osteogenic
differentiation by two independent signaling pathways via
transforming growth factor-beta 1 (TGF β1) and bone
morphogenetic protein 2 (BMP2) [99, 100].

Along with Runx2, BMP2 and distal-less homeobox 5
(Dlx5) commit MSCs towards the osteogenic lineage. Com-
mitment is the process that restricts MSCs to respond and
undergo differentiation towards a specific lineage [101, 102].
In addition to the induction of osteogenic differentiation,
Runx2 inhibits the differentiation of MSCs towards the
adipogenic lineage [103]. BMP2 induces the expression of
Osx independent of Runx2 [104].

Following commitment, MSCs are differentiated into
preosteoblasts. Preosteoblast are elliptical in shape with
an elongated nucleus and are capable of proliferation
(see Figure 2). They express Runx2, D1x5, msh homeobox
homologue 2 (Msx2), P2Y4 and P2Y14 [35, 105], and few
markers of osteoblasts such as ALP, type I collagen, and
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osteopontin (OPN), but their expression is weaker than
immature osteoblasts. Alkaline phosphatase is one of the
early proteins and regulates bone mineralization.

β-catenin, Runx2, and Osx differentiate preosteoblasts
into immature osteoblasts [106]. These cells are spindle
shape (see Figure 2). They express bone matrix protein, bone
sialoprotein, and OPN [106].

At later stages, Runx2 inhibits the maturation of
osteoblasts [107]. Osx causes the terminal maturation
of osteoblasts and induces osteocalcin expression [108].
When osteoblasts are completely differentiated they become
cuboidal (see Figure 2) and produce a self-mineralized
organic matrix [109]. The Golgi bodies and rough endo-
plasmic reticulum are well developed in mature osteoblasts
as a result of increased need for protein production. The
expression of OPN is reduced in mature osteoblasts; while
the expression of other proteins such as P2X5 [35], alkaline
phosphatase [110], collagen type I [110, 111], and osteocal-
cin [111] is increased.

2.5. Adipogenic Differentiation of Mesenchymal Stem Cells. In
vivo MSCs presumably receive cytokine signals for differen-
tiation [112], but in vitro they cannot get such signals from
other cells. Therefore, certain induction factors are needed
to induce MSCs towards the adipogenic lineage. To induce in
vitro adipogenic differentiation of mesenchymal stem cells,
three induction factors are required that are dexamethasone,
indomethacin, and insulin [26, 113]. Dexamethasone is
a synthetic glucocorticoid agonist that acts as a potent-
stimulating agent during the differentiation of mesenchymal
stem cells [114]. Indomethacin is a nonsteroidal antiin-
flammatory drug that induces adipogenic differentiation by
activating PPARγ [115, 116]. Insulin promotes adipogenesis
through at least four known mechanisms [117]. Insulin
triggers adipogenesis by binding to IGF-1 as preadipocytes
express more receptors for IGF-1 than for insulin [118].
Insulin binds to IGF-1 that results in the phosphorylation
of cAMP response element-binding protein (CREB) through
cAMP and phosphatidylinositol-3 kinase (PI3K) [119].
CREB is activated early to positively regulate the expression
of CCAAT/enhancer binding protein alpha (C/EBPα) and
peroxisome proliferator-activated receptor gamma (PPARγ)
[117]. Insulin also favors PPARγ stimulation by inhibiting
necdin that inhibits CREB stimulation of PPARγ [117].
Through a serine/threonine protein kinase- (AKT/PKB-)
mediated phosphorylation, insulin causes nuclear exclusion
of forkhead transcription factor 1 (FOXO1) [120] and
forkhead transcription factor 2 (FOXA2) that are both
antiadipogenic transcription factors. GATA binding pro-
tein 2 (GATA2) is another target of AKT/PKB-mediated
phosphorylation [121]. As these factors favor adipogenic
differentiation of MSCs, MSCs become committed toward
the adipogenic lineage. Following commitment, various
transcription factors are activated that result in the adi-
pogenic phenotype [122].

The treatment of MSCs with the above-mentioned
induction factors results in an increased CREB phospho-
rylation that in turn transcriptionally activates C/EBPβ

[121]. The induction of C/EBPβ leads to the activation of
C/EBPα and Kruppel-like factor 5 (KLF5) [122], which in
turn directly induce many adipocyte genes and specifically
PPARγ [123, 124]. PPARγ is a key player in adipogenesis.
It is not only necessary for adipogenesis [125] but also
needed for maintaining the differentiated state [126]. After
commitment, the expression of these factors differentiates
committed MSCs to preadipocytes.

Preadipocytes are flat phase-dark spindle-shaped cells
(see Figure 3). In culture, the appearance of these cells is
similar to fibroblasts or smooth muscle cells. Preadipocyte
factor 1 (Pref-1) is a transmembrane protein and is highly
expressed in these cells. They also express Gata2 [127].
The expression of these markers is completely abolished in
mature adipocytes [127, 128].

The preadipocytes are differentiated into early ad-
ipocytes. Early adipocytes become spherical in shape (see
Figure 3). These cells express adipocyte determination and
differentiation factor (ADD1), C/EBPβ, KLF5, PPARγ,
lipoprotein lipase (LPL), leptin, and adiponectin [128] as key
molecules.

Adipocytes are round in shape with large perilipin-
coated lipid droplets that displace nuclei to the cell periphery
(see Figure 3). These cells acquire cell arrest, sensitivity
for insulin, and expression of adipokines. PPARγ, C/EBPα,
adiponectin, adipsin, adipocyte Protein 2 (aP2), and puriner-
gic receptor P2Y, G-protein coupled, 11 (P2Y11) [35] are
expressed by mature adipocytes.

2.6. Key Factors Controlling the Balance between Adipoge-
nesis and Osteogenesis. Summarizing the above-mentioned
findings, some factors were found to be upregulated in
adipogenesis but downregulated in osteogenesis or vice versa.
These can be hypothesized to be key factors triggering
differentiation into the adipogenic or osteogenic lineage
(see Figure 4) [129]. An increasing expression of P2X6
was found during adipogenesis and a decreasing expres-
sion of the same factors in osteogenesis [35]. Leukemia
inhibitor factor (LIF) and dexamethasone induce adipogenic
differentiation and at the same time inhibit the matura-
tion of osteoblasts [130, 131]. Similarly, some osteogenic
differentiation triggering factors such as Runx2, Wnt10b,
and bone morphogenetic proteins (BMPs) can inhibit
adipocytes differentiation [132, 133]. Recently, secreted
frizzled-related protein 1 (sFRP-1) was demonstrated to
initiate adipogenesis and inhibit osteogenesis, and delta-like
1 (preadipocyte) factor 1 oppositely induces osteogenesis
but inhibit adipogenesis through Wnt and NF-κB signal-
ing [134]. Constitutively active RhoA can induce hMSCs
into osteoblasts; however, negatively expressed dominant-
RhoA committed those MSCs to become adipocytes [135].
Transforming growth factors (TGF-βs) can trigger MSCs to
commit towards myocytes and chondrocytes while inhibiting
adipocyte, osteocyte, and endothelial cell differentiation
[136, 137]. Fibroblast grow factors (FGFs) and platelet-
derived growth factor (PDGF) are involved in the differ-
entiation into adipogenic, osteogenic, and chondrogenic
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Figure 3: Differentiation of mesenchymal stem cells towards adipocytes. Peroxisome proliferator-activated receptor gamma (PPARγ)
commits MSCs towards adipogenic lineage. Preadipocyte factor 1 (Pref-1) and GATA binding protein 2 (Gata2) are expressed in
preadipocyte. In early adipocyte determination and differentiation factor (ADD1), CCAAT/enhancer binding protein beta (C/EBPβ),
Kruppel-like factor 5 (KLF5), PPARγ, lipoprotein lipase (LPL), leptin and adiponectin are expressed. The early adipocyte develops into
the adipocyte that expresses PPARγ, C/EBPα adiponectin, adipsin, adipocyte protein 2, and purinergic receptor P2Y 11 (P2Y11).

lineages [138]. Physico-mechanical features by extracellular
matrix components can influence MSCs fate too. A soft local
structural geometry can trigger adipogenic differentiation,
while osteoblasts can be differentiated from MSCs in stiff
scaffolds [76, 139, 140]. Cell-cell contact between MSCs also
has an impact on their fate. Usually adipogenic differen-
tiation requires larger number of cells than the initiation
of osteogenic differentiation [35]. The MSCs microenviron-
ment controls differentiation due to changes of cell shape
and the cytoskeleton [139]. Finally, physicochemical factors
such as oxygen tension, ionic strength, and pH can also
mediate stem cell proliferation and differentiation [141–
143].

3. MSCs in Clinical Trials

Human MSCs show potential for various therapeutic appli-

cations and have attracted the attention for clinical investi-

gations. In addition to their multipotency, these cells secret

immunosuppressive cytokines [144]. The low-immune char-

acteristics make them a suitable candidate cell for allogenic

therapeutic use, without stimulating the immune response

in immunocompetent patients [145, 146]. The hMSCs are

expected to repair damaged tissue or stimulate the damaged

tissue through cytokines to regenerate themself. At present

these cells are being investigated in many clinical studies at

different phases to treat various diseases such as osteogenesis
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Figure 4: Key molecules regulating adipogenesis and osteogenesis in mesenchymal stem cells. Runx2, Wnt10b, RhoA, and soft geometry can
induce osteogenesis while inhibiting adipogenesis. In contrast to this, PPARγ, P2X6, LIF, sFRP-1, BMPs, as well as stiff geometry can trigger
adipogenesis while inhibiting osteogenesis. Next to these key molecules, FGFs and PDGF can induce both adipogenesis and osteogenesis.
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differentiation. The key molecules for the other major mesenchymal lineages are listed in the left-hand part of the figure for chondrogenesis
and in the right-hand part for myogenesis. TGF-βs, BMPs, Sox9, FGFs, and PDGF are key triggers of chondrogenic differentiation. TGF-βs
can induce early myogenesis, while Noggin, BMPs, GDF8, and activin can inhibit myogenic differentiation.

imperfecta, chronic and acute myocardial infarction, and
graft versus host disease [147–149]. The public clinical trial
database shows 123 studies investigating MSCs for a variety
of therapeutic purposes [150]. The majorities of these studies
are in phase I, phase II, or are a mixture of phase I and phase
II [150].

Interestingly the clinical studies do not only address
diseases to be expected to be treated by MSCs, but all kinds
of diseases with cancers being the most prominent one.

At the moment, there are approximately 3000 studies
with stem cells, and most of them seem to be effective due to

indirect effects such as paracrine signaling or immunomodu-
latory effect of stimulating local progenitor cells to repair the
damaged tissue. There can be no doubt that stem cells will be
a key tool in regenerative medicine in the future.

4. Conclusion

Human MSCs will be an attractive source for regenerative
medicine approaches in the future. They are already tested
for new therapies for many diseases such as bone fracture
repair, cartilage repair, and cardiovascular diseases. Other
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illnesses such as diabetes, stroke, multiple sclerosis, amy-
otrophic lateral sclerosis (ALS), and cancer are on the way as
well. Inspiringly, more than 3000 clinical trials are performed
for utilizing stem cells to treat above diseases at the moment.
But astonishingly most of them, actually more than 2500
are for cancer (>2,500), thus not for an approach where
repair is predominant, as could be expected from stem cell
treatments. Most of these approaches are still in Phase I or
Phase II and provide at least some new insight. However,
it must be considered carefully why most of them have
only short-term positive effects, and long-term benefits are
missing for nearly all stem cell therapies at the moment. In
order to solve this problem, more in-depth investigations are
required.

Stem cells have paracrine effects on the neighboring
progenitor and somatic cells, whose underlying mechanisms
are still unclear. In addition, some of their beneficial
properties seem to be due to immunomodulatory effects.
This is an astonishing result because before, the expected
effect of stem cells was the repair of damaged tissues or
organs by differentiating into the cells whichever form and
are functional in the targeted tissue or organ. This, of course,
is still a main goal. However, how to stimulate and induce
stem cells properly to achieve the desired differentiation
and repair of the tissue obviously cannot be pinpointed
to currently good enough. Therefore, key molecules which
regulate and determine stem cell fate (some shown in
Figure 4) are vital for addressing this question. In addition,
the microenvironment of the cells seems to be equally
important for improving stem cell therapies. Here a mimic
of the stem cell niche in vitro is the objective. It might
be necessary to fully induce stem cell differentiation for
example, by modifying key molecule ligands or by providing
the necessary physic-chemical environment to differentiate
and stabilize the differentiated cells. For this, more work
should be done to understand the underlying mechanisms of
interaction between stem cells and their microenvironment.
Last not least, in light of the reprogramming possibilities
which have been discovered in the last five years, the
plasticity of mesenchymal stem cell must be reinvestigated
and reevaluated. Taken together, mesenchymal stem cells
might give us possibilities for repair of damages tissues
and organs in the future which we are just starting to
discover.
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