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Abstract: The dehydrogenation of formic acid permits the production 

of hydrogen virtually free of carbon monoxide, which is a key requisite 

for its use in fuel cells. Moreover, HCOOH is a suitable hydrogen 

carrier, better in several crucial characteristics than other liquid 

organic hydrogen carriers, namely, low toxicity, high hydrogen content 

and recyclability (via CO2 hydrogenation). The most successfully 

employed catalysts are those based on Ir, Ru, Rh and Fe metal 

centers. The catalytic cycles through which homogeneous metal 

complexes operate show a wide mechanistic diversity. The nature of 

catalytic cycle depends mainly on the nuclearity of the active species, 

the type of CO2 formation step (β-hydride elimination, hydride 

abstraction or outer-sphere mechanism), and whether the rate limiting 

step relates to CO2 or H2 formation. Different outer-sphere interactions 

have been proposed in the literature in order to explain the success 

of homogeneous catalyst, which seems to be common ground for 

most of the catalysts so far reported.  

1. Introduction 

The continuous rise in energy consumption worldwide, together 

with the negative impact of power generation from fossil fuels on 

global climate, has led to intensive research on alternative 

sustainable technologies.[1] In this regard, hydrogen has been 

proposed as an alternative energy carrier/fuel, which may be 

produced from natural gas, biomass or water.[2] The use of 

biomass or water as energy vectors would have significant 

implications in the sustainability and the carbon footprint of these 

technologies. In particular, water splitting to give H2 and O2 using 

sunlight (artificial photosynthesis) would provide a clean, 

renewable and carbon neutral source for hydrogen production.[3] 

In addition, the peaks of production inherent to the intermittent 

nature of renewable energy sources could be exploited more 

efficiently if the excess energy thus produced was stored as 

hydrogen via water electrolysis. Nevertheless, the use of 

hydrogen as an energy source raises several concerns, mainly 

related to safety and transportation issues. 

The use of fuel cells is a promising manner to generate electricity 

from hydrogen in stationary power units or to substitute 

combustion engines in vehicles.[4] However, for fuel cell purposes, 

hydrogen virtually free of carbon monoxide needs to be employed 

(less than 10 ppm in the mixture of gases[5]), which is relatively 

complicated to obtain from methanol reforming and the water gas 

shift reaction, currently the main sources of hydrogen.[6] 

Homogeneously catalyzed formic acid (FA) dehydrogenation has 

been proposed as a means to obtain a H2/CO2 1:1 mixture that 

can be used directly in fuel cells.[7] These studies have sparked 

the interest of the scientific community in the use FA as liquid 

organic hydrogen carrier (LOHC). FA presents several 

advantages compared to the use of compressed hydrogen as an 

energy carrier, mainly regarding security issues and energy 

density (lower gravimetric/volumetric densities than FA). Certain 

characteristics of FA, such as the low toxicity, high hydrogen 

content, straightforward transportation and a feasible 

hydrogenation/dehydrogenation cycle makes it a more suitable 

H2-carrier than other LOHC.[6,8] 

The hydrogenation of CO2 to HCOOH (FA) opens the door to use 

this system as a zero CO2 emission cycle for hydrogen storage. 

The hydrogenation of CO2 has been widely explored, resulting in 

remarkable advances in this reaction over the last two decades.[9] 

Moreover, FA is readily available from other sources such as 

biomass oxidation or from the hydrolysis of methyl formate, which 

is an abundant by-product of methanol carbonylation.[10]Several 

review articles that deal with the dehydrogenation of FA have 

been published;[11,9f] however, we believe that a comprehensive 

overview of the mechanistic pathways hitherto reported would 

offer new insights into this process. In this article we aim to review 

the most relevant studies on the reaction mechanisms of 

homogeneously catalyzed dehydrogenation of FA. In parallel to 

the description of the catalysts, the evaluation of their 

performances and the reaction conditions required for each 

reaction to take place, we aim to provide a mechanistic analysis 

that will try to connect the characteristics of the catalytic systems 

with their reaction pathways. 

2. Early catalytic systems 

The use of FA as a LOHC was not proposed until 2008 by Beller’s 
and Laurenczy’s groups independently.[7] However, the 

dehydrogenation of FA by means of homogeneous catalysts had 

been described previously. Coffey reported on the selective 

dehydrogenation of HCOOH to give H2 and CO2 using several 

transition metal complexes as catalysts in acetic acid under 

reflux.[12] Among the catalysts studied in this work, the best results 

were obtained with [PtCl2(PBu3)2], [RuHBrCO(PEt2Ph)3], 

[RuHCl(Et2PCH2CH2PEt2)2], [IrCl3(PEt2Ph)3], [IrCl3(PBu3)3], 

[IrCl(H)2(PPh3)3 and [Ir(H)3(PPh3)3], the latter being the most 

active. The use of [IrCl(CO)(PPh3)2] under catalysis conditions led 



to the isolation of a plausible reaction intermediate, namely 

[IrCl(CO)(H)2(PPh3)2].  

In 1982, Trogler and co-workers reported on the dehydrogenation 

of FA with catalysts [Pt2(H)3(PEt3)4]BPh4 or [trans-

PtH(S)(PEt3)2]BPh4 (S = FA, acetone or ethanol) in the presence 

of excess sodium formate.[13] Based on experimental evidences, 

the authors proposed a mechanism that entails the formation in 

small quantities of a formate and a dihydride complexes in 

equilibrium with the starting materials as first step of the catalytic 

cycle. The dihydride complex reacts with HCOOH to afford the 

formate complex, and the decarboxylation of the latter 

regenerates the dihydride complex (Scheme 1).  

 

Scheme 1. FA dehydrogenation mechanism proposed by Trogler et al..[13] 

In 1998 Puddephatt et al. described a bimetallic Ru complex able 

to dehydrogenate FA in the presence of a base at room 

temperature in acetone.[14] The active species is an unsaturated 

dihydride where the two Ru centers are linked by two 

bis(diphenylphosphino)methane ligands, one bridging hydride 

and one bridging carbonyl. Each ruthenium atom presents a 

terminal carbonyl ligand, one of them cis to a vacant position and 

the other cis to a terminal hydride. The reaction of this complex 

with FA yields a hydrogen molecule and a formato complex that 

undergoes CO2 elimination. The pathway through which the 

decarboxylation reaction takes place is unclear, since this Ru 

center is coordinatively saturated. Two possible intermediates 

were proposed by the authors (Scheme 2),[14b] the most likely 

being the CO2 bridging species, because, first, similar complexes 

have been isolated and, second, the unsupported terminal 

coordination mode for CO2 seems less likely.[15] For the formation 

of this intermediate, the authors postulated a transient 

dissociation of the formate ligand followed by hydride 

abstraction—due to the lack of the vacant coordination site 

necessary for the β-hydride elimination reaction to occur. 

However, it should not be discarded that the migration of the 

bridging hydride ligand to a terminal position would generate a 

vacant site cis to the formate ligand. This type of reactivity is 

common in dinuclear complexes due to the lability of the hydrido 

ligands in these systems.[16] Moreover, higher reaction rates of β-

hydride elimination have been reported for binuclear complexes 

when compared to their mononuclear analogues.[17] 

 

Scheme 2. FA dehydrogenation mechanism proposed by Puddephatt et al..[14b] 

More recently, a study by Lao et al. in 2003 describes the catalytic 

activity in CO2 hydrogenation and FA dehydrogenation using 

heterodinuclear complexes featuring a Ru–Mo or a Ru–W core 

sustained by a bridging bis(diphenylphosphino)methane 

ligand.[18] These complexes show catalytic activity in the 

hydrogenation of carbon dioxide to FA and the reverse reaction, 

presenting significantly higher reaction rates for the latter. The 

authors proposed a catalytic cycle (Scheme 3) that entails, as first 

step, the abstraction of the proton from a molecule of FA by the 

dinuclear core. This results in the formation of a bridging hydride 

ligand, the loss of the intermetallic Ru–M bond and the generation 

of a formate counterion. Subsequently, the formate ion breaks the 

Ru–H bond to give an intermediate where one of the oxygen 

atoms of the formate interacts with the Ru center and the other 

with the hydride ligand at M. At this stage, reductive elimination of 

CO2 takes place, which results in the formation of two hydrides, a 

Ru-H and an M-H (although the mechanism, whether it is β-

hydrogen elimination or hydride abstraction, is not yet clear). The 

acidic character of the M-hydride and the more hydridic nature of 

the Ru–H bond results in a certain degree of interaction between 

them, somewhat reminiscent of a dihydrogen bridging ligand. 

Finally, the reductive elimination of H2 regenerates the active 

species, thus restarting the catalytic cycle. 

 

Scheme 3. Interconversion between H2/CO2 and HCOOH.[18] 



3. Iridium catalysts 

Iridium complexes have been so far the most widely studied FA 

dehydrogenation catalysts from a mechanistic viewpoint. They 

present a broad diversity of reactions pathways depending on the 

nature of the ligand system and the reaction media. Outer-sphere 

interactions have been proved crucial to explain the high activity 

of many of these catalysts. A significant example is the Ir-

bisMETAMORPhos catalyst reported by Reek and co-workers.[19] 

This catalyst has shown excellent activities in HCOOH/Et3N 5:2 

mixtures, and also in solution with and without the use of an 

external base. In the case of the latter, when polar solvents where 

employed, lower activities were reported, probably because the 

formate anion (HCOO–) coordinates better to the vacant 

coordination site trans to the hydride. In the absence of a base, 

HCOOH needs to compete with the solvent for the vacant site. 

The catalyst performs well even in neat FA, although notably 

lower rates were reported. The proposed mechanism (Scheme 4), 

based on theoretical calculations and experimental evidences, 

entails initially the coordination of HCOOH at the vacant axial site 

by the oxygen atom of the carbonyl group—supported by a 

hydrogen bond interaction between the OH’s proton and the 

oxygen at the sulfonamide. The rearrangement of the 

intermediate thus obtained renders a new species that features 

the CH and OH protons interacting, respectively, with the Ir center 

and the N atom of the bisMETAMORPhos ligand. In the next step, 

a CO2 molecule is formed by concomitant hydride transfer and N-

protonation of the ligand. The resulting dihydride complex 

releases H2 assisted by a new molecule of FA, which protonates 

one of the hydride ligands while it deprotonates the 

bisMETAMORPhos NH moiety (Figure 1), thus regenerating the 

active species and the HCOOH molecule.  

 

Scheme 4. Catalytic cycle proposed for Ir-bisMETAMORPhos.[19] 

 

Figure 1. Transition state proposed for the FA assisted release of H2. [19] 

This mechanism, therefore, is triggered by a bifunctional catalyst 

that facilitates an outer-sphere pathway. Remarkably, a hydride 

transfer is proposed instead of the more common β-hydride 

elimination, which turns out to be the rate determining step of the 

reaction according to the kinetic isotope effect (KIE) values 

calculated for the reaction (performed with HCOOD and DCOOH). 

Other Ir systems with the capacity to undergo outer sphere 

interactions also present the elimination of CO2 (via β-hydride 

elimination or hydride transfer) as rate limiting step. For example, 

KIE studies revealed that for complexes 1-3 (Figure 2) the rate 

limiting step is the elimination of CO2, while for complexes 4-5 

(Figure 2), H2 elimination would be the most energetically 

demanding step.[20] 

 

Figure 2. Depiction of complexes 1-5. 

This observation was explained in terms of the ability of 

complexes 1-3 to assist the elimination of H2 by means of outer 

sphere interactions. On the other hand, the incapability of 

complexes 4-5 to aid H2 elimination, attributable to the fact that 

they do not present ortho-OH groups, increases the energy barrier 

of this step. Complexes 1-3 present ortho-OH groups that are able 

to lock a hydronium ion in the proximity of the hydride ligand, thus 

favoring H2 formation via hydride protonation under acidic 

conditions (Figure 3).  

 



Figure 3. Transition state proposed for the H3O+-assisted elimination of H2 using 

1 as catalyst.[20] 

The term proton-responsive was employed to describe 

complexes 1-3, since they improve their activity with increasing 

pH values, reaching a maximum at pH 4.0 (approximately the pKa 

of complex 1). However, under more acidic conditions the 

hydroxyl groups stay neutral, which results in similar catalytic 

activity for proton-responsive and non-proton-responsive 

complexes.[21] 

The generic catalytic cycle that complexes 1-5 follow for the 

dehydrogenation of FA is depicted in Scheme 5 (using 1 as 

catalyst), and it involves: (i) formation of the formate complex; (ii) 

CO2 elimination; (iii) H2 elimination and regeneration of the aquo 

complex.[22]  

 

Scheme 5. Catalytic cycle proposed for complex 1.22 

The related proton-switchable complex 6 (Scheme 6) is one of the 

few catalyst able to promote the hydrogenation of CO2 and the 

dehydrogenation of FA, thus allowing for reversible H2 storage in 

CO2.[23] The activity of the catalyst (i.e. hydrogenation vs 

dehydrogenation) can be switched by pH-tuning. The protonated 

catalyst (6) triggers the dehydrogenation reaction, while the 

deprotonated adduct (6’) catalyzes the hydrogenation of CO2. 

Remarkably, in the case of the dehydrogenation reaction, the 

presence of the hydroxyl groups seems to have no significant 

effect on the activity of the catalyst since similar rates were 

obtained for the unsubstituted 2,3’-bipyridine ligand. Conversely, 

the presence of the hydroxyl groups in the ligand scaffold has 

been proposed to be crucial to catalyst activation, which has been 

attributed to the electronic donating effect of the OH moieties.[24] 

 

Scheme 6. Depiction of complexes 6 and 6’.[23] 

Complexes derived from the IrCp* scaffold featuring 

cyclometallated aryl-2-imidazoline ligands have also been 

described as excellent catalysts for FA dehydrogenation in neat 

HCOOH-Et3N 5:2 mixtures.[25] Outer-sphere interactions were 

invoked in order to explain the prominent performance of this 

class of catalysts, based on the fact that the absence of the 

remote NH moiety thwarts the catalytic reaction. Initial studies by 

Xiao et al. on the mechanism of the reaction suggested that the 

active species (7) deprotonates HCOOH by means of the remote 

N atom, with concomitant coordination of the formate ion to the 

vacant site at the Ir center. Subsequently, CO2 elimination would 

take place to give a hydride complex with a formate hydrogen 

bonded to the remote NH function. The formate would transfer the 

proton from the remote to the coordinated N atom (Figure 4). 

Finally, a dihydrogen complex is formed by protonation of the 

hydride ligand according to a Noyori-type mechanism,[26] and the 

release of H2 regenerates the 16-electron active species. 

 

Scheme 7. Mechanism proposed by Xiao and co-workers.[25] 

 

Figure 4. Transition state proposed for the proton transfer assisted by the 

formate anion.26 

However, theoretical calculations performed by Zhang et al. 

discard the pathway proposed by Xiao’s group, and suggest an 

alternative mechanism by which two molecules of FA are 

required—one acts as hydrogen source and the other as H-shuttle 

(Figure 5).[27] This mechanism is based on the capacity of FA 

molecules to form stable dimers in solution by means of hydrogen 

bonding interactions, since a single FA molecule is incapable of 

linking the two sites of the bifunctional catalysts (namely, Ir and 

NH).[28] The remote metal-ligand cooperation entails the 

protonation of the hydride ligand in 8 via H-transfer from the 



distant N atom by means of a HCOOH···HCOOH dimer to form 

H2, the rate-limiting step. Elimination of H2 leads to the formation 

of a HCOOH···HCOOH dimer bridging the remote N atom and the 

Ir center. Subsequent reorganization affords a formate ligand 

stabilized by a HCOOH molecule linked to the remote NH unit. 

Finally, CO2 is liberated via β-hydride elimination reaction 

(Scheme 8).  

 

Figure 5. Transition state for the proton transfer proposed by Zhang’s group.[27] 

 

Scheme 8. Mechanism proposed by Zhang and co-workers.[27] 

The beneficial role of ligands featuring N–H bonds was further 

demonstrated by Ikariya and Kayaki in a study of the catalytic 

activity of complex 9.[29] This catalyst is active for the 

dehydrogenation of FA in the absence of base at room 

temperature, even in pure water, although its low solubility leads 

to a decrease of activity compared to 1:1 mixtures 1,2-

dimethoxyethane (DME) / water. 

Remarkably, the addition of water to DME solutions results in an 

enhancement of the catalytic activity, which was explained in 

terms of a proton-relay mechanism triggered by the NH moiety 

(Scheme 9). The proton of the NH group interacts with the oxygen 

atom of a water molecule by hydrogen bonding, placing one of the 

acidic hydrogen atoms of H2O in close proximity of the hydrido 

ligand in 10. This allows a hydrogen-hydrogen interaction that 

results in the protonation of the hydride and subsequent formation 

of a hydrogen molecule. Thus, the bifunctional nature of the 

catalyst permits the reduction of the activation energy of the 

process by lowering the energy barrier of the rate limiting step, 

the protonation of the hydride ligand to produce H2 according to 

KIE studies. Further proof that supports the role of the NH group 

is that complex 11 (Figure 6), the methylated version of the 

reaction intermediate 10, shows noticeably lower activities than 

10 (or 9). 

 

Scheme 9. Activation of complex 9 and H2O assisted H2 formation.[29] 

 

Figure 6. Depiction of complex 11 and 12. 

Cyclometallation of the phenyl groups at the backbone of the 

diamine ligand leads to catalyst deactivation. The related complex 

12 (Figure 6), without phenyl substituents, prevents the 

cyclometallation reaction and confers a higher thermic stability to 

the catalyst, thus improving its performance.[30]  

Complex 13 is, to the best of our knowledge, the best 

homogeneous catalyst hitherto reported in neat FA. The use of 

pure FA permits the use of a reaction mixture with higher weight 

per cent of H2 than those that require a co-solvent. A detailed 

reaction mechanism based on a dinuclear Ir catalyst has been 

proposed. This postulation was supported on the identification of 

various reaction intermediates (14-16) and on kinetic studies 

(Schemes 10 and 11).[31] 

The activation of the precatalyst, 13, gives rise to the formation of 

the dinuclear complex 14 in a buffered solution FA, which further 

reacts to afford 15, the active species (Scheme 10). Intermediate 

15 is in equilibrium with 16 in the presence of formate. The 

protonation of one of the terminal formate ligands of 16 by 

HCOOH leads to the transition state depicted in Figure 7, resulting 

in the generation of a H2 molecule. The authors suggest that this 

step is rate limiting based on the remarkably favorable entropy 

and the marked KIE. The former also indicates the elimination of 

a molecule of gas in this step. The resulting intermediate reacts 

with a new molecule of FA that triggers the generation of a second 

H2 molecule, with concomitant formation of a dinuclear species 

with 4 formate ligands (2 terminal and 2 bridges). Finally, 

elimination of two CO2 molecules regenerates the active species 

15 (Scheme 11). 



 

Scheme 10. Activation of complex 13 and formation of 15.[31] 

 

Scheme 11. Catalytic cycle proposed for the dehydrogenation of FA by complex 

15 (counterion = trifluoromethanesulfonate).[31] 

 

Figure 7. Proposed transition state for the H2 formation/elimination step from 

intermediate 16.31 

Another dinuclear complex that shows good activities in FA 

dehydrogenation is 17, which features a heterodinuclear Rh-Ir 

framework. However, the proposed catalytic cycle suggests that 

only the Ir center participates in the mechanism (Scheme 12).[32] 

The maximum rate for this reaction was observed at pH 3.8 (in 

water at ambient temperature). The reaction mechanism entails 

the substitution of a coordinated water molecule by the formate 

ion in equilibrium with FA. Subsequently, a β-hydride elimination 

step was invoked by the authors to explain the generation of a 

CO2 molecule. Finally, the rate determining step, according to KIE 

studies, is the protonation of the hydrido ligand to produce a 

molecule of H2. 

 

Scheme 12. Catalytic cycle proposed for complex 17.[32] 

A recent contribution by Gelman and Schapiro entails the use of 

Ir-PCP bifunctional catalysts for the dehydrogenation of FA in 

DME solutions and neat. The most active of the complexes 

reported in this work features a PCP ligand with two dangling NH2 

moieties (18), one of them being situated in the proximity of the 

metal center, which plays a key role in the reaction mechanism.[33] 

Excellent TON and TOF values were reported even in the 

absence of solvent at 70 ºC (383000 and 11760h–1, respectively). 

The proposed catalytic cycle entails, in first stage, the protonation 

on the NH2 moieties of 18 by FA. One of the ammonium salt thus 

formed, namely the one in close proximity of the metal center, 

protonates the hydride ligand at 18’ to produce a hydrogen 

molecule. The vacant position generated by H2 loss is stabilized 

by interaction with the (now deprotonated) NH2 group in 18’’. 
Subsequently, addition of a new molecule of FA protonates again 

the NH2, concomitantly generating a formate (18’’’). At this point, 

experimental and theoretical studies suggest that the β-hydride 

elimination to regenerate 18’ is assisted by the dangling 

ammonium functionality, which aids the cleavage of the Ir–O bond 

via hydrogen bond interactions. Finally, this allows the H-

abstraction reaction to happen, with the ensuing elimination of a 

CO2 molecule and the regeneration of 3’ (Scheme 13).  



 

Scheme 13. Catalytic cycle proposed for complex 18.[33] 

Mechanisms for the reversible interconversion between HCOOH 

and H2 / CO2 have also been described, but we consider that they 

are beyond the scope of this review.[34] 

4. Ruthenium catalysts 

Ruthenium-based organometallic complexes have shown 

excellent activities in FA dehydrogenation reactions;[35][7a-b] 

however, the mechanistic calculation on these type of catalyst are 

rather scarce. 

The first mechanism promoted via a Ru complex was proposed 

by Wills et al. in 2009; which, remarkably, seems to be a common 

pathway for various ruthenium catalysts for FA dehydrogenation 

using the azeotropic mixture 5:2 (molar) HCOOH/Et3N; namely, 

[RuCl2(DMSO)4], [Ru(NH3)6]Cl2, RuCl3.[36] The dinuclear 

intermediates are reminiscent of those reported previously by 

Puddephatt et al. (see section 2).[14] 

The pre-catalysts [RuCl2(DMSO)4], [Ru(NH3)6]Cl2 and RuCl3 were 

proposed to convert into 19 under the reaction conditions based 

on reactivity and NMR studies. Subsequently, addition of formate 

to 18 brakes one of the formate bridges to give a new intermediate 

that features two terminal formate ligands. Reaction with 

thriethylammonium cation generates a molecule of hydrogen and 

a molecule of carbon dioxide, probably via a Ru–H intermediate, 

with concomitant formation of the dibridged species 19 (Scheme 

14). It is noteworthy that addition of PPh3 was described to lower 

the catalytic activity of the system, probably due to the obstruction 

of key coordination sites. 

 

Scheme 14. FA dehydrogenation mechanism proposed by Wills et al..[36] 

In contrast with the studies by Wills et al., Laurenczy and co-

workers reported a dramatically different reaction mechanism 

when a similar ruthenium pre-catalyst, namely trans-

[Ru(H2O)4(PMe3)2]2+ (20, Scheme 15),[37] was used for the 

dehydrogenation of aqueous solutions of HCOOH/HCOONa (9:1).  

In this case, the proposed mechanism entails exclusively 

mononuclear species. Initially, one of the H2O ligands of 20 is 

substituted by a formate anion to give 21, which undergoes β-

hydride elimination of the formato ligand, thus affording 22—the 

main species observed in solution under catalytic conditions. The 

dissociation of CO2 to yield 23 (not observed in solution under 

catalytic conditions) was proposed as the rate limiting step. The 

slower catalytic cycle (Scheme 15 A) requires the reaction of 23 

with HCOOH, which leads to protonation of one of the hydrido 

ligands and the formation of a dihydrogen intermediate. The 

catalytic cycle is closed by ejection of a H2 molecule and 

coordination of H2O in the vacant site thus generated. The 

reaction of 23 with formate would initiate the fast catalytic cycle 

(Scheme 15 B). β-hydride elimination from this new formato 

complex renders the CO2 adduct, which plausibly dissociates the 

CO2 ligand more readily than 22 due to the fact that the former 

presents a hydride in trans position; in contrast to 22, which 

features a trans H2O ligand. Analogously to cycle A (Scheme 15), 

protonation of one of the hydrides by HCOOH and release of H2 

closes the catalytic cycle.  

It is worth mentioning that the authors supported the postulated 

mechanism on meticulous NMR studies, and all the numbered 

complexes in the cycle were identified by means of multinuclear 

NMR experiments. 



 

Scheme 15. Proposed catalytic cycle for the dehydrogenation of FA by complex 

19 in an aqueous solution of HCOOH/HCOONa.[37] 

Peruzzini, Gonsalvi and Beller also reported catalytic cycles 

based on monometallic species for pre-catalysts 24 and 25 in FA-

amine mixtures (Figure 8).[38] Remarkably, detailed mechanistic 

studies suggest that 24 operates by inner-sphere pathways while 

the use of 25 triggers an outer-sphere mechanism, plausibly 

owing to the presence of three easily accessible coordination sites 

in the latter. 

 

Figure 8. Depiction of pre-catalysts 23 and 24. 

Reaction of pre-catalyst 24 with 1 equivalent of formate leads to 

the hydrochloride intermediate 26 via substitution of the cis 

chloride ligand, followed by CO2 elimination according to a 

dissociative mechanism. Intermediate 26 is the origin of the two 

interconnected catalytic cycles that the authors postulated for 24 

(Scheme 16). Addition of FA to 26 affords the dihydrogen complex 

27 via protonation of the hydrido ligand. H2 dissociation and 

concomitant chloride coordination affords 28, which subsequently 

undergoes chloride substitution by a formate anion to yield 27. β-

Hydride elimination regenerates 26 and releases a CO2 molecule 

(Scheme 16 A). In the case of catalytic cycle B (Scheme 16), the 

first step entails the substitution of the chloride ligand in 26 by a 

formate ion to give 29. Protonation of the hydrido ligand in 29 

yields 30, which releases the thus formed H2 ligand. The vacant 

site generated by H2 dissociation permits the β-hydride 

elimination reaction that produces the CO2 molecule and, upon 

coordination of the chloride counterion, regenerates 26. Although 

cycle A presents a lower activation energy, both cycles may 

operate under the reaction conditions. 

 

Scheme 16. Interconnected catalytic cycles proposed for pre-catalysts 24; P = 

PPh2.[38] 

NMR studies of pre-catalyst 25 suggest that no hydride species 

are formed throughout the catalytic cycle (Scheme 17). Based on 

reactivity studies it was postulated that the reaction of 25 with 

formate affords 31, the active species, which features a κ-O and 

a κ2-O,O’ ligands coordinated trans to the tridentate phosphine. 

Addition of FA to 31 renders an intermediate that contains two κ-

O formate ligands and a κ-O coordinated FA molecule. Finally, 

the regeneration of the active species and the formation of CO2 

and H2 are explained by means of a transition state that entails 

the cleavage of the formate’s C–H bond. This occurs via 

protonation of the CH’s hydrogen by the coordinated FA molecule 

(Figure 9).  

 

Scheme 17. Catalytic cycle proposed for the dehydrogenation of FA in a mixture 

HCOOH/Et3N (5:2) using pre-catalyst 25.[38] 



 

Scheme 18. Proposed catalytic cycles with pre-catalysts 32.[39]  

 

Figure 9. Depiction of the transition state that entails the cleavage of the 

formate’s C–H bond.[38] 

Huang et al. reported two plausible pathways depending on the 

reaction conditions, both based on mononuclear Ru species.[39] In 

aqueous FA, complex 32 (Figure 10) catalyzes the 

dehydrogenation of HCOOH or an aqueous mixture 

HCOOH/HCOO– at 90 ºC. 

 

Figure 10. Depiction of pre-catalysts 32. 

The mechanism described in Scheme 18 (left-hand side cycle) 

was proposed to occur in the absence of formate, while that on 

the right would take place in a more basic media (mixtures 

HCOOH/HCOO–). The pre-activation of 32 requires the 

substitution of the chloride ligand by a water molecule (left-hand 

side cycle) or the elimination of HCl (righ-hand side cycle). The 

latter would take place via ligand deprotonation by a formate ion. 

Subsequently, formation of a formate complex occurs followed by 

CO2 elimination via hydride abstraction (Figure 11). Finally, H2 

elimination takes place by means of hydride protonation with H3O+ 

(by means of an outer-sphere step), which concomitantly 

regenerates the active species.  

 

Figure 11. Depiction of the transition states proposed for the hydride abstraction 

step.[39] 

Huang et al. also reported a metal-ligand cooperative mechanism 

using complex 33, which features a pincer ligand containing non-

innocent side arms.[40] The proposed mechanism entails the 

aromatization-dearomatization of the pincer ligand during the 

course of the catalytic cycle (Scheme 19).  

 

Scheme 19. Proposed catalytic cycles with pre-catalysts 33.[40] 

The first step requires the protonation of the imine nitrogen at the 

side arm (aromatization), followed by coordination of the thus 

formed formate ion. Subsequently, the decarboxylation of the 

formate ligand takes place, this being the rate limiting step 



according to KIE studies. The trans-dihydrido complex eliminates 

H2 via ligand dearomatization.  

It is worth mentioning that the oxidation of the Ru center remains 

+2 throughout the catalytic cycle, which has been proposed to 

account for the absence of decarbonylation reaction. Moreover, 

the presence of the side arms was invoked in order to explain the 

stability of this catalyst. According to the authors, the steric bulk 

of the t-Bu groups and the presence of the NH moieties would 

decrease the possibility of an H+ attack at the metal center. 

5. Rhodium Catalysts 

Rhodium complexes have shown worse performances than their 

iridium and ruthenium counterparts in the catalytic 

dehydrogenation of FA, plausibly due to their low stability.[9f] 

However, some interesting mechanistic studies on Rh-complexes 

have been published. 

The water soluble complexes 34a-f proved active for the selective 

dehydrogenation of FA at room temperature in aqueous solution 

(Figure 12).[41]  

 

Figure 12. Depiction of complexes 34a-f. 

The activity of these catalysts depends to a great extent on the 

pH of the reaction mixture, the highest TOF being obtained at pH 

3.8. Moreover, above the pKa value of 34 the catalytic activity 

drops drastically due to the formation of the hydroxide complex 

[Rh(bpy)(Cp*)(OH)]+ (bpy = 2,2’-bipyridine, Cp* = 

pentamethylcyclopentadienyl). This suggests that the formation of 

H2 requires the participation of an acid. The catalytic cycle, based 

on the identification of intermediates and deuteration experiments 

(including KIE studies), is based on the less acidic nature of the 

metal hydride compared to Ir analogues, which enables its 

protonation under the reaction conditions.[42] The first step of the 

mechanism entails the formation of a formato complex, followed 

by elimination of CO2 (the rate limiting step). Finally, protonation 

of the hydrido complex thus generated leads to H2 formation. The 

cycle is closed upon coordination of the water molecule at the 

vacant coordination site left by the release of H2 (Scheme 20). 

 

Scheme 20. Proposed catalytic cycles with pre-catalysts 34a.[42] 

A cooperative mechanism that entails the reversible 

cyclometallation of a phenyl moiety was proposed for pincer 

complex 35 (Scheme 21; pathway A).[43] However, a classical 

mechanism should not be discarded (Scheme 21; pathway B); in 

fact, the theoretical calculations performed by the authors suggest 

that both mechanisms co-exist under the reaction conditions. 

Both pathways involve initially the reaction of 35 with HCOOH to 

afford the corresponding formato intermediate (resting state) via 

protonation of the cyclometallated phenyl ring. Subsequently, the 

authors propose a β-hydride elimination step to afford the hydrido 

Rh(I) intermediate and a molecule of CO2, this being the rate 

limiting step for both pathways. Oxidative addition of HCOOH 

followed by reductive elimination of H2 from the Rh(III) 

intermediate close the classical cycle. The cooperative 

mechanism, on the other hand, generates a Rh(III) dihydride that 

leads to the formation of H2 via cyclometallation of the Ph group.  

Remarkably, complex 35 operates under base-free conditions in 

dioxane at 75 ºC. However, the use of a catalyst that features a 

methyl group instead of a phenyl group as side-arm leads to low 

conversions in the absence of base. Further proof for the 

importance of reversible coordination in these systems is the fact 

that the use of NNP and PCP ligands results in inhibition of the 

catalytic activity. 

 



Scheme 21. Catalytic cycles proposed for pre-catalysts 35.[43] 

The influence of the halide and, more specifically, the promoting 

effect of the iodide anion was described by Xiao et al. for a 

rhodium(III) pre-catalyst, namely [RhCp*Cl2]2, and also for [Ru(p-

cymene)Cl2]2.[44] The addition of iodide salts proved to enhance 

the reaction rate in FA/Et3N azeotrope; for example, the addition 

of KI to [RhCp*Cl2]2 results in an increase of the initial TOF from 

625 h–1 to 4375 h–1. This effect was attributed to fact that iodide is 

a better ligand than chloride and, consequently, stabilizes more 

efficiently the transition state of the decarboxylation step—likely 

an ion pair formed by dissociation of the formato ligand. 

6. Iron Catalysts 

Most of the homogeneous catalysts so far developed for FA 

dehydrogenation are based on noble metals; however, the 

catalytic activity of the more abundant and affordable non-noble 

metal complexes has been less explored. 

A remarkable example of non-precious-metal catalyst for FA 

dehydrogenation is the highly active iron complex 36, which 

operates in propylene carbonate, a biodegradable and non-toxic 

solvent, with a catalyst loading of 0.01 mol% at 40 ºC.[45] 

The authors proposed two alternative mechanisms that co-exist 

under catalytic conditions (Scheme 22, cycles A and B). Cycle A 

in Scheme 21 requires the protonation of 36 by HCOOH to give a 

formato complex and a H2 molecule. Subsequently, β-hydride 

elimination affords a hydride complex with a CO2 ligand. Finally, 

release of the CO2 ligand regenerates 36. In the case of cycle B, 

coordination of formate to 36 occurs, followed by β-hydride 

elimination to render a hydride-dihydrogen complex and a 

molecule of CO2. Elimination of H2 regenerates 36, closing the 

catalytic cycle.  

 

Scheme 22. Competitive catalytic cycles proposed for catalyst 36.[45] 

According to the studies performed by the authors, the β-hydride 

elimination is the rate limiting step in both cycles. 

Detailed theoretical calculations on this system were published by 

Ahlquist et al.[46] and Yang.[47] For cycle A (Scheme 22), both 

authors propose the coordination of FA followed by an Fe–H–

δ···H+δ–O interaction that results in the formation of an 

intermediate featuring a H2 and a formate ligand (Figure 13). The 

formation of CO2 occurs, according to both authors, via a β-

hydride elimination step, which is the rate determining step. 

 

Figure 13. Transition state proposed for the formation of H2 in cycle A.[46,47] 

In the case of cycle B (Scheme 21), the results of the theoretical 

calculations performed by Ahlquist et al. and Yang diverge 

noticeably. The former postulates a β-hydride elimination reaction 

after formate coordination, while the latter proposes a hydride 

abstraction, owing to the fact that the author was unable to locate 

a transition state for β-hydride elimination step. This results in two 

different rate limiting steps, the hydride abstraction for the 

mechanism proposed by Yang and the H2 release for that 

postulated by Ahlquist et al.. Remarkably, Ahlquist and co-

workers performed KIE studies that support H2 release as the rate 

limiting step. The overall free-energy barrier for cycle B is higher 

than that of A according to Yang’s work, although both 
mechanisms were proposed to co-exist. The opposite was 

proposed by Ahlquist and co-workers, suggesting that cycle B 

should be preferred over A due to the significant energy barrier 

calculated for both processes (30.6 Kcal mol–1 for A and 20.6 Kcal 

mol–1 for B). 

Fe-complexes supported by pincer ligands have shown good 

performances in FA dehydrogenation. Pincer complex 37 

operates at 40 ºC in the presence of 50 mol% Et3N in various 

organic solvents, namely, tetrahydrofurane, dimethyl sulfoxide 

and 1,4-dioxane.[48] The authors proposed a mechanism based 

on stoichiometric and catalytic experiments, in addition to 

theoretical calculations. The catalytic cycle entails as first step the 

protonation of the dihydride complex 37 to give a dihydrogen 

complex. Subsequently, H2 dissociation leaves a vacant 

coordination site that is occupied by a formate ion to give formato 

complex 38, which was also used a competent catalyst for this 

transformation. The CO2 elimination step that regenerates 37 was 

proposed to take place via hydride abstraction, since β-hydride 

elimination would require the dissociation of one of the phosphine 

side arms (Scheme 23). 



 

Scheme 23. Proposed catalytic cycle for the dehydrogenation of FA by complex 

36 (P = PtBu2).[48] 

Complexes 39 and 40 (Scheme 24) were tested under analogous 

conditions, showing similar activities that were significantly 

increased by adding catalytic amounts of a Lewis acid (10 

mol%).[49] In the presence of a Lewis acid as co-catalyst (Li+, Na+ 

and Cs+ showed the best performances), the reaction takes place 

at 80 ºC in 1,4-dioxane under base-free conditions, allowing 

TONs ca. 1000000 and TOFs ca. 200000. 

The catalytic cycle proposed by the authors is analogous to that 

depicted in Scheme 22, with the difference that the 

decarboxylation, which takes place via a hydride abstraction step, 

is aided by a Lewis acid (LA) and the activation of FA happens by 

means of a ligand-metal cooperative mechanism (Scheme 23).  

The related Fe-pincer pre-catalyst 41 also showed good activities 

in various organic solvents in the presence of Et3N. The best 

results were obtained using 100% Et3N at 80 ºC in propylene 

carbonate (TON = 10000).[50] The catalytic cycle was proposed 

based on the identification of the intermediate species 42-44, 

theoretical calculations and previous results by the same authors 

in the reverse reaction, CO2 hydrogenation[51] (Scheme 25).  

 

Scheme 24. Proposed Lewis-acid-assisted reaction mechanism for catalysts 39 

and 40.[49] 

 

Scheme 25. Proposed catalytic cycle for the dehydrogenation of FA by complex 

41 (P = PiPr2).[50] 

The first step entails the formation of the active species (42) from 

the pre-catalyst (41) via bromide abstraction. The resulting 

unsaturated species undergoes the coordination of the formate 

counterion (43). Subsequently, CO2 elimination takes place by 

means of a hydride abstraction step to afford 44. The elimination 

of a H2 molecule occurs upon protonation of 44, with concomitant 

regeneration of the active species.  

 

Scheme 26. Proposed catalytic cycle for the dehydrogenation of FA by complex 

45 under visible-light irradiation.[52a] 

Catalysts for FA dehydrogenation under photolytic conditions 

have also been reported, although their potential for industrial 

application is limited.[52] Detailed mechanistic studies on pre-

catalyst [Fe(CO)3(PPh3)2] (45)[52a] suggest that irradiation with 

visible light affords the active species [HFe(CO)3(PPh3)]–, which 

readily dissociates a PPh3 ligand to permit formate coordination 



(Scheme 26). Subsequent protonation of the hydride leads to the 

formation of a dihydrogen ligand that is released by visible light 

irradiation and followed by PPh3 coordination.[53] Finally, CO2 

elimination to afford the active species was proposed to occur via 

β-hydride elimination. 

7. Conclusions 

In this review we have revisited the most relevant mechanisms so 

far postulated for homogeneously catalyzed FA dehydrogenation 

processes. The most prolific metal centers are Ir, Ru, Rh and Fe. 

However, other metal complexes not mentioned here, such as 

Al,[54] show great potential for the synthesis of inexpensive and 

sustainable catalysts for this process. It is noteworthy that many 

of the catalysts presented in this work operate in aqueous 

solutions, which is relevant to fuel-cell applications and also 

because the presence of water may be crucial from a mechanistic 

viewpoint.  

A great variety of mechanisms seem to operate in FA 

dehydrogenation processes. Even though the nature of the 

catalytic cycles is often very different and, consequently, direct 

comparison between them is problematic, we consider that the 

main divergences that, to some degree, determine the type of 

mechanism are: (i) The nuclearity of the active species, which 

may trigger mononuclear or dinuclear mechanisms; (ii) The 

formation of CO2, which may happen by β-hydride elimination, 

hydride abstraction or outer-sphere mechanisms; (iii) The rate 

limiting step, which is usually related to the processes of CO2 or 

H2 formation.  

What appears to be common ground is that outer-sphere 

interactions are often key for the success of the reaction. Some 

remarkable cases are:  

1) The hydride abstraction step may be assisted by Lewis acids 

that interact with the oxygen atoms of the formate, thus facilitating 

the heterolytic splitting of the C–H bond.  

2) The formation of H2, which has been frequently proposed to 

occur by protonation of a hydrido ligand with H2O, HCOOH or 

H3O+. 

3) Ligand assisted deprotonation of FA’s OH moiety by proton-

responsive ligands. 

4) Dimeric HCOOH···HCOOH interactions that allow remote 

metal-ligand cooperation. 

5) Outer-sphere cleavage of FA’s C–H bond instead of β-hydride 

elimination or hydride abstraction. 

With this knowledge in hand, we believe that the design of tailored 

metal-ligand systems that harness the potential of outer-sphere 

interactions are crucial to enhance the activity of current catalysts. 

Moreover, the use of these interactions may boost the 

performance of non-noble-metal-catalysts, thus promoting more 

sustainable processes.  
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