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Abstract—Sex steroids, which have an important role in awide
range of physiological and pathological processes, are synthe-
sized primarily in the gonads and adrenal glands through a
series of enzyme-mediated reactions. The activity of steroido-
genic enzymes can be altered by a variety of endocrine active
compounds (EAC), some of which are therapeutics and others
that are environmental contaminants. A steady-state compu-
tational model of the intraovarian metabolic network was
developed to predict the synthesis and secretion of testosterone
(T) and estradiol (E2), and their responses to EAC. Model
predictions were compared to data from an in vitro steroido-
genesis assay with ovary explants from a small fish model, the
fathead minnow. Model parameters were estimated using an
iterative optimization algorithm. Model-predicted concentra-
tions of T and E2 closely correspond to the time–course data
from baseline (control) experiments, and dose–response data
from experiments with the EAC, fadrozole (FAD). A sensi-
tivity analysis of the model parameters identified specific
transport and metabolic processes that most influence the
concentrations of T and E2, which included uptake of
cholesterol into the ovary, secretion of androstenedione
(AD) from the ovary, and conversions of AD to T, and AD
to estrone (E1). The sensitivity analysis also indicated the E1
pathway as the preferred pathway for E2 synthesis, as
compared to the T pathway. Our study demonstrates the
feasibility of using the steroidogenesis model to predict T and
E2 concentrations, in vitro, while reducing model complexity
with a steady-state assumption. This capability could be useful
for pharmaceutical development and environmental health
assessments with EAC.
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INTRODUCTION

Steroid hormones play an essential role in a wide
range of physiological and pathological processes such
as development, growth, reproduction, metabolism,
aging, and hormone-sensitive cancers.24 Sex steroids
are synthesized primarily in the gonads (ovaries and
testes) and adrenal tissue and derived from cholesterol
through a series of biochemical reactions mediated by
multiple cytochrome P450 (CYP) enzymes and hy-
droxysteroid dehydrogenases (HSD).20,27,36 The activ-
ity of these steroidogenic enzymes can be altered by
various environmental and pharmacologic endocrine
active compounds (EAC).10,28,29,32,45,47 Our research
goal is to better understand the dose–response behav-
iors of EAC. Our approach is to develop computa-
tional systems biology models that describe the
biological perturbations at the biochemical level and
integrate information towards higher levels of biolog-
ical organization. This approach will ultimately enable
predictions of dose–response behavior at the organis-
mal level. In this paper, we describe a mechanistic
model for the biosynthesis of the sex steroids, testos-
terone (T) and estradiol (E2), and their responses to
EAC, which can inhibit the enzymes involved in
steroidogenesis.

Data for our computational model were obtained
from an in vitro steroidogenesis assay with ovary
preparations from a small fish model, the fathead
minnow. The fathead minnow was selected as an
appropriate animal model for several reasons.2,15 This
species has a relatively international distribution and is
representative of a large and ecologically significant
family of fish (Cyprinidae). The fathead minnow is one
of the most extensively tested fish species in the world,
and published methods exist for its culture, early
life-stage, and full life-cycle tests.37,39–41 It has a
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relatively rapid life cycle (hatch to sexual maturity in
4–5 months), and timing of reproductive cycle can be
effectively controlled using temperature/photoperiod
manipulation,38 thus enabling a lab to maintain a
constant supply of test organisms at a developmental
stage suitable for testing. At maturity, females have
ovary tissue volumes that are more than sufficient for
the in vitro steroidogenesis assay.

A mechanistic steroidogenesis model has several
potential applications. First, this type of model helps
to obtain an improved understanding of the bio-
chemical responses, and could serve as a basis for the
identification of predictive biomarkers indicative of
adverse effects. Second, a model that predicts T and E2
responses to EAC can be coupled to multi-organ
systems models to include the T and E2 regulatory
feedback of the hypothalamus–pituitary–gonadal axis.
Third, a steroidogenesis model could be used as a basis
for predicting the therapeutic and potentially adverse
effects of pharmacological and environmental EAC
that interact with components of the steroid biosyn-
thesis pathway.

Other models of steroid synthesis have been
described in the literature. Selgrade et al. developed a
mathematical model to predict plasma levels of E2
during different stages of the menstrual cycle in women
from luteinizing hormone (LH) and follicle stimulating
hormone concentrations.34 They modeled E2 concen-
trations as a weighted sum of LH concentration,
growth follicle stage, and preovulatory stage. Murphy
et al. developed a model for vitellogenesis, a steroid-
controlled process, in female fish.23 To model
steroidogenesis in the fish, they lumped all reactions
occurring between the release of gonadotropin and the
production of T into one Hill equation. Since these
models do not include any reactions in the metabolic
pathway for steroid synthesis, their ability to predict
responses to EACs that inhibit specific steroidogenic
enzymes, is limited. Becker et al. developed a proba-
bilistic model of the metabolic pathway for testicular
steroidogenesis.5 They estimated transition probabili-
ties for the reactions in the pathway, and estimated the
maximum steroid secretion rates from ex vivo rat and
rabbit testes preparations.

In this study, we describe a model of the intrao-
varian metabolic and transport processes that mediate
steroid synthesis and secretion, and the kinetics for
enzyme inhibition by a competitive inhibitor of ste-
roidogenic enzymes, fadrozole (FAD), a model EAC.
Below, we first describe the in vitro steroidogenesis
experiments with control ovaries and those exposed to
FAD, and then the computational model and proce-
dures for parameter optimization and sensitivity
analysis.

METHODS

In Vitro Steroidogenesis Assay with Ovary Explants

We performed two experimental studies: a baseline
(control) study with data sampled at six time points
(2.0, 4.0, 8.0, 14.5, 23.0, and 31.5 h), and a FAD study
with control (medium only) and five FAD test con-
centrations (2.91, 9.7, 29.1, 97.0, and 291.0 lM) with
data sampled at 14.5 h. A description of the experi-
ments is provided below.

The fathead minnow in vitro steroidogenesis assay
was adapted from the methods of McMaster et al.19,43

Briefly, wells of 48 well microplates (Falcon 35-3078,
Beckton Dickinson, Franklin Lakes, NJ, USA) were
filled with either 500 lL of Medium 199 [Sigma
M2520, St. Louis, MO, USA] supplemented with
0.1 mM IBMX [3-isobutyl-1-methylxanthene, Sigma
I7018] and 1 lg mL)1 25-hydroxycholesterol [Sigma
H1015]), in the case of the baseline experiments, and
control wells in the FAD experiments, or 500 lL of
FAD-treated supplemented medium. Dilutions of an
aqueous FAD (generously provided by Novartis, Inc.,
Summit, NJ, USA) stock solution were prepared
directly in supplemented culture medium in order to
generate a series of five test concentrations of FAD
(2.91, 9.7, 29.1, 97, and 291 lM), plus a control for the
experiment. After preparing the test plates, ovarian
tissue from female fathead minnows (5–6 months old)
was added. Baseline experiments had four replicates
per time sample, and FAD experiments had six repli-
cates per treatment. Once ovary tissue had been added
to all wells, the test plate was removed from the ice and
incubated at 25 �C. For the time–course baseline
experiments (medium only), the incubation time was
2.0, 4.0, 8.0, 14.5, 23.0, and 31.5 h, with medium and
tissue being removed from one set of replicate wells at
each time point and immediately replaced with 500 lL
of 25 �C water. For the FAD exposure experiments,
the incubation time was 14.5 h. At the end of the
incubation period, medium from each well was trans-
ferred to a microcentrifuge tube and frozen at )80 �C.
Medium samples were stored frozen at )20 �C until
extracted and analyzed. After removal of the medium,
the tissue in each well was removed with forceps and
wet weight was measured. T and E2 concentrations in
the frozen medium samples were measured by radio-
immunoassay (RIA) using an adaptation of methods
previously described for fathead minnow plasma
samples.4,42

For statistical analysis of the steroid data, a Kol-
mogorov–Smirnov test was used to test data for
normality. Bartlett�s test was used to test homogeneity
of variance. A non-parametric Kruskall–Wallis test
was used to test for differences across all treatments,
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and Dunn�s test was used to determine which treat-
ments differed significantly from the control. All
statistical analyses were conducted using SAS 9.0 (SAS
Institute, Cary, NC, USA), except Dunn�s test which
was conducted using GraphPad Instat 3.01 (GraphPad
Software, San Diego, CA, USA). Differences were
considered significant at p £ 0.05.

To compensate for differences in ovary mass
between the samples, we normalized each measured T
and E2 concentration by the mass of the corresponding
ovary sample. To standardize T and E2 concentrations
for a typical fathead minnow ovary with a mean mass
of 157.3 mg (reference ovary mass), each normalized T
and E2 concentration was multiplied by the reference
ovary mass.

To estimate the mean ovary volume (160.45 lL) for
the reference ovary mass, we divided the ovary mass by
the mean ovary density (1.02 mg lL)1). For a known
ovary mass, the ovary density was determined from the
mass of water displaced above the 5-mL mark of a
5-mL graduated cylinder and dividing by the density of
water (data not shown).

To compensate for differences in basal T and E2
concentrations between the baseline study and controls
from the FAD study, we normalized the data. Each T
concentration in the FAD study was scaled by the ratio
of the mean T concentration at 14.5 h in the baseline
study to the mean T concentration from the controls in
the FAD study. The same normalization procedure
was performed for E2.

Computational Steroidogenesis Model Overview

The computational model is based on an in vitro
steroidogenesis experimental design with two com-
partments: culture medium and ovary tissue (Fig. 1).
The model consists of transport and metabolic path-
ways. The transport pathways include ovary uptake of
cholesterol (steroid precursor) and FAD, and secretion
of newly synthesized androstenedione (AD), estrone
(E1), T, and E2. The metabolic pathway includes
conversion of cholesterol into T and E2, and inhibition
of steroidogenic enzymes by FAD. Development of
various aspects of the model is described in detail
below.

Ovary Uptake of Cholesterol

Cholesterol is the precursor for all steroid hor-
mones. The delivery of cholesterol to the inner mito-
chondrial membrane (site of the first metabolic
reaction for steroid synthesis) consists of two main
transport steps. First, exogenous cholesterol is im-
ported into the cell mainly from low-density lipopro-
tein (LDL) via the LDL receptor-mediated lysosomal
pathway.7,11,14 Second, cholesterol is transferred to the
inner mitochondrial membrane by the intracellular
sterol carrier protein-2, steroidogenic acute regulatory
protein, and peripheral benzodiazepine receptor.11,14,18

We model the rate of cholesterol uptake from the
medium as a zero-order process (Fig. 2) since the large
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FIGURE 1. Conceptual steroidogenesis model for in vitro baseline and fadrozole-exposed ovaries. The model consists of two
compartments, medium and ovary tissue. Transport processes, which occur between the medium and ovary are depicted by black
arrows. Irreversible metabolic reactions, which occur in the ovary are depicted by arrows with each pattern representing a unique
enzyme. Six enzymes labeled in italic next to reactions they catalyze are: cytochrome P450scc (side-chain-cleavage) (CYP11A1),
cytochrome P450c17ahydroxylase (CYP17H), cytochrome P450c17,20-lyase (CYP17L), 3-b-hydroxy-dehydrogenase (3bHSD), 17-b-
hydroxy-dehydrogenase (17bHSD), and cytochrome P450 aromatase (CYP19). Steroids and their precursors are: cholesterol
(CHOL), pregnenolone (PREG), 17a-hydroxypregnenolone (HPREG), dehydroepiandrosterone (DHEA), progesterone (PROG),
17a-hydroxyprogesterone (HPROG), androstenedione (AD), estrone (E1), testosterone (T), and estradiol (E2). The endocrine active
compound, FAD, is shown as an inhibitor of CYP19.
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concentration of cholesterol added to the medium for
our in vitro steroidogenesis assay is probably sufficient
to saturate the cholesterol transport process for the
duration of the experiments.

Ovary Uptake and Enzyme Inhibition of FAD

A variety of EACs can inhibit steroidogenic
enzymes involved the metabolic pathway. In this study,
we examined the T and E2 responses to in vitro ovary
exposures to the EAC, FAD. FAD is a competitive
inhibitor of cytochrome P450 aromatase (CYP19),
which catalyzes two different reactions in the meta-
bolic pathway: conversion of AD to E1, and conver-
sion of T to E2 (Fig. 1).4,16,32,48 We assume FAD in the
medium diffuses into the ovary and reaches equilib-
rium with the FAD concentration in the ovary:

CFAD;ovy ¼ k15CFAD;med ð1Þ

where CFAD,ovy and CFAD,med are the ovary and
medium FAD concentrations, respectively; and k15 is
the partition coefficient (Fig. 2). For the two CYP19
reactions competitively inhibited by FAD, the kinetic
parameters k11 and k12 are respectively divided by
aE1=1+(CFAD,ovy/k16) and aE2=1 +(CFAD,ovy/
k17) with FAD inhibition constants, k16 and k17
(Fig. 2, Appendix B).

Metabolic Reactions

The metabolic pathway in the ovary that converts
cholesterol into T and E2 consists of 10 metabolites
and 12 enzymatic reactions catalyzed by six different
proteins (Fig. 1).27 In the ovary, the steroidogenic

metabolic pathway spans two cell types; theca cells and
granulosa cells. In theca cells, nine reactions in the
pathway convert cholesterol into AD and T. In gran-
ulosa cells, the remaining three enzymatic reactions in
the pathway convert AD and T into E1 and E2. All
reactions occur in the smooth endoplasmic reticulum,
except conversion of cholesterol into pregnenolone,
which occurs in the inner mitochondrial membrane.1,21

Interorganelle and intercellular transports are not in-
cluded in the model since these processes are assumed
to be not rate-limiting and experimental data for these
transport rates are unavailable. In addition, since all of
the reactions are predominantly irreversible,13 we set
the rates for the reverse reactions to zero. For each
reaction, we assume the substrate concentration is
much less than the Michaelis constant (substrate
concentration that results in a half-maximal reaction
rate). Hence, the rate of product formation increases
linearly with substrate concentration as described by a
first-order rate constant (Fig. 2).

Secretion of Steroids

The secretion of newly formed AD, T, E1, and E2
from the ovary to the medium is mediated by nonve-
sicular and vesicular transport.11,18,26 As described
above, the steroidogenic metabolic pathway spans two
cell types; theca cells and granulosa cells (Fig. 1). In
theca cells, cholesterol is converted to AD and T. In
granulosa cells, AD and T are converted to E1 and E2.
In vitro, AD can be released from theca cells with
subsequent uptake by the peripheral granulosa cells to
form E1, or secreted into the medium. In vivo, AD
released from theca cells can enter the capillaries for
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FIGURE 2. Graphical representation of the parameters for the mathematical model of ovarian steroidogenesis. Zero-order rate
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possible conversion to T or E1 in other tissues.8,9,16

Similarly, E1, a weak estrogen hormone, can be
released from granulosa cells with subsequent secretion
into the medium, in vitro, or plasma, in vivo, to be
stored in other tissues for possible conversion to the
more active estrogen, E2.8,16,31 We assume the rate of
secretion is a first-order process (Fig. 2).

Dynamic Mass Balances

The concentration dynamics of substrates are
described by dynamic mass balances. We can express
the dynamic mass balance for the steroids in the ovary
volume Vovy and medium volume Vmed, respectively,
as:

Vovy
dCx;ovy

dt
¼ Px;ovy �Ux;ovy þ Ix;ovy � Sx;ovy ð2Þ

Vmed
dCx;med

dt
¼ Sx;ovy ð3Þ

where Cx,ovy and Cx,med is the concentration of sub-
strate x in ovary and medium, respectively, Px,ovy is the
production rate of substrate x in ovary, Ux,ovy is the
utilization rate of substrate x in ovary, Ix,ovy is the
import rate of substrate x into ovary, and Sx,ovy is the
secretion rate of substrate x from ovary. The first two
terms in the right side of Eq. (2) represent the net
metabolic reaction rate of substrate x. The last two
terms represent the net uptake or release rate of sub-
strate x in the ovary.

For substrates that exist only in the ovary, the right
side of Eq. (2) contains just the net metabolic reaction
term. Appendix B provides all the dynamic mass
balance equations in the ovary and medium compart-
ments.

Steady-State Analysis

We assume the steroidogenic pathway is operating
at steady-state in baseline and FAD-exposed fish

ovaries during our in vitro experiments. There is good
evidence to support this assumption. First, most met-
abolic systems operate close to a steady state, in which
all inputs and outputs are in balance.46 Even in a dis-
ease state, a metabolic system is typically in steady-

state, even though some of the steady-state concen-
trations may be different than normal.46 Second, the
medium was supplemented with IBMX (3-isobutyl-1-
methylxanthene), a non-selective phosphodiesterase
inhibitor, to help maintain cyclic AMP levels in the
ovary to sustain transport of cholesterol from the
cytosol to the inner mitochondrial membrane, the site
that initiates the metabolic pathway, and to sustain
other cyclic AMP dependent processes in the steroi-
dogenesis pathway. Third, the initial concentration of
cholesterol in the medium is expected to be sufficient to
sustain steroid synthesis for the duration of the
experiments. Fourth, the initial concentrations of T
and E2 including their intermediate metabolites in the
excised fish ovaries are expected to be approximately
basal in vivo levels. We also followed a carefully de-
signed protocol for the ovary explant assays, as de-
scribed above, to maintain the integrity of the
metabolites, proteins, and other essential cellular con-
stituents, and the viability of the steroidogenic cells for
the duration of the experiment. In addition, a linear
regression line closely fits the time–course baseline data
for the accumulation of E2 and T in the medium
(Fig. 3). For the FAD study, we assume the steroido-
genesis pathway achieves steady-state after a short
transient time as the FAD diffuses into the ovary and
reaches equilibrium.

To examine steady-state behavior, we set the dif-
ferential equations to zero to yield algebraic equations
for each steroid and precursor in the ovary tissue.
Using the symbolic mathematical software Maple 10
(Maplesoft, Waterloo, Ontario, Canada), we deter-
mined the analytical solutions for medium concentra-
tions of T, CT,med, and E2, CE2,med, in terms of the
parameters as:

CT;med tð Þ

¼
k0k9k10 k16 þ k15CFAD;med

� �
k17 þ k15CFAD;med

� �
t

D1D2

ð4Þ

where D1= k9k16 + k9k15CFAD,med + k11k16 +
k18k16+ k18k15CFAD,med, and D2 = k10k17 +
k10k15CFAD,med + k12k17. The equations show that
CT,med and CE2,med depend on 11 parameters (black
arrows in Fig. 2), which include five transport

CE2;med tð Þ ¼
k0 k13k11k16k10k17 þ k13k11k16k10k15CFAD;med þ k13k11k16k12k17
� �

t

D1D2 k19 þ k13ð Þ

þ
k0 k12k17k9k16k19 þ k12k17k9k16k13 þ k12k17k9k15k19CFAD;med þ k12k17k9k13k15CFAD;med

� �
t

D1D2 k19 þ k13ð Þ

ð5Þ
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parameters (k0, k10, k15, k18, k19), four enzyme rate
constants (k9, k11, k12, k13), and two enzyme inhi-
bition constants (k16, k17). These equations for
CT,med and CE2,med, and the 11 parameters are used
in all subsequent analysis.

Parameter Estimation

The model was simultaneously fit to the mean
concentration from replicate experiments in the base-
line study and the FAD-exposure study. Parameters
k11 and k12 were set to reported literature values from
fish experiments (Table 1),49 and the remaining
parameters were estimated with data from the baseline
and FAD studies using the least squares method, and

let CT;medðti;Cd
FAD;med; k

*
Þ and CE2;medðti;Cd

FAD;med; k
*
Þ

be the model-predicted concentrations of T and E2 for
the dth FAD dose (including control) Cd

FAD;med at the

ith time ti with parameter set k
*
, respectively. Let

Cd;i
T;med and Cd;i

E2;med be the measured concentration of
T and E2 for the dth FAD dose (including
control) Cd

FAD;med at the ith time ti, respectively,

where k
*
¼ ðk0; k9; k10; k11; k12; k13; k15; k16; k17; k18; k19Þ;

d=1,…,6, and i=1,…,nd. Then, the least squares

estimate, k
*� ¼ ðk�0; k�9; k�10; k�11; k�12; k�13; k�15; k�16; k�17; k�18;

k�19Þ; is the parameter values k
*
; which minimizes the

cost function

Jðk
*
Þ ¼

X6

d¼1

Xnd

i¼1
Cd;i

T;med � CT;medðti;Cd
FAD;med; k

*

Þ
� �2

þ Cd;i
E2;med � CE2;medðti;Cd

FAD;med; k
*

Þ
� �2

ð6Þ

Parameters were estimated with an iterative opti-
mization algorithm using MATLAB 7.2 (Mathworks,
Natick, MA, USA) software. We chose the Nelder–
Mead simplex method for its relative insensitivity to
the initial parameter values as compared to other
popular methods, such as Newton’s method, and its
robustness to discontinuities.25 Convergence to the
solution was confirmed after the parameter search
terminated.

Sensitivity Analysis

To examine model uncertainty, we performed a
sensitivity analysis on the 11 parameters. To rank the
sensitivities of the parameters, we calculated relative
sensitivities,RSTki and RSE2ki , with respect to
parameter ki for the model-predicted concentrations
CT,med and CE2,med, respectively:

RSTki CT;med; ki
� �

¼ dCT;med

dki

ki
CT;med

� �
ð7Þ

RSE2ki CE2;med; ki
� �

¼ dCE2;med

dki

ki
CE2;med

� �
ð8Þ

Using Maple, partial derivatives were analytically
determined for CT,med and CE2,med with respect to
parameter ki, and expressions for relative sensitivity
functions were obtained. For control and each FAD
dose, we evaluated the relative sensitivity functions.
Magnitudes of relative sensitivities indicate the degree
to which changes in parameter values lead to changes
in model outputs, negative values indicate an inverse
relationship between a parameter change and the
resulting model output change, and positive values
indicate a direct relationship.
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FIGURE 3. Comparison of linear regression line with time–
course data from baseline experiments. Linear regression
lines for T and E2 were plotted as a function of time, and
compared with mean concentrations measured at six time
points between 2.0 and 31.5 h. Mean E2 concentrations were
much higher than T concentrations.

TABLE 1. Estimated parameters from in vitro ovary data and
those reported in literaturea.

Parameter Value Units

k0 15401.470 pg mL)1 h)1

k9 0.509 h)1

k10 1726.553 h)1

k11 5.8 (49) h)1

k12 3.2 (49) h)1

k13 356.217 h)1

k15 0.0015 Dimensionless

k16 8143.017 pg mL)1

k17 4671.198 pg mL)1

k18 149.301 h)1

k19 102.171 h)1

a References for values from literature are given in parenthesis..
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RESULTS

The equations for CT,med and CE2,med expressed in
terms of the model parameters showed that 9 out of 20
total parameters initially considered in the steady-state
model were eliminated; T and E2 are dependent on
only 11 parameters (Eqs. 4 and 5). As shown by the
graphical representation of the model (Fig. 2), T and
E2 are independent of processes upstream of AD ex-
cept for the cholesterol uptake rate (k0), and dependent
with processes downstream of AD except for the E2
secretion rate (k14).

The estimated parameters for the steroidogenesis
model are shown in Table 1. The time for convergence
to the solution for the iterative parameter estimation
was typically 5 s on a Pentium M class computer using
MATLAB.

The dynamic medium concentrations of T and E2
measured in the baseline study are shown in Fig. 3.
From multiple independent experiments, the minimum
detection limits of the RIA method used to quantify E2
and T are 21.5±8.9 pg mL)1 (mean±SD) with
N=12 and 17.2 ± 8.7 pg mL)1 with N=14,
respectively. The coefficient of variations of the com-
bined extraction and RIA technical variability for E2
and T are 9.9% with N=8 and 10.3% with N=13,
respectively. A linear regression line corresponds well
to the mean time–course data with R2 values of 0.94
and 0.98 for T and E2, respectively. Since the medium
accumulates T and E2, the close fit of a linear regres-
sion line to the T and E2 time–course data indicates
steroid synthesis and secretion in the in vitro fish ovary
is operating near steady-state.

We compared the model-predicted concentrations
of T and E2 to the time–course data from baseline
experiments. The model-predicted T and E2 concen-
trations correspond well to the mean time–course data
(Fig. 4), which closely match a linear regression line
(Fig. 3).

Model-predicted dose–response behavior was com-
pared with mean medium concentrations of T and E2
measured after a 14.5 h FAD exposure at five different
doses and a control (Fig. 5). For E2, the model-pre-
dicted concentrations closely correspond to the mean
measurements that decrease as FAD increases, except
at the lowest FAD concentration (6.497 ·
105 pg mL)1) where the mean E2 data is greater than
control. The mean E2 measurements for FAD con-
centrations at 2.165 · 107 pg mL)1 and 6.497 ·
107 pg mL)1 were statistically different from control
(p < 0.0001). For T, the model-predicted concentra-
tion compare well with the mean data that remained
approximately unchanged as FAD increases. The
measured T concentrations for FAD exposures were
not statistically different from controls.

The relative sensitivities of T and E2 are shown in
Fig. 6. At every dose, four parameters were highly
sensitive: k0 and k18 for both T and E2, k9 for T, and
k11 for E2. For E2, two parameters k13 and k19 were
moderately sensitive at every dose, and two parameters
k15 and k16 had dose-dependent sensitivity; their sen-
sitivity increased as FAD increased. The E1 pathway
appears to be the preferred pathway for E2 synthesis
since E2 was sensitive to the E1 pathway and its
inhibition (k11, k13, k16), and not sensitive to the T
pathway and its inhibition (k9, k12, k17). The sensitivity

Incubation time (hr)

C
o

n
ce

n
tr

at
io

n
 (

p
g

 m
l-1

)

x103

20

15

10

5

0
0          5         10        15        20         25        30 35

FIGURE 4. Comparison of model-predictions with time–
course data from baseline experiments. Model-predicted
concentrations of T and E2 in the medium were plotted as a
function of time, and compared with mean concentrations
measured at six points. The same data are shown in Fig. 3.

Fadrozole Concentration (pg ml-1) x107
0         1           2       3          4    5        6          7

C
o

n
ce

n
tr

at
io

n
 (

p
g

 m
l-1

)
10

8

6

4

2

0

x103

FIGURE 5. Comparison of model-predicted and dose–re-
sponse data after 14.5 h incubation of ovary explants with
FAD. Model-predicted T and E2 concentrations in the medium
were plotted as a function of FAD concentration, and com-
pared with mean concentrations measured for one control
and five FAD concentrations.

BREEN et al.976



of T and E2 can indicate the uncertainty of the
parameters. The parameters with high sensitivity tend
to have less uncertainty as compared to parameters
with low sensitivity.

DISCUSSION

Our goal was to develop a mechanistic mathemati-
cal model of the intraovarian transport and metabolic
processes to predict the synthesis and secretion of T
and E2, and their responses to FAD. The model-pre-
dicted medium concentrations of T and E2 closely
correspond to the time–course data from baseline
(control) experiments, and dose–response data from
experiments with FAD-exposed fathead minnow
ovarian preparations. The steady-state model reduced
the complexity of the model while maintaining the
model�s predictive ability.

The potential importance of this model arises from
its use of mechanistic information at the biochemical
level to predict dose–response behaviors. Usually,
laboratory experiments are performed at high doses
due to the minimum detection levels of the assays,
while humans are typically exposed to environmental
and pharmaceutical chemicals at significantly lower
doses. Extrapolations in dose–response curves from
high dose data may be inaccurate if not guided by
mechanistic information.12

To enable prediction of the dose–response for EAC-
exposed ovaries, our steroidogenesis model included
each enzymatic reaction in the metabolic pathway.
Under baseline physiologic conditions, the rate-limit-
ing step is the transport of cholesterol from outer to
inner mitochondrial membrane.11,22 For EAC-exposed
ovaries, one or more steps in the pathway could be-
come rate-limiting, depending on the EAC concentra-
tion and enzyme inhibition constant. Some compounds
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inhibit a single specific steroidogenic enzyme, while
other compounds inhibit multiple enzymes.3,17 In
addition, a sensitivity analysis indicated the E1 path-
way as the preferred pathway for E2 synthesis, as
compared to the T pathway for control and FAD-ex-
posed ovaries. Our model and analysis methods pro-
vide a framework for the investigation of these
behaviors and should, after further development, allow
for more accurate predictions of dose–response for
EAC effects on steroid production. In addition, the
model will facilitate study of the effects of mixtures of
EAC with different mechanisms of action.

As shown with the in vitro data, explant ovaries can
provide the data needed for comparison with model
predictions. Explant ovary experiments eliminate the
feedback of the hypothalamus–pituitary–gonadal axis,
and allow for steroid precursors, to be added tomedium
to isolate regions of the pathway. For example, addi-
tions of AD to ovary explants would isolate the segment
of the steroidogenesis pathway downstream of AD. In
addition, explant ovary experiments with various EAC
at measured tissue exposure concentrations could be
useful to refine the model structure and parameter esti-
mates by perturbing or selectively blocking certain
reactions within the steroidogenesis pathway.

This study demonstrated the feasibility of a mech-
anistic steroidogenesis model for predicting levels of T
and E2 produced and secreted by ovarian prepara-
tions. Adjustments of the model for vertebrates other
than fish, including mammals, would only require
different sets of parameter values, since the qualitative
structure of the model would not change.

FAD has a large effect on E2 concentrations, and
little or no effect on T concentrations in the medium
(Fig. 5). There is good evidence that this response is
due to enzyme inhibition of CYP19 and not experi-
mental error. FAD is a reversible, competitive inhibi-
tor of CYP19 (Fig. 1).33,35 It has been reported to
inhibit other enzymes but only at concentrations 4–5
orders of magnitude greater than those needed to in-
hibit CYP19, which are higher concentrations than
those used in this study.6,30 In our study, the sensitivity
analysis shows that E2 is sensitive to the uptake and
inhibition of FAD (k15, k16), while T is not sensitive to
either the uptake or inhibition of FAD (k15, k16, k17).
Moreover, the measured T concentrations for FAD
exposures were not statistically different than controls.
In addition, the minimum detection limits of the RIA
method used to quantify E2 and T are similar with
means of 21.5 and 17.2 pg mL)1, respectively. The
combined extraction and RIA technical variability for
E2 and T are also similar with coefficient of variations
of 9.9 and 10.3%, respectively.

Although our model predictions compare well with
the experimental data, the model-predicted medium

concentrations of E2 do not correspond at one data
point; the mean data at the lowest FAD concentration
(6.497 · 105 pg mL)1). Instead of a decrease in E2
production as predicted by the model, the ovary in-
creased E2 production relative to controls. A possible
source of this discrepancy is the assumption of constant
enzyme concentrations. FAD can induce the produc-
tion of the enzyme, CYP19, most likely to compensate
for the enzyme�s inhibition by FAD.44 At low FAD
doses, CYP19 increases may overcompensate for the
inhibition by FAD and increase E2 production relative
to controls. At higher FAD doses, CYP19 levels may
saturate and E2 production decreases relative to con-
trols. If this hypothesis is supported in future experi-
ments at low FAD doses with measurements of
transcripts and proteins levels, modifications to the
model should incorporate the dose–dependent induc-
tion of CYP19 production by FAD.
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APPENDIX A: KINETIC EQUATIONS FOR THE

METABOLIC REACTIONS

The enzymatic reactions are modeled as first-order
processes. Rate constants, k11 and k12, were calculated
from literature reported values of the Michaelis
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constant, Km, and catalysis rate, kcat, in goldfish ova-
ries49 and our measured microsomal protein content,
Povy and density, Dovy, in fathead minnow ovaries
(data not shown) as:

k11 ¼
Vmax

Km
ðA1Þ

where Vmax= kcatPovyDovy, Povy=3.7 mg microsomal
protein/g ovary, and Dovy=1.02 mg lL)1. For k12,
Eq. (A1) was used, but with different literature
reported values for Km and kcat.

APPENDIX B: DYNAMIC MASS BALANCE

EQUATIONS IN OVARY AND MEDIUM

1. CHOL in ovary:

Vovy
dCCHOL;ovyðtÞ

dt
¼ Vmedk0 � k1VovyCCHOL;ovyðtÞ

2. PREG in ovary:

dCPREG;ovyðtÞ
dt

¼ k1CCHOL;ovyðtÞ
�ðk2 þ k4ÞCPREG;ovyðtÞ

3. HPREG in ovary:

dCHPREG;ovyðtÞ
dt

¼ k2CPREG;ovyðtÞ
�ðk3 þ k5ÞCHPREG;ovyðtÞ

4. DHEA in ovary:

dCDHEA;ovyðtÞ
dt

¼ k3CHPREG;ovyðtÞ� k6CDHEA;ovyðtÞ

5. PROG in ovary:

dCPROG;ovyðtÞ
dt

¼ k4CPREG;ovyðtÞ� k7CPROG;ovyðtÞ

6. HPROG in ovary:

dCHPROG;ovyðtÞ
dt

¼ k5CHPREG;ovyðtÞ þ k7CPROG;ovyðtÞ
�k8CHPROG;ovyðtÞ

7. AD in ovary:

dCAD;ovyðtÞ
dt

¼ k6CDHEA;ovyðtÞ þ k8CHPROG;ovyðtÞ

�
�
k9 þ k18 þ

k11
aE1

�
CAD;ovyðtÞ

8. T in ovary:

dCT;ovyðtÞ
dt

¼ k9CAD;ovyðtÞ � k10 þ
k12
aE2

� �
CT;ovyðtÞ

9. E1 in ovary:

dCE1;ovyðtÞ
dt

¼ k11
aE1

CAD;ovyðtÞ� ðk13 þ k19ÞCE1;ovyðtÞ

10. E2 in ovary:

dCE2;ovyðtÞ
dt

¼ k13CE1;ovyðtÞ þ
k12
aE2

CT;ovyðtÞ

� k14CE2;ovyðtÞ

11. AD in medium:

Vmed
dCAD;medðtÞ

dt
¼ k18VovyCAD;ovyðtÞ;

CAD;medð0Þ ¼ 0

12. E1 in medium:

Vmed
dCE1;medðtÞ

dt
¼ k19VovyCE1;ovyðtÞ;

CE1;medð0Þ ¼ 0

13. T in medium:

Vmed
dCT;medðtÞ

dt
¼ k10VovyCT;ovyðtÞ; CT;medð0Þ ¼ 0

14. E2 in medium:

Vmed
dCE2;medðtÞ

dt
¼ k14VovyCE2;ovyðtÞ;

CE2;medð0Þ ¼ 0
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