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Abstract

Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum

was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum

strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver

nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs

by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of

this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical

applications are important, including their high potential as antibacterial material.

Background
The dissimilatory ferric reductase, which are found in bac-
teria are an essential part of the iron cycles [1] and are
essentially intracellular, but one extracellular one was iso-
lated from Mycobacterium paratuberculosis [2]. Another
possible mechanism could be active in this process since
it was discovered that some bacteria reduce Fe3+ oxides by
producing and secreting small, diffusible redox com-
pounds that can serve as electron shuttle between the
microbe and the insoluble iron substrate [3]. The role of
excreted compounds in extracellular electron transfer was
recently reviewed [4].

The presence of hydrogenase in fungus as Fusarium oxyspo-
rum was demonstrated with washed cell suspensions that
had been grown aerobically and anaerobically in a
medium with glucose and salts amended with nitrate [5].

The nitrate reductase was apparently essential for ferric
iron reduction [6]. Many fungi that exhibit these charac-
teristic properties, in general, are capable of reducing Au
(III) or Ag (I) [7]. Besides these extracellular enzymes, sev-
eral naphthoquinones [8-10] and anthraquinones [11]
with excellent redox properties, were reported in F. oxyspo-
rum that could be act as electron shuttle in metal reduc-
tions [3].

Although it is known that microorganisms such as bacte-
ria, yeast and now fungi play an important role in remedi-
ation of toxic metals through reduction of the metal ions,
this was considered interesting as nanofactories very
recently [12]. Using these dissimilatory properties of
fungi, the biosynthesis of inorganic nanomaterials using
eukaryotic organisms such as fungi may be used to grow
nanoparticles of gold [13] and silver [14] intracellularly in
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Verticillium fungal cells [15]. Recently, it was found that
aqueous chloroaurate ions may be reduced extracellularly
using the fungus F. oxysporum, to generate extremely stable
gold [16] or silver nanoparticles in water [17]. Other proc-
ess, which was described in the literature, was related to
produce silver nanoparticles through oligopeptides catal-
ysis, precipitating the particles with several forms (hexag-
onal, spherical and triangular) [18]. However, in the
fungal reduction of Ag ions led colloidal suspension, dif-
ferently that in the oligopeptides case. Then the mechanis-
tic aspects are still an open question, however this process
occur in the fungal case probably either by reductase
action or by electron shuttle quinones or both. Our aims
in this research are to compare different strains of F.
oxysporum in order to understand if the efficiency of the
reduction of silver ions is related to a reductase or qui-
none action.

Results and Discussion
The Erlenmeyer flasks with the F. oxysporum biomass were
a pale yellow color before the addition of Ag+ ions and this
changed to a brownish color on completion of the reac-
tion with Ag+ ions for 28 h. The appearance of a yellowish-
brown color in solution containing the biomass suggested
the formation of silver nanoparticles [21]. The UV-Vis
spectra recorded from the F. oxysporum 07SD strain reac-
tion vessels (Method A) at different times of reaction is
presented in Figure 1. The strong surface plasmon reso-
nance centered at ca. 415–420 nm clearly increases in
intensity with time. The solution was extremely stable,
with no evidence of flocculation of the particles even sev-
eral weeks after reaction. The inset of Figure 1 shows UV-

Vis spectra in low wavelength region recorded from the
reaction medium exhibited an absorption band at ca. 265
nm and it was attributed to aromatic amino acids of pro-
teins. It is well known that the absorption band at ca. 265
nm arises due to electronic excitations in tryptophan and
tyrosine residues in the proteins. This observation indi-
cates the release of proteins into solution by F. oxysporum
and suggests a possible mechanism for the reduction of
the metal ions present in the solution [17].

Figure 2 shows the fluorescence emission spectra of fungal
filtrate of one of the strain (07SD). An emission band cen-
tered at 340 nm was observed. The nature of the emission
band indicates that the proteins bound to the nanoparti-
cle surface and those present in the solution exist in the
native form [22]. The similar results were observed for all
the studied strains as shown in Table 1. In Table 1, the
07SD strain appeared as the most efficient one in the sil-
ver nanoparticles production. Apparently, the different
efficiencies are related to the reductase and/or to the qui-
none generation and will be discussed later. A destabiliza-
tion of the nanoparticles is evident in the case of F.
oxysporum 534, 9114 and 91248 strains at 28 hrs, as indi-
cated by a decrease in the 420 nm absorption.

Similarly, when the biomass was immersed in water and
only the fungal filtrate (Method B) was added to a 10-3 M
AgNO3 solution, the initially colorless aqueous solution
changed to a pale yellowish-brown within 28 h of reaction

UV-Vis spectra recorded as a function of time of reaction of an aqueous solution of 10-3 M AgNO3 with the fungal biomass (07SD)Figure 1
UV-Vis spectra recorded as a function of time of reaction of 
an aqueous solution of 10-3 M AgNO3 with the fungal biomass 
(07SD). The inset shows the UV-Vis absorption in the low 
wavelength region.

Fluorescence emission spectrum recorded from the silver nanoparticles-fungus reaction mixtureFigure 2
Fluorescence emission spectrum recorded from the silver 
nanoparticles-fungus reaction mixture. The excitation wave-
length was 260 nm.
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(data not shown), clearly indicating that the reduction of
the ions occurs extracellularly through reducing agents
released into the solution by F. oxysporum as it shows the
UV-Vis spectra for the 07SD strain (Fig. 3).

Figures 4 and 5 shows the SEM micrograph recorded from
the silver nanoparticle (Method A). This picture shows sil-
ver nanoparticles aggregates. In this micrograph, spherical
nanoparticles in the size range 20–50 nm were observed.
The nanoparticles were not in direct contact even within
the aggregates, indicating stabilization of the nanoparti-
cles by a capping agent. This corroborates with the previ-
ous observation by Ahmad et al. [17] in their study on F.
oxysporum. The same micrograph in the Method B was
observed (not showed). In the analysis by energy disper-
sive spectroscopy (EDS) of the silver nanoparticles was
confirmed the presence of elemental silver signal (Figure
6).

The TLC (Cromatography of Thin Layer) analysis on silica
gel 60 plates using chloroform-methanol-acetic acid
(195:5:1) showed a spot with Rf value of 0.65, and using
benzene-nitromethane-acetic acid (75:25:2) showed a
spot with Rf value of 0.85, corresponding to 2-acetyl-3,8-
dihydroxy-6-methoxy anthraquinone or its isomers at 2-
acetyl-2,8-dihydroxy-6-methoxy anthraquinone (Scheme
1). This was corroborated by the fluorescence spectrum of
the filtrate (Method A), which indicates an anthraquinone
fluorescence moiety [11]. The excitation spectra at the

maximum emission (550 nm) fit quite well with the
absorption spectrum of the anthraquinone in Figure 7.

The Figure 8 shows the nitrate reductase through the reac-
tion of nitrite with 2,3-diaminophthalene. The emission
spectrum exhibits two major peaks of fluorescence inten-
sity at 405 and 490 nm corresponding to the emission
maximum of the and 2,3-diaminonapthotriazole, DAN
(excess) respectively. The intensity of these two bands

UV-Vis spectra recorded as a function of time of reaction of an aqueous solution of 10-3 M AgNO3 with the fungal filtrate (07SD)Figure 3
UV-Vis spectra recorded as a function of time of reaction of 
an aqueous solution of 10-3 M AgNO3 with the fungal filtrate 
(07SD). The inset shows the UV-Vis absorption in the low 
wavelength region.

SEM micrograph from F. oxysporum 07 SD strain at ×11000 magnificationFigure 4
SEM micrograph from F. oxysporum 07 SD strain at ×11000 
magnification.

SEM micrograph from F. oxysporum 07 SD strain at ×40000 magnificationFigure 5
SEM micrograph from F. oxysporum 07 SD strain at ×40000 
magnification.
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increased with the addition of a 0.1% KNO3 solution,
confirming the presence of nitrate reductase.

It appears that the reductase is responsible for the reduc-
tion of Ag+ ions and the subsequent formation of silver
nanoparticles. The same observation was reported with
another strain of F. oxysporum and it was pointed out that
this reductase was specific to F. oxysporum. However,
Fusarium moniliforme, did not result in the formation of
silver nanoparticles, neither intracellularly nor
extracellularlybut contained intra and extra cellular
reductases in a similar fashion as F. oxysporum [17,23].
This is an indication that probably the reductases in this

kind of Fusarium are important for Fe (III) to Fe (II) but
not to Ag (I) to Ag (0). Moreover, in F. moniliforme
anthraquinones derivatives were not detected unlike the
case of F. oxysporum. Both fusarium were alike in the pro-
duction of naphthaquinones [8] but differed in the pro-
duction of anthraquinones. Probably, in our case, Ag (0)
reduction was mainly due to a conjugation between the
electron shuttle with the reductase participation as shown
in Figure 9.

Conclusion
Even though gold/silver nanoparticles have been synthe-
sized using prokaryotes such as bacteria [24,25] and
eukaryotes such as fungi [13,14], the nanoparticles grow
intracellularly, except in the case of a recent report in
which F. oxysporum was used. In that case the nanoparti-
cles grew extracellularly [17]. In our case, all the F. oxyspo-
rum strains studied exhibited silver nanoparticle
production capacity, however, depending on the reduct-
ase/electron shuttle relationships under these conditions.
Biologically synthesized silver nanoparticles could have
many applications, in areas such as non-linear optics,
spectrally selective coating for solar energy absorption and
intercalation materials for electrical batteries, as optical
receptors, catalysis in chemical reactions, biolabelling
[26], and as antibacterials capacity [27].

Methods
The F. oxysporum strains used were the following: O6 SD,
07 SD, 534, 9114 and 91248 from ESALQ-USP Genetic

EDS spectra of silver nanoparticlesFigure 6
EDS spectra of silver nanoparticles.

Fluorescence emission spectrum from the aqueous solution of 10-3 M AgNO3 with the fungal biomass (07SD)Figure 7
Fluorescence emission spectrum from the aqueous solution 
of 10-3 M AgNO3 with the fungal biomass (07SD). The excita-
tion wavelength was 465 nm. The inset shows the fluores-
cence excitation spectrum (λ emission at 550 nm).

Fluorescence emission spectra for the reaction of nitrite with 2,3-diaminophthaleneFigure 8
Fluorescence emission spectra for the reaction of nitrite with 
2,3-diaminophthalene. In the emission spectra the curves A 
and B were, respectively: fungal filtrate and fungal filtrate and 
0.1% KNO3 solution. The maximum excitation wavelength 
was at 375 nm.
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and Molecular Biology Laboratory-Piracicaba, S.P., Brazil.
The fungal inoculates were prepared in a malt extract 2%
and yeast extract 0.5% at 28°C in Petri plates. The liquid
fungal growth was carried out in the presence of yeast

extract 0.5% at 28°C for 6 days. The biomass was filtrated
and resuspended in sterile water.

Hypothetical mechanisms of silver nanoparticles biosynthesisFigure 9
Hypothetical mechanisms of silver nanoparticles biosynthesis.
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Silver reduction and its characterization

Method A: In the silver reduction, the methodology
described previously was followed [17]. Briefly,
approximately 10 g of F. oxysporum biomass was taken in
a conical flask containing 100 mL of distilled water.
AgNO3 solution (10-3 M) was added to the erlenmeyer
flask and the reaction was carried out in the dark. Period-
ically, aliquots of the reaction solution were removed and
the absorptions were measured using a UV-Vis spectro-
photometer (Agilent 8453 – diode array).

Method B: Another test was also carried out as following:
approximately 10 g of F. oxysporum biomass was taken in
a conical flask containing 100 mL of distilled water, kept
for 72 h at 28°C and then the aqueous solution compo-
nents were separated by filtration. To this solution,
AgNO3 (10-3 M) was added and kept for several hours at
28°C.

The silver nanoparticles were characterized by scanning
electron microscopy (SEM) and energy-dispersive
spectroscopy (EDS) at a voltage of 20 kV (Jeol – JSM-
6360LV) and previously coated with gold under vacuum.

Determination of the electron-shuttling compounds

Release of electron-shuttling compounds was followed
the methodology described previously [11]: In order to
determine the water-soluble quinones that might func-
tion as an electron shuttle, cultures were filtered 4–6
weeks, and the filtrate adjusted to pH 3 with HCl 1 M. The
acidified solution was then passed through a column with
ion exchange resin (Amberlite®) for absorption of the pig-
ments. Compounds were removed from the column by
elution with acetone, the acetone removed using a Buchi
rotary evaporation and the aqueous phase extracted 3
times with ethyl acetate. All ethyl acetate extractions were
combined and reduced using the rotary evaporator. After
that, 2 µL samples were repeatedly spotted on a Silica gel
60 plate until a spot was visible under UV light at 254 nm.
Samples were resolved using a chloroform-methanol-ace-
tic acid (195:5:1) and benzene-nitromethane-acetic acid
(75:25:2) system designed to mobilize polar pigments.
Plates were air dried, and spots visualized under UV light
[19].

Nitrate reductase assay

Nitrate reduction was demonstrated in the same medium
(Method A and B) of the same growth broth of F. oxyspo-
rum with the addition of 0.1% of KNO3 [6]. The nitrate
reductase test was made after 2 days by fluorometric
method [20]. Briefly, 100 µL fungal filtrate and 200 µL of
dionized water. To this, 10 µL of freshly prepared 2,3-
diaminonaphtalene (DAN) (0.05 mg/mL in 1 M HCl) is
added and mixed immediately. After 10 min incubation at
20°C, the reaction was stopped with 5 µL of 0.1 M NaOH.

The intensity of the fluorescent signal produced by the
product was maximized by the addition of base. The 2,3-
diaminonapthotriazole formation was measured using a
Perkin-Elmer (LS-55) luminescence spectrophotometer
with and excitation wavelength at 375 nm and the emis-
sion band measured at 550 nm [20].

Determination of the tryptophan/tyrosine residues

Presence of tryptophan/tyrosine residues in proteins
release in the fungal filtrated was analyzed by fluorescence
[17]. The fluorescence measurements were carried out on
a Perkin-Elmer (LS-55) luminescence spectrophotometer.
The exitation wavelength was 260 nm, close to maximal
optical transitions of the tryptophan and tyrosine.
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