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Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has

become a major impediment toward successful diagnosis and management of infectious

diseases. Recent advancements in nanotechnology-based medicines have opened new

horizons for combating multidrug resistance in microorganisms. In particular, the use

of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much

attention. The most critical physico-chemical parameters that affect the antimicrobial

potential of AgNPs include size, shape, surface charge, concentration and colloidal

state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms.

AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical

generation, and modulation of microbial signal transduction pathways have been

recognized as the most prominent modes of antimicrobial action. On the other side,

AgNPs exposure to human cells induces cytotoxicity, genotoxicity, and inflammatory

response in human cells in a cell-type dependent manner. This has raised concerns

regarding use of AgNPs in therapeutics and drug delivery. We have summarized the

emerging endeavors that address current challenges in relation to safe use of AgNPs in

therapeutics and drug delivery platforms. Based on research done so far, we believe

that AgNPs can be engineered so as to increase their efficacy, stability, specificity,

biosafety and biocompatibility. In this regard, three perspectives research directions have

been suggested that include (1) synthesizing AgNPs with controlled physico-chemical

properties, (2) examining microbial development of resistance toward AgNPs, and (3)

ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to

human cells upon AgNPs exposure.

Keywords: silver nanoparticles, multidrug resistance, antimicrobial activity, physico-chemical property,

cytotoxicity, genotoxicity, inflammatory response

INTRODUCTION

Unresponsiveness of microbes to lethal doses of structurally diverse classes of drugs with different
mechanisms of cytotoxic action is generally referred to as multidrug resistance (MDR). Multidrug
resistance of the pathogenic microorganisms to the antimicrobial drugs has become a prime
concern toward successful diagnosis and treatment of pathogenic diseases of bacterial and fungal
origin (Desselberger, 2000). This has led to emergence and re-emergence of infectious diseases.
Indeed, exposure of antimicrobials and antibiotics to bacteria are the opportunities for microbes to
become less susceptible toward them mainly by altering the cell structure and cellular metabolism.
In this way microbes either destroy the antimicrobials and antibiotics or become unresponsive
toward them in future exposures (Desselberger, 2000; Rai et al., 2012). Four mechanisms have been
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recognized that account for antibiotic resistance in bacteria:
(a) alteration of microbial drug target proteins, (b) enzymatic
degradation or inactivation of drug, (c) decreased membrane
permeability, and (d) increased efflux of drug (Kumar et al.,
2013). Among all, the extrusion of antimicrobial drug by the
multidrug efflux pumps contributes maximally for MDR among
pathogenic strains (Li et al., 1997; Levy, 2002). Although,
excessive and irrational use of antibiotics is major factors in
development of resistance, the acquisition and dissemination of
drug-resistance genes and resistant bacteria have significantly
contributed to drug resistance (Davies, 1997; Levy, 2002).
Acquisition of drug-resistance generally occurs through genetic
mutations, alterations in genetic material or gaining of foreign
genetic material (Levy, 2002; Yoneyama and Katsumata, 2006).
Dissemination of drug-resistance determinants occurs within
genome via transposons or from one microorganism to another
by a number of genetic ways, for instance, through transfer of
extra-chromosomal element between Gram-positive and Gram-
negative bacteria (Levy, 2002). Confronted by the increasing
doses of antibiotic drugs over many years, pathogens become
drug-resistant and respond to antibiotics by generating progenies
that are no more susceptible to antimicrobials therapy (Levy,
2002; Porras-Gomez and Vega-Baudrit, 2012).

Nowadays, non-traditional antimicrobial agents to
overcome MDR are increasingly gaining importance. Recently,
development of novel, efficient nanotechnological-based
antimicrobial agents against multidrug-resistant bacteria is
among one of the priority areas in biomedical research (Rai
et al., 2012). Silver nanoparticles (AgNPs) display a broad
spectrum of antibacterial and antifungal activities (Morones
et al., 2005; Kim et al., 2007; Panacek et al., 2009; Namasivayam
et al., 2011). Moreover, the advantage of using nanosilver
is that it is comparatively less reactive than silver ions, and
therefore, is well suited for its use in clinical and therapeutic
applications (Kim et al., 2005; Chen and Schluesener, 2008).
The antimicrobial activity of AgNPs has been tested against
both, MDR and non-MDR strains of bacteria (Feng et al.,
2000; Morones et al., 2005; Ayala-Nunez et al., 2009; Humberto
et al., 2010; Ansari et al., 2011). In this review, we have
presented a comprehensive overview of AgNPs-induced cellular
response in bacteria and human cells. AgNPs induce, influence,
and modulate diverse range cellular, biochemical, metabolic
and inflammatory processes that account for multifaceted
antimicrobial activity of AgNPs for tackling multidrug resistance
in bacteria. Additionally, some other aspects of AgNPs-based
medicines including, physico-chemical properties of AgNPs;
cytotoxic, genotoxic and inflammatory response of AgNPs to
human cells; and application of AgNPs in therapeutics and
targeted drug delivery have also been reviewed.

MDR AND NON-MDR STRAINS:
BACTERICIDAL EFFECT OF AgNPs

MDR bacterial strains and infections caused by them are
considered as the prime reason for increased mortality rate,
morbidity rate and treatment cost in developing countries

(Walker et al., 2007; Salem et al., 2015). A number of Gram-
positive and Gram-negative bacterial pathogens are known to
cause severe medical and clinical complications such as diarrhea,
urinary tract disorders, pneumonia, neonatal meningitis etc.
(Walker et al., 2007; Salem et al., 2015). Infectious Gram-
positive bacteria include Actinomyces, Bacillus, Clostridium,
Corynebacterium, Enterococcus, Listeria, Mycobacterium,
Nocardia, Staphylococcus, Streptococcus, and Streptomyces.
Among them antibiotic-resistant bacteria are penicillin-resistant
Streptococcus pneumonia, macrolides resistant Streptococcus
pyogenes, vancomycin-resistant Enterococcus faecium (VREF),
methicillin- and vancomycin-resistant Staphylococcus aureus
(MRSA and VRSA), and multidrug-resistant Listeria and
Corynebacterium. The Gram-negative bacteria include members
of the genera Acinetobacter, Escherichia, Klebsiella, Neisseria,
Pseudomonas, Salmonella, Shigella and Vibrio. Among Gram-
negative bacteria, Vibrio cholerae and enterotoxic Escherichia
coli (ETEC) are regarded as the two most pathogenic and
dominant bacteria that cause severe secretory diarrhea, which
significant account for high mortality and morbidity (Salem
et al., 2015). Among Gram-negative microbial pathogens
some are opportunistic microorganisms, such as Acinetobacter
baumanii, Klebsiella pneumonia, and Pseudomonas aeruginosa
that are intrinsically resistant to multiple drugs and infect
mainly immune-compromised patients (Levy, 2002). Besides
opportunistic pathogens, the strains of Salmonella typii have
also showed high frequency of drug-resistance and have become
resistance to ampicillin, chloroamphenicol, fluoroquinolones,
and some other drugs (Levy, 2002). Table 1 contains a list of
most common drug-resistant, pathogenic bacterial strains along
with the corresponding antibiotics to which the strains have
developed resistance.

AgNPs have been used alone or in combination with
antibiotics. Namasivayam et al. (2011) evaluated and reported
the antibacterial activity of AgNPs against drug-resistant
pathogenic bacteria Bacillus subtilis, E. coli, E. faecalis,
K. pneumonia, P. aeruginosa, and S. aureus (Namasivayam
et al., 2011). Nanda and Saravanan (2009) evaluated AgNPs for
their antimicrobial activity against methicillin resistant S. aureus
(MRSA), methicillin-resistant Staphylococcus epidermidis
(MRSE), S. pyogenes, S. typhi, and K. pneumoniae. The
observed antibacterial activity was maximum in case of MRSA,
intermediate in MRSE and S. pyogenes, whereas the antibacterial
activity seen against S. typhi and K. pneumonia was moderate.
In order to further improve the AgNPs-based therapeutics, the
use of AgNPs-antibiotic combination against drug-resistant
pathogenic strains is recommended. AgNPs have displayed
synergistic antimicrobial effect when used in combination
with antibiotics (Fayaz et al., 2010). The synergistic effect of
19 antibiotics and the silver–water dispersion solution was
studied by De’ Souza et al. (2006). The silver–water dispersion
solution is produced by an electro-colloidal process and the
dispersion solution contains AgNPs clusters of 15 nm diameter.
In the study, the antimicrobial activity of amoxicillin and
clindamycin was evaluated against some MDR strains such as
E. coli, S. aureus, S. typhi, Shigella flexneri, and B. subtilis. While
the combination of silver–water dispersion with amoxicillin or
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TABLE 1 | Multidrug-resistant in bacterial strains.

Bacterial strains Resistant to

GRAM-POSITIVE

Bacillus subtilis Chloramphenicol

Erythromycin Lincomycin

Penicillin Streptomycin

Tetracycline

Corynebacterium diphtheriae β-lactam antibiotics Chloramphenicol

Tetracycline

Trimethoprim

Sulfamethoxazole

Enterococcus faecium Vancomycin

Gentomicin

Listeria monocytogenes Erythromycin

Gentomicin

Kanamycin

Rifampin

Streptomycin

Sulfamethoxazole

Tetracycline

Staphylococcus aureus Methicillin

Vancomycin

Streptococcus pneumonia Penicillin

Erythromycin

Streptococcus pyogenes Erythromycin

Macrolides

GRAM-NEGATIVE

Acinetobacter baumanii Carbapenems

Imipenem

Escherichia coli Ampicillin

Cephalosporins

Chloramphenicol Fluoroquinolones

Nalidixic acid Rifampin

Sulfamethoxazole Streptomycin Tetracycline

Klebsiella pneumonia Carbapenems

Imipenem

Pseudomonas aeruginosa β-lactams

Chloramphenicol Fluoroquinolones Macrolides

Novobiocin Sulfonamides Tetracycline

Trimethoprim

Salmonella typii Amoxycilin Ampicillin Chloroamphenicol

Fluoroquinolones

Trimethoprim

Shigella flexneri Ciprofloxacin

Nalidixic acid

Vibrio cholera Fluoroquinolones Tetracycline

Different antibiotics toward which Gram-positive and Gram-negative bacteria have

developed resistance.

clindamycin had an additive effect on B. subtilis, S. aureus 6538
P strain, S. flexneri, and S. typhi, on the contrary, the AgNPs
dispersion solution in combination with amoxicillin displayed
an antagonistic effect toward methicillin-resistant S. aureus
strain (MRSA) (De’ Souza et al., 2006). Shahverdi et al. (2007)
studied the additive effect of AgNPs antibacterial effect against E.
coli and S. auerus in presence of antibiotics such as amoxicillin,
clindamycin, erythromycin, penicillin G and vancomycin. Fayaz
et al. (2010) demonstrated synergistic effect of AgNPs against
both Gram-positive and Gram-negative bacteria in combination
with antibiotics. In case of Gram-negative bacterium S. typhi,
the potency of ampicillin-mediated cell wall lysis increases when
a combination of AgNPs and antibiotic is used (Rajawat and
Qureshi, 2012). This suggests that AgNPs must be increasing the
local concentration of antibiotics at the site of action and thus
improves their potency. Besides potency against MDR and non-
MDR bacterial strains, AgNPs also act as a potent, fast-acting
anti-fungal agent against a wide range of fungal genera such
as Aspergillus, Candida, Fusarium, Phoma, and Trichoderma
sp. (Duran et al., 2007; Gajbhiye et al., 2009). AgNPs have also
synergisitc fungicidal activity against the Candida albicans,
Fusarium semitectum, Phoma glomerata, Phoma herbarum, and
Trichoderma sp. in combination a commercial antifungal agent,
fluconazole (Gajbhiye et al., 2009).

EFFECTS OF NANOSCALE AND
PHYSICO-CHEMICAL PROPERTIES ON
ANTIMICROBIAL ACTIVITY OF AgNPs

Development or synthesis of metal derived nanomaterials for
biomedical applications depends upon a number of physical,
chemical, thermal, electrical, and optical properties. Some
properties have more significance in medical application while
other properties have relevance in industrial and environmental
applications. Unlike their “macro” counterpart, nanoparticles
demonstrate unique and significantly effective physico-chemical
properties that make nanoparticles suitable for their intended
use in improved healthcare. Several studies have demonstrated
that bactericidal properties of the AgNPs are strongly influenced
by their shape, size, concentration, and colloidal state (Pal et al.,
2007; Bhattacharya andMukherjee, 2008; Rai et al., 2012; Nateghi
and Hajimirzababa, 2014; Raza et al., 2016). It has been found
that reducing the size of AgNPs enhances their stability and
biocompatibility (Kim et al., 2005, 2011). Hence, it is necessary
to design appropriate sized, shaped nanoparticles with desirable
surface properties for use in a diverse range of clinical and
therapeutic interventions.

Shape of the nanoparticles is one of the properties, which
affects other physico-chemical properties of the nanoparticles
(Burda et al., 2005). AgNPs interacts with bacteria, fungi and
viruses in a shape-dependent manner (Panacek et al., 2009;
Galdiero et al., 2011; Tamayo et al., 2014; Wu et al., 2014;
Raza et al., 2016). Energy-filtering TEM images have revealed
alterations in the cell membrane of the gram negative E. coli
bacterium upon treatment with differently shaped AgNPs, both
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in liquid and semi-solid agar medium (Pal et al., 2007). As
compared to the spherical or rod-shaped AgNPs, truncated
triangular shaped AgNPs show enhanced antibacterial action
(Chen and Carroll, 2002; Pal et al., 2007). AgNPs with the
same surface areas, however, different shapes show differential
bactericidal activity, which can be attributed to the variations in
the effective surface areas and active facets of AgNPs. Different
surface chemistries, such as foamy carbon, poly (N-vinyl-2-
pyrrolidone) (PVP), and bovine serum albumin (BSA) can also
influence AgNPs interaction with viruses, such as HIV-1 virus,
and causes their inhibition (Elechiguerra et al., 2005). Since, both
BSA and PVP are completely encapsulated and are bounded
directly to the nanoparticle surface, there is fundamentally
no exposed surface area for AgNPs-virus interaction. On the
contrary, the foamy carbon silver nanoparticles, which display
an exposed surface area for virus attachment, display higher
cytotoxicity and cause inhibition comparatively higher than
AgNPs with BSA and PVP surface chemistry (Elechiguerra et al.,
2005). However, there is limited information available about how
shape of the nanoparticles influences AgNPs biological activity.

Another important physico-chemical property of AgNPs is
their size. In general, for nanoparticles to be effective their size
typically should be no larger than 50 nm. More precisely, silver
nanoparticles with size between 10 and 15 nm have increased
stability, biocompatibility and enhanced antimicrobial activity
(Yacaman et al., 2001). Some studies have revealed that the
antibacterial action of AgNPs is more effective against S. aureus
and K. pneumoniae when nanoparticles of smaller diameter
(<30nm) are used (Collins et al., 2010). The antibacterial effect
of AgNPs as proposed is due to their smaller particles size
that apparently has superior penetration ability into bacteria,
especially in Gram-negative (Morones et al., 2005). AgNPs
of 5–10 nm dimension display both bacteriostatic as well
as bactericidal effects against S. aureus, MSSA and MRSA
(Ansari et al., 2011). Espinosa-Cristobal et al. (2009) tested
the potential of different sized AgNPs against Streptococcus
mutans, a causal organism of dental caries, and suggested that
as the AgNPs particle size diminishes, the antibacterial activity
increases. Interestingly, the attachment of AgNPs with the cell
membranes and resulting alterations in lipid bilayer lead to
increased membrane permeability, damage and cell death, a
potent antibacterial effect seemingly more pronounced when
smaller sized nanoparticles are used (Li et al., 2013). To this end,
Pal et al. (2007) demonstrated that the surface area to volume
ratio of AgNPs and the crystallographic surface structures are
important factors that determine the antibacterial activity of
AgNPs.

AgNPs have been evaluated for their antiviral action mode
against HIV-1 using a number of in vitro experiments, where
at non-cytotoxic concentrations AgNPs exerted the antiviral
activity against HIV-1; however, the mechanism underlying
their HIV-inhibitory activity remained unclear (Sun et al.,
2005). AgNPs are known to interact with HIV-1 virus via
binding to gp120 glycoprotein knobs in a size-dependent manner
(Elechiguerra et al., 2005). Nanoparticles usually of size between
1 and 10 nm attaches to the HIV-1 virus by binding to the
disulfide bond regions of the CD4 domain present in the gp120

glycoprotein of the viral envelop (Elechiguerra et al., 2005). Other
studies demonstrated that AgNPs ranging 5–20 nm diameter
can inhibit replication of HIV-1 (Sun et al., 2005; Lu et al.,
2008; Suganya et al., 2015). In this perspective, the size of the
nanoparticles has substantial impact on antiviral potency of the
AgNPs, which can be further enhanced by optimizing AgNPs
size at nanolevel. Another case of size-dependent interaction of
AgNPs with virus is AgNPs-Hepatitis B virus (HBV) interaction
studied in a human hepatoma cell line, HepAD38 (Lu et al.,
2008). Using UV-vis absorption titration assay, the in vitro
binding affinity of different sized AgNPs (10–50 nm) for HBV
DNA and extracellular virions was ascertained and the binding
caused inhibition of HBV specific RNA and extracellular virions
synthesis (Lu et al., 2008). In this regard, it is imperative to
infer the significance of high binding of AgNPs for HBV DNA
and its role in preventing virions from entering into the host
cells. In this regard, in vivo studies with AgNPs are necessary
for designing anti-viral vaccines with high beneficial therapeutic
breakthroughs and low potential side effects.

The antibacterial effect is also concentration-dependent, but
the effect is independent of acquisition of drug resistance by the
bacteria. Ayala-Nunez et al. (2009) reported a dose-dependent
antimicrobial activity of AgNPS against MRSA and non-MRSA
and found that both MRSA and non-MRSA are discouraged
in culture inoculums (conc. 105-CFU per ml) at concentrations
over 1.35 × 10−3 µg/ml. Studies on AgNPs antibacterial activity
against Gram-positive S. aureus and Gram-negative E. coli have
showed that the inhibition of the growth in case of S. aureus is less
remarkable, while E. coli is inhibited at lowAgNPs concentrations
(Kim et al., 2007). Interestingly, the Gram-positive bacteria, such
as S. aureus, P. aeruginosa, and V. cholera, are less susceptible
thanGram-negative bacteria, such as E. coli and S. typhi; however,
both classes of bacteria display complete growth inhibition at
higher AgNPs concentrations (>75 µg/mL) (Kim et al., 2007).

AgNPs in colloidal form, i.e., suspended nano-sized silver
particles, have shown enhanced antimicrobial potential over
AgNPs alone in a number of studies (Sondi and Salopek-
Sondi, 2004; Panacek et al., 2006; Lkhagvajav et al., 2011).
Colloidal AgNPs are synthesized using chemical reduction,
physical, biological and green method using plant extract
(Iravani, 2011; Iravani et al., 2014). The chemical reduction
method of colloidal AgNPs synthesis is the most popular method
(Figure 1). Colloidal state of AgNPs is an essential attribute for
their antimicrobial activity. On the contrary, AgNPs in liquid
system have showed only limited applications as bacteriocidal
agents because of their low colloidal stability (Kumar et al.,
2014; Shi et al., 2014). Colloidal silver appears to be a powerful,
antibacterial therapy against infections because it serves as
a catalyst and destabilize the enzymes that pathogenic drug-
resistant bacteria, fungi, yeast, and viruses essentially need for
their oxygen utilization (Dehnavi et al., 2012; Kumar et al.,
2014; Suganya et al., 2015). For instance, colloidal AgNPs
possess enhanced bactericidal potential against drug-resistant
Gram-positive and Gram-negative bacteria and MRSA (Sondi
and Salopek-Sondi, 2004; Panacek et al., 2006; Lkhagvajav
et al., 2011). The enhanced bactericidal potential of the
AgNPs has been correlated to their colloidal stability in the
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FIGURE 1 | Schematic representation of synthesis of colloidal silver nanoparticles using chemical reduction process. Silver ions (Ag+) subjected to

chemical reduction to form silver atoms (Ag0). These atoms undergo nucleation to form primary AgNPs that further coalesce with each other to form final AgNPs.

medium. Colloidal stability of AgNPs has also been suggested
to regulate signal transduction pathways in bacteria by altering
the phosphotyrosine profile of the proteins, which leads to
growth inhibition in bacteria (Shrivastava et al., 2007). Colloidal
AgNPs synthesized using sol-gel method with size 20–45 nm
were found effective against bacterial strains such as E. coli,
S. aureus, B. subtilis, Salmonella typhimurium, P. aeruginosa,
and K. pneumoniae as well as fungal strain C. albicans at MIC
of 2–4 µg/ml (Lkhagvajav et al., 2011). In addition, use of
γ-radiation (Shin et al., 2004), microwave irradiation (Phong
et al., 2009), Tollen’s process (Yin et al., 2002) and rational use of
mechanistic understanding (Wuithschick et al., 2013) has made
it possible to produce colloidal AgNPs with smaller size and
narrow size distribution. Recently, green synthesis has come up as
a novel synthesis procedure for producing colloidal AgNPs with
controlled size, high stability and improved antibacterial activity
(Dehnavi et al., 2012).

Mechanistic Basis of Antimicrobial Activity
of AgNPs
Antimicrobial efficacy of AgNPs was evaluated by many
researchers against a broad range of microbes, including
MDR and non-MDR strains of bacteria, fungi, and viruses.
Nano-sized metal particles are now well-established as a
promising alternate to antibiotic therapy because they possess
unbelievable potential for solving the problem associated
with the development of multidrug resistance in pathogenic
microorganisms, hence also regarded as next-generation
antibiotics (Rai et al., 2012). In particular, the use of AgNPs
has gained much attention in this regard (Jana and Pal, 2007;
Szmacinski et al., 2008; Stiufiuc et al., 2013). Although, AgNPs
have been proved effective against over 650 microorganisms
including bacteria (both Gram-positive and negative), fungi
and viruses; however, the precise mechanism of their mode of

antimicrobial action is not fully understood yet (Malarkodi et al.,
2013).

Nevertheless, some fundamental modes of antimicrobial
action of AgNPs have been recognized (Figure 2, Table 2).
Use of highly sophisticated techniques such as high resolution
microscopic (AFM, FE-SEM, TEM, and XRD), spectroscopic
(DLS, ESR spectroscopy, Fluorescence spectroscopy, Inductively
coupled plasma-optical emission spectroscopy, UV-vis),
molecular, and biochemical techniques have provided deep
mechanistic insights about the mode of antimicrobial action
of AgNPs (Sondi and Salopek-Sondi, 2004; Kim et al., 2007;
Pal et al., 2007; Dehnavi et al., 2012; Rai et al., 2012). The
antimicrobial action of AgNPs is linked with four well-defined
mechanisms: (1) adhesion of AgNPs onto the surface of cell
wall and membrane, (2) AgNPs penetration inside the cell and
damaging of intracellular structures (mitochondria, vacuoles,
ribosomes) and biomolecules (protein, lipids, and DNA), (3)
AgNPs induced cellular toxicity and oxidative stress cause by
generation of reactive oxygen species (ROS) and free radicals,
and (4) Modulation of signal transduction pathways. Besides
these four well-recognized mechanisms, AgNPs also modulate
the immune system of the human cells by orchestrating
inflammatory response, which further aid in inhibition of
microorganisms (Tian et al., 2007).

Adhesion of AgNPs onto the Surface of
Cell Wall and Membrane
AgNPs exposure to microorganisms causes adhesion of
nanoparticles onto the cell wall and the membrane. The
positive surface charge of the AgNPs is crucial for the adhesion
(Abbaszadegan et al., 2015). The positive charge confers
electrostatic attraction between AgNPs and negatively charged
cell membrane of the microorganisms, thereby facilitates AgNPs
attachment onto cell membranes. Morphological changes
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FIGURE 2 | The four most prominent routes of antimicrobial action of AgNPs. 1, AgNPs adhere to microbial cell surface and results in membrane damage and

altered transport activity; 2, AgNPs penetrate inside the microbial cells and interact with cellular organelles and biomolecules, and thereby, affect respective cellular

machinery; 3, AgNPs cause increase in ROS inside the microbial cells leading to cell damage and; 4, AgNPs modulate cellular signal system ultimately causing cell

death.

become evident upon such interaction and can be characterized
by shrinkage of the cytoplasm and membrane detachment finally
leading to rupture of cell wall (Nalwade and Jadhav, 2013).
Transmission electron microscopy has revealed that after a few
minutes of contact with AgNPs, the cell membrane of E. coli
cells gets completely disrupted (Raffi et al., 2008). The cell wall
becomes circumferential and numerous electron dense pits can
be seen at sites of damages induced by AgNPs, as visualized
by TEM (Sondi and Salopek-Sondi, 2004). Besides electrostatic
attraction, the interaction of AgNPs with the sulfur-containing
proteins present in the cell wall causes irreversibly changes in cell
wall structure resulting in its disruption (Ghosh et al., 2012). This
in turn affects the integrity of lipid bilayer and permeability of the
cell membrane. The alterations in cell morphology cause increase
in membrane permeability, which affects cells ability to properly
regulate transport activity through the plasma membrane
(Schreurs and Rosenberg, 1982). For instance, silver impairs the
uptake and release of phosphate ions in E. coli (Schreurs and
Rosenberg, 1982). Similarly, silver ions can also alter transport
and the release of potassium (K+) ions from the microbial
cells. Besides affecting the transport activity, the increase in
membrane permeability may have more pronounced effects such
as loss by leakage of cellular contents, including ions, proteins,
reducing sugars and sometimes cellular energy reservoir, ATP

(Lok et al., 2006; Kim et al., 2011; Li et al., 2013). In fact, the
proteomic data on AgNPs treated microbial cells have shown an
accumulation of immature membrane precursor proteins that
cause destabilization of the outer membrane of E. coli (Amro
et al., 2000; Mirzajani et al., 2011). The translocation of precursor
protein to the cell membrane require energy from proton
motive forces and ATP, therefore, accumulation of immature
precursor proteins suggests dissipation of proton motive forces
and depletion of cellular ATP, the latter perhaps is due to leakage
or inhibition of ATP synthesis (Yamanaka et al., 2005; Lok et al.,
2006; Kim et al., 2007, 2011; Raffi et al., 2008; Mirzajani et al.,
2011). Microbial cells exposed to AgNPs also suffer genetic
alterations such as condensation of genetic material (Feng et al.,
2000; Sondi and Salopek-Sondi, 2004; Kim et al., 2011). As a
consequence, several vital cellular functions get inhibited that
ultimately lead to cell necrosis and death (Rai et al., 2012, 2014).

Additionally, the antimicrobial potential of AgNPs is also
influenced by the thickness and composition of the cell wall
of the microorganisms. Gram-negative bacteria, such as E. coli,
are more susceptible to AgNPs than Gram-positive bacteria,
such as S. aureus. This is due to difference in the organization
of a key component of the cell membrane, peptidoglycan. In
Gram-positive bacteria, the cell wall is composed of negatively
charged peptidoglycan layer (30 nm thickness) and the amount
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TABLE 2 | Mode of antimicrobial action of AgNPs.

Bacterial Strain AgNPs size (nm) Mode of action References

GRAM-POSITIVE

Bacillus subtilis 5 Cell membrane damage; leakage of reducing sugars Li et al., 2013

10 Degradation of chromosomal DNA; increase in ROS levels Hsueh et al., 2015

Clostridium diphtheria 28.42 Rupture of the cell wall; denaturation of proteins Nalwade and Jadhav, 2013

Listeria monocytogenes – Penetration inside the bacteria Tamayo et al., 2014

23 ± 2 Dysfunction of electron transport chain; increase in ROS levels at cell membrane Belluco et al., 2016

Staphylococcus aureus – Adhesion to cell wall; cell membrane detachment from cell wall; DNA

condensation; inhibition of replication; inactivation of proteins

Feng et al., 2000

5 Cell membrane damage; leakage of reducing sugars Li et al., 2013

25 Interaction with cell membrane; interaction with S- and P-containing

compounds; inhibition of respiration

Panacek et al., 2006

GRAM-NEGATIVE

Escherichia coli 5 ± 2 Interaction with cell membrane; interaction with S- and P-containing compounds Morones et al., 2005

– Adhesion to cell wall; cell membrane detachment from cell wall; DNA

condensation; Inhibition of replication; inactivation of proteins

Feng et al., 2000

10 Interaction with S- and P-containing compounds Pal et al., 2007

5 Cell membrane damage; leakage of reducing sugars Li et al., 2013

1–10 Interaction with cell membrane; increase in membrane permeability; improper

transport activity; leakage of cellular components

Sondi and Salopek-Sondi, 2004

25 Interaction with S- and P-containing compounds Panacek et al., 2006

16 Interaction with cell membrane; interaction with S- and P-containing compounds Raffi et al., 2008

– Destabilization of ribosomes; inhibition of protein synthesis; inhibition of

expression of enzymes required for ATP generation

Lok et al., 2006

9.3 Interaction with cell membrane Mirzajani et al., 2011

Klebsiella pneumonia <50 Interaction with DNA; inhibition of cell division Kumar et al., 2016

Pseudomonas aeruginosa 5 ± 2 Interaction with cell membrane; interaction with S- and P-containing compounds Morones et al., 2005

10 Penetration inside the cell Habash et al., 2014

28 Attenuation of quorum sensing Singh et al., 2015

Salmonella typii 5 ± 2 Interaction with cell membrane; interaction with S- and P-containing compounds Morones et al., 2005

2–23 Cell wall lysis Rajawat and Qureshi, 2012

Vibrio cholera 5 ± 2 Interaction with cell membrane; interaction with S- and P-containing compounds Morones et al., 2005

90–100 Inhibition of metabolic pathways Salem et al., 2015

Cellular targets and antibacterial activity of AgNPs against different multidrug-resistant Gram-positive and Gram-negative strains.

of peptidoglycan is comparatively more in Gram-positive than
Gram-negative bacteria (∼3–4 nm thickness). In nutshell, the
less liability of Gram-positive bacteria to antibiotic therapy can
be explained on the basis of the fact that their cell wall is
comparatively much thicker than that of Gram-negative bacteria
(Rai et al., 2012). The thicker cell wall of Gram-positive as
well as the negatively charge of the peptidoglycan leave silver
ions stuck onto the cell wall. For this reason, S. aureus, a
Gram-positive bacterium, which possesses a thick cell wall
and more peptidoglycan molecules, prevents the action of the
silver ions and renders bacterium comparatively more resistant
to antimicrobial therapy of the AgNPs (Feng et al., 2000).
In contrast, Gram-negative bacteria are more susceptible to

AgNPs-based antimicrobial therapy owing to less thicker cell
wall and less peptidoglycan (Pal et al., 2007). In addition,
Gram-negative bacteria contain lipopolysaccharides (LPS) in the
cell membrane, which contributes to structural integrity of the
membrane as well as protect the membrane from chemical
attacks. However, the negative charge of LPS promotes adhesion
of AgNPs and makes bacteria more susceptible to antimicrobial
therapy. Several studies have shown the pronounced adhesion
and deposition of AgNPs onto the cell surface, in particular, of
the Gram-negative bacteria due to the presence of LPS in their
cell membrane (Pal et al., 2007). These differences in structure,
thickness and composition of cell can explain why Gram-positive
S. aureus are less inhibited and Gram-negative E. coli shows
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substantial inhibition even at low antibiotic concentrations (Kim
et al., 2007). In this perspective, it can be ruled out that there
exists a correlation between the concentration (effective dose)
of the AgNPs and the class of the bacteria treated owing to
differences in the cell wall structure, thickness and composition.

AgNPs Penetration Inside the Cell and
Destabilization of Intracellular Structures
and Biomolecules
There are several cellular dysfunctions that result from
interaction of AgNPs with the microbial cell membrane. In
first instance, AgNPs only attach to cell membrane and alter
membrane structure, permeability and transport activity. In other
case, after adhesion to the cell membrane, the AgNPs may also
penetrate inside the cells and affect vital cellular functioning
(Habash et al., 2014; Singh et al., 2015). Transmission electron
microscopic (TEM) images have depicted AgNPs inside the E. coli
cells (Lok et al., 2006). Kvitek et al. (2008) suggested that the use of
surfactants and anionic detergents such as sodium dodecyl sulfate
(SDS) greatly enhance the antimicrobial activity of the AgNPs.
Porins, water-filled channels present in outer membrane (OM) of
the Gram-negative bacteria, are involved in the uptake of AgNPs
inside the bacterial cells. As expected, the expression of mutated
porin proteins in E. coli rendered cells more resistant to AgNPs
based antibacterial action therapy (Li et al., 1997). In situation
when AgNPs penetrate inside the microbial cell, it may interact
with cellular structures and biomolecules such as proteins, lipids,
and DNA. Interactions with cellular structures and biomolecules
have respective damaging effects on microbes. In particular,
AgNPs interaction with ribosomes leads to their denaturation
causing inhibition of translation and protein synthesis (Morones
et al., 2005; Jung et al., 2008; Rai et al., 2012). It has been shown
that Ag (+) ions may interact with the functional groups of
the proteins, resulting in their deactivation. For instance, Ag
(+) ions bind to thiol groups (ASH) of the protein present
in the cell membrane forming stable SAAg bonds resulting in
protein deactivation (Klueh et al., 2000; Rai et al., 2012). The
proteins are involved in transmembrane ATP generation and
mediating ion transport across cell membrane (Klueh et al.,
2000). Both AgNPs and Ag (+) ions alter the 3D structure of
proteins upon interaction and interfere with disulfide bonds and
block active binding sites leading to overall functional defects
in the microorganism (Lok et al., 2006). Steuber et al. (1997)
described a mechanism for Ag(+) antibacterial action in Gram-
negative Vibrio alginolyticus in which FAD gets displaced from
the holo-enzyme Na+-NQR resulting in complete loss of enzyme
activity. Bactericidal effect of AgNPs has also been linked with
blocking of sugar metabolism. Bhattacharya and Mukherjee
(2008) demonstrated that inhibition of sugar metabolism is due
to inactivation of the enzyme phosphomannose isomerase upon
interaction with AgNPs. Phosphomannose isomerase mediates
the isomerization of mannose-6-phosphate into fructose-6-
phosphate, the latter is an important intermediate in the
glycolytic cycle. Additionally, interaction of AgNPs with DNA
may cause shearing or denaturation of the DNA and interruption
in cell division (Hsueh et al., 2015; Kumar et al., 2016). AgNPs

causes DNA damage (such as strand breaks) and mutations in
essential DNA repair genes (mutY, mutS, mutM, mutT, and nth)
in E. coli making mutant strains, rather than wild type, more
susceptible to AgNPs based antibacterial therapy (Radzig et al.,
2013). It has been found that Ag (+) ions form complex with
nucleic acids, where it preferentially interact with the nucleosides
but not with the phosphate (PO−

4 ) group of the nucleic acids.
Ag (+) ion intercalates between the purine and pyrimidine base
pairs, disrupts the H-bonds between base pairs of the anti-parallel
DNA strands, and thereby, disrupts the double helical structure
(Klueh et al., 2000). Intercalation of AgNPs in the DNA helix may
block the transcription of genes in microorganisms (Morones
et al., 2005). AgNPs also causes DNA molecule to change its
state from relaxed to condensed form, the latter results in loss
of replication ability (Feng et al., 2000). When AgNPs interacts
with S. aureus, the cell division is inhibited in its initial stages
(Jung et al., 2008) suggesting that the interaction of the Ag (+)
ions with DNA may have role in prevention of cell division and
reproduction (Monteiro et al., 2012).

AgNPs Induced Cellular Toxicity and
Oxidative Stress
Increase in cellular oxidative stress in microbes is an indication
of toxic effects caused by heavy metals ions, such as Ag
(+).Therefore, increased concentration of Ag (+) ions is
expected to cause an increase in cellular oxidative stress. The
potent antibacterial, antifungal and antiviral activity of AgNPs
is due to their ability of producing ROS and free radical
species such as hydrogen peroxide (H2O2), superoxide anion
(O2−), hydroxyl radical (OH•), hypochlorous acid (HOCl) and
singlet oxygen (Kim et al., 2011). The antibacterial potential
of AgNPs is related with the generation of free radicals and
reactive oxygen species (ROS) and consequent increase in
oxidative stress in cells (Pellieux et al., 2000; Kim et al.,
2005, 2007; Wu et al., 2014). Reactive oxygen species are
also generated intracellularly during mitochondrial oxidative
phosphorylation. Molecular oxygen generates O2•, the primary
ROS, via one-electron reduction catalyzed by nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase. Further
reduction of molecular oxygen may takes place via dismutation
and metal-catalyzed Fenton reaction, forming either H2O2 or
OH•, respectively (Vallyathan and Shi, 1997; Thannickal and
Fanburg, 2000). The generation of ROS in bacterial cells causes
cell death, although, the precise mechanism of ROS-mediated
antibacterial activity of AgNPs is not fully clear (Pellieux et al.,
2000). This toxic effect may be due to the binding of Ag (+)
ions onto the cell membrane of themicrobes, which consequently
relay signaling and blocks the mitochondrial respiratory function
of the microbes (Blecher and Friedman, 2012). Ag (+) ions
are known cause dysfunction of respiratory electron transport
chain by uncoupling it from oxidative phosphorylation by
inhibiting respiratory chain enzymes (Belluco et al., 2016).
Excessive amount of generated free radical causes direct damage
to mitochondrial membrane causing necrosis, and eventually,
cell death. Other outcomes of increase in ROS levels in the
cells include hyperoxidation of lipids, proteins and DNA (Huang
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et al., 2010). Free radicals also interact with lipids, abundantly
present in biomembranes, to yield lipid peroxidation products
having implications in mutagenesis. Polyunsaturated fatty acids
are subject to oxidation giving rise to lipid hydroperoxides
as the initial step in ROS generation (Howden and Faux,
1996). Prooxidant metals such as Cu and Fe react with these
lipid hydroperoxides to induce DNA damaging end-products
malondialdehyde (MDA) and 4-hydroxynonenal that act as
inflammatory mediators and risk factors for carcinogenesis
(Howden and Faux, 1996). AgNPs triggered free radicals
cause reduction of glutathione (GSH) into its oxidized form
glutathione disulfide (GSSG), thereby contributing to oxidative
stress, apoptosis, and activation to oxidative signaling pathways
(Rahman, 2007; Fenoglio et al., 2008). NP-mediate ROS
generation also modulate the antioxidant activities of ROS-
metabolizing enzymes such as NADPH-dependent flavoenzyme,
catalase, glutathione peroxidase, and superoxide dismutase
(Stambe et al., 2004).

Increase ROS levels caused due to mitochondrial stress,
ER stress, and deactivation of anti-oxidant enzymes in the
cells consequently promote genotoxic effects. Nanoparticles
induced genotoxicity includes chromosomal aberrations such as
mutations, DNA strand breaks, and oxidative DNA base damage
(Xie et al., 2011). Hydroxyl radical (OH•), one of the highly
potent radicals, and is known to react with all components of
DNA causing DNA single strand breakage via formation of 8-
hydroxyl-2′-deoxyguanosine (8-OHdG) DNA adduct (Pilger and
Rüdiger, 2006; Valavanidis et al., 2009). 8-OHdG is a biomarker
of OH -mediated DNA lesions. Taken all together, the available
data suggest that the most drastic antimicrobial effects are
associated with AgNPs-induced ROS generation and increase in
oxidative stress having both cytotoxic as well as genotoxic effects.

Modulation of Signal Transduction
Pathways
Phosphorylation of various protein substrates in bacteria is
widely recognized (Deutscher and Saier, 2005). The cycle of
phosphorylation and dephosphorylation cascade is mechanism
of signal relay in microorganisms essential for microbial growth
and cellular activity (Kirstein and Turgay, 2005). Examining
the phosphotyrosine profile of bacterial proteins from both
Gram-positive and Gram-negative offers a useful way to study
the effect of AgNPs on bacterial signal transduction pathways.
These signaling pathways affect bacterial growth and other
molecular and cellular activities. The reversible phosphorylation
of tyrosine residue of protein substrates such as RNA polymerase
sigma factor (RNA pol σ factor), single-stranded DNA binding
proteins (ssDBPs) and UDP glucose dehydrogenase lead to their
activation (Mijakovic et al., 2003, 2005, 2006). The resultant
phosphorylated proteins have essential role in DNA replication,
recombination, metabolism and bacterial cell cycle. Therefore,
inhibition of phosphorylation of proteins would inhibit their
enzymatic activity, which in turn will result in inhibition of
bacterial growth. Similarly, Iniesta et al. (2006) also suggested
phosphosignaling pathways to be critical for progression of cell
cycle in bacteria. In addition, tyrosine phosphorylation of protein

has also been implicated in the biosynthesis and transport of
exopolysaccharide and capsular polysaccharide in a number of
Gram-positive and Gram-negative bacteria (Grangeasse et al.,
2003). AgNPs putatively modulates cellular signaling and acts
by dephosphorylating tyrosine residues on key bacterial peptide
substrates and thus inhibit microbial growth (Shrivastava, 2008).
Treatment of S. aureus with AgNPs have showed no change
in the profile of tyrosine phosphorylated proteins; however,
treatment of E. coli and S. typhi with AgNPs has resulted
into noticeable change in dephosphorylation of two peptides of
relative masses 150 and 110 kDa (Shrivastava et al., 2007). It
is necessary to conduct biochemical characterization of the two
peptide substrates dephosphorylated in E. coli and S. typhi and
to identify the putative tyrosine phosphatases that cause their
dephosphorylation as described by Shrivastava et al. (2007).

AgNPs EXPOSURE TO HUMAN CELLS
AND TISSUES: IMPLICATIONS OF
CYTOTOXICITY, GENOTOXICITY AND
INFLAMMATORY RESPONSE IN DISEASES

The most critical and fundamental problem associated with
the use of Silver nanoparticles or any other nanoparticles in
human disease treatment, therapeutic intervention and drug
delivery is their biosafety and biocompatibility aspect. Increasing
applications of AgNPs based antimicrobial therapies are raising
concerns regarding the biosafety and clinical risks associated
with them to human. Our body’s immune system confers a
state of protection from foreign invaders, first by discriminating
the “self ” and “non-self ” antigens and second by recruiting
a dynamic network of immune cells in a coordinated fashion
to neutralize the “non-self ” antigens. AgNPs are recognized
as “non-self,” and therefore, AgNPs evokes immune response.
AgNPs modulates both the cellular and humoral immune
response system. Several studies conducted on different human
cells explained and extended our understanding about the
underlyingmolecularmechanism of AgNPs induced cytotoxicity,
genotoxicity and inflammatory response related to fibrosis and
carcinogenesis (Valko et al., 2006; Asharani et al., 2009a; Kennedy
et al., 2009; Manke et al., 2013). In context to cells exposed
to AgNPs, increase in cytotoxicity, genotoxicity, and activation
of signaling and inflammatory response, to a large extend, is
associated with generation of ROS, free radicals and consequently
buildup of oxidative stress (Ahamed et al., 2010; Johnston et al.,
2010; Figure 3). Acting as signal molecules, ROS and free radicals
can cause hyperoxidation of cell organelles and disruption of
mitochondrial activity. In this regard, TEM image analysis has
confirmed that AgNPs interact with mitochondria (Menu et al.,
2012) and this interaction affect mitochondrial respiration chain
resulting in mitochondrial stress. Similarly, AgNPs interacts with
proteins and unfolds or misfolds them leading to unfolded
protein response (UPR) and endoplasmic reticulum (ER) stress
(Asharani et al., 2009b; Zhang et al., 2012). Both mitochondrial
stress and ER stress have additive effect on ROS generation in
cell and apoptotic cell death, generally referred to as cytotoxicity
(Asharani et al., 2009a; Menu et al., 2012). Asharani et al.
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FIGURE 3 | AgNPs exposure to human or mammalian cells. AgNPs induce cytotoxic, genotoxic and inflammatory response in human and mammalian cells and

consequently trigger apoptotic cell death, carcinogenesis and fibrosis.

(2009b) also demonstrated that AgNPs penetrates inside the
nucleus based on TEM microphotographs (Menu et al., 2012).
AgNPs inside nucleus induce 8-Oxoguanine (8-oxoG) oxidative
base damages, strand-breaks and mutations in DNA leading to
so called genotoxicity (Ahamed et al., 2008; Foldbjerg et al.,
2009; Kim et al., 2009; Hudecová et al., 2012). AgNPs can also
mediate oxidative-sensitive activation of signaling cascades and
inflammatory response leading to fibrosis and carcinogenesis
(Manke et al., 2013).

The AgNPs-induced toxicity depends on nanoparticles size,
concentration and duration of the treatment (Ahamed et al.,
2010; Johnston et al., 2010). Upon exposure to AgNPs, human
cells and tissues experience increased levels of oxidative stress
and in order to counteract the overwhelming oxidative stress,
cells respond via diverse mechanisms (Huang et al., 2010). We
referred oxidative stress to be mild, intermediate or high based
on the concentration of AgNPs used during treatment.

Treatment of human and mammalian cells at AgNPs
concentration below 10 µg/mL for 24 h causes mild oxidative
stress condition. This concentration of AgNPs usually causes a
decrease in cell viability by∼30% (Çiftçi et al., 2013; Kreeinthong
and Uawithya, 2014). At this concentration, the cells once
treated with AgNPs may recover growth if transferred to fresh

medium devoid of AgNPs. AgNPs have been shown to produce
intracellular ROS even at the lower concentration of 1 µg/mL.
The ROS and superoxide (O2•−) anions starts producing by
the cells just after 10 min of exposure and shows maximal
levels at 30 min and thereafter ceased to produce. Similarly,
even at the low concentration of AgNPs (0.5 and 1 µg/ml), the
condensation of genetic material become noticeable in human
lymphoma cells (Eom and Choi, 2010). This suggests that, in
order to counteract mild oxidative stress, cells after 30 min
post-treatment mainly respond via cellular antioxidant enzyme
systems. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
may be involved in induction of transcriptional activation of
antioxidant genes (Manke et al., 2013).

During condition of the intermediate oxidative stress
(10–40µg/mL AgNPs), cells respond via up-regulation and
down-regulation of a number of cellular pathways, including
expression of gene coding for antioxidant proteins (Xu et al.,
2012). The intermediate levels of oxidative stress result in
activation of cellular signaling cascades, transcription factors
(TFs), and cytokine so as to mount diverse range of cellular
responses to combat stress induced damages. In particular, redox-
sensitivemitogen-activated protein kinase (MAPK) pathway, and
transcription factors such as AP-1, Nrf-2, and nuclear factor
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kappa-B (NF-κB) are known to play important role (Lee et al.,
2009; Manke et al., 2013). At intermediate oxidative stress
level, cells viability reduces below 50% upon treatment with
40 µg/mL AgNPs (Çiftçi et al., 2013). Based on experimental
data, at this concentration cells show maximum apoptotic effect
(Çiftçi et al., 2013), which may be attributed to both AgNPs-
induce cytotoxicity (mitochondrial dysfunction) and AgNPs-
mediated DNA damage and genotoxicity (cell cycle arrest in
G2/M phase) (Asharani et al., 2009a). In fact, in vitro studies
conducted on a number of other cell lines such as pulmonary
fibroblasts, epithelial cells, melanoma cells, and hepatoma cells
showed that AgNPs at a concentration of 13.45 µg/mL results in
significant increase in membrane leakage of LDH and reduction
in mitochondrial function (Ávalos Fúnez et al., 2013). Similarly,
treatment of human-derived keratinocyte cell line (HaCaT)
with 11–36 µg/mL AgNPs caused a reduction in mitochondrial
function (Zanette et al., 2011).

Rinna et al. (2015) evaluated the role of AgNPs-generated
ROS, as mediator of activation of MAPK pathways, in particular
the three best-studied pathways: p38, ERK and JNK. The study
showed that AgNPs-generated ROS caused phosphorylation of
ERK and JNK but not p38. The study also revealed that the ROS
induces oxidative DNA damage directly without involvement
through the activation of MAPK pathways. However, the role of
the ERK pathwaywas found to be crucial in the repair of oxidative
DNA damages and inhibition of MEK, an upstream component
of ERK, completely abolished the repair process. Consistent with
this, the activation of ERK as well as of JNK was highest when
the levels of ROS as well as oxidative damage to the DNA were
recorded maximum (Rinna et al., 2015). This suggests that ERK
pathway plays an important role in counteracting genotoxicity
induced by AgNPs. Whereas, Eom and Choi (2010) suggested
involvement of p38 MAPK activation in DNA damage, and
consequently inhibition of cell cycle progression and apoptosis
as mechanisms for both cytotoxicity and genotoxicity in Jurkat
T cells by AgNPs. AgNPs have been found to act through ROS
and JNK for induction of apoptosis in NIH3T3 cells (Hsin et al.,
2008). In contrast, Asharani et al. (2009a) showed the direct role
of AgNPs in the dysfunctioning of mitochondrial and apoptotic
death in lung fibroblast IMR-90 cells. This suggests that JNK
pathway plays an important role in counteracting cytotoxicity
induced by AgNPs, but the effect is cell line dependent. There
is possible involvement of protein acting downstream to ERK
in modulation of cell cycle and apoptosis (Zhang and Liu,
2002; Mebratu and Tesfaigzi, 2009). However, further studies are
necessary to elucidate and define the role of ERK downstream
protein components in signaling cascades that may have role cell
survival and apoptosis after AgNPs treatment.

The global transcriptional analysis of genes revealed that
AgNPs treatment (Conc 15.2 µg/mL) to HeLa cells for 24 or
48 h causes differential expression of thousands of genes (Xu
et al., 2012). Interestingly, number of genes that up-regulate or
down-regulate after AgNPs treatment are comparatively more
at 24 h than at 48 h of post-treatment. However, only a
limited number of genes that up-regulate or down-regulate
at 24 h post-treatment with AgNPs continue to express until
the 48 h. The data suggest that the AgNPs-induced changes

in gene expression are more pronounced upto 24 h post-
exposure. Consistent with this, Rinna et al. (2015) also reported
similar findings, where AgNPs induced concentration-dependent
(1–25 µg/ml) increase in phosphorylation and activation of
ERK1/2 and JNK1/2 MAP kinase signaling pathway (not p38
MAPK) after 30 min and upto 1 h. However, phosphorylated
ERK1/2 and JNK1/2 decreased to levels almost same to the
control levels after 1 h of post-treatment. Gene ontology and
pathway analysis of the differentially regulated genes revealed
that up-regulation of genes affects 14 signaling pathways; whereas
down-regulation of genes influences 3 cellular pathways. The
upregulated genes mainly entail changes of the 14 functional
signal pathways closely associated with cell communication, cell-
cell signaling, cell adhesion, signal transduction, intracellular
signaling JAK-STAT cascade, metabolic processes, carbohydrate
metabolic processes, lipid metabolic processes, response to
stimulus, transport, endocytosis, cellular defense response, and
immune response (Xu et al., 2012). On the contrary, the down-
regulated genes mainly affect functional pathways such as the
nucleic acid metabolic processes, cell cycle and mitosis (Xu et al.,
2012). The presented results provide further evidences in support
of AgNPs-induced activation and involvement of JAK-STAT
pathway inmitochondrial dysfunction (cytotoxicity) and ERK1/2
and JNK1/2 (but not p38) in DNA damage induced cell cycle
arrest (genotoxicity). Another reason for DNA damage induced
cell cycle arrest (genotoxicity) could be interaction of AgNPs with
actin cytoskeleton as suggested by Asharani et al. (2009a) and
down-regulation of CDC14A as suggested by Xu et al. (2012),
both at intermediate oxidative stress condition (AgNPs upto 40
µg/mL).

Under intermediate oxidative stress condition, the most
prominent genes that upregulate upon AgNPs exposure are
metallothionein genes and oxidative stress responsive genes that
protect cells by neutralizing oxidative stress (Xu et al., 2012).
Exposure of HeLa cells AgNPs results in over-expression some
metallothionein isoforms such as MT1A, MT1F, MT1G, MT1X,
and MT2A (Xu et al., 2011). Asharani et al. (2012) reported
over-expression of the MT1F and HO-1 in IMR-90 cells upon
AgNPs treatment. Kawata et al. (2009) also reported significant
over-expression of three metallothionein genes, MT1H, MT1X,
MT2A in human hepatoma cell line (HepG2 cells) after exposure
to AgNPs. Recently, Xu et al. (2012) using microarray analysis
demonstrated ten metallothionein genes (MT1F, MT1A, MT2A,
MT1B, MT1G, MT1H, MT1X, MT1L, MT1M, and MT1E),
heme oxygenase-1 (HO-1) and oxidative stress induced growth
inhibitor 1 (OSGIN1) to be significantly up-regulated at 48 h
of AgNPs-hydrogel treatment (Xu et al., 2012). To this end,
metallothioneins (MTs) can be regarded as cellular biomarkers
for AgNPs-induced cytotoxicity because these proteins act by
facilitating metal detoxification and conferring protection from
oxidative damages (Ruttkay-Nedecky et al., 2013).

The AgNPs concentration above the range of 40–50 µg/mL,
depending upon cell type, causes extremely high oxidative stress
condition and results in permanent damage to cells. The high
oxidative stress condition caused by 50 µg/mL AgNPs or more
in RAW264.7 cells and MCF-7 showed 70% reduction in cell
viability (Çiftçi et al., 2013; Paul et al., 2015). Çiftçi et al. (2013)
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also found that at high AgNPs concentration, the apoptotic
affect reduces, while the necrotic effect becomes prominent.
This effect can be attributed oxidative stress induced damages
to mitochondrial membrane and dysfunction of electron chain
dysfunction, which ultimately lead to necrotic cell death.

To this end, increase cytotoxicity, genotoxicity, and
inflammatory responses have implications in a number of
diseases and disorders. NPs have been shown to up-regulate the
expression of proinflammatory chemokine gene interleukin-8
(CXCL-8) via ROS, and NF-κB activation (Lee et al., 2009;
Manke et al., 2013). Increase IL-8 secretion by the cells causes
activation and recruitment of macrophages and neutrophils that
increase the susceptibility of cancer progression and metastasis.
Thus, ROS-NFκB mediated IL-8 expression response appears
to be closely associated to factors driving cancer progression
and metastasis (Genestra, 2007). The inflammatory cascade that
involves profibrotic mediators such as TNF-α, IL-1β, and TGF-β
have been implicated in the pathogenesis of fibrosis (Li et al.,
2010).

CONCLUSION

For centuries, silver-based compounds have been in use as
an antimicrobial agent to discourage bacterial growth. There
are already products in the market. For instance, AgNPs
in Silver-ActicoatTM dressing used for healing of chronic
wounds and it has superior property than silver nitrate and
silver sulphadiazine, the latter is a formulation of silver and
sulphadiazine as 1% water-soluble cream (AgSD) (Dunn and
Edwards-Jones, 2004; Pasupuleti et al., 2013). Polyvinyl alcohol
(PVA) nanofibres impregnated with silver nanoparticles exhibit
improved antibacterial potential against E. coli and S. aureus,
and are considered suitable in wound dressings (Jun et al.,
2007). Besides this, the susceptibility of inflammatory response
in AgNPs based non-crystalline wound dressing therapy is
remarkably much less (Fong andWood, 2006). Other biomedical
applications of AgNPs include impregnation of catheters and
cardiovascular and bone implants with AgNPs for inhibiting
biofilm formation and minimizing the chances of pathogenic
growth (Tran et al., 2013). In orthopedics, AgNPs are loaded
along with polymethyl methacrylate (PMMA) to be used as bone
cementing material in synthetic joint replacement therapy (Alt
et al., 2004). Out of all the metals (gold, platinum, Cu, Zn, Ti etc.)
with antimicrobial properties, silver is known to exert the most
effective antibacterial action. Nevertheless, Chen and Schluesener
(2008) demonstrated that silver is comparatively non-toxic and
non-mutageneic to human primary organ systems. Since, silver
is non-cytotoxic to animal cells, AgNPs has been considered
as a safe and promising antibactericidal agent against highly
infectious drug-resistant bacteria such as E. coli, P. aeruginosa,
and S. aureus (Namasivayam et al., 2011; El-Kheshen and El-Rab,
2012). AgNPs increases the antibacterial activities of antibiotics
such as amoxicillin, clindamycin, erythromycin, penicillin, and
vancomycin. However, similar to antibiotics, prolonged exposure
of bacteria to AgNPs may result in the development of resistant
bacterial cells. For instance, E. coli K12 MG1655 strain has
developed resistance toward AgNPs; however, the bacterium does
not possess any Ag-resistance element (Graves et al., 2015).

It is therefore necessary in future to carefully examining the
development of Ag-resistance in bacteria.

For synthesis of nanomaterials an array of physical, chemical
and biological methods are available. A specific procedure is
generally used to synthesize metal nanoparticles of desired
property and performance. Silver nanoparticles can be easily
synthesized using various procedures that include physical,
chemical, electro-chemical and biological (Sun et al., 1989;
Naik et al., 2002; Yin et al., 2003; Iravani et al., 2014).
Certain other methods such as ultraviolet irradiation, laser
ablation, photochemical reduction and some other have also been
employed successfully, but are much expensive and require the
use of harmful compounds. Therefore, there is an increasing
demand for development cost-effective and environment-
friendly methods. Advancement of this route (green synthesis)
over chemical and physical approaches holds great promise.
Green synthesis of nanoparticles is a cheap, eco-friendly, easily
scaled up method for synthesis of nanoparticles that does not
require use of high energy, pressure, temperature and toxic
chemicals (Iravani, 2011). By optimizing and manipulating the
synthesis procedures and using appropriate reducing agents
and stabilizers, a specific control over shape, size, and charge
distribution of the AgNPs can be achieved (Pal et al., 2007;
Iravani, 2011; El-Kheshen and El-Rab, 2012).

AgNPs-associated cytotoxicity, genotoxicity and
inflammatory response in cells have raised concerns of their
inadvertent exposure in humans (Chopra, 2007). However, the
cytotoxic, genotoxic, apoptotic and anti-proliferative effect of
AgNPs can be used as a strategy against cancerous cells, such
as cancer treatment of GBM patients (Gopinath et al., 2008;
Urbańska et al., 2015). In this perspective, to encourage the
safe use of AgNPs in disease therapy, long-term cytotoxicity,
mutagenicity and carcinogenicity studies should be conducted
in order to verify any adverse effects that may occurs during
their use in therapeutics and drug delivery (Becker et al., 2011;
Maneewattanapinyo et al., 2011; Klien and Godnic-Cvar, 2012;
Tran et al., 2013). Some authors have conducted clinical trials
using commercially available Silver nanoparticles (Munger
et al., 2014, 2015; Smock et al., 2014). The trials are registered
with Clinical-Trials.gov. These studies detected no clinically
important alterations in metabolic, hematologic, or urinalysis
profiles in humans. Besides this, no morphological changes
were detected in the vital human organs such as lungs, heart or
abdomen as well as no changes were recorded in pulmonary ROS
formation or pro-inflammatory cytokine production (Munger
et al., 2014).

In order to apply Silver nanoparticles based medicines for
human therapeutic interventions and disease treatment, clinical
trials must be conducted. However, there are some major
roadblocks. In this perspective, we envisage that future studies
must be conducted at three major levels before proposing AgNPs
use in clinical trials, therapeutics interventions and drug delivery
applications. First to synthesize AgNPs with unique physico-
chemical properties using novel biofabrication procedures and
techniques, second to verify if the microorganisms develop
resistance toward the AgNPs based antimicrobial therapy, third
to examine the cytotoxicity, genotoxicity, and inflammatory
response of the AgNPs toward human cells. Although, there are
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some concerns and controversies related to AgNPs safe use in
human diseases treatment and health care, the research done
so far has suggested that AgNPs can be engineered to enhance
its antimicrobial efficacy, stability, specificity, biosafety and
biocompatibility for increased therapeutic benefits and reduced
potential side effects.

AUTHOR CONTRIBUTIONS

TD conceived the idea. TD, AK, and VY wrote the manuscript.
TD prepared the tables and figures for the manuscript. TD, VY,
and RM performed language editing. All authors read, reviewed
and approved the manuscript.

REFERENCES

Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar,
S., Nabavizadeh, M., et al. (2015). The effect of charge at the surface
of silver nanoparticles on antimicrobial activity against gram-positive and
gram-negative bacteria: a preliminary study. J. Nanomater. 2015:720654. doi:
10.1155/2015/720654

Ahamed, M., Alsalhi, M. S., and Siddiqui, M. K. (2010). Silver nanoparticle
applications and human health. Clin. Chim. Acta 411, 1841–1848. doi: 10.1016/
j.cca.2010.08.016

Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J. J.,
et al. (2008). DNA damage response to different surface chemistry of silver
nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 233, 404–410. doi:
10.1016/j.taap.2008.09.015

Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E.,
et al. (2004). An in vitro assessment of the antibacterial properties and
cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25, 4383–4391.
doi: 10.1016/j.biomaterials.2003.10.078

Amro, N. A., Kotra, L. P., Wadu-Mesthrige, K., Bulychev, A., Mobashery, S.,
and Liu, G. (2000). High-resolution atomic force microscopy studies of the
Escherichia coli outer membrane: structural basis for permeability. Langmuir

16, 2789–2796. doi: 10.1021/la991013x
Ansari, M. A., Khan, H. M., Khan, A. A., Malik, A., Sultan, A., Shahid, M., et al.

(2011). Evaluation of antibacterial activity of silver nanoparticles against MSSA
and MSRA on isolates from skin infections. Biol. Med. 3, 141–146.

Asharani, P., Sethu, S., Lim, H. K., Balaji, G., Valiyaveettil, S., and Hande, M. P.
(2012). Differential regulation of intracellular factors mediating cell cycle, DNA
repair and inflammation following exposure to silver nanoparticles in human
cells. Genome Integr. 3:2. doi: 10.1186/2041-9414-3-2

Asharani, P. V., Hande, M. P., and Valiyaveettil, S. (2009b). Anti-proliferative
activity of silver nanoparticles. BMC Cell Biol. 10:65. doi: 10.1186/1471-2121-
10-65

Asharani, P. V., Mun, G. L. K., Hande, M. P., and Valiyaveettil, S. (2009a).
Cytotoxicity and genotoxicity of silver nanoparticles in human cells.ACS Nano.
3, 279–290. doi: 10.1021/nn800596w

Ávalos Fúnez, A., Isabel Haza, A., Mateo, D., and Morales, P. (2013). In

vitro evaluation of silver nanoparticles on human tumoral and normal
cells. Toxicol. Mech. Methods. 23, 153–160. doi: 10.3109/15376516.2012.
762081

Ayala-Nunez, N. V., Villegas, H. H. L., Turrent, L. C. I., and Padilla, C. R. (2009).
Silver nanoparticles toxicity and bactericidal effect against methicillin resistant
Staphylococcus aureus: nanoscale does matter. J. Nanobiotechnol. 5, 2–9. doi:
10.1007/s12030-009-9029-1

Becker, H., Herzberg, F., Schulte, A., and Kolossa-Gehring, M. (2011). The
carcinogenic potential of nanomaterials, their release from products and
options for regulating them. Int. J. Hyg. Environ. Health. 214, 231–238. doi:
10.1016/j.ijheh.2010.11.004

Belluco, S., Losasso, C., Patuzzi, I., Rigo, L., Conficoni, D., Gallocchio, F., et al.
(2016). Silver as antibacterial toward Listeria monocytogenes. Front. Microbiol.

7:307. doi: 10.3389/fmicb.2016.00307
Bhattacharya, R., and Mukherjee, P. (2008). Biological properties of “naked”

metal nanoparticles. Adv. Drug. Deliv. Rev. 60, 1289–1306. doi: 10.1016/j.addr.
2008.03.013

Blecher, K., and Friedman, A. (2012). Nanotechnology and the diagnosis of
dermatological infectious disease. J. Drugs Dermatol. 7, 846–851.

Burda, C., Chen, X., Narayanan, R., and El-Sayed, M. A. (2005). Chemistry and
properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102. doi:
10.1021/cr030063a

Chen, S., and Carroll, D. L. (2002). Synthesis and characterization of truncated
triangular silver nanoplates. Nano. Lett. 2, 1003–1007. doi: 10.1021/nl025674h

Chen, X., and Schluesener, H. J. (2008). Nanosilver: a nanoproduct in medical
application. Toxicol. Appl. Pharmacol. Lett. 176, 1–12. doi: 10.1016/j.toxlet.
2007.10.004

Chopra, I. (2007). The increasing use of silver-based products as antimicrobial
agents: a useful development or a cause for concern. J. Antimicrob. Chemother.

59, 587–590. doi: 10.1093/jac/dkm006
Çiftçi, H., Türk, M., Tamer, U., Karahan, S., and Menemen, Y. (2013). Silver

nanoparticles: cytotoxic, apoptotic, and necrotic effects on MCF-7 cells. Turk.
J. Biol. 37, 573–581. doi: 10.3906/biy-1302-21

Collins, T. L., Markus, E. A., Hassett, D. J., and Robinson, J. B. (2010). The effect of
a cationic porphyrin on Pseudomonas aeruginosa biofilms. Curr. Microbiol. 61,
411–416. doi: 10.1007/s00284-010-9629-y

Davies, J. E. (1997). Origins, acquisition and dissemination of antibiotic resistance
determinants. Ciba. Found. Symp. 207, 15–27.

De’ Souza, A., Mehta, D., and Leavitt, R. W. (2006). Bactericidal activity of
combinations of silver–water dispersion with 19 antibiotics against seven
microbial strains. Curr. Sci. 91, 926–929.

Dehnavi, A. S., Raisi, A., and Aroujalian, A. (2012). Control size and stability of
colloidal silver nanoparticles with antibacterial activity prepared by a green
synthesis method. Synth. React. Inorg. M. 43, 543–551. doi: 10.1080/1553
3174.2012.741182

Desselberger, U. (2000). Emerging and re-emerging infectious diseases. J. Infect.
40, 3–15. doi: 10.1053/jinf.1999.0624

Deutscher, J., and Saier, M. H. (2005). Ser/Thr/Tyr protein phosphorylation in
bacteria - for long time neglected, now well established. J. Mol. Microbiol.

Biotechnol. 9, 125–131. doi: 10.1159/000089641
Dunn, K., and Edwards-Jones, V. (2004). The role of Acticoat with nanocrystalline

silver in the management of burns. Burns 30, S1–S9. doi: 10.1016/S0305-
4179(04)90000-9

Duran, N., Marcarto, P. D., De Souza, G. I. H., Alves, O. L., and Esposito, E. (2007).
Antibacterial effect of silver nanoparticles produced by fungal process on textile
fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3, 203–208. doi:
10.1166/jbn.2007.022

Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho-Bragado, A., Gao, X.,
Lara, H. H., et al. (2005). Interaction of silver nanoparticles with HIV-1.
J. Nanobiotechnol. 3:6. doi: 10.1186/1477-3155-3-6

El-Kheshen, A. A., and El-Rab, S. F. G. (2012). Effect of reducing and protecting
agents on size of silver nanoparticles and their anti-bacterial activity. Schol. Res.
Librar. 4, 53–65.

Eom, H. J., and Choi, J. (2010). p38 MAPK activation, DNA damage, cell cycle
arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat
T cells. Environ. Sci. Technol. 44, 8337–8342. doi: 10.1021/es1020668

Espinosa-Cristobal, L. F., Martinez-Castanon, G. A., Martinez-Martinez, R. E.,
Loyola-Rodriguez, J. P., Patino-Marin, N., Reyes-Macias, J. F., et al. (2009).
Antibacterial effect of silver nanoparticles against Streptococcus mutans.Mater.

Lett. 63, 2603–2606. doi: 10.1016/j.matlet.2009.09.018
Fayaz, M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., and Venketesan,

R. (2010). Biogenic synthesis of silver nanoparticles and its synergetic effect
with antibiotics: a study against Gram positive and Gram negative bacteria.
Nanomedicine 6, 103–109.

Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., and Kim, J. O. (2000). A
mechanistic study of the antibacterial effect of silver ions on Escherichia coli and
Staphylococcus aureus. J. Biomed. Mater. Res. 52, 662–668. doi: 10.1002/1097-
4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3

Fenoglio, I., Corazzari, I., Francia, C., Bodoardo, S., and Fubini, B. (2008).
The oxidation of glutathione by cobalt/tungsten carbide contributes to

Frontiers in Microbiology | www.frontiersin.org 13 November 2016 | Volume 7 | Article 1831

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Dakal et al. Antimicrobial Action of Silver Nanoparticles

hard metal-induced oxidative stress. Free Radic. Res. 42, 737–745. doi:
10.1080/10715760802350904

Foldbjerg, R., Olesen, P., Hougaard, M., Dang, D. A., Hoffmann, H. J., and Autrup,
H. (2009). PVP-coated silver nanoparticles and silver ions induce reactive
oxygen species, apoptosis, and necrosis in THP-1 monocytes. Toxicol. Lett. 190,
156–162. doi: 10.1016/j.toxlet.2009.07.009

Fong, J., and Wood, F. (2006). Nanocrystalline silver dressings in wound
management: a review. Int. J. Nanomed. 1, 441–449. doi: 10.2147/nano.
2006.1.4.441

Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., and Rai, M. (2009). Fungus-
mediated synthesis of silver nanoparticles and their activity against pathogenic
fungi in combination with fluconazole. Nanomed. Nanotech. Biol. Med. 5,
382–386. doi: 10.1016/j.nano.2009.06.005

Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., and Galdiero,
M. (2011). Silver nanoparticles as potential antiviral agents. Molecules 16,
8894–8918. doi: 10.3390/molecules16108894

Genestra, M. (2007). Oxyl radicals, redox-sensitive signalling cascades and
antioxidants. Cell. Signal. 19, 1807–1819. doi: 10.1016/j.cellsig.2007.04.009

Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., et al. (2012).
Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and
evalution of its synergistic potential in combination with antimicrobial agents.
Int. J. Nanomed. 7, 483–496. doi: 10.2147/IJN.S24793

Gopinath, P., Gogoi, S. K., Chattopadhyay, A., and Ghosh, S. S. (2008).
Implications of silver nanoparticle induced cell apoptosis for in vitro gene
therapy. Nanotechnolgy 19:075104. doi: 10.1088/0957-4484/19/7/075104

Grangeasse, C., Obadia, B., Mijakovic, I., Deutscher, J., Cozzone, A. J., andDoublet,
P. (2003). Autophosphorylation of the Escherichia coli protein kinase Wzc
regulates tyrosine phosphorylation of Ugd, a UDP-glucose dehydrogenase.
J. Biol. Chem. 278, 39323–39329. doi: 10.1074/jbc.m305134200

Graves, J. L. Jr., Tajkarimi, M., Cunningham, Q., Campbell, A., Nonga, H.,
Harrison, S. H., et al. (2015). Rapid evolution of silver nanoparticle resistance
in Escherichia coli. Front. Genet. 6:42. doi: 10.3389/fgene.2015.00042

Habash, M. B., Park, A. J., Vis, E. C., Harris, R. J., and Khursigara, C. M.
(2014). Synergy of Silver Nanoparticles and Aztreonam against Pseudomonas

aeruginosa PAO1 Biofilms. Antimicrob. Agents Chemother. 58, 5818–5830. doi:
10.1128/AAC.03170-14

Howden, P. J., and Faux, S. P. (1996). Fibre-induced lipid peroxidation leads
to DNA adduct formation in Salmonella typhimurium TA104 and rat lung
fibroblasts. Carcinogenesis 17, 413–419. doi: 10.1093/carcin/17.3.413

Hsin, Y. H., Chen, C. F., Huang, S., Shih, T. S., Lai, P. S., and Chueh, P. J. (2008).
The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent
mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol.
Lett. 179, 130–139. doi: 10.1016/j.toxlet.2008.04.015

Hsueh, Y. H., Lin, K. S., Ke, W. J., Hsieh, C. T., Chiang, C. L., Tzou, D. Y.,
et al. (2015). The Antimicrobial properties of silver nanoparticles in Bacillus

subtilis are mediated by released Ag+ ions. PLoS ONE 10:e0144306. doi:
10.1371/journal.pone.0144306

Huang, C. C., Aronstam, R. S., Chen, D., and Huang, Y. (2010). Oxidative
stress, calcium homeostasis, and altered gene expression in human lung
epithelial cells exposed to ZnO nanoparticles. Toxicol. In vitro 24, 45–55. doi:
10.1016/j.tiv.2009.09.007

Hudecová, A., Kusznierewicz, B., Rundén-Pran, E., Magdolenová, Z., Hasplová,
K., Rinna, A., et al. (2012). Silver nanoparticles induce premutagenic DNA
oxidation that can be prevented by phytochemicals from Gentiana asclepiadea.
Mutagenesis 27, 759–769. doi: 10.1093/mutage/ges046

Humberto, H., Lara, V., Ayala-Nunez, N. V., Carmen, L. D., Ixtepan, T.,
and Cristina, R. P. (2010). Bactericidal effect of silver nanoparticles against
multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26, 615–621. doi:
10.1007/s11274-009-0211-3

Iniesta, A. A., McGrath, P. T., Reisenauer, A., Mc Adams, H. H., and Shapiro, L.
A. (2006). Phospho-signaling pathway controls the localization and activity of
a protease complex critical for bacterial cell cycle progression. Proc. Natl. Acad.
Sci. U.S.A. 103, 10935–10940. doi: 10.1073/pnas.0604554103

Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green.
Chem. 13, 2638–2650. doi: 10.1039/c1gc15386b

Iravani, S., Korbekandi, H., Mirmohammadi, S. V., and Zolfaghari, B. (2014).
Synthesis of silver nanoparticles: chemical, physical and biological methods.
Res. Pharm. Sci. 9, 385–406.

Jana, S., and Pal, T. (2007). Synthesis, characterization and catalytic application
of silver nanoshell coated functionalized polystyrene beads. J. Nanosci.

Nanotechnol. 7, 2151–2156. doi: 10.1166/jnn.2007.785
Johnston, H. J., Hutchison, G., Christensen, F., Peters, M., Hankin, S.,

and Stone, S. (2010). A review of the in vivo and in vitro toxicity of
silver and gold particulates: particle attributes and biological mechanisms
responsible for the observed toxicity. Crit. Rev. Toxicol. 4, 328–346. doi:
10.3109/10408440903453074

Jun, J., Yuan-Yuan, D., Shao-Hai, W., Shao-Feng, Z., and Zhongyi, W. (2007).
Preparation and characterization of antibacterial silver-containing nanofibers
for wound dressing applications. J. US China Med. Sci. 4, 52–54.

Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., and Park, Y.
H. (2008). Antibacterial activity and mechanism of action of the silver ion
in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74,
2171–2178. doi: 10.1128/AEM.02001-07

Kawata, K., Osawa, M., and Okabe, S. (2009). In vitro Toxicity of silver
nanoparticles at nanocytotoxic doses to HepG2 human hepatoma cells.
Environ. Sci. Technol. 43, 6046–6051. doi: 10.1021/es900754q

Kennedy, I. M., Wilson, D., and Barakat, A. I. (2009). Uptake and inflammatory
effects of nanoparticles in a human vascular endothelial cell line. Res. Rep. 136,
3–32.

Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., et al. (2007).
Antimicrobial effects of silver nanoparticles.Nanomed. Nanotechnol. Biol. Med.

3, 95–101. doi: 10.1016/j.nano.2006.12.001
Kim, J. Y., Sungeun, K., Kim, J., Jongchan, L., and Yoon, J. (2005). The biocidal

activity of nano-sized silver particles comparing with silver ion. Korean Soc.

Environ. Eng. 27, 771–776.
Kim, S., Choi, J. E., Choi, J., Chung, K. H., Park, K., Yi, J., et al. (2009). Oxidative

stress-dependent toxicity of silver nanoparticles in human hepatoma cells.
Toxicol. In Vitro 23, 1076–1084. doi: 10.1016/j.tiv.2009.06.001

Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., and Lee, D. S. (2011). Antibacterial
Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia

coli. Korean J. Microbiol. Biotechnol. 39, 77–85.
Kirstein, J., and Turgay, K. (2005). A new tyrosine phosphorylation mechanism

involved in signal transduction in Bacillus subtilis. J. Mol. Microbiol. Biotechnol.

9, 182–188. doi: 10.1159/000089646
Klien, K., and Godnic-Cvar, J. (2012). Genotoxicity of metal nanoparticles:

focus on in vivo studies. Arhiv. Za Hig. Rada I Toksikol. 63, 133–145. doi:
10.2478/10004-1254-63-2012-2213

Klueh, U., Wagner, V., Kelly, S., Johnson, A., and Bryers, J. D. (2000). Efficacy of
silver-coated fabric to prevent bacterial colonization and subsequent device-
based biofilm formation. J. Biomed. Mater. Res. 53, 621–631. doi: 10.1002/1097-
4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q

Kreeinthong, S., and Uawithya, P. (2014). Effects of short-term silver nanoparticle
exposure on proliferative signaling pathway in human skin keratinocyte.
J. Physiol. Biomed. Sci. 27, 48–53.

Kumar, N., Das, S., Jyoti, A., and Kaushik, S. (2016). Synergistic effect of silver
nanoparticles with doxycycline againstKlebsiella pneumoniae. Int. J. Pharm. Sci.

8, 183–186.
Kumar, S., Mukherjee, M. M., and Varela, M. F. (2013). Modulation of bacterial

multidrug resistance efflux pumps of the major facilitator superfamily. Int.
J. Bacteriol. 2013:204141. doi: 10.1155/2013/204141

Kumar, S., Singh, M., Halder, D., and Mitra, A. (2014). Mechanistic study of
antibacterial activity of biologically synthesized silver nanocolloids. Colloids
Surfaces A 449, 82–86. doi: 10.1016/j.colsurfa.2014.02.027

Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prucek, R.,
et al. (2008). Effect of surfactants and polymers on stability and antibacterial
activity of silver nanoparticles (NPs). J. Phys. Chem. C. 112, 5825–5834. doi:
10.1021/jp711616v

Lee, H., Shin, D., Song, H. M., Yuk, J. M., Lee, Z. W., Lee, S. H., et al. (2009).
Nanoparticles up-regulate tumor necrosis factor-α and CXCL8 via reactive
oxygen species and mitogen activated protein kinase activation. Toxicol. Appl.
Pharm. 238, 160–169. doi: 10.1016/j.taap.2009.05.010

Levy, S. B. (2002). Factors impacting on the problem of antibiotic resistance.
J. Antimicrob. Chemother. 49, 25–30. doi: 10.1093/jac/49.1.25

Li, J. J., Muralikrishnan, S., Ng, C. T., Yung, L. Y., and Bay, B. H. (2010).
Nanoparticle-induced pulmonary toxicity. Exp. Biol. Med. 235, 1025–1033. doi:
10.1258/ebm.2010.010021

Frontiers in Microbiology | www.frontiersin.org 14 November 2016 | Volume 7 | Article 1831

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Dakal et al. Antimicrobial Action of Silver Nanoparticles

Li, J., Rong, K., Zhao, H., Li, F., Lu, Z., and Chen, R. (2013). Highly
selective antibacterial activities of silver nanoparticles against Bacillus

subtilis. J. Nanosci. Nanotechnol. 13, 6806–6813. doi: 10.1166/jnn.
2013.7781

Li, X. Z., Nikaido, H., and Williams, K. E. (1997). Silver-resistant mutants of
Escherichia coli display active efflux of Ag+ and are deficient in porins.
J. Bacteriol. 179, 6127–6132.

Lkhagvajav, N., Yasab, I. C., Elikc, E., Koizhaiganova, M., and Saria, O. (2011).
Antimicrobial activity of colloidal silver nanoparticles prepared by sol gel
method. Dig. J. Nanomater. Biostruct. 6, 149–154.

Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., et al. (2006).
Proteomic analysis of the mode of antibacterial action of silver nanoparticles.
J. Proteome. Res. 5, 916–924. doi: 10.1021/pr0504079

Lu, L., Sun, R. W., Chen, R., Hui, C. K., Ho, C. M., Luk, J. M., et al. (2008).
Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 13,
253–262.

Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Gnanajobitha, G., Vanaja, M., and
Annadurai, G. (2013). Biosynthesis of semiconductor nanopar ticles by using
sulfur reducing bacteria Serratia nematodiphila. Adv. Nano. Res. 1, 83–91. doi:
10.12989/anr.2013.1.2.083

Maneewattanapinyo, P., Banlunara, W., Thammacharoen, C., Ekgasit, S., and
Kaewamatawong, T. (2011). An evaluation of acute toxicity of colloidal silver
nanoparticles. J. Vet. Med. Sci. 73, 1417–1423. doi: 10.1292/jvms.11-0038

Manke, A., Wang, L., and Rojanasakul, Y. (2013). Mechanisms of nanoparticle-
induced oxidative stress and toxicity. BioMed. Res. Int. 2013:942916. doi:
10.1155/2013/942916

Mebratu, Y., and Tesfaigzi, Y. (2009). How ERK1/2 activation controls cell
proliferation and cell death: is subcellular localization the answer? Cell Cycle
8, 1168–1175. doi: 10.4161/cc.8.8.8147

Menu, P., Mayor, A., Zhou, R., Tardivel, A., Ichijo, H., Mori, K., et al. (2012). ER
stress activates the NLRP3 inflammasome via an UPR-independent pathway.
Cell Death Dis. 3, e261. doi: 10.1038/cddis.2011.132

Mijakovic, I., Petranovic, D., Bottini, N., Deutscher, J., and Jensen, P. R.
(2005). Protein-tyrosine phosphorylation in Bacillus subtilis. J. Mol. Microbiol.

Biotechnol. 9, 189–197. doi: 10.1159/000089647
Mijakovic, I., Petranovic, D., Macek, B., Cepo, T., Mann, M., Davies,

J., et al. (2006). Bacterial single-stranded DNA-binding proteins are
phosphorylated on tyrosine.Nucleic Acids Res. 34, 1588–1596. doi: 10.1093/nar/
gkj514

Mijakovic, I., Poncet, S., Boel, G., Maz,é, A., Gillet, S., Jamet, E., et al. (2003).
Transmembrane modulator-dependent bacterial tyrosine kinase activates
UDP-glucose dehydrogenases. EMBO J. 22, 4709–4718. doi: 10.1093/emboj/
cdg458

Mirzajani, F., Ghassempour, A., Aliahmadi, A., and Esmaeili, M. A. (2011).
Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res.

Microbiol. 162, 542–549. doi: 10.1016/j.resmic.2011.04.009
Monteiro, D. R., Gorup, L. F., Takamiya, A. S., de Camargo, E. R., Filho, A. C. R.,

and Barbosa, D. B. (2012). Silver distribution and release from an antimicrobial
denture base resin containing silver colloidal nanoparticles. J. Prosthodont. 21,
7–15. doi: 10.1111/j.1532-849X.2011.00772.x

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J.
T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology
16, 2346–2353. doi: 10.1088/0957-4484/16/10/059

Munger, M. A., Hadlock, G., Stoddard, G., Slawson, M. H., Wilkins, D. G., Cox,
N., et al. (2015). Assessing orally bioavailable commercial silver nanoparticle
product on human cytochrome P450 enzyme activity. Nanotoxicology 9,
474–481. doi: 10.3109/17435390.2014.948092

Munger, M. A., Radwanski, P., Hadlock, G. C., Stoddard, G., Shaaban, A., Falconer,
J., et al. (2014). In vivo human time-exposure study of orally dosed commercial
silver nanoparticles. Nanomedicine 10, 1–9. doi: 10.1016/j.nano.2013.
06.010

Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S., and Stone, M. O. (2002).
Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1,
169–172. doi: 10.1038/nmat758

Nalwade, A. R., and Jadhav, A. A. (2013). Biosynthesis of silver nanoparticles using
leaf extract of Daturaalba Nees. and evaluation of their antibacterial activity.
Arch. Appl. Sci. Res. 5, 45–49.

Namasivayam, S. K. R., Ganesh, S., and Avimanyu, B. (2011). Evaluation of anti-
bacterial activity of silver nanoparticles synthesized from Candida glabrata and
Fusarium oxysporum. Int. J. Med. Res. 1, 131–136.

Nanda, A., and Saravanan, M. (2009). Biosynthesis of silver nanoparticles from
Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE.
Nanomedicine 5, 452–456. doi: 10.1016/j.nano.2009.01.012

Nateghi, M. R., and Hajimirzababa, H. (2014). Effect of silver nanoparticles
morphologies on antimicrobial properties of cotton fabrics. J. Text. I. 105,
806–813. doi: 10.1080/00405000.2013.855377

Pal, S., Tak, Y. K., and Song, J. M. (2007). Does the antibacterial activity of silver
nanoparticles depend on the shape of the nanoparticle? A study of the gram-
negative bacterium Escherichia coli. Appl. Environ. Microbiol. 27, 1712–1720.
doi: 10.1128/AEM.02218-06

Panácek, A., Kolár, M., Vecerová, R., Prucek, R., Soukupová, J., Krystof, V.,
et al. (2009). Antifungal activity of silver nanoparticles against Candida spp.
Biomaterials 30, 6333–6340. doi: 10.1016/j.biomaterials.2009.07.065

Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova,
N., et al. (2006). Silver colloid nanoparticles: synthesis, characterization,
and their antibacterial activity. J. Phys. Chem. B 110, 16248–16253. doi:
10.1021/jp063826h

Pasupuleti, V. R., Prasad, T. N. V. K. V., Shiekh, R. A., Balam, S. K., Narasimhulu,
G., Reddy, C. S., et al. (2013). Biogenic silver nanoparticles using Rhinacanthus
nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. Int.
J. Nanomed. 8, 3355–3364. doi: 10.2147/IJN.S49000

Paul, A., Ju, H., Rangasamy, S., Shim, Y., and Song, J. M. (2015). Nanosized
silver (II) pyridoxine complex to cause greater inflammatory response and less
cytotoxicity to RAW264.7 macrophage cells. Nanoscale Res. Lett. 10, 140. doi:
10.1186/s11671-015-0848-9

Pellieux, C., Dewilde, A., Pierlot, C., and Aubry, J. M. (2000). Bactericidal
and virucidal activities of singlet oxygen generated by thermolysis of
naphthalene endoperoxides. Methods Enzymol. 319, 197–207. doi: 10.1016/
S0076-6879(00)19020-2

Phong, N. T. P., Minh, N. H., Thanh, N. V. K., and Chien, D. M. (2009). Green
synthesis of silver nanoparticles and silver colloidal solutions. J. Phys. Conf. Ser.
187:012078. doi: 10.1088/1742-6596/187/1/012078

Pilger, A., and Rüdiger, H. W. (2006). 8-Hydroxy-2′-deoxyguanosine as a
marker of oxidative DNA damage related to occupational and environmental
exposures. Int. Arch. Occup. Environ. Health 80, 1–15. doi: 10.1007/s00420-006-
0106-7

Porras-Gomez, M., and Vega-Baudrit, J. (2012). Overview of Multidrug-Resistant
Pseudomonas aeruginosa and novel therapeutic approaches. J. Biomater.

Nanobiotechnology 3, 519. doi: 10.4236/jbnb.2012.324053
Radzig, M. A., Nadtochenko, V. A., Koksharova, O. A., Kiwi, J., Lipasova, V.

A., and Khmel, I. A. (2013). Antibacterial effects of silver nanoparticles on
Gram-negative bacteria: influence on the growth and biofilms formation,
mechanisms of action. Colloids Surf. B Biointerf. 102, 300–306. doi:
10.1016/j.colsurfb.2012.07.039

Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., and Hasan, M.
M. (2008). Antibacterial characterization of silver nanoparticles against E. Coli
ATCC-15224. J. Mater. Sci. Technol. 24, 192–196. Available online at: http://
www.jmst.org/EN/Y2008/V24/I02/192

Rahman, K. (2007). Studies on free radicals, antioxidants, and co-factors. Clin.
Interv. Aging 2, 219–236.

Rai, M. K., Deshmukh, S. D., Ingle, A. P., and Gade, A. K. (2012). Silver
nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria.
J. Appl. Microbiol. 112, 841–852. doi: 10.1111/j.1365-2672.2012.05253.x

Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., and Galdiero, M. (2014). Broad-
spectrum bioactivities of silver nanoparticles: the emerging trends and future
prospects.Appl. Microbiol. Biotechnol. 98, 1951–1961. doi: 10.1007/s00253-013-
5473-x

Rajawat, S., and Qureshi, M. S. (2012). Comparative study on bactericidal effect
of silver nanoparticles, synthesized using green technology, in combination
with antibiotics on Salmonella Typhi. J. Biomed. Nanotechnol. 3, 480–485. doi:
10.4236/jbnb.2012.34049

Raza, M. A., Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S., and Naseem, S. (2016). Size-
and shape-dependent antibacterial studies of silver nanoparticles synthesized
by wet chemical routes. Nanomaterials 6:74. doi: 10.3390/nano6040074

Frontiers in Microbiology | www.frontiersin.org 15 November 2016 | Volume 7 | Article 1831

http://www.jmst.org/EN/Y2008/V24/I02/192
http://www.jmst.org/EN/Y2008/V24/I02/192
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Dakal et al. Antimicrobial Action of Silver Nanoparticles

Rinna, A., Magdolenova, Z., Hudecova, A., Kruszewski, M., Refsnes, M.,
and Dusinska, M. (2015). Effect of silver nanoparticles on mitogen-
activated protein kinases activation: role of reactive oxygen species and
implication in DNA damage. Mutagenesis 30, 59–66. doi: 10.1093/mutage/
geu057

Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager,
T., et al. (2013). The role of metallothionein in oxidative stress. Int. J. Mol. Sci.

14, 6044–6066. doi: 10.3390/ijms14036044
Salem, W., Leitner, D. R., Zingl, F. G., Schratter, G., Prassl, R., Goessler, W., et al.

(2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio
cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol. 305, 85–95. doi:
10.1016/j.ijmm.2014.11.005

Schreurs, W. J., and Rosenberg, H. (1982). Effect of silver ions on transport and
retention of phosphate by Escherichia coli. J. Bacteriol. 152, 7–13.

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., and Minaian, S. (2007). Synthesis
and effect of silver nanoparticles on the antibacterial activity of different
antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed.

Nanotechnol. 3, 168–171. doi: 10.1016/j.nano.2007.02.001
Shi, Z., Tang, J., Chen, L., Yan, C., Tanvir, S., Anderson, W. A., et al.

(2014). Enhanced colloidal stability and antibacterial performance of silver
nanoparticles/cellulose nanocrystal hybrids. J. Mater. Chem. B 3, 603–611. doi:
10.1039/C4TB01647E

Shin, H. S., Yang, H. J., Kim, S. B., and Lee, M. S. (2004). Mechanism of
growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in
γ-irradiated silver nitrate solution. J. Colloid. Interface Sci. 274, 89–94. doi:
10.1016/j.jcis.2004.02.084

Shrivastava, S. (2008). Nanomedicine: physiological principle of distribution. Dig.
J. Nanomater. Bios. 3, 303–308.

Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., and Dash,
D. (2007). Characterization of enhanced antibacterial effects of novel
silver nanoparticles. Nanotechnology 18, 225103–225111. doi: 10.1088/0957-
4484/18/22/225103

Singh, B. R., Singh, B. N., Singh, A., Khan, W., Naqvi, A. H., and Singh,
H. B. (2015). Mycofabricated biosilver nanoparticles interrupt Pseudomonas

aeruginosa quorum sensing systems. Sci. Rep. 5:13719. doi: 10.1038/srep13719
Smock, K. J., Schmidt, R. L., Hadlock, G., Stoddard, G., Grainger, D. W.,

and Munger, M. A. (2014). Assessment of orally dosed commercial silver
nanoparticles on human ex vivo platelet aggregation. Nanotoxicology 8,
328–333. doi: 10.3109/17435390.2013.788749

Sondi, I., and Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent:
a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface
Sci. 275, 177–182. doi: 10.1016/j.jcis.2004.02.012

Stambe, C., Atkins, R. C., Tesch, G. H., Masaki, T., Schreiner, G. F., and
Nikolic-Paterson, D. J. (2004). The role of p38α mitogen-activated protein
kinase activation in renal fibrosis. J. Am. Soc. Nephrol. 15, 370–379. doi:
10.1097/01.ASN.0000109669.23650.56

Steuber, J., Krebs, W., and Dimroth, P. (1997). The Na+-translocating
NADH:ubiquinone oxidoreductase from Vibrio alginolyticus: redox states of
the FAD prosthetic group and mechanism of Ag+ inhibition. Eur. J. Biochem.

249, 770–776. doi: 10.1111/j.1432-1033.1997.t01-2-00770.x
Stiufiuc, R., Iacovita, C., Lucaciu, C. M., Stiufiuc, G., Dutu, A. G., Braescu,

C., et al. (2013). SERS active silver colloids prepared by reduction of silver
nitrate with short-chain polyethylene glycol. Nanoscale Res. Lett. 8:47. doi:
10.1186/1556-276X-8-47

Suganya, K. S. U., Govindaraju, K., Kumar, V. G., Dhas, T. S., Karthick, V.,
Singaravelu, G., et al. (2015). Size controlled biogenic silver nanoparticles as
antibacterial agent against isolates from HIV infected patients. Spectrochim.

Acta A Mol. Biomol. Spectrosc. 144, 266–272. doi: 10.1016/j.saa.2015.
02.074

Sun, R. W., Chen, R., Chung, N. P., Ho, C. M., Lin, C. L., and Che, C. M. (2005).
Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities
toward HIV-1 infected cells. Chem. Commun. (Camb.) 40, 5059–5061. doi:
10.1039/b510984a

Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A. (1989). Monodisperse
FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science
287, 1989–1992. doi: 10.1126/science.287.5460.1989

Szmacinski, H., Lakowicz, J. R., Catchmark, J. M., Eid, K., Anderson, J. P., and
Middendorf, L. (2008). Correlation between scattering properties of silver

particle arrays and fluorescence enhancement.Appl. Spectrosc. 62, 733–738. doi:
10.1366/000370208784909553

Tamayo, L. A., Zapata, P. A., Vejar, N. D., Azócar, M. I. Gulppi, M. A., Zhou,
X. et al. (2014). Release of silver and copper nanoparticles from polyethylene
nanocomposites and their penetration into Listeria monocytogenes. Mat. Sci.

Eng. 40, 24–31. doi: 10.1016/j.msec.2014.03.037
Thannickal, V. J., and Fanburg, B. L. (2000). Reactive oxygen species in cell

signaling. Am. J. Physiol. 279, L1005–L1028.
Tian, J., Wong, K. K., Ho, C. M., Lok, C. N., Yu, W. Y., Che, C. M., et al. (2007).

Topical delivery of silver nanoparticles promotes wound healing. Chem. Med.

Chem. 2, 129–136. doi: 10.1002/cmdc.200600171
Tran, Q. H., Nguyenm, V. Q., and Le, A. T. (2013). Silver nanoparticles:

synthesis, properties, toxicology, applications and perspectives. Adv.

Nat. Sci. Nanosci. Nanotechnol. 4:033001. doi: 10.1088/2043-6262/4/3/
033001
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