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Abstract

The paper presents expressions for semi-empirical mechanistic identification of specific cutting and edge force coefficients for a
general helical end mill from milling tests at an arbitrary radial immersion. The expressions are derived for a mechanistic force
model in which the total cutting force is described as a sum of the cutting and edge forces. Outer geometry of the end mill is
described by a generalized mathematical model valid for a variety of end mill shapes, such as cylindrical, taper, ball, bull nose,
etc. The derivations follow a procedure originally proposed for a cylindrical end mill. The procedure itself is improved by includ-
ing the helix angle in evaluation of the average edge forces. The resulting expressions for the specific force coefficients are verified
by simulations and experiments.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Reliable quantitative prediction of cutting forces in
milling is essential for prediction of power and torque
requirements, machine-tool vibrations, workpiece sur-
face quality and geometrical accuracy, and chatter-free
cutting parameters. The cutting force model commonly
employed for this purpose is a mechanistic one
assuming the cutting force to be proportional to the
cross-sectional area of the uncut chip [1]. The pro-
portionality constant is called the specific cutting force
coefficient or specific cutting pressure and depends on
the cutter geometry, cutting conditions, and workpiece
material properties.
Two types of mechanistic cutting force models are

found in the machining literature. In the first one, the
effects of shearing mechanism due to the chip generat-
ing process on the tool’s rake face and effects of rub-
bing and ploughing mechanisms on the flank face are

lumped into one specific force coefficient for each cut-

ting force component (tangential, radial, and axial).

This model has been used by many researchers [2–4].

Its disadvantage is a considerable variation of the spe-

cific force coefficient with the average chip thickness

which complicates analytical calculations. In the

second model, the shearing and ploughing effects are

characterized separately by the respective specific cut-

ting and edge force coefficients [5–8]. Since the coeffi-

cients are relatively independent of the average chip

thickness this model appears to be more suitable for

analytical work [5]. However, there are twice as many

coefficients to be determined as in the simplified

lumped model.
In this study, the second model is used, with the

total cutting force composed of the tangential, radial,

and axial components. The specific cutting and edge

force coefficients for each force component can either

be predicted from the mechanics theory of machining

or experimentally determined from cutting tests. Pre-

diction of coefficients is based on mechanics of general

oblique cutting and requires knowledge of the funda-

mental cutting quantities, such as workpiece material
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shear stress, shear angle, and friction coefficient [5].
These quantities have to be estimated from the orthog-
onal cutting tests, and form an orthogonal database for
a given tool–workpiece material pair. Once the orthog-
onal database has been established, the specific cutting
and edge force coefficients can be predicted for any
turning, drilling, and milling operation, given the tool
edge geometry and the cutting conditions. Orthogonal
database is particularly useful for the design of milling
cutters, since the coefficients can be predicted before
the cutter has been manufactured. When the orthog-
onal database is not available or the tool has very com-
plex cutting edges, the specific cutting and edge force
coefficients have to be identified mechanistically, from
the cutting tests with the given tool and workpiece
material. The method adopted in the present study
requires a set of milling tests at different feed rates but
constant radial and axial immersions. Assuming linear
dependence of the average force on feed, the coeffi-
cients are obtained by equating the analytical expres-
sions for the average cutting and edge forces to their
measured counterparts [5]. If the analytical expressions
cannot be derived, the coefficients can be estimated
empirically, by minimizing the discrepancy between the
predicted and measured cutting force dependencies on
the tool rotation angle [7,8]. Despite the disadvantage
of the required new set of experiments for each tool
geometry, the semi-empirical mechanistic approach is
relatively quick and quite common in industrial prac-
tice and research laboratories.
The main difficulty associated with the mechanistic

identification of the specific cutting and edge force
coefficients appears to be the derivation of the analyti-
cal expressions for the average milling forces from
which the expressions for the coefficients are to be
obtained. The machining literature available to the
authors provides the analytical expressions for the
average forces and the coefficients only for the cylindri-
cal end mill [5], which has the simplest outer geometry
among a variety of end mills used in the manufacturing
industry today. For more complicated end mill geome-
tries, the coefficients have been either predicted from
an orthogonal database [6,9] or identified empirically
by a least squares fit [7,8].
This paper presents the expressions for estimation of

the specific cutting and edge force coefficients for a
general helical end mill. The derivations follow the pro-
cedure outlined in Ref. [5]. Outer geometry of the end
mill is described by a generalized mathematical model
[9] which is valid for a variety of end mill shapes, such
as cylindrical, taper, ball, bull nose, etc. In the final
expressions for the coefficients, the geometrical proper-
ties of the mill are represented by six constants that can
be evaluated analytically for all helical and non-helical
end mills modelled, except for the rounded helical end
mills, for which three geometric constants need numeri-

cal evaluation. The required milling tests can be con-

ducted at an arbitrary radial immersion. The immersion

conditions of the cut enter the expressions in the form

of five constants that are independent of the end mill

geometry and can also be evaluated analytically. The

derived expressions for the coefficients are verified by

simulations and experiments involving various mill

shapes.

2. Geometry of a general end mill

A generalized model of the end mill outer geometry

was introduced in Ref. [9]. Similarly to the represen-

tation used by CAD/CAM systems, the generalized

model describes the cutter envelope by seven geometric

parameters: D, R, Rr, Rz, a, b, and H (Fig. 1). The

parameters are independent of each other, but subject

to geometrical constraints that ensure realizable cutter

shapes. A variety of end mill shapes can be defined by

these parameters. For example, the cylindrical, ball,

and bull nose end mills are defined by, fD;R;Rr;Rz; a;
b;Hg ¼ fD; 0;D=2; 0; 0; 0;Hg, fD;D=2; 0;D=2; 0; 0;Hg,
and fD;R;D=2� R;R; 0; 0;Hg, respectively.
In order to evaluate the cutting forces acting on the

mill, the cutting edge geometry, chip load, and the cut-

ting force components (tangential, radial, and axial)

have to be identified at each point along the helical cut-

ting edge. A point P on the cutting edge is character-

ized by elevation z, radial distance r(z) from the cutter

axis, axial immersion angle j(z), and radial lag angle

w(z) (Fig. 2). The axial immersion angle is defined as

the angle between the cutter axis and normal of the

cutting edge at point P. The radial lag angle is the

angle between the line connecting P to the cutter axis

and tangent to the cutting edge at the cutter tip O.
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Fig. 1. Geometry of a general end mill. Dashed lines separate three

geometrically different zones of the mill.
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g. 2. Chip load, axial immersion angle, radial lag angle, and differential cutting forces at point
Fi P.
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In Eqs. (3)–(5), i0 denotes the nominal helix angle,

while Mr, Mz, Nr, and Nz denote the cylindrical coordi-
nates of points M and N (Fig. 1). In the taper zone,
cutters may be ground with a constant helix angle and
variable lead or constant lead and variable helix angle.
The lag angles wð0Þ and wðsÞ in Eq. (5) correspond to
the former and latter cases, respectively. More detailed
description of the local helix and radial lag angle
dependencies in the three zones can be found in Ref.
[9].

3. Mechanistic cutting force model

The differential tangential (dFt), radial (dFr), and
axial (dFa) cutting forces acting on the infinitesimal
cutting edge segment are [6]:

dFt;jð/j; jÞ ¼ KtedS þ Ktchð/j; jÞdb; ð6aÞ
dFr;jð/j; jÞ ¼ KredS þ Krchð/j; jÞdb; ð6bÞ
dFa;jð/j ;jÞ ¼ KaedS þ Kachð/j; jÞdb: ð6cÞ

K�c and K�e represent the specific cutting and edge force
coefficients, respectively. The uncut chip thickness h is
measured normal to the cutting edge, and varies along
the cutting edge as (Fig. 2):

hð/j; jÞ ¼ stsin/jsinj; ð7Þ

where st denotes feed per tooth. db ¼ dz=sinj is the
chip width. dS is the edge length of the cutting segment
which varies with elevation z. dS can be derived from
Eq. (1) as:

dS ¼ jdrj ¼ d/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð/Þ þ r0ð/Þð Þ2þ z0ð/Þð Þ2

q
; ð8Þ



with 0 denoting the derivative with respect to /. Taking
into account the dependencies of r, /, and w on z, the
differential edge length is given by:

dSðzÞ ¼ dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðzÞw0ðzÞð Þ2þ r0ðzÞð Þ2þ1

q
; ð9Þ

where 0 now denotes the derivative with respect to z.
The differential forces are thus functions of radial
immersion angle / and elevation z:

dFt;jð/j; zÞ ¼ KtedSðzÞ þ Ktcstsin/jdz; ð10aÞ

dFr;jð/j; zÞ ¼ KredSðzÞ þ Krcstsin/jdz; ð10bÞ

dFa;jð/j; zÞ ¼ KaedSðzÞ þ Kacstsin/jdz: ð10cÞ

The tangential, radial, and axial forces are resolved
in the feed (X), normal (Y), and axial (Z) directions by
a transformation:

dFx;jð/j; zÞ
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dFz;jð/j ; zÞ

2
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�
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2
4

3
5: ð11Þ

The forces acting on the j-th cutting edge are obtained
by integrating Eq. (11) along the axial depth of cut:

F�;jð/jÞ ¼
ðz2
z1

dF�;jð/j; zÞ: ð12Þ

The integration boundaries z1 and z2 depend on the
immersion of each cutting edge. Finally, the contribu-
tions of all cutting edges are summed in order to
obtain the total feed, normal, and axial forces acting
on the cutter:

F�ð/Þ ¼
XN
j¼1

F�;jð/jÞ: ð13Þ

4. Identification of specific force coefficients

Given the cutter geometry and immersion con-
ditions, only the specific cutting and edge force coeffi-
cients remain unknown in the right-hand side of
Eq. (10). The coefficients can therefore be determined
by equating the measured cutting forces with the corre-

sponding analytical expressions. For this purpose, a

procedure outlined in Ref. [5] is adopted here. It is

based on equating the measured and analytical average

cutting forces per tooth. The analytical expression for

the average forces is:

�FFxyz ¼
1

/p

ð/ex

/st

ðz2
z1

dFxyzð/; zÞd/: ð14Þ

where /st and /ex denote the start and exit radial

immersion angles, respectively. For convenience, the

subscript j has been dropped. The analytical calcula-

tions are greatly simplified by assuming the average

forces per tooth period to be independent of helix

angle so that i0 ¼ 0 can be set. However, a simple

numerical experiment reveals that the assumption is

valid only in the absence of edge forces, i.e. for K�e ¼ 0.

As shown below, for K�e 6¼ 0, it is necessary to consider

non-zero helix angle in evaluation of the cutting edge

length dS (Eq. (9)).
In order to derive expressions which relate the aver-

age forces and specific cutting and edge force coeffi-

cients, Eq. (14) has to be integrated. First, the

integration along the elevation z is carried out. Due to

i0 ¼ 0, the immersion angle / is independent of z

(Eq. (2)), and the integration boundaries z1 and z2 are

independent of /. The instantaneous cutting forces at

immersion angle / are:
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where the constants A� and B� denote the integrals:

A1 ¼
ðz2
z1

dz; A2 ¼
ðz2
z1

sinjðzÞdz; A3 ¼
ðz2
z1

cosjðzÞdz;

ð16aÞ

B1¼
ðz2
z1

dSðzÞ; B2¼
ðz2
z1

sinjðzÞdSðzÞ; B3¼
ðz2
z1

cosjðzÞdSðzÞ:

ð16bÞ

A� and B� represent the influence of cutter geometry on

the average cutting and edge forces, respectively, and

are therefore called the geometric constants. They have
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to be evaluated for each zone of the cutter (see Appen-
dix A).
Next, the instantaneous forces are averaged over the

radial immersion angle yielding:

�FFx
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2
6664

3
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¼ st
/p
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where the immersion constants C� contain the terms
depending on the immersion angles:

C1 ¼
1

2
/j/ex

/st
;

C2 ¼
1

4
sin2/j/ex

/st
; C4 ¼ sin/j/ex

/st
;

C3 ¼
1

4
cos2/j/ex

/st
; C5 ¼ cos/j/ex

/st
:

ð18Þ

Eq. (17) represents the average cutting forces per
cutter tooth as a linear function of feed st:

�FF � ¼ �FF �cst þ �FF �e: ð19Þ
�FF �c and �FF �e can be obtained experimentally from mill-
ing tests conducted at a series of feeds st but constant

radial and axial immersions. �FF �c and �FF �e correspond
respectively to the slopes and intercepts of the straight
lines which approximate the dependence of the mea-
sured average cutting forces on feed.
Finally, by equating Eqs. (17) and (19), two systems

of linear equations are obtained, whose solutions are the
specific cutting and edge force coefficients, K�c and K�e:

Ktc ¼
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It follows from these expressions that the tangential
force coefficients Kt� are not influenced by the forces in
Z direction. The expressions for Kac (Kae) can be
derived from Krc (Kre) simply by reversing the sign in

front of �FFz�, and switching the constants A2 and A3 (B2

and B3).
Using Eqs. (20) and (21), the specific cutting and

edge force coefficients can be determined for a general
end mill from cutting tests at an arbitrary radial
immersion. As noted already in Ref. [5], the simplest
expressions for the coefficients with respect to the
radial immersion are obtained for slotting, /st ¼ 0 and
/ex ¼ p, where C1 ¼ p=2, C2 ¼ C3 ¼ C4 ¼ 0, C5 ¼ �2.
With respect to the cutter envelope, the simplest coeffi-
cients are found for the cylindrical end mill, where
A1 ¼ A2 ¼ a, B1 ¼ B2 ¼ a=cosi0, A3 ¼ B3 ¼ 0, and a is
the cutting depth used in the milling tests. Substituting
these constants into Eqs. (20) and (21), the same
expressions for K�c are obtained as in Ref. [5], whereas
K�e differ by a factor cosi0 due to the helix angle.

5. Simulation and experimental results

5.1. Simulations

The derived expressions for the specific cutting and
edge force coefficients were first verified using simu-
lated data generated by numerical integration of
Eq. (12). The coefficients used in the simulations were
calculated from the orthogonal database for a Ti6Al4V
titanium alloy provided in Refs. [5,10]. The simulations
were performed for various cutter geometries covering
all three zones of the cutter envelope. In the following,
the results are presented for cylindrical, ball, and gen-
eral end mills (Table 1).

5.1.1. Cylindrical end mill
Envelope of the cylindrical end mill has only the

taper zone for which the geometric constants are given
by Eq. (A.8). The average cutting forces per tooth were
evaluated for a set of five feeds st ¼
f0:04; 0:08; 0:12; 0:16; 0:2g mm=tooth at the cutting
depth a ¼ 4 mm. The theoretical coefficients K�c
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Table 2

Estimated K�c (in N/mm2) and K�e (in N/mm) for the cylindrical end mill using constant theoretical K�c ¼ ½1844:1; 513:0; 1118:7� N=mm2 (see

text). K�e;0 are obtained for i0 ¼ 0
Immersion K
tc
 Krc K
ac
 Kte K
re K
ae K
te,0
 Kre,0 K
ae,0
100% 1
844.1
 513.0 1
118.7
 24.0 4
3.0 �
3.0 3
3.9
 60.8 �
4.2

50%-down 1
843.9
 512.8 1
118.5
 24.0 4
3.0 �
3.0 3
3.9
 60.8 �
4.2

50%-up 1
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4.2

25%-down 1
844.5
 513.3 1
119.0
 24.0 4
3.0 �
3.0 3
3.9
 60.8 �
4.2

25%-up 1
844.0
 513.0 1
118.6
 24.0 4
3.0 �
3.0 3
3.9
 60.8 �
4.2

10%-down 1
844.4
 513.2 1
118.9
 24.0 4
3.0 �
3.0 3
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3.0 3
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 60.8 �
4.2



J. Gradišek et al. / International Journal of Machine Tools & Manufacture 44 (2004) 401–414 407
Table 3

Estimated K�c (in N/mm2) and K�e (in N/mm) for the cylindrical end mill using variable theoretical K�c (see text). K�e;0 are obtained for i0 ¼ 0
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Fig. 3. Comparison of cutting forces for down-milling with the cyl-

indrical end mill; 50% radial immersion, st ¼ 0:1 mm=tooth,

a ¼ 4 mm. Lines: predicted using the theoretical coefficients (thin

solid), the coefficients estimated from 10% up-milling tests (thick

dashed), same as the latter, but with K�e;0 (thick solid).
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d K�e vs. cutting depth for the ball end mill. Lines: 100% radial immersion (thick solid), 50% (t
Fig. 4. Estimated K�c an hick dashed), 25% (thick

dash-dotted), 10% (thin dashed), theoretical average coefficients (thin solid); all down-milling. The vertical dashed line separates the arc and taper

zones of the cutter.
milling tests at a cutting depth a ¼ 2 mm and feeds
st ¼ f0:08; 0:10; 0:12; 0:14; 0:16g mm=tooth. The
tests were repeated four times at each combination of
cutting parameters. The mean estimates of K�c and K�e

are listed in Table 5. The specific cutting force coeffi-
cients K�c obtained from different radial immersions
agree well. Ktc increases slightly with decreasing immer-
sion, while no such trend is observed for Krc and Kac.
The tangential and radial edge force coefficients, Kte

and Kre, decrease markedly as immersion decreases,
whereas Kae remains unchanged.
Fig. 8 shows the average measured and predicted

cutting force traces for one cutter revolution during
50% up-milling. The average measured traces were
averaged over more than 100 cutter revolutions. The
predictions and measurements agree very well. A dis-
crepancy is observed mainly in the feed force, Fx,
where the larger Ktc values estimated from the tests at
lower immersions result in smaller force amplitude.
Also contributing to the discrepancy between the pre-
dicted and measured forces is the cutter runout. A
detailed inspection of the measured forces reveals that
the force traces corresponding to engagement of the
Fig. 5. Comparison of cutting forces for down-milling with the ball

end mill; 50% radial immersion, st ¼ 0:1 mm=tooth, a ¼ 0:2 mm (top

panel), a ¼ 4:5 mm. Lines: predicted using the theoretical coefficients

(thin solid) and the coefficients estimated from 10% down-milling

tests (thick dashed).
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d K�e vs. cutting depth for the general end mill. Lines: 100% radial immersion (thick solid), 5
Fig. 6. Estimated K�c an 0% (thick dashed), 25%

(thick dash-dotted), 10% (thin dashed); all up-milling. The vertical dashed lines separate the cutter zones.
ges differ, what indicates that the

dentical. Also note that the mea-

vanish during the non-cutting por-

revolution period, but fluctuate

dless of their cause, these fluctua-

forces per tooth period and thus

es of specific force coefficients

ng tests at partial radial immer-

5.2.2. Bull nose end mill
The envelope of the bull nose end mill has two zones,

arc and taper. In order to estimate the variation of the
specific force coefficients within the arc zone, milling
tests were conducted at depths a ¼ f0:1; 0:2; 0:44;
0:75; 1:11; 1:5g mm. Except for a ¼ 0:1 mm, the
depths were chosen such that the increments of the axial
immersion angle j were constant. In the taper zone,
a ¼ 1:75 and 2 mm were selected. The feeds st ¼
f0:08; 0:1; 0:12; 0:14; 0:16g mm=tooth were used in
both zones. Full immersion and 50% radial
immersion up-milling tests were repeated four times
at each depth and feed. In the taper zone, however,
the full immersion tests were plagued by chatter so
that the coefficients were estimated only from the
half-immersion tests. Individual estimates were
obtained for each of the four repeated tests separ-
ately, whereas the average coefficient was estimated
by combining the average forces per tooth from all
four tests. The results are summarized in Fig. 9.
As expected, the estimated specific cutting force
coefficients K�c vary significantly with cutting depth. Ktc

and Krc decrease at small depths and increase
towards the end of the arc zone, while Kac increases
Fig. 7. Comparison of cutting forces for up-milling with the general

end mill; 50% radial immersion, st ¼ 0:1 mm=tooth, a ¼ 4 mm.

Lines: predicted using the theoretical coefficients (thin solid) and

coefficients estimated from 10% up-milling tests (thick dashed).
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Geometry of end mills used in experiments
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Table 5

Estimated K�c (in N/mm2) and K�e (in N/mm) for the cylindrical end mill
Immersion K
tc K
rc K
ac K
te K
re
 Kae
100% 5
61.2 2
04.3 1
94.4 1
6.2 6
.7
 2.2
50%-up 6
17.2 2
35.8 1
88.3
 9.3 1
.8
 2.4
25%-up 6
44.5 2
09.7 1
96.3
 4.2 0
.7
 2.0
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Fig. 8. Comparison of cutting forces for up-milling with the cylin-

drical end mill; 50% radial immersion, st ¼ 0:14 mm=tooth,

a ¼ 2:0 mm. Lines: measured forces (thin solid), predicted forces

using coefficients estimated from 100% (thick solid), 50% (thick

dashed), and 25% (thick dash-dotted) up-milling tests.
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d K�e vs. cutting depth for the bull nose end mill. Radial immersion: 100% (circles, solid li
Fig. 9. Estimated K�c an nes) and 50% up-milling

(crosses, dashed lines). Points: individual (small) and average values (large). Lines: estimated dependence (thick) and its 4th order polynomial

approximation (thin). The vertical dashed line separates the two cutter zones.
depth. This is presumably caused by the cutter and
workpiece–dynamometer vibrations which have the

strongest effect on Fz since its amplitude is relatively

small. Cutting forces predicted using constant specific

force coefficients obtained from the tests at a ¼
0:54 mm are also shown in Fig. 12. These predictions
agree well with the measured forces only at depths

close to a ¼ 0:54 mm. The more the depth used in pre-

dictions differs from the depth used to estimate the

constant coefficients, the larger the discrepancy
between the predicted and measured forces. As noted

already in Ref. [10], if the variable specific force coeffi-

cients are not available, the constant coefficients esti-

mated at the half of the arc zone should provide

reasonable predictions across the entire arc zone.

6. Conclusions

The expressions for semi-empirical mechanis-

tic identification of specific cutting and edge force

coefficients for a general helical end mill from milling
Fig. 10. Comparison of cutting forces for up-milling with the bull

nose end mill; 100% (top panel) and 50% radial immersion,

st ¼ 0:14 mm=tooth, a ¼ 0:75 mm. Lines: measured forces (thin

solid), predicted forces using coefficients estimated from 100% (thick

solid) and 50% up-milling tests (thick dashed).
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radial immersion were presented in

ssions are based on the commonly

tting force model which describes

ce as a sum of the cutting (shear-

ghing) forces. The outer geometry

described by a generalized math-

rivation of the analytical expres-

e cutting forces per tooth period

ure proposed in Ref. [5]. The pro-

ed by considering non-zero helix

n of the average edge forces.

nalytical and measured average

for the specific cutting and edge

re obtained. In these expressions,

ry and the radial immersion con-

nted by six and five constants,

nstants can be evaluated analyti-

cal and almost all helical end mills

tion are the rounded helical mills,

metric constants have to be calcu-

The derived expressions were verified by simulations
and experiments involving various end mill shapes and
radial immersions. The simulation examples confirmed
validity of the expressions and also showed that taking
non-zero helix angle into account improves the esti-
mates of the edge force coefficients. The experimental
examples revealed that milling tests at various radial
immersions can result in moderately different estimates
of the force coefficients. The main reason for the devia-
tions appear to be the fluctuations of the cutting forces
recorded in the non-cutting portions of the tool revol-
ution period in partial immersion milling where no
tool–workpiece contact is expected and the cutting
forces should be zero. The fluctuations were probably
caused by tool and/or workpiece–dynamometer vibra-
tions, they had much smaller amplitude than the forces
during cutting, and were therefore insignificant in the
full immersion milling. However, full immersion mill-
ing is more vulnerable to chatter vibrations so that in
cases when variation of the coefficients with axial
immersion angle is to be determined, partial radial
immersions may be the only alternative.



Appendix A. Geometric constants for the cutter

zones

The geometric constants A� and B� are defined by
Eq. (16) which is repeated here for convenience:

A1 ¼
ðz2
z1

dz; A2 ¼
ðz2
z1

sinjðzÞdz; A3 ¼
ðz2
z1

cosjðzÞdz;

ðA:1aÞ

B1¼
ðz2
z1

dSðzÞ;B2¼
ðz2
z1

sinjðzÞdSðzÞ;B3¼
ðz2
z1

cosjðzÞdSðzÞ:

ðA:1bÞ

The expressions for A� and B� in the three cutter zones
are given in the following.

A.1. Cone zone, z < Mz

The differential edge length is:

dSðzÞ ¼ dz

cosi0sina
: ðA:2Þ

The geometric constants are:

A1 ¼ zjz2z1 ; A2 ¼ sina 
 zjz2z1 ; A3 ¼ cosa 
 zjz2z1 ; ðA:3aÞ

B1 ¼
1

cosi0sina

 zjz2z1 ; B2 ¼

1

cosi0

 zjz2z1 ; B3 ¼

ctga
cosi0


 zjz2z1 :

ðA:3bÞ

A.2. Arc zone, Mz < z 	 Nz

The differential edge length is:
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Fig. 12. Comparison of cutting forces for down-milling with the

ball end mill; 50% radial immersion, st ¼ 0:08 mm=tooth, a ¼
0:54 mm (top panel), a ¼ 2:0 mm (middle panel), a ¼ 4:0 mm. Lines:

measured forces (thin solid), predicted forces using the estimated

variable coefficients (thick solid) and constant coefficients estimated

from the tests at a ¼ 0:54 mm (thick dashed).
The main contributions of this paper can be sum-

marized as: (1) the expressions for the semi-empirical

mechanistic identification of the specific cutting and

edge force coefficients were derived for a general end

mill. This extends the applicability of the identification

method from the geometrically simplest, cylindrical end

mill to a variety of end mill shapes describable by the

employed generalized mathematical model, such as

ball, bull nose, taper, taper ball, etc. (2) The derived

expressions take non-zero helix angle into account

which significantly improves the estimates of the edge

force coefficients. (3) The milling tests required by the

procedure can be conducted at an arbitrary radial

immersion for any cutter geometry considered.
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dSðzÞ ¼ dz
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tan2i0

Rr

R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p� �2

þ 1

1� E2

s
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with EðzÞ ¼ ðRz � zÞ=R. The geometric constants
are:

A1 ¼ zjz2z1 ;

A2 ¼ �R

2
E
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1� E2

p
þ arcsinE

� �����
z2

z1

;
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1

R
Rzz�
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2

� �����
z2

z1

; ðA:5aÞ

B1 ¼
ðz2
z1

dz
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tan2i0

Rr

R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p� �2

þ 1

1� E2

s
;

B2 ¼
ðz2
z1

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2i0

Rr

R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p� �2

ð1� E2Þ þ 1

s
;

B3 ¼
ðz2
z1

Edz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2i0

Rr

R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p� �2

þ 1

1� E2

s
:

ðA:5bÞ
The integrals for B� have to be evaluated numeri-

cally. In the case of non-helical ball end mill, i0 ¼ 0,



the differential edge length is dSðzÞ ¼ dz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p
, and

B� can be determined analytically:

B1¼�RarcsinEjz2z1 ; B2¼ zjz2z1 ; B3¼R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�E2

p ���z2
z1
: ðA:6Þ

A.3. Taper zone, Nz < z

If the cutter is ground with constant helix angle i0
and variable lead L, the differential edge length is

dSðzÞ ¼ dz

cosi0cosb
: ðA:7Þ

The geometric constants are:

A1 ¼ zjz2z1 ; A2 ¼ cosb 
 zjz2z1 ; A3 ¼ sinb 
 zjz2z1 ; ðA:8aÞ

B1 ¼
1

cosi0cosb

 zjz2z1 ; B2 ¼

1

cosi0

 zjz2z1 ; B3 ¼

tanb
cosi0


 zjz2z1 :

ðA:8bÞ
If the cutter is ground with constant lead L, the helix

angle i varies with elevation z. Denoting the nominal
helix angle by is, the differential edge length is:

dSðzÞ ¼ dz

cosb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF=GÞ2 þ 1

q
; ðA:9Þ

with F ¼ rðzÞ=tanb and G ¼ L=ð2ptanbÞ. The cutting
geometric constants A� are the same as for the constant
helix case (Eq. (A.8a)), while the edge geometric con-
stants are:

B1¼
1

2Gcosb
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2þF2

p
þG2log F þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2þF2

p� �� �����
z2

z1

;

B2¼B1cosb; B3¼B1sinb
:

ðA:10Þ
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