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Agriculture plays an important role in a country’s economy. The sector is challenged
by many stresses, which led to huge loss in plant productivity worldwide. The ever-
increasing population, rapid urbanization with shrinking agricultural lands, dramatic
change in climatic conditions, and extensive use of agrochemicals in agricultural
practices that caused environmental disturbances confront mankind of escalating
problems of food security and sustainability in agriculture. Escalating environmental
problems and global hunger have led to the development and adoption of genetic
engineering and other conventional plant breeding approaches in developing stress-
tolerant varieties of crops. However, these approaches have drawn flaws in their
adoption as the process of generating tolerant varieties takes months to years in
bringing the technology from the lab to the field. Under such scenario, sustainable
and climate-smart agricultural practices that avail bacterial usage open the avenues
in fulfilling the incessant demand for food for the global population. Ensuring stability
on economic fronts, bacteria minimizes plant salt uptake by trapping ions in their
exopolysaccharide matrix besides checking the expression of Na+/H+ and high-affinity
potassium transporters. Herein we describe information on salinity stress and its effect
on plant health as well as strategies adopted by plant growth-promoting rhizobacteria
(PGPR) in helping plants to overcome salinity stress and in mitigating loss in overall plant
productivity. It is believed that acquisition of advanced knowledge of plant-beneficial
PGPR will help in devising strategies for sustainable, environment-friendly, and climate-
smart agricultural technologies for adoption in agriculture to overcome the constrained
environmental conditions.
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INTRODUCTION

With rapid urbanization, the reduction in agricultural land left
less space to expand the cultivation of plants. Under such
circumstances, expansion in plant production relies on increasing
the fertility of soils to ensure food for all under the current
global food security scenario (Godfray et al., 2010). In this
direction, soil quality and water availability play a pivotal role
in sustainable agricultural productivity. Any disbalance of salt
in soil and water leads not only to decline in plant productivity
but also even to their abandonment as it progresses with
change in the land pattern from fertile to a marginal one.
Although primary salinity is natural in the environment, the
contribution by anthropogenic sources such as urbanization
and deforestation is worth noting as these result in enhancing
loss of the cultivable capacity of soils (land degradation and
disturbance in the physical and the biological properties of
soil) that affect plant productivity worldwide. Enhancement in
salt deposits in an agricultural field hampers the growth of
crop plants. In the scenario of decreased availability of fertile
land, studies were directed in adopting genetic engineering
approaches to complement traditional breeding methods in the
development of salt-tolerant crops of food and fiber (Rozema
and Flowers, 2008; Zhu et al., 2011; Dodd and Perez-Alfocea,
2012; Joshi et al., 2015). Despite significant efforts, the complexity
in understanding the biological aspects of salt-stress-induced
changes (morphological, biochemical, and physiological) renders
limited success in developing salinity-stress-tolerant plants.

To cope up with the limited success in bringing technology-
driven transgenics from the lab to the field, alternative strategies,
such as the introduction of salt-tolerant microbes, are explored
for adoption in augmenting and, as such, enhancing the
growth of crops in salt-affected soils (Dodd and Perez-Alfocea,
2012; Etesami and Beattie, 2017; Etesami, 2018). Among them,
plant growth-promoting rhizobacteria (PGPR) constitutes an
important class of microorganisms that were found effective
in inducing systemic tolerance in plants to tolerate abiotic
stresses (Dutta and Khurana, 2015; Etesami and Beattie, 2018).
However, PGPR from hypersaline soils (halotolerant PGPR)
expressing plant growth-promoting (PGP) traits were found
least affected by environmental factors such as climate, soil
characteristics, etc., and thus are more efficient in enhancing
salt tolerance in plants than PGPR from non-saline habitats
(Giongo et al., 2008; Upadhyay et al., 2009; Egamberdieva
and Kucharova, 2009; Khan et al., 2016). As part of the
plant–bacterial interaction at the rhizospheric plane, plants
were found to dictate the growth of microbiota for driving
adaptation to changing environmental conditions (Berendsen
et al., 2012). While many excellent reviews discussed a range
of diverse plant-beneficial traits of microbiota encompassing
both bacteria and fungi (Qin et al., 2016; Ilangumaran and
Smith, 2017; Etesami and Beattie, 2017, 2018; Backer et al.,
2018; Egamberdieva et al., 2019), the present study is aimed
at highlighting the importance of plant–bacterial interactions,
with comprehensive inputs about the mechanistic insights that
operate at the plant level in mitigating salt stress toward
improvement in crop yield as part of the climate-smart

agricultural practices geared for feeding the ever-increasing
global population.

SOIL SALINITY AND PLANT GROWTH

Increase in the concentration of salts, preferably sodium
chloride (NaCl; electrical conductance >4 dSm−1 or 40 mM),
attributed to both natural (salts released by weathering of
rocks, salt from seawater influx, air-borne salts from oceans,
etc.) and anthropogenic (surface runoff and irrigation-based salt
deposition year after year) sources, renders the soil no longer
suitable for cultivation (Pitman and Lauchli, 2002; Rengasamy,
2002). Despite suitable soil water columns, excessive salinity
raising the concentration in soil solutions deprive plants of
using it via osmotic reduction. High soil salt concentrations
induce its effects right from imbibition of water to seed
germination and root elongation that together have a great
effect on the yield of crop plants (Katembe et al., 1998;
Kaymakanova, 2009). It has been observed that the pre-treatment
of seeds with different PGPR promotes seed germination and
seedling growth (Poupin et al., 2013; Rahmoune et al., 2017;
Bakhshandeh et al., 2020). As part of the mechanism, it
is believed that PGPR helps in maintaining the balance of
hormones, e.g., auxin to cytokinin levels during germination
and the early stages of plant development, thereby playing
a critical role in dictating the genetic program that controls
post-embryonic roots and shoot growth (Chu et al., 2019;
Qessaoui et al., 2019).

At later stages of plant growth, soil salinity interferes with
root turgor that led to reduction in water absorption, decrease
in the plant water column that progresses through dehydration
and osmotic stress, inhibition of the metabolic machinery,
disturbance in the transpiration system, and, most importantly,
interference with parameters pertaining to photosynthesis
(Kaushal and Wani, 2015). Photosynthesis refers to a major
attribute in dry matter and, as such, in plant productivity,
showing a decrease in saline condition owing to the reduction
in leaf turgor and reduced leaf surface area (Qin et al.,
2010; Tanveer and Shah, 2017). It occurs either through (1)
decreased stomatal opening and CO2 uptake, which in turn
is associated with the reduction in stomatal conductance or
(2) operation of a less-efficient Calvin cycle due to limited
chlorophyll content (Lycoskoufs et al., 2005; Chaves et al.,
2009). Stunted growth (seedling) with reduced biomass and
leaf area are observed effects of salinity stress in the growth
(vegetative stage) of plants (Takemura et al., 2000; Wang et al.,
2003). PGPR employ different mechanisms in encouraging
plant growth, prominently being nutrient availability and
securing mineral assets such as phosphorus, phytohormone
production, production of volatile compounds in controlling
seed- and soil-borne phytopathogen, and synergism with other
plant-beneficial microorganisms in enhancing resistance against
different stresses (Bhattacharyya and Jha, 2012; Bhattacharyya
et al., 2015; Bell et al., 2015; Kurepin et al., 2015; Bach
et al., 2016; Yuan et al., 2016). Additionally, a limited canopy
that prevents water loss by transpiration also constitutes a
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plant survival mechanism under high salt concentrations (Savé
et al., 1994; Ruiz-Sánchez et al., 2000; Colmer et al., 2005;
Cassaniti et al., 2009, 2012).

SALINITY STRESS, PGPR, AND PLANT
PRODUCTIVITY: A TRIANGULAR
CONJECTURE

Salinity is a stress of global magnitude, having a substantial effect
on plant growth, and is accountable for a significant loss in their
productivity. Exerting adverse effects on germination, vigor, and
yield, it led to drastic reduction in plant productivity, as observed
in plants growing in arid and semi-arid areas (Paul and Lade,
2014). With an increase in salt concentration, disturbance in the
cellular ion balance led to an enhancement in reactive oxygen
species (ROS) production, besides taking a huge toll in exerting
ionic toxicity on the accumulation of Na+ and Cl− ions (Grover
et al., 2011). ROS (free oxygen radicals, superoxide, and hydrogen
peroxide) are capable of damaging cellular structures and damage
of biomolecules (proteins, lipids, etc.) besides talking a huge
toll on chlorophyll degradation and lipid peroxidation that are,
in turn, associated with a reduction in photosynthetic activity,
damage of cellular membranes, and ultimately proceeding with
induction of programmed cell death (Apel and Hirt, 2004).
Interfering in cellular enzymatic functions, the accumulation
of Na+ and Cl− ions produces diverse effects on different
physiological fronts and in its effect on the growth and the
development of plants (Nunkaew et al., 2015; Acosta-Motos et al.,
2017). Photosynthesis capacity is reduced due to the interference
of these ions with the opening and the closing of the stomata and
in exerting osmotic stress as reflected in plants through reduction
in leaf area and chlorophyll content (Munns, 1992; Kang et al.,
2014a). Suppression of plant growth, a phenomenon of disturbed
metabolic activities as a result of nutritional and hormonal
imbalance together with abscission and senescence, is observed
once the intensity of salinity stress, together with temperature,
crosses the limit (Glick, 2014; Paul and Lade, 2014; Hashem
et al., 2015). The accumulation of Cl− ion leads to inhibition
of nitrate reductase activity in the photosynthetic pathway (Azza
Mazher et al., 2007; Nadeem et al., 2014). Elevation in ethylene
(C2H4) levels progresses with drastic effects on plant health such
as defoliation, senescence, etc. (Barnawal et al., 2014; Glick, 2014).
Upon overcoming the storage capacity of cells, the accumulation
of salts progresses to dehydration of cells, ultimately leading to
plant death (Kang et al., 2014a).

Constituting an excellent environment for them to flourish,
plant-beneficial microorganisms play an important role in
achieving sustainability in plant productivity under the current
paradigm of climatic change. As part of the climate-smart
agricultural practices, microorganisms improve nutrient
availability to plants and, in return, get nutrients as root
exudates from these plants (Patel et al., 2015; Hamilton et al.,
2016; Singh and Strong, 2016). Halotolerant PGPR employs a
wide range of strategies as adaption for survival under saline
conditions and, in turn, executes a number of plant-beneficial
mechanisms for improving the growth of crop plants growing

under salinity stress (Figure 1). These include (1) making
nutrients available to plants via solubilization of phosphorus
and potassium, siderophore production for iron uptake, and
fixation of atmospheric nitrogen (Etesami and Beattie, 2017;
Etesami, 2018), (2) maintenance of water balance by changing
the architecture of roots for hydraulic conductance (Arora et al.,
2012), (3) selective uptake of K+ to Na+ ions for maintaining
a high K+/Na+ ratio that indirectly reduces the intercellular
accumulation of K+ to Na+ ions (Islam et al., 2016; Etesami,
2018), (4) exopolysaccharide (EPS)-mediated alleviation of
salt stress by decreasing Na+ accumulation in roots and, as
such, preventing their translocation to the leaves (Nunkaew
et al., 2015; Qin et al., 2016; Etesami and Beattie, 2017), (5)
production of volatile compounds and osmoprotectants that
enhance the plants’ survival under salt stress (Creus et al., 2004;
Timmusk et al., 2014), (6) protecting plants from oxidative
stress by upregulating the activity of enzymes such as superoxide
dismutase (SOD), catalase (CAT), and peroxidase as part of the
antioxidant defense system (Islam et al., 2016), (7) maintenance
of hormonal level for alleviation of salt stress (Etesami et al., 2014;
Singh et al., 2015; Etesami and Beattie, 2017), (8) modulation
in the expression of stress-responsive genes (Gond et al., 2015;
Qin et al., 2016; Kaushal and Wani, 2016; Etesami and Beattie,
2017), and (9) production of extracellular enzymes that impart
protection against phytopathogens competing with beneficial
bacterial species for nutrients (Hariprasad et al., 2011; Dubey
et al., 2014; Etesami, 2018).

PGPR IN THE ALLEVIATION OF SALT
STRESS

Salinity stress adversely affects plant morphological,
physiological, and biochemical functioning that, in turn,
proves detrimental to plant health. Salt tolerance−a parameter
quantified over given time−is survival, growth (vegetative), and
biomass (harvestable) of the plant growing under salt stress to
non-saline habitats (Munns, 2002b). The plants adopt either
by inheriting genetic traits that impart salinity tolerance or by
adopting a selectable mechanism of salt exclusion from the
roots, thereby delaying salinity stress (Munns, 2002b; Zhu,
2007). A few (in particular, halophytes) conduct movement of
accumulated salts via the xylem for precipitation at the leaf
surface, while others have developed specialized structures (salt
glands) in shoots, whereby salt is excreted on the surface for
removal by wind or water (Ilangumaran and Smith, 2017).
Additionally, plants undergo valuable interactions with bacterial
species residing in the rhizospheric region, with an interaction
pattern ranging from mutualism to antagonism. Colonization
and successful establishment in the rhizospheric region are
considered as a prerequisite for their interaction at the root
surface. Traits that promote colonization of PGPR at the root
surface include the availability of sufficient nutrients besides the
property of being motile and capable of adherence (via pilli,
surface-localized proteins, etc.) to plant roots (Jan et al., 2011).
On one side where root exudates (organic acids, phenolics,
sugars, amino acids, etc.) help microbes to flourish, it prompts
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FIGURE 1 | Salinity stress and tolerance mechanisms induced by plant growth-promoting rhizobacteria.

changes (both physical and chemical) in plants related to
defense, nutrient deficiency, and tolerance against heavy metals
besides being important in eliciting strong responses against
different abiotic stresses such as salinity as a mechanism of
promoting plant growth (Jan et al., 2011; Nadeem et al., 2014;
Rashid et al., 2016). Table 1 a detailed account of the growth-
promoting attributes of PGPR in agroecosystems is given in the
following discussion.

Maintenance of Water Balance and
Nutrient Acquisition
The hydration of cells, having a greater impact on physiological
and metabolic processes, determines behavioral growth in plants.
Hydraulic gradients in the xylem regulate water conductance
from the roots to the leaves against an imbalance between the
rate of transpiration and the available water absorbed from the
soil (Passioura, 2010; Chavarria and dos Santos, 2012). The
sustained transpiration of water from the leaf surface without
any replenishment causes a reduction in xylem water potential
that progressively leads to leaf dehydration, depending on the

environmental conditions, stage of the growth of plant, canopy
characteristics, and water quality as part of irrigation. The
accumulation of salts at the root surface causes a transition in the
root architecture (supresses lateral root formation) over time that
influences the availability and uptake of soil nutrients. Salinity-
induced osmotic stress proceeds with a decrease in diffusion
and, as such, mass flow of nutrients as they are carried to the
roots of plants by water (Zhu, 2001; Munns, 2002a; Ashraf,
2004; Sánchez-Blanco et al., 2004; Meloni et al., 2008; Franco
et al., 2011; Chavarria and dos Santos, 2012). Under osmotic
stress conditions, the aboveground plant parts undergo little
photosynthetic activity and switch to the use of photo-assimilates,
which causes a reduction in plant growth. All these events lead to
a subsequent reduction in plant productivity (Chartzoulakis et al.,
2002; Giri et al., 2003; Katerji et al., 2005; Bhatnagar-Mathur et al.,
2007; Álvarez et al., 2012; Gómez-Bellot et al., 2013).

The inoculation of bacterial isolates to the roots of pepper
plants resulted in an enhanced roots system, thereby increasing
the ability of plants to uptake water from the surroundings
(Marasco et al., 2013). The expression of aquaporins (water-
conducting proteins) present in plasma and intracellular
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TABLE 1 | Plant growth-promoting rhizobacteria (PGPR)−plant interactions under salinity stress and plant beneficial effects recorded thereof.

Sample
number

Plant species PGPR species inoculation Effects observed References

(1) Maize (Zea
mays)

Achromobacter xylosoxidans Improved maize growth and productivity under drought stress Danish et al., 2020

B. licheniformis FMCH001 Enhances plant water use efficiency via growth stimulation in both
normal as well as in drought conditions

Akhtar et al., 2020

Bacillus sps. Induces plant response for defense enzymes, chlorophyll, proline,
and soluble sugar under salt stress

Misra and
Chauhan, 2020

Bacillus sp. NBRI YN4.4 Improves photosynthetic pigments and soluble sugar content and
decreases proline level under stress conditions; also enhances soil
enzymes dehydrogenase, alkaline phosphatase, and
betaglucosidase, which help in improving soil health

Dixit et al., 2020

Ochrobactrum sp. NBRISH6 Helps in maintaining homeostasis through various mechanisms
under deficit water stress condition

Mishra et al., 2020

A. brasilense Induced the development of a more extensive root system,
regardless of growth medium nitrate concentration

Pii et al., 2019

Burkholderia cenocepacia CR318 Helps in the health and the growth of crop including phosphate and
potassium solubilization and antimicrobial activity

You et al., 2020

P. aeruginosa strain FB2 and B. subtilis strain
RMB5

Shows effectivity against a range of fungal phytopathogens Ali et al., 2020

Serratia liquefaciens KM4 Maintenance of water balance, enhanced antioxidant enzyme
activities, increased nutrient uptake

El-Esawi et al.,
2018b

Pseudomonas sp., Arthrobacter sp., Bacillus
sp., and members of other bacterial groups

Enhanced phosphate solubilization, IAA and ACC
deaminase activity

Aslam and Ali,
2018

A. brasilense Ab-V5 and Ab-V6, Rhizobium
tropici CIAT 899

Enhanced antioxidant enzyme activities Fukami et al., 2018

Bacillus aquimaris DY-3 Maintenance of water balance, development of pigment system,
enhanced antioxidant enzyme activities

Li and Jiang, 2017

Bacillus amyloliquefaciens SQR9 Enhanced solute accumulation, enhanced antioxidant enzyme
activities, increased expression of salinity stress response genes

Chen et al., 2016

Staphylococcus sciuri Enhanced antioxidant enzyme activities Akram et al., 2016

Bacillus spp., Arthrobacter pascens Phosphate solubilization, maintenance of water balance, increased
antioxidant enzyme activities

Ullah and Bano,
2015

Pantoea agglomerans Increased expression of aquaporin genes Gond et al., 2015

P. syringae, P. fluorescens Enhanced ACC deaminase activity Zafar-ul-Hye et al.,
2014

Proteus penneri, P. aeruginosa, A. faecalis Enhanced exopolysaccharide production Naseem and Bano,
2014

Azotobacter chroococcum Enhanced growth, increased phosphate solubilization and K+/Na+

ratio
Rojas-Tapias et al.,
2012

Bacillus megaterium Improved expression of ZmPIP isoforms Marulanda et al.,
2010

Rhizobium, Pseudomonas spp. Osmotic regulation Bano and Fatima,
2009

Pseudomonas spp., Enterobacter spp. ACC deaminase activity Nadeem et al.,
2009

Pseudomonas syringae, Enterobacter
aerogenes, P. fluorescens

ACC deaminase activity Nadeem et al.,
2007

Azospirillum brasilense Maintenance of ion homeostasis, decreased nitrogenase activity Hamdia et al., 2004

(2) Rice (Oryza
sativa)

Bacillus aryabhattai, Achromobacter
denitrificans, and Ochrobactrum intermedium

Helps to accumulate under salt stress and exhibits greater
resistance to heavy metals

Sultana et al., 2020

Klebsiella sp. PD3 Degrades phenanthrene; also shows ACC deaminase activity and
phosphate solubilization

Li X. et al., 2020

Bacillus amyloliquefaciens SN13 Induces metabolic and physiological parameters via different
enzymes to reduce the impact of stress

Bisht et al., 2019

Bacillus sp. JBS-28 Promotes grain yields; also decreases arsenic accumulation in
arsenic-contaminated soil and paddy fields

Aw et al., 2019

(Continued)
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TABLE 1 | Continued

Sample
number

Plant species PGPR species inoculation Effects observed References

Bacillus aryabhattai MS3 Phosphate solubilization, enhanced siderophore and
IAA production

Sultana et al., 2018

Halobacillus dabanensis SB-26, Halobacillus sp.
GSP 34

Nitrogen fixation and IAA production Rima et al., 2018

Enterobacter sp. P23 Growth promotion, phosphate solubilization, increased
siderophore, and IAA production, reduction in ethylene
production, enhanced antioxidant enzyme activities

Sarkar et al., 2018

B. stratosphericus (NBRI 5Q and NBRI 7A) Increased growth and biomass production, Phosphate
solubilization, IAA production, enhanced ACC
deaminase activity

Misra et al., 2017

Thalassobacillus denorans (NCCP-58),
Oceanobacillus kapialis (NCCP-76)

Increased germination and growth of root and shoot,
developed pigment system, reduced Na+ ion
accumulation

Shah et al., 2017

Bacillus pumilus Growth promotion, enhanced antioxidant enzyme
production, reduced Na+ ion accumulation

Khan et al., 2016

Bacillus and Citrobacter Growth promotion, phosphate solubilization, IAA
production

Habib et al., 2016

Pseudomonas PF1 and TDK1 Enhanced antioxidant enzyme production Sen and
Chandrasekhar,
2015

Serratia sp., Pseudomonas sp. Growth promotion, phosphate solubilization, IAA
production

Nakbanpote et al.,
2014

Alcaligens sp., Bacillus sp., Ochrobactrum sp. ACC deaminase activity Bal et al., 2013

P. pseudoalcaligenes, B. pumilus Reduction in ROS production, delay of senescence Jha and
Subramanian, 2013

B. amyloliquefaciens NBRISN13 (SN13) Solute accumulation, enhanced expression of SOS1,
EREBP, SERK1, and NADP-Me2

Nautiyal et al., 2013

(3) Wheat (Triticum
aestivum)

Variovorax paradoxus RAA3; Pseudomonas spp.
DPC12, DPB13, DPB15, DPB16; Achromobacter
spp. PSA7, PSB8; Ochrobactrum anthropi DPC9

ACC deaminase activity; improves the growth of plants
in water-stressed rain-fed environments

Chandra et al.,
2019

Planomicrobium chinense and Bacillus cereus with
salicylic acid

Reduces moisture stress in plants Khan and Bano,
2019

Bacillus siamensis, Bacillus sp., and Bacillus
methylotrophicus

ACC deaminase activity Amna et al., 2019

Bacillus subtilis Induction of systemic resistance Lastochkina et al.,
2017

Dietzia natronolimnaea Enhanced expression of SOS-related genes, increased
tissue-specific expression of ion transporters,
modulation of ABA signaling cascade

Bharti et al., 2016

Serratia marcescens CDP-13 ACC deaminase activity, minimizes the salinity-induced
oxidative damages to the plants

Singh and Jha,
2016

Arthrobacter spp. SU18, B. aquimaris SU44,
B. aquimaris SU8

Root dry weight and shoot biomass Upadhyay and
Singh, 2015

Azosprillium lipoferum, Pseudomonas fluorescens
169

Development of pigment system Saghafi et al., 2013

Azospirillum Development of pigment system, enhanced solute
accumulation, increased seedling growth and plant yield

Nia et al., 2012

Piriformo sporaindica, Azospirillum Development of pigment system, enhanced solute
accumulation, increased seedling growth

Zarea et al., 2012

Azospirillum lipoferum Growth and biomass accumulation Bacilio et al., 2004

(4) Soybean
(Glycine max)

Bradyrhizobium diazoefficiens USDA110, Bacillus
velezensis S141

Enhanced nodulation and N2-fixing efficiency by
producing larger nodules

Sibponkrung et al.,
2020

Bradyrhizobium Improves plant development and increases nodulation Zeffa et al., 2020

P. fluorescens LBUM677 Enhances plant biomass, oil content, and lipid
composition

Jiménez et al.,
2020

A. woluwensis, M. oxydans, A. aurescens, B.
megaterium, and B. aryabhattai

Maintains osmotic balance and regulates salt tolerance Khan et al., 2019

(Continued)
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TABLE 1 | Continued

Sample
number

Plant species PGPR species inoculation Effects observed References

L. adecarcoxylata LSE-1, Bradyrhizobium sp.
LSBR-3

Promotes plant growth with increased plant productivity Kumawat et al.,
2019

Bacillus firmus SW5 Development of root system, enhanced antioxidant
enzyme levels

El-Esawi et al.,
2018a

Bradyrhizobium japonicum USDA 110, P. putida
TSAU1

Development of root system with nodule formation,
increased phosphate acquisition

Egamberdieva
et al., 2017

Pseudomonas simiae AU Increased chlorophyll content, phosphate solubilization,
IAA and siderophore production; decrease in Na+

accumulation at root surface

Vaishnav et al.,
2016a

Bacillus thuriengenesis NEB17 Increased PEPCO and RuBisCo expression, enhanced
production of pyruvate kinase, proteins of
photosystems I and II, isocitrate lyase, and antioxidant
glutathione-S-transferase

Subramanian et al.,
2016

P. putida H-2-3 Enhanced production of ABA, salicylic acid, and
gibberellins

Kang et al., 2014b

P. fluorescens Enhanced cytokinin production Bhattacharyya and
Jha, 2012

Bradyrhizobium japonicum, Bacillus subtilis SU-12,
Serratia proteamaculans

Exopolysaccharide production, antioxidant activity Han and Lee, 2005

(5) Tomato
(Solanum
lycopersicum)

Bacillus subtilis Rhizo SF 48 ACC deaminase activity; protects against oxidative
damage and enhances plant growth against drought
stress

Gowtham et al.,
2020

Funneliformis mosseae, Enterobacter sp. EG16,
and Enterobacter ludwigii DJ3

Enhances plant growth and tolerance to Cd in
Cd-contaminated soil

Li Y. et al., 2020

Leclercia adecarboxylata MO1 IAA- and ACC-deaminase-producing abilities; improves
plant tolerance to salinity stress

Kang et al., 2019

Pseudomonas putida UW4 (ACC deaminase) Increased shoot growth and expression of Toc GTPase Yan et al., 2014

Pseudomonas aeruginosa T15, Pseudomonas
fluorescens NT1, Pseudomonas stutzeri C4

Decreased ethylene levels, increased root and shoot
length

Tank and Saraf,
2010

Achromobacter piechaudii ARV8 Enhanced induced systemic tolerance, enhanced ACC
deaminase activity

Mayak et al., 2004

(6) Common bean
(Phaseolus
vulgaris)

Aneurinibacillus aneurinilyticus and Paenibacillus sp. ACC deaminase activity Gupta and Pandey,
2019

Mycorrhizae, Bacillus subtilis, and Pseudomonas
fluorescence

Controls the infection of Sclerotium rolfsii; also acts as
biofertilizers

Mohamed et al.,
2019

Rhizobium Increased nutrient content and dry weight Yanni et al., 2016

Pseudomonas chlororaphis TSAU13,
Pseudomonas extremorientalis TSAU20

Increased dry weight and root length Egamberdieva,
2011

Azospirillum brasilense, Rhizobium spp. Enhanced root branching, increased secretion of
flavonoids

Dardanelli et al.,
2008

(7) Radish
(Raphanus
sativus)

Bacillus sp. CIK-516 Improves plant growth and enhances Ni phytoextraction Akhtar et al., 2018

Lactobacillus sp., P. putida and Azotobacter
chroococcum

Helps to mitigate salinity stress at the time of
germination

Hussein and Joo,
2018

Arthrobacter scleromae SYE-3 Increased shoot length Hong and Lee,
2017

Staphylococcus kloosii, Kocuria erythromyxa Increased chlorophyll content, increased shoot and root
fresh and dry weight

Yildirim et al.,
2008a

Bacillus spp. Induction of plant growth Yildirim et al.,
2008b

(8) Barley
(Hordeum
vulgare)

Hartmannibacter diazotrophicus Growth induction, enhanced ACC deaminase activity,
increased root and shoot dry weight

Suarez et al., 2015

Curtobacterium flaccumfaciens Promotes plant growth Cardinale et al.,
2015
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membrane determines the hydraulic conductance (L) at the root
surface and, as such, the uptake of water from salinized soil for a
plant (Moshelion et al., 2015; Qin et al., 2016). Plasma membrane
intrinsic proteins (PIPs) constitute important aquaporins for a
plant, which helps in its adaptation to changing environmental
conditions (Marulanda et al., 2010; Moshelion et al., 2015). An
expressional analysis of Zea mays roots inoculated with Bacillus
megaterium and Pantoea agglomerans showed up-regulated PIP2
and ZmPIP1-1 genes that contribute to the increase in the
L-values under salinity stress conditions (Gond et al., 2015).
These studies reveal that PGP bacteria determine the resistance
of plants to water stress irrespective of the nature of interaction
in determining the specificity for growth-promoting activity.
Plant−bacterial interactions at the root surface assist plants in
maintaining the availability of water and helps in the acquisition
of nutrients through nitrogen fixation, phosphate solubilizations,
and siderophore production as part of their mechanism in
fulfilling the nutritional requirements of plants (Beattie, 2015;
Pii et al., 2015). Nitrogen−an essential nutrient that limits plant
productivity−is often applied exogenously. However, inorganic
fertilizers that compensate nitrogen deficiency often lead to
a change in soil structure and, as such, composition of soil
microflora (Rueda-Puente et al., 2003). Studies were performed
on exploring the naturally occurring nitrogen fixers which have
the potential for exploration toward plant growth promotion.
Of the different interactions, the nitrogen-fixing assembly of
rhizobia in the roots of legumes is an extensively studied
relationship between plants and bacteria. In this symbiotic
relationship, the rhizomes provide the legumes with nitrogen
and, in return, get reduced carbon as nutrient and suitable
environment for nitrogenase activity (Backer et al., 2018). Being
a sensitive process, all stages of nitrogen fixation in leguminous
plants were found to be prone to salinity effects, which result
in a decrease in the nitrogen content of leguminous plants
(de la Peña and Pueyo, 2012; Bruning and Rozema, 2013). In
this regard, the commercial preparation of halotolerant free-
living diazotrophs such as Azotobacter sp., Azospirillium sp., etc.,
proved beneficial than rhizobia in nitrogen fixation in a variety of
crops worldwide, thereby found effective in increasing the yield of
various cereal crops (Vessey, 2003; Bashan and de-Bashan, 2015;
Sharma et al., 2016).

Phosphorus is a major essential macronutrient that constitutes
another limiting nutrient for plants after nitrogen. The
abundance of insoluble forms and the intensive agricultural
practices in both saline and fertile soils deplete plants of this
essential nutrient. On the second line, phosphate-solubilizing
microorganisms (PSMs) convert and as such make non-soluble
forms of phosphate to easily available soluble forms for efficient
utilization by the plants (Backer et al., 2018). Compared to
complementation with NPK fertilizers, the employment of
phosphate-solubilizing bacteria was found effective in enhancing
phosphate availability to plants without exacerbating the soil
salinity levels (Etesami, 2018; Etesami and Beattie, 2018).
The liberation of reactive forms of phosphate from organic
compounds on utilizing enzyme phytase of PSMs constitutes
another mode of phosphate availability to plants. Additionally,
the production of hydrogen cyanide (HCN), which was earlier

thought as a plant-protective mechanism, was found to be
associated with an enhancement in phosphate availability to
plants (Rijavec and Lapanje, 2016). Siderophore (iron-binding
ligands) production is associated with the deprivation of
pathogenic microorganisms of iron (a micronutrient) and
making it available for use in respiration, photosynthesis, and
nitrogen fixation by plants (Ahmed and Holmstrom, 2014;
Saha et al., 2016).

Maintenance of Ionic Homeostasis
Alleviating the nutritional imbalance caused by a high influx
of salt ions regulates the exchange of nutrients (both macro
and micro) to minerals. Microbes increase nutrient availability
to plants through the increased production of siderophores
(metal chelation) and bringing changes in pH at the surface
of rhizospheres (Dodd and Perez-Alfocea, 2012; Lugtenberg
et al., 2013). Disturbance in ionic homeostasis is observed in
crops that are poor excluders of Na+ (rice, beans, etc.) and
sensitive to Cl− ions (citrus, soybean, etc.) grown in soils with
high salt levels (Munns, 2002a; Tester and Davenport, 2003).
Under salinity stress, the influx of Na+ into the roots undergoes
translocation to the aerial parts via the xylem, with the final
accumulation taking place at the leaf surface rather than at the
roots (Tester and Davenport, 2003). As such, excluding Na+
from plants becomes difficult as only a small proportion of it
undergoes recirculation to the roots via the phloem, thereby
restricting it to the aerial parts, thus causing toxicity in plants.
An increase in the concentration of Na+ disturbs the Na+/K+
ratio that progresses with the inhibition of cytosolic activities
besides interfering with the activities of enzymes involved in
respiration and photosynthesis (Baral et al., 2015; Jacoby et al.,
2016). Considering the importance of Na+ homeostasis to the
growth of plants, the regulatory network of Na+/H+ antiporter
and high-affinity K+ transporters (HKT) is put to work for
the efflux of Na+ ions from the cells throughout the plants
(Tester and Davenport, 2003; Davenport et al., 2005). With
localization on the plasma membrane, the Na+/H+ antiporter
(also referred to as SOS1, salt overlay sensitive channel) efflux
Na+ in response to its increasing cytosolic levels (Qiu et al., 2002).
Also, the increase in plant Na+ level interferes with the uptake
of K+ at the root surface via the low-affinity K+ uptake system.
To increase salinity tolerance, plants activate high-affinity K+
transporters, thereby increasing the uptake of K+ over Na+ ions
in plants (Rodríguez-Navarro and Rubio, 2006). Additionally,
the activation of membrane-bound Ca2+ channels in response
to a depolarization event generates a Ca2+ signal that indicates
the occurrence of salt stress in plants. The Ca2+ signal is
sensed by calcineurin B-like protein (CBL4; also referred to as
SOS3) which undergoes complex formation with CBL-interacting
protein kinase; CIPK24 (also referred to as SOS2) enables the
phosphorylation of SOS1 for its activation, an event important
in maintaining the Na+/K+ ratio by sustaining K+ transporters
(Epstein, 1998; Halfter et al., 2000; Zhu, 2002).

Microbes minimize the accumulation of ions by increasing
Na+ exclusion at the roots besides boosting the working affinity
of K+ transporters that indirectly reduce their build-up in
aerial parts, thereby contributing to the maintenance of ion
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homeostasis in plants. Besides promoting biofilm formation at
the root surface that prevents the influx of Na+ into the roots,
EPS production by PGPR strains traps cations in their matrix,
thereby make it unavailable for uptake by the plants (Dodd and
Perez-Alfocea, 2012). The inoculation of Aeromonas hydrophila
and Bacillus sp. capable of producing EPS to the roots of wheat
traps Na+ ions, thereby making it unavailable for accumulation
at the leaf surface (Ashraf et al., 2004). The inoculation of
B. subtilis GB03 to the roots of Arabidopsis thaliana results
in the down-regulation of HKT1, thereby reducing the uptake
of Na+ (Zhang et al., 2008; Qin et al., 2016). Restricting the
uptake of Na+ at the root surface leads to induction in the
expression of HKT1 in shoots for facilitating the recirculation of
Na+ from the shoot toward the roots, which helps in maintaining
a high K+/Na+ ratio in plants (Zhang et al., 2008; Qin et al.,
2016; Ali et al., 2019). With the RNA interference-mediated
mutation of Ca2+-dependent protein kinase, CPK12 increases
the sensitivity of Arabidopsis thaliana to salt stress (Zhang
et al., 2018). The inoculation of Azotobacter strains C5 and C9
increases the exclusion of Na+ and, in anticipation, enhances
K+ uptake, which subsequently led to an increase in proline,
polyphenol, and chlorophyll content in maize leaves grown
under salt stress (Rojas-Tapias et al., 2012). While studying the
short- and the long-term effects of salt stress on A. thaliana,
the inoculation of Burkholderia phytofirmans PsJN was found
to attribute tolerance to a high amount of salts via alteration
in the expression of ion homeostasis-associated genes (HKT1,
KT1, SOS1, and Na+/H+ exchanger NHX2) (Pinedo et al.,
2015). Similarly, the inoculation of B. subtilis GB03 to Puccinella
tenuiflora showed an upregulation in the expression of PtSOS1
and PtHKT1 with less Na+ accumulation under a high salt
concentration (Niu et al., 2016).

Exopolysaccharide Production
Exopolysaccharide are homo- or hetero-polysaccharides
produced by rhizobacteria that enable their survival under
inhospitable conditions. Though polysaccharides vary in
composition, glucose, galactose, and mannose are abundant
monomers that, in association with other sub-unit components
such as amino sugars, uronic acids, etc., form a capsule-like
protective biofilm on the surface of cells (Upadhyay et al., 2011;
Rossi and De Philippis, 2015). Formed under adverse conditions,
the adsorption of EPS on soil via cation bridges and Van der
waals forces stabilizes soil structure and aggregation (Sandhya
et al., 2009). Binding soil particles to aggregates, EPS form
an enclosed matrix that increases root-adhering soil per root
tissue (RAS/RT), conferring protection against environmental
fluctuations. The protective EPS capsule possesses strong
water-holding capacity that helps in the nutrient uptake by
plants besides maintaining a higher water potential around the
plant roots, protecting the plant from desiccation and ensuring
plant growth and survival under salinity stress (Upadhyay
et al., 2011; Selvakumar et al., 2012; Balsanelli et al., 2014). In
addition to its role in nodule formation in legume–rhizobia
associations, it forms a protective biofilm around the roots,
thereby imparting protection to plant against salinity stress
(Stoodley et al., 2002; Skorupska et al., 2006). Additionally, EPS

rhizosheaths around the plant roots get hold of Na+ ions, thereby
make these unavailable to plants. The inoculation of Halomonas
variabilis (HT1) and P. rifietoensis (RT4) under salinity stress
stabilizes soil structures and aggregation, thereby increasing
the growth of chickpea (Cicer arietinum var. CM-98) (Qurashi
and Sabri, 2012). Exerting a capability to fight salt stress, the
inoculation of Bacillus subtilis to Helianthus annus was found to
downregulate the expression of HKT1/K+ transporter (Zhang
et al., 2008). Pseudomonas aeruginosa inoculation reduces salt
stress and promoted growth that led to an enhancement in yield
in Helianthus annus (Tewari and Arora, 2014). EPS are also used
as seed priming agents that promote seed germination and, as
such, crop yield under salinity stress conditions (Tewari and
Arora, 2014). The seed inoculation of Enterobacter sp. MN17 and
Bacillus sp. MN54 of Chenopodium quinoa results in improved
plant water relation following growth under a high salt (400mM
NaCl) concentration (Yang et al., 2016). The inoculation of
B. subtilis subsp. inaquosorum and Marinobacter lipolyticus
SM19 significantly reduces the adverse effects of salinity stress
in wheat (Atouei et al., 2019). Additionally, the inoculation of
halotolerant Pseudomonas PS01 strain was found to be associated
with the regulation of the expression of genes related to salt stress
in A. thaliana (Chu et al., 2019).

Production of Volatile Organic
Compounds
Volatile organic compounds (VOCs; lipophilic in nature)
are low molecular weight compounds that serve as signals
for development and systemic response within the same or
neighboring plants (Choudhary et al., 2008; Niinemets, 2010).
The PGPR-mediated production of VOCs induces a range
of physiological changes in plants that stimulate its growth
(increasing shoot biomass) besides inducing systemic resistance
to disease and controlling the plant pathogens (Lee et al.,
2012; Park et al., 2015; Tahir et al., 2017). VOCs promote the
biosynthesis of osmo-protectants such as glycine betaine whose
accumulation imparts protection to PS-II besides maintaining
the enzymatic activity and the membrane integrity of cells
under osmotic stress conditions (Mäkelä et al., 2000; Jagendorf
and Takabe, 2001). The VOCs of B. subtilis reduce salt stress
through an enhancement in the tissue-specific expression of
the HKT1/K+ transporter that enhances nutrient uptake at the
root surface while minimizing the influx of Na+ to the roots
(Zhang et al., 2008). P. chlororaphis O6 production of 2R, 3R-
butanediol prevents water loss by inducing stomatal closures in
A. thaliana, thereby imparting tolerance to A. thaliana (Cho
et al., 2008). The process is mediated by Aba-1 and OST-1
kinases of jasmonic acid, ethylene, and salicylic acid pathways
in plants. An increase in the VOC level on priming wheat
plants with B. thuringiensis AZP2 imparts self-protection to
the plants that enhances survival (fivefold higher) with higher
photosynthesis, resulting in increased biomass under salt stress
conditions (Timmusk et al., 2014). VOCs produced by P. simiae
up-regulates γ-glutamyl hydrolase, vegetative storage (regulating
Na+ homeostasis), and RUBISCO large-chain (associated with
an increase in chlorophyll content and, as such, photosynthesis)
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proteins that are considered important in eliciting induced
systemic resistance in soybean (Glycine max) (Vaishnav et al.,
2015). Butanoic acid released by Alcaligens faecalis strain
JBCS1294 attribute salt tolerance to plants via reprogramming
of auxin and gibberellin pathways (Bhattacharyya et al., 2015).
A blend of 7-hexanol, 3-methylbutanol, and 2-undecanone
was found effective in mimicking VOCs in attributing plant
growth effects on inoculation with different bacterial species
(Ledger et al., 2016).

Antioxidant Production
Reactive oxygen species (ROS; including superoxide O2

−·,
hydroxyl radical OH·, hydrogen peroxide H2O2, etc.), generated
as a metabolic by-product in plants, functions primarily as
a signaling molecule. Abnormality in the cellular metabolic
process of plants growing under stress conditions enhances the
production of ROS, which results in DNA damage, changes
in redox state, abnormality in protein formation, denaturation
of membranous proteins, lipid peroxidation, reduction in
membrane fluidity, interference with enzymatic activity, and
overall homeostasis of cell that progresses to cell damage and
even to plant cell death (Miller et al., 2010; Halo et al.,
2015). Under such conditions, both enzymatic (SOD, superoxide
dismutase; CAT, catalase; APX, ascorbate peroxidase, etc.) and
non-enzymatic antioxidants (GSH, glutathione; tocopherols;
ascorbic acid, etc.) play a vital role in neutralizing the ROS
and, as such, protect plant cells against oxidative stress (Kim
et al., 2014; Kaushal and Wani, 2015). In this regard, PGPRs
extend their antioxidant enzyme machinery as protection to
plants against oxidative stress. Salt stress induction triggers
adaptive response mechanisms, including the accumulation of
compatible compounds (organic and inorganic) that decrease
the hydraulic conductivity of membranes for reducing cellular
osmotic stress (Hasegawa et al., 2000; Munns, 2002a; Abdul-Jaleel
et al., 2007). The inoculation of Pseudomonas sp. to basil plants
(Ocimum basilicum L.) grown under stress conditions results in
increasing the CAT activity, while the application of a microbial
consortia (Pseudomonas sp., B. lentus, and A. brasilense) results in
enhancement in APX and GPX (Heidari and Golpayegani, 2011).
Similarly, tomato seedlings inoculated with Enterobacter spp.
showed an increase in APX activity (Sandhya et al., 2010), while
the inoculation of PGPR to gladiolus showed an enhancement
in SOD and CAT activities (Damodaran et al., 2013). The
inoculation of PGPR to Solanum tuberosum grown under stress
conditions results in an enhancement in the activity of APX,
SOD, CAT, and glutathione reductase (Gururani et al., 2013).
The inoculation of B. amyloliquefaciens NBRISN13 (SN13) of
rice grown under salinity stress results in an enhancement in
chlorophyll content and plant biomass besides increasing proline
content and the expression of antioxidant enzymes such as CAT
(Nautiyal et al., 2013). An up-regulation in stress-responsive
genes associated with proline biosynthesis was observed on
treating A. thaliana with Enterobacter sp. (Kim et al., 2014).

The inoculation of microbial consortia (A. nitroguajacolicus
strain YB3 and YB5, P. jessenii R62, and P. synxantha R81)
to IR-64 variety of rice grown under stress conditions induces
and, as such, enhances SOD, peroxidase (POD), CAT, and

APX levels (Gusain et al., 2015). A significant increase in
the transcription of stress-responsive genes, AtRSA1 (associated
with ROS detoxification) and AtWRKY8 (associated with
maintenance of ion homeostasis), while reducing the expression
of AtVQ9 (negative regulator of AtWRKY8), was observed on
inoculating Paenibacillus youginensis-to A. thaliana seedlings
(Sukweenadhi et al., 2015). The inoculation of maize seedling
with B. amyloliquefaciens SQR9 improved the glutathione, POD,
and CAT levels besides showing an enhancement in soluble sugar
and chlorophyll content (Chen et al., 2016). The physiological
effects of the treatment were assessed as enhancement in RBCL
(related to photosynthesis), HKT1, and NHX-1, -2, and -3
genes. Modulation in the expression of complete gene families
associated with abscisic acid (ABA) signaling, ion transport,
SOS pathway, and antioxidants was observed on inoculating
wheat with salt-tolerant Dietzia natronolimnaea (Bharti et al.,
2016). The inoculation of soybean by P. simiae strain AU
results in the enhancement of pyrroline-5-carboxylase synthase,
associated with the synthesis of proline as part of tolerance to
stress conditions (Vaishnav and Choudhary, 2019). The study
goes well with previous reports regarding the enhancement in
proline content during stress conditions (Ghosh et al., 2018;
Patel et al., 2018). The inoculation of Azospirillum lipoferum
FK1 of chickpea exhibited enhanced antioxidant enzyme levels
besides demonstrating an increase in nutrient uptake and, as
such, improvement in its growth and development (El-Esawi
et al., 2019). The bacterial consortium of P. fluorescens S3,
B. mojavensis S1, and B. pumilis mitigates salt-induced growth
inhibition of barley through an enhancement in the water
conductance and the nutrient uptake of plants. The inoculation
of rice with Trichoderma asperellum and P. fluorescens results in
an enhancement in the activity of POD, APX, SOD, and CAT that
contributes to the alleviation of salt stress (Singh et al., 2020).

Enzymes and Metabolites of Bacterial
Origin
Plant diseases are considered as a major constraint to crop
yield. It has been observed that salinity stress contributes to an
increase in the susceptibility of plants to attacks by different
pathogens (Besri, 1993). As the usage of chemicals in the
control of plant pathogens imparts deleterious effects, PGPR
emerged as a potential substitute as a biological control strategy
in the management of pathogen-associated diseases in plants
(Compant et al., 2010; Etesami and Alikhani, 2018). PGPR-based
mechanisms employed in the biological control of pathogens
include the following:

(1) Synthesis of cell-wall-degrading enzymes: The production
of hydrolytic enzymes such as cellulases, glucanases,
chitinases, protease, etc., hydrolyzing polymeric
compounds such as cellulose, hemicellulose, chitin,
cell wall proteins, etc., was found capable of inhibiting
a variety of plant pathogens (Pal and Gardener, 2006;
Mabood et al., 2014; Husson et al., 2017; Vaddepalli et al.,
2017). Similarly, protease produced by different PGPR
agents was found effective in reducing the infections
of Fusarium sp. and M. phaseolina (Dunne et al., 1997;
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Gohel et al., 2004). The biocontrol potential of chitinase
produced by Paenibacillus illinoissensis spp. provides
protection against blight and damping off diseases in
pepper (Capsicum annuum) caused by Phytophthora
capsica and Rhizoctonia solani (Jung et al., 2003, 2005).
Chitinase produced by B. suly reduces the infection
severity of Fusarium sp. under greenhouse conditions
(Hariprasad et al., 2011). The production of chitinases
together with β-1,3-glucanases by PGPR such as B. subtilis
BSK17 for utilizing them as a source of carbon is of prime
importance as it forms a major enzyme group capable of
degrading the chitin and laminarin components of fungal
cell walls (Kumar et al., 2012; Dubey et al., 2014).

(2) Synthesis of antimicrobial metabolites: With maximum
reports from Bacillus and Pseudomonas genera, the
production of a wide range of metabolites was found to
restrict the growth of pathogens (Couillerot et al., 2009;
Olanrewaju et al., 2017).

(3) HCN production by Pseudomonas sp., Bacillus sp.,
Rhizobium, etc., was found capable of inhibiting
cytochrome C oxidase along with other metalloenzymes
(Nandi et al., 2017).

(4) The synthesis of siderophores by different PGPR strains
possessing a high affinity for Fe3+ ions chelates it and, as
such, deprives pathogens of this essential mineral (Shen
et al., 2013; Olanrewaju et al., 2017).

(5) Prime plants for induction of induced systemic resistance
that imparts a faster and stronger response to attacks by
different pathogens (Olanrewaju et al., 2017).

Maintenance of Hormonal Balance
Phytohormones regulating plant growth and developmental
processes attributes plants protection by imparting tolerance
to cope up with diverse changes in the environment (Ryu
and Cho, 2015). The exogenous application of phytohormones
supplementing the internal hormonal pool was found effective
in counteracting the deleterious effects of salt stress (Zahir
et al., 2010). The exogenous application of indole-3-acetic
acid (IAA) was found effective in stimulating the growth of
roots and leaves, thereby alleviating salinity-induced reduction
in plant productivity (Albacete et al., 2008; Dodd and
Perez-Alfocea, 2012). Diminishing the endogenous hormonal
level, metabolites, hormones, and enzymes produced by salt-
tolerant (ST) PGPR complements the hormonal status of
plants and, as such, contributes to the enhancement of salt
tolerance in plants grown under salt stress (Egamberdieva and
Kucharova, 2009; Ilangumaran and Smith, 2017). A common
trait of PGPR, production of IAA, was found to increase
the fitness of plants grown under salinity stress (Dodd et al.,
2010; Tiwari et al., 2011). Tryptophan in root exudates is
utilized by rhizobacteria for its conversion through multiple
routes to IAA for it to be readily absorbed by plant roots
(Spaepen and Vanderleyden, 2011; Ilangumaran and Smith,
2017). Complementing the endogenous IAA pool of plants,
its function in plants depends on the internal IAA levels
(ranging in function from promotion to inhibition of plant
growth). Required for cell division and elongation in plants,

the inoculation of ST-PGPR P. putida modulated internal IAA
pools that resulted in an increase in the growth parameters
in cotton plants grown under salinity stress (Yao et al., 2010;
Egamberdieva et al., 2017). The inoculation of P. stutzeri,
P. putida, and Stenotrophomonas maltophilia to Coleus plants
was found to lead the production of IAA, cytokinin, and
gibberellic acid (Patel and Saraf, 2017). The short-term
treatment of Enterobacter sp. EJ01 increased the expression
of salt stress-responsive genes such as late embryogenesis
abundant (RAB18), DRE-binding protein (DREB2b), stress-
inducible priming process (MPK3 and MPK6), etc., genes
in Arabidopsis thaliana, while increasing the ROS scavenging
activity of Solanum lycopersicum grown under salinity stress
(Ilangumaran and Smith, 2017). The inoculation of halotolerants
was found to be associated with an increase in the secretion
of salicylic acid that leads to an enhancement in the growth
of sunflower plant (Tewari and Arora, 2018). The inoculation
of Leclerciaa decarboxylata MO1 in Solanum lycopersicum
showed an improvement in chlorophyll fluorescence besides
increasing sugar synthesis and the production of organic acids
(Kang et al., 2019).

Cytokinin (CK) is another important class of phytohormones
that assists plants in growth and development and in attributing
resistance to different stresses (O’Brien and Benková, 2013).
Though a common trait of PGPRs, they suffice plants of CK
by either synthesizing it or altering its homeostasis in plants
(Dodd et al., 2010; Pallai et al., 2012; Kapoor and Kaur,
2016). The inoculation of Pseudomonas sp. (P. aurantiaca and
P. extremorientalis TSAU6 and TSAU20) results in alleviating
the salinity-induced dormancy of wheat seeds besides enhancing
their growth under salinity stress conditions (Egamberdieva,
2009). The inoculation of B. subtilis strain in Platycladus
orientalis and lettuce plant showed an enhanced root-to-shoot
signaling of CK, thereby improving plant growth under stress
conditions (Arkhipova et al., 2007; Liu et al., 2013). The ability
of PGPRs to synthesize CK highlights their importance in
stimulating plant growth.

Gibberellins (GA) constitute another important class of
phytohormones that play an important role in regulating cell
division and elongation and in regulating meristematic activity at
the roots and the leaves as part of its role in the developmental
and physiological processes of plants (Wang et al., 2015; Guo
et al., 2015; Martínez et al., 2016). Bottini et al. reported the
production of gibberellin by PGPR strains of B. licheniformis,
B. pumilis, and Azospirillium spp. (Bottini et al., 2004). Being
a key factor associated with the inhibition of plant growth
under stress conditions, PGPRs were found to enhance its levels
in plants, thereby attributing a tolerance mechanism to plants
for growth under salinity stress (Kang et al., 2014a; Martínez
et al., 2016; Shahzad et al., 2016). Kang et al. (2014a) reported
enhancement in the internal GA pools on inoculating plants with
B. cereus MJ-1 and Promicromospora sp. SE188. A similar effect
of regulating plant growth and development was observed on
inoculating plants with B. aryabhattai SRB02 (Park et al., 2017).
The inoculation of P. aeruginosa PM389 and ZNP1 together with
B. endophyticus J13 and B. tequilensis J12 results in the alleviation
of the stress-induced effects in A. thaliana (Ghosh et al., 2019).
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Abscisic acid is a stress hormone primarily known for
its role in the abscission of leaves and growth of plants.
Synthesized under water deficit conditions, it triggers an adaptive
response via the activation of a set of genes responsible
for stress resistance as part of its survival strategy for the
plants (Pliego et al., 2011; Sah et al., 2016). Its synthesis
in the roots that occurs in response to low water potential
triggers the growth of roots and the emergence of lateral roots,
contributing to the enhancement in the uptake of water at
the root surface (Vaishnav et al., 2016b). Simultaneously, its
translocation from roots to leaves progresses with the control
of the stomatal closure events toward regulation of water
loss by reducing transpiration at the leaf surface (Yamaguchi-
Shinozaki and Shinozaki, 1994; Dodd and Perez-Alfocea, 2012;
Kaushal and Wani, 2015). PGPRs capable of producing ABA
play an important role in plant–PGPR interactions (Dodd, 2003;
Naz et al., 2009; Dodd et al., 2010). They either modulate
the biosynthesis of ABA or regulate ABA-mediated signaling
pathways in plants, thereby contributing to the growth and
survival of plants under salinity stress. The inoculation of
PGPRs often mitigate the sensitivity of plants to water scarcity
by decreasing its accumulation at the roots and significantly
altering its long-distance signaling, i.e., shoot-to-root or vice
versa flow through the phloem and the xylem, respectively
(Dodd and Perez-Alfocea, 2012; Jiang et al., 2012; Belimov
et al., 2014). The inoculation of Phyllobacterium brassicacearum
STM196 results in an enhancement of the ABA levels that reduces
transpiration at the leaf surface and, as such, enhances salt stress
tolerance in A. thaliana (Bresson et al., 2013). A few species
of PGPR (Rhodococcus sp. and Novosphingobium sp.) inhabiting
rhizospheric regions capable of metabolizing ABA under in vitro
conditions represent another stress-relieving mechanism for
plants (Belimov et al., 2014). The inoculation of plants with
ABA-producing PGPRs (P. fluorescence Rt6M10, A. brasilense
SP245, and B. licheniformis Rt4M10) results in enhancement
in internal ABA pools, thereby increasing plant growth under
salinity stress conditions (Salomon et al., 2014; Cohen et al.,
2015). A study reported that PGPR stimulated the production
of endogenous ABA in plants, relieving them of the effects of
being grown under salinity stress (Forni et al., 2017). Both ABA
synthesizing and metabolizing PGPRs are capable of modulating
the internal ABA status of plants and, as such, are capable of
relieving plants to show normal growth even under salinity
stress conditions.

Apart from ABA, the synthesis of another stress hormone,
ethylene, was found to improve tolerance or expedite senescence
(Morgan and Drew, 1997). Ethylene, a gaseous hormone,
significantly enhances the response of plants to stress conditions.
Acting as a negative regulator of plant growth, ethylene induces
its effects by reducing the growth of roots and modulating the
nitrogen-fixing capability of plants (Ma et al., 2002; Mahajan
and Tuteja, 2005; Gamalero and Glick, 2015). As ethylene-
mediated inhibition of the auxin response factor constraints
the growth of plants, secretion of 1-aminocyclopropane-1-
carboxylase (ACC) deaminase by PGPR hampers its synthesis
in plants (Glick et al., 2007). ACC deaminase secretion by
PGPR metabolizes ACC (precursor of ethylene in plants) into

α-ketoglutarate and ammonia besides altering the expression
of genes encoding ACC synthase and ACC oxidase, which are
involved in the synthesis of ethylene (Etesami and Beattie,
2017). ACC deaminase-producing strains of P. fluorescens and
Enterobacter spp. produced a significant effect in increasing the
yield of maize grown under salt stress conditions (Nadeem et al.,
2009; Panwar et al., 2016). The inoculation of Pantoea dispera
PSB3 to chickpea results in an enhancement in IAA and ACC
deaminase production, which led to an improvement in pod
size, seed weight, seed number, and altogether plant biomass
(Panwar et al., 2016). The plants were also observed to have
a higher K+/Na+ ratio, owing to a reduction in electrolyte
leakage and a decreased uptake of Na+ besides leading to an
increase in leaf water and chlorophyll content and enhancement
in K+ uptake.

CONCLUSION AND FUTURE
PERSPECTIVES

Though much progress has been made in understanding
the different attributes of plant–microbe interactions and in
formulating methodologies for crops grown under salinity
stress, we still lag behind in achieving sustainability in
plant productivity. With rising emphasis on environmental
protection and sustainability in agriculture for food security,
the timely mitigation of the adverse effects of different
stresses, in a cost-effective manner, is required. For this
to be realized, it becomes imperative to explore novel
aspects of the plant-beneficial soil microbiota in relieving
plants of stressful conditions. Microbiota from diversified
environments needs characterization and exploration in
terms of their acclimatization, in-depth knowledge of their
ameliorative strategies for growth under stress conditions,
and in acquiring knowledge of the intriguing mechanisms
commonly employed in attributing plants with a potential to
thrive in harsh edaphic conditions. As the efficiency of the
microbiota depends on soil characteristics and plant species,
a better understanding of plant–microbial interactions in
the context of manipulation of stress-responsive genes in
plants need further elucidation in terms of revealing their
functionalities toward boosting plant defense and attaining
enhancement in overall productivity. As the soil microbiota
provides beneficial attributes to plants in withstanding salinity
stress, newer prospects of understanding in the operational
module of regulatory network-mediated plant defense in
achieving tolerance against different stresses need to be
undertaken in a timely manner. The same goes in terms
of prospects of developing novel bioinoculants that could
enhance the stability of crops grown under stress conditions
and, as such, increase their productivity when grown in
nutritionally poor agroecosystems. In addition to the screening
and the optimization of PGPR strains for plant-beneficial
characteristics under changing environmental conditions,
the CRISPR/Cas approach in editing interactive networks
of stress-responsive genes needs to be undertaken for their
profound effect (metabolic, regulatory, and signaling) in
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overcoming stress and inducing tolerance in plants and
their interacting partners toward attaining sustainability in
agriculture production.
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