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abstract: We introduce an analytical model, the Wald analytical
long-distance dispersal (WALD) model, for estimating dispersal ker-
nels of wind-dispersed seeds and their escape probability from the
canopy. The model is based on simplifications to well-established
three-dimensional Lagrangian stochastic approaches for turbulent
scalar transport resulting in a two-parameter Wald (or inverse Gauss-
ian) distribution. Unlike commonly used phenomenological models,
WALD’s parameters can be estimated from the key factors affecting
wind dispersal—wind statistics, seed release height, and seed terminal
velocity—determined independently of dispersal data. WALD’s as-
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ymptotic power-law tail has an exponent of �3/2, a limiting value
verified by a meta-analysis for a wide variety of measured dispersal
kernels and larger than the exponent of the bivariate Student t-test
(2Dt). We tested WALD using three dispersal data sets on forest trees,
heathland shrubs, and grassland forbs and compared WALD’s per-
formance with that of other analytical mechanistic models (revised
versions of the tilted Gaussian Plume model and the advection-
diffusion equation), revealing fairest agreement between WALD pre-
dictions and measurements. Analytical mechanistic models, such as
WALD, combine the advantages of simplicity and mechanistic un-
derstanding and are valuable tools for modeling large-scale, long-
term plant population dynamics.

Keywords: analytical model, canopy turbulence, long-distance seed
dispersal, mechanistic dispersal models, Wald distribution, wind
dispersal.

The past decade witnessed a proliferation of studies that
address the importance of seed dispersal in ecological pro-
cesses (Clark et al. 1999; Cain et al. 2000, 2003; Nathan
and Muller-Landau 2000; Wenny 2001; Nathan et al.
2002b; Wang and Smith 2002; Levin et al. 2003). A major
emphasis in these studies is modeling seed dispersal using
both the phenomenological approach (Clark 1998; Tanaka
et al. 1998; Clark et al. 1999, 2001; Bullock and Clarke
2000; Nathan et al. 2000; Stoyan and Wagner 2001; Higgins
et al. 2003a) and, especially for wind dispersal, the mech-
anistic approach (Greene and Johnson 1989, 1995, 1996;
Okubo and Levin 1989; Horn et al. 2001; Nathan et al.
2001, 2002a, 2002b; Soons and Heil 2002; Tackenberg
2003; Tackenberg et al. 2003; Soons et al. 2004). Both
modeling approaches have been shown to provide reliable
predictions of observed seed dispersal patterns. However,
the phenomenological approach has been favored for
modeling dispersal in large-scale and long-term popula-
tion studies (Levin et al. 1997, 2003; Clark 1998; Higgins
and Richardson 1999; Chave 2000; Chave and Levin 2003)
because of its inherent simplicity. Simplicity is important
for implementation in spatially explicit population models
that integrate the spatial structure of landscapes, quantify
the spread of expanding populations of invasive and native
species, including pests, and estimate gene flow patterns.
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Detailed mechanistic approaches, despite their advantages
of being estimated independently of the dispersal data,
being generally applicable, and providing insights into the
underlying transport mechanism, require computer-inten-
sive simulations of wind statistics and hence are imprac-
tical for large-scale, long-term applications.

Simplified mechanistic models that relate mean wind
conditions and seed attributes to dispersal distances are
based on “ballistic” models (Greene and Johnson 1989,
1995, 1996; Nathan et al. 2001, 2002b; Soons and Heil
2002). These models capture the mode of the dispersal
curve well but fail to reproduce its tail, that is, long-
distance dispersal (LDD) events (Bullock and Clarke 2000;
Nathan et al. 2002b). In many ecosystems, LDD is a cru-
cially important determinant of spatial spread, gene flow,
and species coexistence (Levin et al. 2003). This under-
estimation of the tails is attributed to an underestimation
in uplifting and escape of seeds from the canopy, events
that play a major role in LDD (Horn et al. 2001; Nathan
et al. 2002a).

To partially circumvent this problem, a coupled Eule-
rian-Lagrangian closure (CELC) model (Hsieh et al. 1997,
2000; Katul and Albertson 1998; Katul and Chang 1999;
Nathan et al. 2002a) has recently been applied to seed
dispersal by wind (Nathan et al. 2002a; Soons et al. 2004).
This model reproduced well the observed seed dispersal
data collected vertically along a 45-m-high tower for five
wind-dispersed tree species in a deciduous forest in the
southeastern United States (Nathan et al. 2002a) and hor-
izontally for four wind-dispersed herbaceous species in
grasslands in the Netherlands (Soons et al. 2004). In both
cases, the model confirmed that uplifting and subsequent
seed escape from the canopy is a necessary condition for
LDD. Tackenberg (2003) arrived at a similar conclusion,
using detailed turbulent velocity measurements.

The CELC model is computationally expensive, requir-
ing thousands of trajectory calculations, thereby prohib-
iting its use in large-scale and complex ecological models.
Hence, what is currently lacking is a simplified dispersal
model that retains the main mechanisms in CELC (or
other complex turbulent transport models) but also pre-
serves the simplicity of phenomenological models. Re-
cently proposed phenomenological models, such as the
binomial Student t-test (2Dt; Clark et al. 1999) and the
mixed Weibull (Higgins and Richardson 1999; Higgins et
al. 2003b), provide good descriptions of LDD via fat tails
that are typically absent in Gaussian or simple negative
exponential distributions (Kot et al. 1996; Turchin 1998).
However, they require dispersal data for calibration,
thereby preventing their general use for any new species
and environmental settings. A fast analytical solution based
on a mechanistic approach thus has the decisive merit of
combining the major advantages of the two modeling ap-

proaches while avoiding their major disadvantages. Ad-
ditionally, it will provide the means to extrapolate from
the commonly measured dispersal distances near the
source (or near-field dispersion) to LDD or escape prob-
abilities from the canopy. The latter are much more dif-
ficult to measure. Furthermore, because the parameters of
such an analytical mechanistic model—seed terminal ve-
locity, seed release height, and wind conditions—are easily
interpretable and measurable, it provides the means for
estimating LDD for essentially any wind-dispersed species.

In this article, we introduce a new analytic expression
derived from a simplified three-dimensional stochastic dis-
persion model that retains the essential physics in CELC.
As we explain below, this model converges to a Wald (or
inverse Gaussian) distribution; hence, we call it the Wald
analytical long-distance dispersal (WALD) model. We
compare the new model to two other analytical mecha-
nistic models: the tilted Gaussian plume and a solution to
the advection-diffusion equation proposed by Okubo and
Levin (1989). The latter two models were numerically re-
vised to partially account for the effect of leaf area density
on the vertically averaged mean velocity and turbulent
diffusivity. For simplicity, we focus on one-dimensional
dispersal kernels (or crosswind-integrated models) and re-
fer to dispersal kernels as the probability density function
of locating a seed on the ground (or forest floor) with
respect to a point source at a given height (i.e., “distance
distribution” sensu Nathan and Muller-Landau 2000). If
the dispersal process is isotropic, a two-dimensional dis-
persal kernel (i.e., “dispersal kernel” sensu Nathan and
Muller-Landau 2000) differs from its one-dimensional
counterpart only by 2px, where x is the distance from the
seed source.

We test the new model against several seed dispersal
data sets obtained from controlled seed release experi-
ments. Ideally, the model’s capacity to predict LDD should
be tested against “real” LDD data. Yet quantifying LDD
remains an unaddressed challenge (Nathan et al. 2003),
and its definition is still rather vague and case specific
(Nathan 2005). We approached these difficulties in two
ways. First, we compared the performance of WALD and
some alternative models in fitting the dispersal data after
setting thresholds of 15 and 110 m from the source. This
procedure examines the model’s ability (and robustness)
to fit the low frequency of observed dispersal kernels away
from the mode (Portnoy and Willson 1993). We emphasize
that these release experiments were designed to encompass
a wide range of influencing factors; while this approach
was chosen to enhance the generality of our results, it
inherently acts to reduce predictive ability. Second, we also
developed an analytical expression for calculating the
probability of a seed’s escaping the forest canopy and tested
this model against observed seed uplifting probabilities
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reported in Nathan et al. (2002a). This test is directly
related to LDD because seed uplifting by vertical updrafts
is crucial (or a necessary condition) for LDD.

Next, we analyze the tail properties of the predicted
dispersal kernel and verify whether these emerging prop-
erties accord with a wide range of fitted power-law tails
(i.e., heavy tails) from the literature. Finally, we demon-
strate how to use the proposed approach to solve the so-
called inverse problem—extracting biological dispersal
traits and wind parameters by statistical fitting of the sim-
plified analytical expression to measured dispersal kernels.

Theory

Thomson’s Model

In this section, we provide a brief description of the es-
sential physics in CELC as a basis for the analytical model
development. The formulation of Lagrangian stochastic
models for the trajectories of air particles having no mass
in turbulent flows is now a well-established computational
method in fluid mechanics and turbulence research
(Thomson 1987; Pope 2000). These Lagrangian models
must be developed to satisfy the so-called well-mixed con-
dition. This condition states that if the concentration of
a material is uniform at some time t, it will remain so if
there are no sources or sinks. This condition is currently
the most rigorous and correct theoretical framework for
the formulation of Lagrangian stochastic models and en-
sures consistency with prescribed Eulerian velocity statis-
tics. For this condition, the Lagrangian velocity of an air
parcel is described by a generalized Langevin equation
(Thomson 1987):

du p a (x, u, t) dt � b (x, u, t) dQ ,i i ij j

where x and u are the position and velocity vectors of a
tracer particle at time t, respectively. The terms ai and bij

are the drift and diffusion coefficients, respectively. The
quantities dQj are increments of a vector-valued Wiener
process (Brownian walk) with independent components,
mean 0, and variance dt. Here, subscripts (i, j) are used
to denote components of Cartesian tensors, with implied
summation over repeated indices. Both meteorological and
index notations are used interchangeably throughout for
consistency with both the fluid mechanics and boundary
layer meteorology literature (i.e., the components of x are

, , and ), with x, y, and z representingx { x x { y x { z1 2 3

the longitudinal, lateral, and vertical axes, respectively.
The specification of the drift and diffusion terms is suf-

ficient to determine how air parcels move. While bij can
be uniquely determined by requiring that the Lagrangian
velocity structure function match predictions from theo-

ries of locally homogeneous and isotropic turbulence, the
determination of ai is much more complex and requires
the use of the well-mixed condition. Thomson (1987)
showed that for high Reynolds numbers, typical of atmo-
spheric flows, the well-mixed condition requires the dis-
tribution of air parcels in position-velocity space to be
proportional to the Eulerian probability distribution func-
tion p(x, u, t) and to remain so for all later times. This
condition requires that p(x, u, t) must be a solution to the
generalized Fokker-Planck equation

2�p � � � 1
� (u p) p � (a p) � b b p .i i ij jk( )�t �x �u �u �u 2i i i k

The solution of the above Fokker-Planck equation for
Gaussian turbulence provides the probability distribution
for the velocity components. For two- and three-dimen-
sional turbulence, Thomson (1987) showed that the drift
term, ai(x, u, t) can be constrained (but not completely
determined) by requiring consistency with prescribed Eu-
lerian velocity statistics.

Simplifications

Criteria in addition to the well-mixed condition are needed
to resolve the nonuniqueness of the drift coefficients in
two and three dimensions. Furthermore, the resulting set
of three equations derived by Thomson (1987) for the
velocity fluctuations (not shown here but used in the CELC
model) cannot be solved analytically. Therefore, further
simplifications are needed to reduce the model to arrive
at an analytic dispersal kernel. We consider the one-
dimensional case of turbulent flows for very low turbulent
intensity as a basis for building the simplified model. Our
intent is to develop a dispersal kernel that recovers the
most elementary turbulent flow physics and then progress
to accounting for vertical inhomogeneity and high inten-
sity by modifying the simplified solution. Within such a
conceptual framework and idealized conditions, the Lan-
gevin and the Fokker-Planck equations reduce to, respec-
tively,

du p a(z, u , t) dt � b(z, u , t) dQ3 3 3

and

2�p � � 1 �
2� (u p) p � (ap) � (b p),3 2�t �z �u 2 �u3 3

where . Moreover, a Gaussian p(z, u3, t) given1/2b p (C A�S)0

by
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21 u 3�1/2 ′ ′ �1/2p(z, u , t) p (2p) Au u S exp � ,3 3 3 ′ ′[ ]2 Au u S3 3

results in a drift coefficient

′ ′2 �Au u S3 3u 1 u3 3a(z, u , t) p � � 1 � .3 ′ ′( )T 2 �zAu u SL 3 3

Here ({ ) is the variance of the vertical velocity′ ′ 2Au u S j3 3 w

component (the coordinates are defined so that Au S p2

, as is common in atmospheric flows), TL is the integral0
time scale (a measure of temporal coherency of turbulent
eddies), C0 (∼5.5) is a similarity constant (related to the
Kolmogorov constant), and is the mean turbulent ki-A�S
netic energy dissipation rate. Note that in the previous
equations, angle brackets denote spatial averaging (Rau-
pach and Shaw 1982; Finnigan 2000) and an overbar is
for time averaging. The vertical distribution of the flow
statistics , , and needed to drive the Thom-′ ′Au S Au u S A�S1 3 3

son (1987) model can be readily computed from Eulerian
second-order closure models, which require as input the
mean velocity above the canopy, the leaf area density, and
the drag coefficient of the canopy (Katul and Albertson
1998; Ayotte et al. 1999; Katul and Chang 1999; Massman
and Weil 1999; Katul et al. 2001).

It is clear that even the one-dimensional Thomson
(1987) model cannot be solved analytically. We consider
the previous formulation for the case where the flow is
vertically homogeneous. Under this assumption, the
change in the position and velocity of an air parcel trans-
porting a seed with terminal velocity Vt (and zero inertia)
is given by the stochastic differential equations

C A�S0 u 3 �du p � dt � C A�S dQ, (1)3 0′ ′[ ( )]2 Au u S3 3

dx 3 p �V � u , (2)t 3dt

and

dx1 p Au S, (3)1dt

with .′ ′T p (2/C )(Au u S/A�S)L 0 3 3

Equation (2) also assumes that the seed terminal velocity
is achieved instantly after seed release. While equations
(2) and (3) are analogous to the Lagrangian model pro-
posed by Andersen (1991), equation (1) drastically differs
from his model, given that the dispersion term is depen-

dent on a turbulent kinetic energy dissipation rate (which
is nonmonotonic inside canopies) and a drift term that
also varies with , both modeled using second-order′ ′Au u S3 3

closure principles (described later). Note that when u ≈3

, the simplest ballistic model is recovered.0
For notational simplicity, we use an overbar to indicate

both time and horizontal averages and set andAu S p U1

. We emphasize again that canopy turbulence isA�S p �
highly inhomogeneous and of high turbulent intensity;
hence, these simplifications are only adopted to arrive at
a simplified version of the Thomson (1987) model that
can be solved analytically, and we later modify the solution
to account for high intensity and vertical inhomogeneity
through appropriate adjustments of its coefficients.

Analytical Solution

Substituting equation (3) into equations (1) and (2) to
eliminate time, one obtains the second-order process

du p �au dx � b dQ ,3 3 1 1

dx 3 p �g � du ,3dx1

where , , , and2 1/2a p (C �/2Uj ) b p (C �/U) g p V /U0 w 0 t

. The corresponding Fokker-Planck equation cand p 1/U
also be obtained and is reported in appendix A in the
online edition of the American Naturalist. If the seed set-
tling time is assumed to be much longer than the vertical
velocity integral timescale (see app. A), the previous prob-
lem can be further simplified, and the corresponding
Fokker-Planck equation becomes

�p �p 1 �p
2p �g � j , (4)

�x �x 2 �x1 3 3

where .j p d(b/a)
The solution of equation (4) with the specified initial

and boundary conditions is well known (Cox and Miller
1965, p. 221). More importantly, the probability distri-
bution of a seed reaching the ground can be obtained by
noticing that it is equivalent to the probability of crossing
the absorbing boundary starting from x3, r. Fol-x p 03

lowing the standard procedure for the calculation of the
first passage times (Cox and Miller 1965, p. 221), the final
kernel of seed dispersal can be obtained as

2x (x � gx )3, r 3, r 1p(x ) p exp � (5a)1 23 [ ]� 2j xj 2px 11
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(see app. A). When we define (or )′m p (x U)/V x /g3, r t 3, r

and , equation (5a) reduces to a Wald (or′ 2l p (x /j)3, r

inverse Gaussian) distribution of the form

1/2
′ ′ ′ 2l l(x � m )1p(x ) p exp � . (5b)1 3 ′2( ) [ ]2px 2m x1 1

The inverse Gaussian distribution, known as the first
passage time distribution of Brownian motion with pos-
itive drift, was first derived by Schrödinger (1915) and is
now routinely used to model positively skewed data (Wald
1947). Note that the dispersal kernel parameters m′ and l′

depend only on the wind velocity statistics (j and ), seedU
terminal velocity (Vt), and seed release height (x3, r). We
call this analytical solution the Wald analytical long-
distance dispersal (WALD) model, as it exhibits heavy tails
for LDD, as we show below. It has the following statistical
properties (Evans et al. 1993): ;′mean p m variance p

; ; skew-
1/2′3 ′ ′ ′2 ′2 ′ ′m /l mode p m 1 � (9m /4l ) � (3/2)(m /l ){[ ] }

ness ; and kurtosis′ ′ 1/2coefficient p 3(m /l ) coefficient p
. Here m′ (10) and l′ (10) are often called the′ ′3 � 15(m /l )

location and scale parameters, respectively. The WALD
kernel has finite variance, is positively skewed, and has a
kurtosis coefficient much bigger than that of a Gaussian
distribution (3).

For values of , equation (5) exhibits power-lawg r 0
decay (i.e., fat-tail distribution) with exponent �3/2, a
signature of long-distance dispersal. For finite g, the fat
tail presents a cutoff (exponential decay) at a distance that
decreases with increasing g.

From the Fokker-Planck equation (4), one can also de-
rive analytically the escape probability from the canopy
top as a function of canopy height h. This is given by Cox
and Miller (1965):

2exp (2gx /j ) � 13, rPr (x 1 h) p . (6)3, r 2exp (2gh/j ) � 1

Noting that a necessary condition for LDD is seed escape
from the canopy (Nathan et al. 2002a), equation (6) pro-
vides an unambiguous upper limit on the fraction of seeds
that can “potentially” undergo or experience LDD as a
function of the key dispersal determinants.

In summary, the WALD kernel derived here makes sev-
eral restrictive assumptions about canopy turbulence, in-
cluding low turbulent intensity flows, instant attainment
of terminal velocity (and thus zero inertia of seed), and
negligible effects of the correlation of u3 relative to the
settling time, in addition to all the simplifications to the
classical Thomson (1987) model, including Gaussian fluc-
tuations, and the use of Kolmogorov scaling within the
inertial subrange to arrive at bij. How robust this kernel

is to such restrictive assumptions is investigated next, after
a discussion of kernel parameter estimation from deter-
minants of seed dispersal.

Estimation of Model Parameters

For equation (5) to be readily usable, it is necessary to
estimate j from wind statistics typically observed or avail-
able above the canopy. From appendix A, it can be shown
that

2 22j 2jw w2j p # . (7)( ) ( )C � U0

Unfortunately, � is rarely measured and is difficult to
model inside canopies, thereby making the use of equation
(7) not practical. Equation (7), however, can be further
simplified when the mixing length (or effective eddy sizes
responsible for dispersion) inside the canopy is assumed
to be constant and proportional to h through a coefficient
k. For this simplification, the term involving � can be
simplified to

22j hw p k (8)
C � j0 w

(Poggi et al. 2004a, 2004b, 2005).
Substituting equation (8) into equation (7) gives

jw2j p kh 2 , (9)( )U

where . The coefficient k, while bounded andk � [0.3, 0.4]
qualitatively connected to a mixing length, must be con-
sidered as a semiempirical parameter here because all the
model assumptions (including vertically homogeneous
and low-intensity flows, instant attainment of terminal
velocity, zero inertia of seed, and the negligible effects of
the correlation of u3 relative to the settling time) and all
simplifications in the original Thomson (1987) model (in-
cluding a Gaussian dQ) affect this coefficient.

The lower limit on k can be derived by noting that near
the canopy top and that , which is2j ≈ u 2j /C � p Tw ∗ w 0 L

also approximately (Raupach 1989a, 1989b; Rau-0.3h/u∗
pach et al. 1996) for dense and extensively uniform can-
opies (i.e., ). The upper limit is constrained by thek p 0.3
fact that eddies within the canopy, even for very sparse
canopies, cannot geometrically exceed the classical mixing
length scale at the canopy top (i.e., , the vonk p k p 0.4
Kármán constant).

Finally, the values and jw can be estimated from windU
speed measurement above the canopy in numerous ways.
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Table 1: Summary of seed release experiments

Date of release, speciesa

LAI
(m2

m�2)

x3, r p 30 m x3, r p 21 m x3, r p 12 m

u
*

(m s�1)
U

(m s�1)
jw

(m s�1)
u

*
(m s�1)

U
(m s�1)

jw

(m s�1)
u

*
(m s�1)

U
(m s�1)

jw

(m s�1)

November 2, 2000:b

litu (1.50), frpe (1.43),
acne (1.50), caca (1.89) 1.2 .16 .23 .09 .16 .23 .09 .16 .23 .09

November 28, 2000:
litu (1.50), frpe (1.43),

acne (1.50), caca (1.89) .9 .89 1.55 .61 .89 1.55 .61 .63 1.10 .44
May 13, 2001:

acsa (1.10), acru (.67) 4.9 .60 .56 .27 .62 .58 .28 .61 .57 .27
June 25, 2001:

acsa (1.10), acru (.67),
caca (1.89), frpe (1.43) 4.9 .25 .23 .11 .20 .19 .09 .27 .23 .11

July 20, 2001:
acsr (1.74), fram (1.21),

caca (1.89) 4.9 .27 .25 .12 .32 .31 .15 .25 .23 .11

Note: The measured release height (x3, r), terminal velocity (Vt), leaf area index (LAI), friction velocity above the canopy (u
*

), modeled depth-averaged

mean velocity ( ), and vertical velocity standard deviations within the canopy (jw) are also shown. , ,U acne p Acer negundo acru p Acer rubrum acsa p
, , , , ,Acer saccharinum acsr p Acer saccharum caca p Carpinus caroliniana fram p Fraxinus americana frpe p Fraxinus pennsylvanica litu p Liriodendron

). The values of Vt here are higher than previously published values (Nathan et al. 2002a) because seeds of different species were color sprayed totulipifera

enhancing detection and recovery.
a For each species, Vt, measured for spray-marked seeds, is shown in parentheses (m s�1).
b In this particular experiment, all the seeds were simultaneously released from the source. Hence, the 30-min friction velocity u

*
need not represent the

correct mean wind conditions of the few seconds in which dispersal occurred. In the remaining four experiments, seeds were released over a 30-min period

at each level.

One approach is to use simplified analytical models (Mass-
man and Weil 1999) driven by the wind speed above the
canopy to compute the flow statistics inside the canopy
and then vertically average the computed profiles to obtain

and jw (see app. B in the online edition of the AmericanU
Naturalist for formulation).

Model Testing

Evaluating Model Predictions by Seed Release Experiments

While the setup is described elsewhere (Nathan et al.
2002a), the salient features are reviewed here. Seed release
experiments were carried out in an 80–100-year-old oak-
hickory forest within the Blackwood division of the Duke
Forest near Durham, North Carolina. The stand is com-
posed primarily from mixed hardwood species, with Quer-
cus alba, Quercus michauxii, Quercus velutina, Carya to-
mentosa, Carya ovata, Liriodendron tulipifera, and
Liquidambar styraciflua as canopy dominant, Pinus taeda
as a minor component, and mostly Ostrya virginiana, Car-
pinus caroliniana, and Cornus florida in the understory.
The tree density is 311 ha�1, the basal area is 26.3 m2 ha�1,
the mean canopy height is 33 m, and the leaf area index
(projected foliage area per ground area) varies from 0.9
m2 m�2 (leafless conditions) to 4.9 m2 m�2 (full foliage).

Five manual seed release experiments were conducted
from November 2, 2000 to July 20, 2001. Eight wind-
dispersed species were used in those releases, with mean
Vt ranging from 0.67 to 1.89 m s�1 (table 1). Seeds were
manually released from a 45-m-high walk-up tower at
three levels: , 21, and 12 m above the forest floor.x p 303, r

Each seed release lasted for about 30 min, with seeds re-
leased every 30 s. A CSAT 3 (Campbell Scientific, Logan,
UT) sonic anemometer situated at 40 m above the forest
floor recorded the mean flow statistics , ,′ ′Au S Au u S1 1 1

, , and for each 30-min release time.′ ′ ′ ′ ′ ′Au u S Au u S Au u S2 2 3 3 1 3

The varied roughly from 0.1 to
1/4′ ′ 2 ′ ′ 2u p Au u S � Au u S( )∗ 1 3 2 3

0.9 m s�1, with a concomitant variation from 0.3 to 3.3U
m s�1 just above the canopy, within the ensemble of the
15 (i.e., five experiments and three release heights per
experiment) manual seed releases (see table 1). To facilitate
the detection of seeds on the forest floor and to distinguish
between seeds of the same species released from different
heights, all seeds were color sprayed (in different colors)
before the release. Measurements of Vt before and after
spraying revealed that spraying increased Vt appreciably
(from 12% to 112%). Hence, the measured after-spraying
Vt values were used in the calculations.

For each u
*
, the local leaf area density a(z) was measured

(or estimated), and the second-order closure model (Mass-
man and Weil 1999) was used to calculate the vertical
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Table 2: Comparison, using regression analysis, between
measured and modeled dispersal kernels for all data points

Data points, model m b r RMSE

All points (n p 459):
WALD (proposed) .77 .21 .69 .066
Tilted Gaussian .69 .28 .55 .077
Advection-diffusion .72 .26 .56 .075
Gaussian .69 .27 .58 .077

x1 1 5 m from source
(n p 408):

WALD (proposed) .76 .21 .69 .059
Tilted Gaussian .67 .31 .64 .066
Advection-diffusion .72 .27 .67 .062
Gaussian .61 .36 .62 .071

x1 1 10 m from source
(n p 357):

WALD (proposed) .68 .31 .67 .051
Tilted Gaussian .58 .41 .59 .058
Advection-diffusion .62 .38 .61 .057
Gaussian .56 .42 .64 .057

Note: The regression model is used, where and areˆ ˆ ˆ ˆy p mx � b x y

modeled and measured variables, respectively. Because the kernels are

all bounded between 0 and 1, and to increase the sensitivity of this

comparison at small probabilities, thereby avoiding the mode, we com-

pared rather than p(x1) (see app. C). The correlation1/2exp [�p(x ) ]1

coefficient (r) and the root mean squared error (RMSE) are also shown.

We also report the same model comparisons for distances x1 exceeding

5 and 10 m, to separate the effects of low p(x1) near the source from

the low p(x1) at greater distances. We also conducted a Student t-test

to evaluate the hypothesis that the regression slope is different from

unity and the correlation coefficient is different from 0. We found the

resulting p values for both hypotheses and both variables to be !10�6,

indicating significant correlation but also significant bias in the slope

from unity at the 95% confidence level. analyticalWALD p Wald

long-distance dispersal model.

profiles of , , , , and within′ ′ ′ ′ ′ ′ ′ ′Au S Au u S Au u S Au u S Au u S1 1 1 2 2 3 3 1 3

the canopy (see app. B) using the measured flow statistics
above the canopy (table 1). These flow statistics were then
vertically averaged to estimate and jw, and hence, gU
( ) and for each species and each2¯p V /U j p 2khj /Ut w

seed release. All in all, an ensemble of 51 seed dispersal
kernels was measured in the five seed release experiments.

The 51 measured kernels (shown in app. C in the online
edition of the American Naturalist) were compared to the
predicted kernels for a wide range of leaf area index (factor
of 4), release height (factor of 2.5), terminal velocity (factor
of 2), and friction velocity (factor of 9), as evidenced by
table 1. From appendix C, the agreement between WALD’s
calculations and the measurements is reasonably good de-
spite all the simplifying assumptions. Using regression
analysis on the 459 data points (i.e., all the points for all
release dates shown in app. C) resulted in a correlation
coefficient (r) of 0.69. The regression analysis was con-
ducted on rather than p(x1) to increase1/2exp �[p(x )]{ }1

the regression sensitivity for low p(x1) (!0.2). Since low
values are typically observed at both tails of the distri-
bution (i.e., near and away from the source), we repeated
the regression analysis for m to reduce the effectsx 1 51

of low probabilities near the release point and for x 11

m to check the robustness of these comparisons to this10
arbitrary threshold. Again, this test represents the model’s
ability to describe relatively long dispersal events better
than ordinary tests; the adverse consequence is an inherent
tendency toward lower fits due to amplified noise in the
measurements. Given that WALD involves no parameter
tuning, and given the uncertainty of the data in terms of
small probabilities, the overall agreement between mea-
sured and modeled dispersal kernels is quite encouraging
(table 2; app. C).

It can be argued that the kernels in appendix C are not
real LDD experiments, because the maximum observed
distance does not exceed 80 m. It is possible, however, to
evaluate the “onset” of LDD by comparing measured and
modeled probabilities of seed escape, a necessary condition
for LDD (Nathan et al. 2002a). In appendix D in the online
edition of the American Naturalist, we compare predictions
from equation (6) with the measured escape probabilities
for the six species reported in Nathan et al. (2002a) from
data collected at the same tower. Appendix D suggests good
agreement between measured and modeled escape prob-
abilities, lending some confidence in WALD’s ability to
estimate the necessary conditions for LDD (i.e., seed
escape).

Comparison with Other Analytical Model Kernels

The Duke Forest experiments also permit us to evaluate
other analytic kernels computed from the tilted Gaussian

plume model and the advection-diffusion equation model
of Okubo and Levin (1989). We revised these models to
include the depth-averaged velocity and the depth-U
averaged eddy diffusivity computed using the second-
order closure model of Massman and Weil (1999), as de-
scribed in appendix B. This revision was necessary because
the Okubo-Levin models do not consider any canopy ef-
fects on the velocity statistics. Rather, they assume that the
mean velocity and eddy diffusivity are described by their
boundary layer values (the boundary here being the forest
floor) and that the canopy is simply a passive source of
seeds. Canopy turbulence significantly differs from the
classical boundary layer turbulence in that the second-
order statistics all vary appreciably with height (within the
canopy) and the mean velocity profile has an inflection
point near the canopy top (unlike power-law or logarith-
mic functions), as revealed by numerous canopy experi-
ments (Katul and Albertson 1998; Finnigan 2000; Poggi
et al. 2004a) and large-eddy simulations (Albertson et al.
2001).
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In their original derivation, these two models are given,
respectively, by

2[x � (V x /U)]3, r t 1Vtp(x ) p exp � (10a)1 2{ }� 2j2p Uj 33

and

1�b2

2x U3, rVtp(x ) p1 [ ]x U G(1 � b ) 2(1 � a )Ax3, r 2 2 1

2x U3, r
�b �12# x exp , (10b)1 [ ]2(1 � a )Ax2 1

where , is the mean eddy2j p 2Ax /U A p (ku x )/23 1 ∗ 3, r

diffusivity (assuming a boundary layer flow rather than a
canopy turbulence flow), a2 is the power-law exponent of
the mean velocity profile in a rough-wall boundary layer,

to 1/7 (Katul et al. 2002),a p 1/6 b p V /[ku (1 �2 2 t ∗
is the ratio of the terminal velocity to a characteristica )]2

vertical turbulent velocity, and G(…) is the gamma func-
tion. To revise equations (10a) and (10b), was computedU
from the Massman and Weil (1999) model (see app. B),
a2 was set to 0, and was set to , withx3,rA (1/x ) K (z) dz∫03, r t

the turbulent diffusivity . Here, l ap-2K p �l (dU/dz)t

proaches its rough-wall boundary layer value (kz, where
is the von Kármán constant) for sparse canopiesk p 0.4

but is a constant kh for dense canopies (Poggi et al. 2004a).
We found that the two Okubo-Levin models agree rea-

sonably well with the data. We also show, in appendix C,
the kernel in equation (10b) with j3 estimated from equa-
tion (9) rather than . The difference between2j p 2Ax /U3 1

these two estimates is that in equation (10a), a distance-
dependent j originates from crosswind averaging results,
while equation (9) yields j independent of x1 (but about
a factor of 10 larger than jw). Hence, p(x1) computed using
equation (10a) with a constant j recovers the classic Gauss-
ian kernel (Levin et al. 2003) and is also shown for ref-
erence in figures C1–C5. Using the same regression anal-
ysis on all the three analytical kernels and all the data
( points; see app. C for a graphical comparisonn p 459
for each release height and species), WALD slightly out-
performed the other models (table 2). Recall that the re-
gression analysis was constructed to be hypersensitive to
the variability in p(x1) for (i.e., long-distancep(x ) ! 0.21

probability).

Meta-Analysis of Asymptotic Tails

The rate of decay of p(x1) for large x1 determines the level
of LDD estimated by the dispersal kernel. It is clear that
when (i.e., ), WALD’s for large�3/2g r 0 V /U r 0 p(x ) r xt 1 1

x1. Such an asymptotic finding was also reported by Levin
et al. (2003), who used a similar approach. The p(x ) r1

is also consistent with other Lagrangian dispersion�3/2x1

analyses conducted on spores and pollen (Stockmarr
2002). When g is large (e.g., heavy seeds or low winds),
the power-law behavior of p(x1) is limited to an inter-
mediate region beyond which the decay of p(x1) is faster
than a power law, that is, exponential.

For large x1, the asymptotic behavior of the tilted Gauss-
ian model is and the advection-diffusion�1/2p(x ) ∼ x1 1

equation is ( ). In Okubo and Levin�1�b2p(x ) ∼ x b 1 01 1 2

(1989), the minimum (calculated here), andb p 0.152

hence, the minimum exponent (or the heaviest-tail be-
havior) is . In short, when , both the�1.16p(x ) ∼ x V r 01 1 t

tilted Gaussian (i.e., ) and the solution to the�1/2p(x ) ∼ x1 1

advection-diffusion equation ( ) yield tails�1p(x ) ∼ x1 1

“heavier” than those from WALD for large x1, and as we
show below, even heavier than those from almost all other
empirical models constructed for the singular purpose of
explaining heavy tails. Because they exhibit such a heavy
tail, both the tilted Gaussian model and the solution to
the advection-diffusion equation do not have finite vari-
ances as . It is for this reason that the meta-analysisx r �1

below is restricted to the WALD kernel.
A logical but indirect test is to assess whether other

empirical models or dispersal data result in tails that decay
slower than . If so, then WALD’s decay rate,�3/2p(x ) ∼ x1 1

, will certainly underestimate LDD for such a�3/2p(x ) ∼ x1 1

species. We compared this asymptotic behavior with recent
studies that used power-law-type distribution to seed trap–
measured kernels, and we find that virtually all studies
resulted in a power-law decay with absolute exponent
larger than 1.5 (table 3). That is, the exponent of WALD
is sufficient to capture the tails for the majority of species
that were measured in dispersal experiments (table 3). We
emphasize that in this particular comparison we test pre-
dicted versus observed agreement on the asymptotic be-
havior of the tail, which is different from the tests using
the release experiments data, in which we compared pre-
dicted versus observed dispersal frequencies at the tail of
the dispersal kernel. It should also be noted that LDD is
very difficult to measure, and in most dispersal studies the
measured dispersal distances did not exceed several tens
of meters.

Other studies recognized that estimating the tails from
seed dispersal data is complicated by the fact that many
of the seeds disperse near the source, and hence the kernel
often exhibits an increase with distance rather than a de-
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Table 3: Reported exponent of power-law dispersal kernel for wind-dispersed seeds

Species Power-law decay Notes

Pinus halepensis �1.63 to �1.94 Obtained by fitting a power-law distribution to measured
kernels (Nathan et al. 2000); maximum distance ∼120 m

Acer rubrum, Betula lenta, Fraxinus ameri-
cana, Liriodendron tulipifera, Pinus rigida,
Tilia americana, Tsuga canadensis �2.0 to �3.0 Obtained from fitting the 2Dt model to measured kernels

(Clark et al. 1999); maximum distances not reported
Cryptantha flava, Senerio jacobaea,

Apocymum sibrica, Cirsium undulatum,
Liatris aspera, Senecio jacobaea, Solidago
rigida, Penstemom digitalis, Cassia fascicu-
lata, Geranium maculatum Data selected from Willson (1993) for the following two cri-

teria: the dispersal mode is at least 1 m away from the
source, and good statistical power-law fits (r2 1 .6); maxi-
mum distance 1150 ma

�1.51 to �4.24 For species with special devices for wind dispersal
�1.62 to �3.79 For species dispersed without special morphological devices

or mechanisms
�4.29 to �7.96 For species with ballistic dispersal

Calluna vulgaris �4.7 to �10.3 Obtained from fitting power laws to measured kernels across
different directions and for a wide range of wind speeds
(Bullock and Clarke 2000)

Erica cinerea �2.85 to �4.43 Obtained as for Calluna above

a An exception is Tussilago farfara, with a reported exponent of �0.59 and maximum dispersal distance exceeding 4,000 m reported for a pasture.

crease (see app. C for examples from the Duke forest data).
This recognition leads to several approaches aimed at in-
troducing kernels with fat tails. Two proposed phenom-
enological models employed different types of fat-tailed
distributions. The first, a bivariate Student t-test (2Dt)
distribution (Clark et al. 1999) is given by

1
p(x ) ∼ ,1 n�121 � (x /u)[ ]1

which for large x1 (and finite u) yields a .�2(n�1)p(x ) ∼ x1 1

The use of this distribution has been advocated recently
in the interpretation of turbulent fluctuations in connec-
tion with the nonextensive thermodynamics of Tsallis
(Beck 2002). Also, such distributions can arise as solutions
to nonlinear Fokker-Planck equations and provide a uni-
fying framework for analyzing superdiffusion (or anom-
alous diffusion) in such stochastic differential equations.
According to Clark et al. (1999), for wind-dispersed species
of temperate deciduous forests, , suggesting that then ! 0.5
asymptotic behavior of the 2Dt model is (for�2p(x ) ∼ x1 1

) and (for ). In both cases, WALD�3n r 0 p(x ) ∼ x n p 0.51 1

has power-law tails that decay slower than those predicted
by the 2Dt model (at least for ).g r 0

The second approach uses a superposition of two ker-
nels, often referred to as the mixed model, which yields

′ ′ ′ �np(x ) ∼ a exp (�b x ) � c x1 1 1

(Bullock and Clarke 2000). The advantage of this four-
parameter model is that the near-field dispersion primarily
affects the exponential term, while long-distance dispersal
events affect the power law. Furthermore, this mixed
model assumes that these two effects are additive, not
multiplicative (as derived by WALD and eqq. [10a], [10b]).
It is evident that for large x1, the above dispersal kernel
( ) will be dominated byn 1 1

1
p(x ) ∼ .1 nx1

On the basis of data sets for two species (Calluna vulgaris
and Erica cinerea) and for a wide range of wind conditions,
Bullock and Clarke (2000) reported n ranging from 1.0 to
2.39. We note that n was obtained by optimizing the pa-
rameters of the mixed model to fit their measured kernels,
with, apparently, a constrained condition (i.e., then p 1
optimization may have forced ). If the probably con-n p 0
strained are removed, then to 2.38. Givenn p 1 n p 1.3
the overall uncertainty, the lower limit is sufficiently close
to 1.5, suggesting some confidence in the WALD-modeled
lower limit. We also note that when Bullock and Clarke
fitted a power-law distribution across the entire data set
(rather than using the mixed model), the reported values
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Figure 1: Determining m′, l′, and the concomitant effective mean wind for the Bullock and Clarke (2000) experiments. Measured dispersal kernels
(circles) are derived by summing seeds from all seed traps along all directions. The solid lines (model) are for m′ and l′ shown in table 3 obtained
by a moment-matching method between the Wald analytical long-distance dispersal distribution and the measurements.

of n were appreciably higher (table 3), ranging from 2.5
to 7.69.

The Inverse Problem

To contrast our proposed mechanistic model with the re-
sults from typical ballistic models, especially at the tails,
we consider again the study of Bullock and Clarke (2000).
These authors concluded that a wind speed of 633 m s�1

is needed (at the seed release height) for their simple bal-
listic model to transport Calluna seeds some 80 m distance
from the source. Such a wind speed exceeds typical gusty
winds by about two orders of magnitude and is about an
order of magnitude larger than damaging hurricanes. We
combined the seed trap measurements for all wind direc-

tions for Calluna and Erica in the Bullock and Clarke
(2000) study and fitted equation (5b) to the resulting ker-
nels in figure 1 to determine m′ and l′ (table 4) and hence
determine the effective winds needed to transport these
seeds. Using the computed m′ and l′, we estimated g and
j and then estimated and jw to determine the effectiveU
wind speed and vertical velocity standard deviation that
best reproduce the measured kernels (see fig. 1). We found
that effective wind speeds on the order of 10 m s�1 and
concomitant jw on the order of 3 m s�1 are sufficient to
reproduce the measured distributions for both Calluna and
Erica. We note that just above the canopy (Raupach et al.
1996), and , so that .U/u ∼ 3.3 j /u ∼ 1.1 j /U ∼ 0.33∗ w ∗ w

For a wind speed of 10 m s�1, a m s�1 is quitej p 3w

reasonable and consistent with what is established about
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Table 4: Estimated parameters for WALD
shown in figure 1

Variable Calluna Erica

Vt (m s�1) 1.14 1.58
x3,r (m) .14 .12
m′ (m) 1.02 1.04
l′ (m) .060 .064

(m s�1)Ueff 8.4 13.7
g .14 .12
jeff (m1/2) .57 .47
jw, eff (m s�1) 2.7 3.0
Pr(z 1 h) .22 .19

Note: From the parameters m′ and l′, the effective mean

wind speed and vertical velocity variance re-2U jw,effeff

sponsible for the measured tails are inferred along with

the escape probability from the canopy ( ), as-Pr (z 1 h)

suming m. analytical long-dis-h p 0.41 WALD p Wald

tance dispersal model.

flow statistics within the canopy sublayer. Hence, in our
proposed model, both Calluna and Erica seeds can travel
80 m for typical gusts encountered at the site. We iterate
here that equation (5) is derived for a single source and
need not represent the near-field dispersal kernel of the
Bullock-Clarke study. However, the approximate power-
law decay of the data (ca. �1.5) seems to support well
the results of our proposed simplified model.

We repeated a similar exercise on four other grassland
species (Cirsium dissectum, Hypochaeris radicata, Centau-
rea jacea, and Succisa pratensis), with Vt now ranging from
0.33 to 4.3 m s�1 and with all seeds released above the
main canopy (Soons et al. 2004). In Soons et al. (2004),
individual seeds were released at different mean wind
speeds (∼0.1–6.9 m s�1), and hence, one-to-one direct
comparisons between model calculations and measure-
ments (as was done for the Duke Forest seed release ex-
periments) are not possible. Only qualitative statements
about the plausibility of WALD explaining the dispersal
data can be made. When WALD is fitted to the kernels in
figure 2 (line), the effective resulting mean velocity is well
within the range reported by Soons et al. (2004) and close
to the hourly average value (table 5). However, for such
an effective velocity, the model clearly underestimates the
tails for all four species. We note that fitting WALD as-
sumes that all seeds were released during a 1-h period at
a constant mean wind ( ) and . That is, the modelU jw, effeff

clearly does not reflect the conditions of the Soons et al.
(2004) experiments in which seeds were released over the
entire range of (i.e., 0.1–6.9 m s�1). Not withstandingU
those limitations, when the model was used to compute
the dispersal kernels for m s�1 (i.e., the maximumU p 6.9
recorded mean wind speed), the measured dispersal kernel
tails were well captured by the model, suggesting that those

events are, in fact, associated with the high mean wind
speed conditions encountered during the experiment sim-
ilar to the Bullock and Clarke (2000) study. The analysis
in figure 2 is an indirect confirmation that the proposed
model can reproduce the asymptotic behavior of the tails
for small and large Vt, even for seeds released above the
canopy, without requiring unrealistic wind conditions.

Conclusions

We have developed and tested an analytical mechanistic
model for wind dispersal of seeds based on the simplest
possible representation of canopy turbulence. This ana-
lytical solution maintains mechanistic properties and has
a shape of a Wald (inverse Gaussian) distribution. The
resulting model (WALD) provides, for the first time, an
analytical expression for calculating probability that seeds
escape from the forest canopy top, which was shown to
be a necessary condition for LDD in other studies (Nathan
et al. 2002a).

We tested the realism and applicability of the WALD
model by comparing simulated to measured data from
several different data sets, including data on forest trees,
heathland shrubs, and herbaceous grassland plants. For
each data set, the WALD model predicted realistic dispersal
patterns whether the model was used to predict seed dis-
persal distances from measured plant and wind parameters
or the inverse approach was used, predicting wind param-
eters from measured dispersal distances. We conclude from
our results that the WALD model adequately describes seed
dispersal by wind and performs better than previously
existing analytical mechanistic models. It should be noted,
however, that all measured dispersal data do not include
rare LDD events and that no mechanistic model, analytical
or not, has been tested against measured LDD data so far.

We also showed that the asymptotic behavior of WALD
for large distances from the seed source can be fat tailed.
We noted that other analytical models, such as the tilted
Gaussian plume (with x-dependent j3) and the solution
to the advection-diffusion equation, exhibit tails that are
“heavier” than those from WALD when . However,V r 0t

those models do not admit a finite variance for (infinitely)
large distances. For finite j (i.e., turbulent flows), the
WALD kernel admits a finite variance for large distances.

We note that the other models were derived assuming
that the canopy is a passive source of seeds and does not
alter the flow field within the canopy; hence, their resulting
mixing lengths were linear, and their second moments
(e.g., and ) were constant inside the canopy.′ ′ ′ ′Au w S Aw w S
The WALD derivation uses second-order closure principles
to estimate how foliage density modulates these flow sta-
tistics inside the canopy and how this modulation affects
the parameters of the dispersal kernel. The advantage of
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Figure 2: Measured (circles) and modeled (lines) kernels for the grassland ecosystems described in Soons et al. (2004). The solid line represents the
fitted Wald analytical long-distance dispersal model obtained by first- and second-moment matching to the measured distances. The dashed lines
represent the modeled kernels for m s�1, m, x3, r and Vt shown in table 5. For reference, we also show the modeled kernels forU p 6.9 h p 0.5
the lowest wind speeds ( m s�1; dot-dashed lines). For Centaurea jacea and Succisa pratensis, the resulting modeled kernels for mU p 0.1 U p 0.1
s�1 are �1 cm from the source and are not shown for clarity.

the WALD model over other analytical models is that it
can be applied to a wide variety of wind-dispersed species
and ecosystems and can be used to delve into the process
of seed dispersal by wind. While this is a known advantage
of mechanistic dispersal models over phenomenological
models, phenomenological models have been favored for
modeling seed dispersal in large-scale and complex eco-
logical models because previous mechanistic models were
computationally too slow and impractical in estimating
dispersal kernels over large domains. WALD maintains all
the major strengths of the mechanistic modeling approach
for seed dispersal while resolving its major weakness of

reliance on intensive computations. Even though the
model was developed with several restrictive assumptions,
we conclude that the good agreement between measured
and modeled kernels is quite encouraging and suggests
robustness to these simplifications.
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