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Linear invariants, discovered by Lake, promise to provide a versatile way of inferring 

phylogenies on the basis of nucleic acid sequences (the method that he cahed “evo- 

lutionary parsimony”). A semigroup of Markov transition matrices embodies the 

assumptions underlying the method, and alternative semigroups exist. The set of 

all linear invariants may be derived from the semigroup by using an algorithm 

described here. Under assumptions no stronger than Lake’s, there are >50 inde- 

pendent linear invariants for each of the 15 rooted trees linking four species. 

Introduction 

The recent discovery by Lake ( 1987 ) of linear invariants promises to provide an 

extraordinarily versatile method of inferring phylogenies from nucleic acid sequences 

while providing naturally for statistical testing of phylogenies as hypotheses. 

The method is particularly recommended by the nature of the assumptions that 

underlie it. These are not philosophical principles but sharply defined scientific hy- 

potheses about the observable relative rates of replacement of particular nucleotides 

by others. Indeed, linear invariants themselves provide a method of testing these hy- 

potheses. Most important, the assumptions are mild without precedent, allowing a 

different free choice from a large family of substitution probabilities for every branch 

of the tree of evolution and every position in the molecule. 

In this paper, I present the theory of linear invariants in conventional mathe- 

matical language, describe a mechanical method for generating linear invariants, and 

expand the number of known independent linear invariants for a given tree from two 

to >50. 

Invariants 

The problem to be treated is to distinguish among the 15 phylogenetic trees of 

figure 1. For data, homologous strings of RNA are provided for the four tip species, 

A, l3, C, and D. Each of these strings is regarded as a sequence of letters from the 

alphabet { A, G, C, U } . Deletions, rearrangements, etc., are outside the theory; evo- 

lution proceeds by substituting letters for other letters. Substitutions at different po- 

sitions on the string are independent random events. At a given position at any time 

in the course of evolution, the usual Markov property applies: what happens next may 

be influenced by the current state but is otherwise independent of the past. (While 

this independence assumption is probably harmless, the influence of coevolving or- 

ganisms and of other changing environmental conditions could theoretically render 

it false.) A change from A to G, from G to A, from C to U, or from U to C is called 
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302 Cavender 

BACDCABDDABC 

w w w 

FIG. 1 .-The I5 topologies on which four species can be placed. On each tree the lowest point is the 

root (the last common ancestor of the four species). 

a transition. The other eight possible changes are transversions. (When A goes to U 

and then to G, it will be mathematically convenient to call the whole compound 

transaction a “transition from A to G.“) 

In this paper, I will also treat the problem of classifying five species. The way to 

extend the method to other numbers of species will become obvious. 

To understand the results, if not the methods, presented here, one only needs 

the simplest ideas of Markov processes (Kemeny et al. 1974, pp. 137- 144, 153- 184, 
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Mechanized Derivation of Linear Invariants 303 

203-2 14) and the ideas of basis and subspace, from linear algebra (Smith 1983, pp. 

178-185). 

For a person wishing to solve this problem, nothing could be more desirable than 

a function of the data whose value depends on the topology and on no other attribute 

of the tree (such as branch lengths and times of divergence). Since there are degenerate 

trees with more than one topology, one cannot hope for a single function taking 15 

separate values for the 15 topologies. The best that can be expected are functions that 

take some constant value under some topologies but do not necessarily always take 

this value under the others. Such functions can reasonably be called invariants because 

their values remain unchanged over the course of evolution and because the known 

examples (Cavender and Felsenstein 1987) are actually invariants of algebraic varieties. 

Of course, rare, chance events can always cause data from different topologies to 

be identical. Thus, the definition of invariant must be framed to account for random- 

ness. There are at least three possibilities: First, one might say that a function of the 

expected value of the data is an invariant of a topology if for that topology there is 

only one value that it can take. (To be useful for discriminating topologies, it must 

also take some other value at least sometimes for at least one other topology. I do not 

add this proviso to the definition because an invariant can also be useful in other 

ways.) This is what I and my coauthor meant by “invariant” in a previous article 
(Cavender and Felsenstein 1987 ) . Second, one could require the expected value of 

the function to be constant when it is applied to the random data. For linear functions 

of the data, this stronger definition is actually equivalent to the first one. The definition 

that I shall make is formally of this second type. Third, one might say a function of 

the data is an invariant if its distribution, rather than just the mean, is constant for 

all trees of the given topology (J. Felsenstein, personal communication). 

At each position in the RNA sequence, there is an assignment of a letter A, G, 

C, or U to each species A, I3, C, and D. The notation AUUG for a pattern means 

species A, I3, C, and Q have letters A, U, U, and G, respectively, at this position. There 

are 256 such patterns possible. The 256-dimensional vector that contains the 256 

observed frequencies of the patterns is called the spectrum of the RNA sequence (Cav- 

ender 1978; Lake 1987). It is a complete summary of the data for the inference 

problem. 

It is convenient to let AUUG also denote the spectrum that represents nothing 

but a single occurrence of the pattern AUUG, i.e., a vector with a one and 255 zeros. 

Using this notation, we define a spectrum Y as 

Y = ACAC + AUAU + GCGC + GUGU + CACA + CGCG + UAUA 

+ UGUG - ACAU - AUAC - GCGU - GUGC - CACG - CGCA 

- UAUG - UGUA - ACGC - AUGU - GCAC - GUAU - CAUA 

- CGUG - UACA - UGCG + ACGU + AUGC + GCAU + GUAC 

+ CAUG + CGUA + UACG + UGCA . 

Let S be an observed spectrum and let a function y be defined by the dot product 

v(S) = Y l S. Lake (1987) showed that, under assumptions, y is an invariant, with y 

= 0, of the topologies in the left and right columns of figure 1. Symmetrically, he 

exhibited both a vector X that gives an invariant x of the middle and right columns 

and a 2 that gives an invariant z of the left and middle columns. Henceforth, I shall 
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304 Cavender 

call Y, rather than y, the “invariant.” I make this a definition. The notation E[H] 

denotes the expected value of the random variable H. 

Definition: A linear invariant of a topology is a vector V such that E[ V* S] = 0 

for spectra S under that topology. 

If U and Ware two vectors with E[ U= S] and E[ We S] both equal to nonzero 

constants, then it is easily shown that U can be obtained from W by adding an invariant 

and multiplying by a constant. Therefore, because there is essentially only one of 

them, vectors such as these are excluded from the definition. The archetype is (1, 1, 

. . . , l), which only returns your sample size to you. 

Restrict attention to a single position in the molecule. Its spectrum S will comprise 

255 zeros and a one. Its expected spectrum is more interesting, with 256 nonnegative 

numbers summing to 1. If a vector Yis an invariant for each position in the molecule, 

i.e., if E[ Si l V] = 0, where i indexes positions in the molecule, then E [ C Si l V] = n0 

= 0, where n is the size of the sample of positions; so an invariant good for each 

position is good for the whole sample. This is true whether or not the spectra for 

different positions are statistically independent, but I retain the assumption of inde- 

pendence to justify statistical tests. 

If Ye S is significantly far from zero, where S is the spectrum of the whole sample, 

then topologies I and III can both be rejected as hypotheses. Lake splits Y into two 

parts, Y = Y+ - Y-, where 

Y+ = ACAC + AUAU + GCGC + GUGU + CACA + CGCG 

+ UAUA + UGUG + ACGU + AUGC + GCAU + GUAC 

+ CAUG + CGUA + UACG + UGCA 

and 

Y- = ACAU + AUAC + GCGU + GUGC + CACG + CGCA 

+ UAUG + UGUA + ACGC + AUGU + GCAC + GUAU 

+ CAUA + CGUG + UACA + UGCG , 

so that the hypothesis Y l S = 0 says Y + l S = Y - l S. Both sides of this equation are 

merely counts of positions in the molecule. Lake tests this hypothesis with the well- 

known X2 test for the equality of two events (van der Waerden 1969, pp. 40-42). 

However, Y+ l S and Y- l S are dependent random variables, so this is not a valid 

application of that test. The marginal distribution of Y + l S, given (Y + + Y-) l S, is 

binomial with n = (Y+ + Y -) l S, and a test of whether p = Y2 in this binomial is a 

valid test of whether E[ Ye S] = 0 ( Holmquist et al. 1988; David Clair, personal 

communication). 

Lake’s two invariants, Y and 2, for topology I are basis vectors for a two-dimen- 

sional space of invariants. That is, the space consists of linear combinations of these 

two and of nothing more. Are all linear invariants in this space? Not at all. Under 

assumptions no stronger than Lake made, the subspace of invariants has 68 dimensions 

(for the symmetric trees I-III) or 54 dimensions (for all the others). Since many 

choices of assumptions are possible, it is important to have an algorithm that can 

generate the invariant subspace from given assumptions. These assumptions can be 

characterized in terms of families of Markov matrices. 
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Mechanized Derivation of Linear Invariants 305 

Markov Matrices 

Choose a single position in the molecule and restrict attention to it. Consider 

two species, B and s anywhere on the tree. &fine PAo to be the conditional probability 

of G being in the chosen position at R, given that A is in that position at S. For each 

other pair of letters from the set { A, G, C, U > , define another p similarly. The Markov 

matrix from R to S is - 

(1) 

The usual term is Markov transition matrix, but that would be confusing here. As is 

usual in Markov chain theory, the probability mass function at R can be written as a - 
row vector and multiplied by P RS, with the matrix on the right, to get a row vector 

of probabilities at S. I shall use only Markov matrices that point forward in time from 

an earlier species E to a later species S. If R evolves into 1 which evolves into S, then 

pm = PEPTs. Thus, when I admit a set of matrices to my model, I shall be forced 

to also admitall products of members of that set. 

A Semigroup of Markov Matrices 

For each of the six branches of the tree and for each position in the molecule, 

there is a Markov matrix. Thus, if there are 1,000 positions, there will be 6,000 different 

matrices involved. This complexity can be brought under control by treating just one 

position and extending the invariants to the whole sample by linearity. There will be 

no linear invariants unless some restriction is placed on the Markov matrices. I shall 

specify a set of Markov matrices that satisfies a consistency property (multiplicative 

closure) and shall derive invariants from this set. Since every assumption about the 

process of evolution is potentially an error, I want to make this set as large as possible. 

In particular, I shall use Markov matrices of the form 

nnpq 

These matrices state as generally as possible Lake’s assumption that, when a trans- 

version occurs, the two possible outcomes are equally probable. Let Yf be the set of 

all matrices of this form. 

The product of two matrices from B is sometimes outside of R (i.e., B is not 

“multiplicatively closed”), and this would be a serious inconsistency if invariants were 

derived from R. Thus, it is important to know that the union L of all multiplicatively 

closed subsets of 5V is the largest multiplicatively closed subset of X and is characterized 

by the additional constraints 

e-f=i-h (3) 

and 

I-m=q-p. (4) 
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306 Cavender 

By multiplying two general matrices of the form of matrix (2) and insisting that pAC 

= pAu in the product, one quickly sees the necessity, for multiplicative closure, of 

equation (4). Similarly, equation ( 3) follows from pCA = pc~. Sufficiency is established 

through a prodigy of high school algebra: multiply two general members of _C and 

verify that the product is in L. 

A multiplicatively closed set of matrices such as AC is a semigroup of matrices. 

Unlike some semigroups, .C is defined almost entirely by linear constraints on the 

components of the matrices. (The exception is the requirement that a Markov matrix 

have no negative components.) This makes it only slightly different from an algebra 

of matrices, so something of use to taxonomy may be present in the extensive theory 

of algebras (Albert 1937, pp. 217-250, 1961; Deuring 1968). 

Every matrix in L is a linear combination h ‘pl + h2p2 + . l l + h7p7 (and here 

the superscripts are not exponents) of the seven matrices 

/l 0 0 o\ 

0 1 0 0 
Pl = 

i I 0010’ 

0 0 0 1 

/l 1 0 o\ 

i 

0011 
P2 = 

1 0020’ 

\o 0 0 2/ 

/o 0 1 l\ 

1100 
P3 = 

i j 

0020’ 

0 0 0 2 

/o 1 0 o\ 

i 

1 0 0 0 
P4 = 

I 0010’ 

\o 0 0 l/ 

/2 0 0 o\ 

0 2 0 0 
Ps = 

i i 

1100’ 

0011 

P6 = 
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Mechanized Derivation of Linear Invariants 307 

Conversely, every linear combination of these seven that is a stochastic matrix (i.e., 

has rows summing to 1 and lacks negative components) is in L. Derivation of a basis 

such as (~1, ~2, . . , , p7 } from linear constraints of the sort that define L is routine. 

One regards the elements of L as 16-dimensional vectors. The constraint pAc = pAu 

says that these vectors are all orthogonal to a particular vector-xl, say. Five more 

such vectors, x2, x3, . . . , x6, are apparent. To ensure that the row sums are equal, 

the constraints 

PAA + PAG + PAC + PAU = PGA i- PGG i- PGC + PGU , 

PAA + PAG + PAC + PAU = PCA -k PCG -I- pee + pcu , 

and 

PAA+PAG +PAC +PAU =PUA+PUG+PU~+PUIJ 

must also be treated. (If the row sums equal something other than 1, there will be no 

harm in it.) These last three constraints give x7, x8, and x9. To find matrices such as 

PI, P2, ***9 p7 is to find seven independent 16-dimensional vectors that are each 

orthogonal to all of x1, x2, . . . , x9. A matrix inversion algorithm, for example, will 

do this. 

Generating Invariants 

Assume all Markov matrices are drawn from .C and continue to restrict attention 

to one position in the molecule. Let Z be the smallest subspace of 256-dimensional 

space that contains all expected spectra that can arise. The subspace of linear invariants 

is the set of all vectors that are orthogonal to Z’. (A vector is orthogonal to &” if it is 

orthogonal to every vector in &“, and this is true if it is orthogonal to every vector in 

some basis for Z.) The computation of a basis for the space of invariants from a basis 

for 3’ is exactly like the computation of the matrices pI , . . . , p7 from the constraining 

vectors x1, . . . , x,. Thus, it suffices to compute a basis for 3’. This leads into some 

discussion of computational shop technique. 

At the heart of my computer programs is a “triangularizer” subroutine. It main- 

tains a list of linearly independent vectors. When a new vector h is presented to the 

triangularizer, it determines whether h can be written as a linear combination of vectors 

already in the list. If not, the list is enlarged so that it can be. It is useful for efficiency 

to keep the list in row-echelon form, so this enlargement is a more complicated process 

than merely adding h to the list. Round-off error would be disastrous to this process, 

so everything must be done in integer arithmetic. In particular, h is a vector of integers- 

not an expected spectrum at all, but a multiple of one. If I throw enough vectors h 

into this subroutine, the list becomes a basis for Z, for the span of the list is the span 

of the vectors thrown in. The problem is to generate enough vectors h so that every 

expected spectrum is a combination of some of them. 

For concreteness, assume topology IV. Let the Markov matrix on branch a also 

be called a. Its components are of the form axy where X, Y E { A, G, C, U } . Name 

the Markov matrices on the other branches b, c, d, e, and f: The probability of pattern 

AUUG, e.g., is 

P{AUUG) = 2 c 2 ~RaRAfRSbSUeSTcTdTG , 

R S T 

(5) 
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308 Cavender 

where R, S, and T, all elements of { A, G, C, U } , are possible states of interior nodes 

as marked in figure 2 and where TR is the probability of R in the ancestor. [I never 

constrain the initial distribution r = (r A, ro, Tu, rc).] There are analogous formulas 

for the other 255 patterns. Thus, you could compute the expected spectrum if you 

knew the matrices a, b, c, d, e, f and the initial distribution r. You could generate all 

possible expected spectra if you knew all possible a, b, c, d, e, J and r. The formula 

(5) for P{AUUG}, with its 255 analogues, generalizes equation (1) of Cavender 

(1978) and equation (2.3) of Tavare (1986, p. 59). 

Give the name CT to the function that assigns an expected spectrum h 

=(P{AAAA},P{AAAG},...,P{AUUG},...,P(UUUU))toasetofmatrices 

a, b, c, d, e, and f and an initial distribution r. That is, h = CT( a, b, c, d, e, J r). Then 

<T is a multilinear. That is, a( a, hbl + pb2, c, d, e, J r) = ho(a, bl , c, d, e, J r) 

+ po( a, bz, c, d, e, J r), and similarly for a, c, d, e, f, and r. This follows from 

formula ( 5 ) . 

L&r* = (1, 0, 0, 0), r2 = (0, 1, 0, 0), r3 = (0, 0, 1, 0), and r4 = (0, 0, 0, 1). 
Then every initial distribution is a linear combination of vectors from { r 1, r2, r3, 

4. Let each =t (al, a.. . , a-I), (h, b, . . . , h}, . . . , {fi,fL . . . A> be equal 
to (Pl,P29 ‘. * , p7 ) , the set of seven matrices that spans -C. Then the set { o( ai, bj, 

ck, dl, e,,,, fn, r,)}, where q E (1, . . . , 4) and i, j, k, Z, m, n E { 1, . . . , 7}, of 4 l 76’ 

(470,596) spectra is a spanning set for the span Z’ of all possible expected spectra. In 

fact, every expected spectrum h can be written 

h = 0, b, c, d, e,J r) 

= G( C hilli, 2 ljbi, C hfck, . . . , C h:r,) 

i i k 4 

= c hiCJ(ai, 2 A+{bj, 2 hfCk, . . . , c hfr,) 

i j k 4 

= 2 c h6xiO(ai, bj, c h!Ck, . . . , 2 hgr,) 
i j k 4 

= 2 c 2 2 2 2 2 a~~#h~h~hj~fO(ai, bj, Ck, . . . , tq) , 
i j k 1 In n q 

FIG. 2.-Pattern AUUG in topology IV. The edge labels may be identified with Markov matrices, 

which are generalized branch lengths. Capital letters are nucleotide names rather than species names. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/6
/3

/3
0
1
/1

0
8
0
9
5
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Mechanized Derivation of Linear Invariants 309 

a combination of elements from the set of 470,596. These 470,596 are the vectors h 

that I feed to the triangularizer. 

This approach is traditional. The ordered sets (ai, bj, ck, . . . , tq) are tensors that 

convert the multilinear map CT into a linear map whose domain is a tensor product 

of six copies of the seven-dimensional space L and the four-dimensional space of 

initial distributions. &” Is the image of this linear map (see Greub 1967, pp. 1- 12, 19; 

Dieudonne and Carrel1 197 1, pp. l-7 ) . Lake’s approach was different. He noted that 

a, b, c, and d have natural actions on the space of expected spectra. That is, the 4 X 4 

matrices extend to 256 X 256 matrices. Then &” is stable (Serre 1977, pp. l-7) under 

these larger matrices, which Lake calls “operators.”  

Figure 3 shows the 54 independent linear invariants of topology IV that result 

from this procedure. Figure 4 gives 68 invariants of topology I. If you cleverly assign 

and reassign the names A, I3, C, and D to your four species, you can avoid treating 

any topologies besides I and IV. 

An Improved Algorithm 

The procedure just described takes many hours on a dedicated, fast computer. 

Most of this time is spent in the triangularizer. If the algorithm as it stands were 

applied to five species, the triangularizer would be handling spectra four times as long 

and 49 times as many of them. Months would be needed. Fortunately, most of this 

computation can be avoided by computing five-species ( 1,024-dimensional) expected 

spectra h from the 202 (or 188) \ basis vectors already identified for the four- 

species &“. 

The idea is to graft a minimal, two-species tree onto a tree for which &” is already 

known (fig. 5 ) . Let q& be the conditional probability of A and C in the species shown 

in the figure, given U at the join. Define 63 more q& in the same way for other X, 

Y, and R E { A, G, C, U } . Clearly, q& = aRCbRA, where a and b are the Markov 

matrices on the branches indicated in the figure. Let s = ( sAAAA, SAAAG, . . . , suuuu) 

be the expected spectrum of the four-species tree. Then the probability of the pattern 

shown is 

p( GUCAG > = z sG uRG &A = z %URGaRCbRA . 

R R 

(6) 

There are 1,023 more formulas like formula (6)) as there are 255 more like formula 

( 5). With the whole set of 1,024, you generate a five-species expected spectrum. You 

could generate all possible five-species spectra if you knew all possible s, a, and b. The 

derivation of the algorithm continues from this point just as before. Knowing 202 

basis vectors for &” is as good as knowing all possible s, and knowing seven basis 

matrices for L is as good as knowing all possible a or all possible b in L. The trian- 

gularizer will be called 202 l 7 ‘, or 9,898 times, not 23,059,204. 

Beyond Balanced Transversions 

Let a and p be positive numbers. The matrix 

(7) 
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I’, L c.i,\.i- CAAC I C.4C.4-C.4CC+?CAC.4-:cACC 
I L’C,4.4-CCAC+CCCA-Cccc+?ccc..4-?cccx: 

. ‘1 CCA.4 -? CCA c +?CCCA -?CCCC ,.4 ccc.4 - 4 CCC’C 

-UA.4AcU.4.4C-VACA+UACC-?UACA+:‘~ldCC 

-UC.4.4+UC.4C-fJCC.4+UCCC-zUCCA~?UCCC 

!UL’,4,4 t:UUAC-?UUCAt?UUCC-tU~~.4+4LlUL:C 

\ ‘: -  CA ,A (‘A AC b CAC.4 -CA Cc+ 2CAC.4 -? CA CC 

,CC44-CC.4C1CCC.C-CCCC+?CCCA-1CCCC 

,?c .‘c ’4.4-ZCCACt?CCC.4-?CCCC+tCCCA-tCCC\: 

- II,.44,U44O-L’ACA+l’.4CC-ZUAC.4~\2L’ACC 

- UC4 4 t WAC-UCC.4.b UCCC-ZUCCA \?UCCC 

-1l:f14,\  \?Ul,AC-?UlrCA+lUUCC- ,UUC.4,.\UU:CC 

\ ‘, *. -C.44A-C.4AC-?CAAC+c ACA+CdCCb?C.4CC 

-CCAA-C(:AC-?CCAC+CCCA+CCCC+?CCt?~C~C 

-?CCIA-2CCAC-4CCAC+2CCCA+2CCC+c CCCCCC 

+L’.4A.44 UAAC+?UAAC-UACA-UACC-2fJACC 

.I UC.4.4 + L’C.4C+?UCAC-  UCCA-  UCCC-2UCCC 

+?UUA4,2UUAC+iUU.4U-?UUcA-lUUCC-4UUCU 

V, = -CAAA-CAAC-?CAAC+CACA+CACC+~CACC 

-CCAA-CCAC-2CCACtCCCA+CCCCCt?CCCC 

- :CC.4.4-2CCAC-4CCACt2CCCA+2CCCC~tCCCC 

3 U.~A.~+UA.~C+?UAAC-U.4C.4-UACC-?U.4CC 

+UC.4.4+UC.4C+lUC.4C-UCCA-UCCC-2L’CCC 

+?UUA.4 +lUUAC+4UUAC- lUUCA-2UVCC-rUUCC 

I’, = -CAA.~+CAAC-CACA+C.~CC-?CACA?CACC 

-CCAA+CC.4C-CCCA+CCCC-2CCC,\+?CCCC 

-?CCAA+2CCAC-2CCCAt?c CCC-4CCCC 

+UAAA-UAAC+UACA-UACC+?UACA-ZUACC 

+UCA.4-UCAC+lJCCA-UCCC+lUCC.-L’CCC 

+2UCAA-2UCAC+2UCCA-2UCCC+(UCUA-rUCUA-4UCUC 

b’, = -CA.4A+CAAC-CACAtCACC-2C.4CAiZCACC 

-CCAAtCCAC-CCCAtCCCC-2CCCAt2CCCC 

-2CC.4A+2CCAC-2CCCAtlCXXC-4CCCA+4CCCC 

tU.4AA-UAAC+UACA-UACCtlUACA-ZUACC 

+UCAA-UCACtUCCA-UCCCt?lJCCA-1UCCC 

+2UC.4.4-2UCACt2UCCA-?UCCCC+4lJCCA-4UCCC 

V, = -CAAA-CAAC-?CAAC+CACA~CACC+~CACC 

-CCAA-CCAC-lCCAC+CCCA+CCCCt2CCCC 

-?CCAA-lCCAC-tCCAC+?CCCAtZCCCC+4CCCC 

+UAAA kUAAC+?UAAC-UACA-UACC-1UACC 

+UCAA+UCACt2UCAC-UCCA-UCCC-1UCCC 

+lUCA.4+2UCAC+tUCAU-2UCC.4-2UCCC-tUCCU 

I’, I - C,l..l A - (:,,I C - IC:,I A C , CA C..\ , (1.4 c“ , ?c;\ Cc 

-.CCA,\-~(:A(;--?LI;AC, CCC.4 ,“(:C(:,?CCCt: 

-?CC,tA-:‘CC,4C-.,C(‘.4C:, ‘!CCC..\ , ?CCCL’t ,cc<:L’ 

, Url.4.4 , UA.,C, 2 UA.4 “- l/AC,1 ._ l/A(:C-2 f.‘.I 6’C 

, UCA.4, U\:.4C-?L’C;IC- UC;C,l- L’CCC-?IICCC 

1 ! UC.4 4 , ?UCA(: k ,UCAC-:‘lIC(:.4-?UC’CC- tf/<‘(:C’ 

x - u.t .4 c I u.4 .I u- u.4 CA - UA cc , u.1 I?.4 I u.4 f/f/ 

f UC.4 c- f/CA u, uc:c.l f uccc- UCfiA .- UCIIf/ 

V,, s -C.4A.4.-CAAC-ZCAAU-CACA-C.4CC-?C.\CC 

-?C,ICA-ZC,\tCC- lCACC-2C.4CU, CG.lA I CGA<: 

,.ZCf:AU, CCCA, c CCC+ ?CCC(‘, ?c c c At?C(:Cc  

f !CCCC.I 2CCCUbUAAA I UAAtc  \  ?U.~.~CI.UACA 

+ UACC+?UACC+ZUACC~~UACC~~U~\UAT~UA~JC 

-UC,4A-UCAC-? l’GAC-  UCCA-UCCC-2UCCC 

- lUCCC-2UCCC-?UCUA-1UCUC 

V,: = CAAAtCAACtZCAAU~l CAC..\d CACC +?CACC 

+2CACAi2CA~Ctl~ACC-I.?C,\C~~-~~~\A-C~A~ 

-2CCAU-CCCA-CCCC-2CCCC-2CCCA-?CCCC 

-2CCCC-?CCCU-UAAA-U.4AC-?U.4AU-IJACA 

-UACC-2U~\CC-2UACA-ZUACc -ZUAC.‘C-2UACU 

+ WA.4 t UC,4 Cd ?  UCA U+ UCC.\, UCCC: , 2 UCCC 

+1UCCA+:uCCC+2UCCC~?uc c u 

v,, F UCAC-  UCAU-  UCCC I UCCU 

I’,, = -UACA+UACCIU,\U/ \-L4UC 

l’,; = UAAC-UAAU-IJACCiUACU 

V,, = CCAA-CCAC+CCCA-CCGC+lCCCA-?CCCC 

-CU.\A ~CUAC-CUC.4+CUCC-ZCUU,l,?CUUC 

V,, = CCAA-CCAC+CCCA-CCCCt2CCA-2CCCC 

-CUAA+CUAC-CL’CAtCUCC-?CUCAt2CfrC 

V,, = -CCAA-CCAC-?CCACtCCCA.+CCCC+ZCCCCC 

tCUAA+CUACt?CUAU-CUCA-CUCC-CCJCU 

V,, = -CCAA-CCAC-2CCAC+CCC.4i CCCCiZCCCC 

t CU.4A+CU.4C+ZCUAC-CUCA-CUCC-2CUCC 

V, = -CCCA, CCCC+CCUA-CCUC 

V,, = CCAC-CCAU-CCCC+CCCCJ 

\ ‘,.: = C:AA(:-CA.llI, C’ACA+(‘ACC-CAUA 

-CCA“, Cc’.4U-CCCA-CCC“+ “CUA., 

-CAVV 

c suu 

1’:: 2 - CA .I C I CA A U.1 CACA 4 CA CU- “A UA - CA UC 

. CC.4 C - CC.4 u - CCC.4 - CCCU f ccl/.4 , ccuc 

I’:, = Cd<;\ -. (:CCC- (‘CUA , CG’liC 

I’:: i CCA C- CCA II- LCCC t \:ccu 

l’,‘ .c C.4 c’. I - CA CC - CA l/ .4 I CA UC: 

I’:, _z C~;I.IC--C,\.\U-C,lGC+(‘AtU 

I’ :, := ‘? .4,\ ,\c  -?AAAu.~?A.4CA+?.4ACC-2AAU.4-~AAUu 

, ACAC-.4C:AU+ ,\CC,l + ACCC-ACUA-ACUU 

, A UA C-  .4 UA U+ A I/ CA + A UCC-  A UUA -  A fJUU 

-?CAAC~~lCA.4U-?CACA-?CACC+?CAUA+?CAUA+?CAUU 

-CCACtCCAU-CCCA-CCCCtCCUA+CCUU 

-CUACtCUAU-Cb’CA-CUCC+CUU.r+CUVU 

I’> = -4AAACt4AAA~-2.4.4CC+2.4AC?U-? .4AUCt2A,4UU 

+JAC..l..l+ ACAC+.lACdlJ+ACCA-ACCC+lACCA 

t’!,l(CCVt2ACUAi2ACOV-3AUAA-AUAA-AUAC-4AUAC 

- .4UC,4i AUCC-?AIJCA-? .IUCC-ZAUUA-?AUUC 

~~4C,\.4C-IC.4.4~~~2~A~C-Z~ACU~ZCAUC-ZCAVU 

-JCCA:i-CC..IC- .ICC,\U-CCL’A.~CCCC-ZCCCA 

-?CCCU-2CCU,\-2CCUU+JCUAA+CUAC+rCUAC+4CUAC 

I CUCA-CUCCc ?CUCAt2CUCCt?CUUAt2CUUC 

I’ S¶= 

-C 
CC.4A-CC,\C~~CCCA-CCGC+lCCCA-2CCCC 

‘UA,\ iCIJAC-CUCA.LCUCC-2CUUA \2CUUC 

I’,, i -4AAC,I-ZA;\CC-Z,IACU+4AAUA+ZAAUC+ZAAUU 

I3ACAA+AC.4C+?,\CAC+ZACAUtACCA-ACCC 

\ II\CCIA~ZACUCC?ACUU-IAUAA-AUAC-ZAUAC 

- ~:\U.~\U- AUCA~I AUCC-4,lUCA-ZAUCC-ZAUCU 

+4CAC.4+2CACC+2CACU-4CAL’A-2CAlJC-2CAUU 

-3CCAA-CCAC-?CCAC-ZCCAU-CCCAtCCCC 

-4CCU.4-?CCUC-ZCCUUt3CUAA+CU.4C+?CUAC 

+?CUAUtCUCA-ClICC+tCUCA+?CUCC.+ZCUCU 

I’,:. = CC/ \A-CCAC+ CCCA-CCCCt?CCCA-ZCCCC 

-CUAA+CUAC-ClJCA+CtiCC-2ClX4+2CUCC 

VP P CCCA-CCCC-CCUAtCCUC 

I’, u CCAC-CCAU-CCCC+CCCU 

V,, D CAAC-CA.~U+CACA I CACC.-CAUA-CAUU 

-L’CA(:+CCAU-CCCA-CCCC. CCU.4+CCUU 1 

V, D -CAAC+CAAU+CACA tC.4cU-CAUA-CAUC 

+CCAC-CCAU-CCCA-CCCU+CCUA+CCUC 

V,, = CCCA-CCCC-CCUA+CCUC 

I’, ZJ - CCAC \ CCA u I c c c c -  c c c u 

V,, = -CAC4+GACCtCAUA-CAUC 

I’,: = -CA.tC+CAAU+CACC-C.4CU 

V,l = ACA.4-AC.4CtACCA-ACCCl2.4CC.4-2.4CCC 

-AUAA+AUAC-AUCAtAUCC-?AUUA+?AUUc  

I’,, = ACAA-ACAC+ACCA-ACCCt2ACCACCC 

-AUAAtAUAC-AUCA+AUCC-2AUCAt2Al’CC 

V, = -ACAA-ACAC-ZACAC+ACCA+ACCC+lACCC 

+AUAAtAUACt?AUAU-AUCA-AUCC-?ALiCU 

v, = -ACAA-ACAC-ZACAC+ACCAtACCCA~ACCC 

tAUAAtAUAC+?AUAC-.4UCA-AUCC-2.4UCc 

V,, = ACCA-ACCC-ACUA+ACUC 

\‘u = -ACACtACAU+ACCC-ACCV 

V,, = AAAC-AAAUtAAC.4tAACC-AAUA-AAUU 

-ACACtAC.4U-ACCA-ACCC+ACU,4rACUU 

V, = -AAACtAAAUtAACA+AACU-AAUA-AAVC 

+ACAC-ACAU-ACCA-ACCUtACU.4tACUC 

v,, = 

v,, = 

v, = 

v,, = 

ACCA-ACCC-ACUAtACUC 

ACAC-ACAU-ACCC+ACCU 

-AACA+AACC+AAUA-AAUC 

AAAC-AAAU-AACC+A.4CU 

FIG. 3.-A basis for the subspace of all linear invariants under topology IV. This is probably neither the simplest nor most symmetric basis that could be found. 
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V, = ACAA-ACAC+ACCA-ACCC+ZACCA-?ACCA-?ACCC 

-AUAA+AUAC-AUCA+AUCC-2AUCA+2AUCC 

t CAAA-CAACtCACA-CACC+2CACA-?CACC 

+CCAA-CCAC+CCCA-CCCC+2CCCA-2CCCC 

-UAAA+UAAC-UACA-tUACC-?UACA+?UACC 

- UlJAA+ UUAC- UUCA+ UUCC-2UUUA+ZUUUC 

V, = ACAA-ACAC+ACCA-ACCCi2ACCA-2ACCC 

-AUAA+AlJAC-AUcA+AUCC-2AlJCA+2AUCG 

+CAAA-CAAC+CACA-CACC+?CACA-ZCACC 

+CCAA- CCAC+CCCA-CCCC+ZCCCA-ZCCCCC 

-UAAA+UAAC-UAcA+UACC-2UACA42UACC 

- lIUAA+ UUAC- UUCA+ UUCC-?UUCAi 2UlJCC 

I’, I ACAA+ACAC+ZACAC-ACCA-ACCG-?ACCC 
-Al/AA-AUAC-?AUAC+AUCA+AUCG+2AUCC 

+CAAA+CAAC+?CAAC-CACA-CACC-ZCACC 

+CCAA+CCAC+ZCCAC-CCCA-CCGC-2CCCC 

- UAAA- UAAC-2UAAC+UACA+UACCi 2lJACC 

-UUAA-UUAC-2UUAU+UUG.4+UUCC+2UUCU 

I’, = ACAAAACAC+~ACAC-ACCA-ACGG-?ACCCC 

-AUAA-AUAC-?AUAC+AUCA+AUCCf?AUCC 

+CAAA+CAAC+2CAAC-CAGA-CACC-2CACC 

+CCAA+CCAC+ZCCAC-CCGA-CCCG-ZCCCCC 

- UAA.4- UAAC-ZU.IAC+ UACA+ UACC+?lJACC 

- UUAA- UUAC-2UUAC.t UUCA+ UUCC+2UUCC 

I’, = ACAA-ACAC-tACCA-ACGC+2ACCA-2ACCC 

-AUAA+AUAC-AlJCA+AUGC-2AUCA+2AUCC 

-CAAA+CAAC-CACA+CAGC-ZCACA+2CAcA+2CAc~ 

-CUA.4+CUAC-CUGA-tCUCC-2CUCA+?COCC 

+UAAA-l!AAC+UACA-UACC+2UACG 

+ lJCAA- UCAC+lJCGA-UCCC+IUCUA-2UCUC 

V, = ACAA-ACAG+ACCA-ACCCCZACCA-2ACCC 

-AUAA+AUAC-AUCA+AUCC-ZAUCA+?AUCC 

-CAAA+CAAG-CAGA+CACC-2CACA+2CACC 

-CUAA+CUAC-CUCA+CUCC-2CUCA+2CUCC 

+ UAAA- UAAC+ UACA-UACC+?UACA-2UACC 

+UCA.4-L’CAC+UCCA-UCCC+2UCCA-2UCCC 

I’, = ACAA+ACAC+?ACAC-ACCA-ACCC-2ACCC 

-AUAA-AUAC-?AUAC+AUCA+AUCC+ZAUCC 

-CAAA-CAAG-2CAAC+CACA+CACG+?CAGC 

--CUAA-CUAC-?CUAC+CUCA+CUCC+2CUCC 

- UAAA+ UAAC+ZUAAC- UACA-UACC-2UACC 

4 UCAA, iJCAC+2UCAU-lJCCA-UCCG-2UCCU 

I’, = ACAA+ ACAC+ZACAC-ACCA-ACCC-2ACCC 

-AUAA-AUAC-?AUAC+AUCA+AUCC+ZAUCC 

-CAAA-CAAC-?CAAC+CACA+CACC+ZCACC 

-ClJAA-CUAC-2CUAC+CUCA+ CUCC+?CUCC 

~UAAA+1JAACclUAAC-UACA-UACC-2UAGC 

b UCAA ’ UCAC+?UCAC-UCCA- UCCC-2UCCC 

V, = AAAC-AAAU+AACA+AACC-AAUA-AAUU 

-ACAC+ACAU-ACCA-ACCC+ACUA+ACUU 

+CAAC-CAAlJ+CACA cCACC-CAUA-CAUU 

-CCACtCCAU-CCCA-CC~Ct~CUltUU 

+?CAAC-2CAAUl?CACA.t ?CACC-?CAiJA-2CCAC 

+2CCAU-2CCCA-2CCCCe2CClJA-2UAUU+2UCUU 

V,, :: -AAACkAAAUi AAC’A f AACU-AAUA-AAUC 

+ACAC-ACAU-ACCA-ACClJ+ AGliA+ACUC 

-CAAC~CAAU+CACA t CACU-CAUA-CAUC 

+CCAC-CCAU-CGCA-CCC~JtCGUA+CCUC 

-?CAAC+SCAAU+ZCAC-! tZCACU-ZCAUA+2CCAC 

-2CCAU-2CCCA-?CCCIJt2CCUA-2UAUC+2UClJC 

V,, = - (2,4CA+CACC+CAUAi CCCA 

+ UACA- UAW- UAUA+ UCUC 

v,, - CACC-CGCC- UACc+lIGCc 

V,, = CACA-  CCCA - UACA t L’CCA 

V ,, = -C.4AC+CAAU+CACCtCC,I 

+UAAC- UAAU- UACC+ UGCU 

V,, = CACC- WCC- UACC t IJCCC 

I’,, :: CACC- CCCG- UACC t UCCC 

Vx = CACA-CCCA-U:lGA+UCGA 

1’. _, = -CAAU+CCAU+UAAU- UCAU 

V, =: CAAC-CCAC- UAAC+ UCAC 

V, = CAAC-CCAC-UAAC+UCAC 

I’., = . -(:AAA+CCAA+UAAA-UCAA 

I’ ?, = UACA-UAW-UAUA+UAlJG 

I’ x = UAAC-UAAU-UAGC+L’ACU 

v:, = -CUCA+CUCCt CUUA-CUUC 

v, =. CLfA c- CUA u- cucc+ CUCU 

I’, = - . CCC.4 + CCCC+ CCUA -- CCUC 

vn I CYAC- CCAU- CCCC, CCCU 

I’,, = AAAC-AAAU+AACA+AACC-AAUA-AAUU 

-ACACtACAU-ACCA-ACCC+ACIIA+ACUU 

-cC,lAC-CAAU-tCACA t.CACC-CAUA-CAUU 

-CCAC+ CCAU-CCCA-CCCC+CGUA +CCUU 

+2CAAC-2CAAU+2CACA+2CACC-2CAUA-2CAUU 

-SCCACI?CCAU-2CCCA-2CGCC+2CCUA12CCUU 

I’,, = -AAACt AAAUI AACA+AACU-AAUA-AAUC 

tAG,IC-ACAU-ACCA-ACCU+ACUA.tAC(IC 

-CAAC+ CAAUI GACA tCACU-CAUA-CAUC 

f CGAC-GGAU-CGCA-CCCU+CCUA+c~UC 

-2C,lAC+2CAAIJ+?CACA+2CAC~J-2CAUA-2CAUC 

.f 2CGAC-2CCAU-2CCCA-2CCCUt2CCUA~ 2CCUC 

V>, = CC&l-WCC-GCUAtCCUC 

v,, = - CGA ci CCA u+ cccc- CCCU 

I’, = - CA CA ’ CA CC, CA U/l -CA UC 

Vx = CAAC-CAAU-CACC+CACU 

I’,, = AAAC-AAAU+AAC4+AACC-AAUA-AAUU 

s,lG:lC-ACAU-tACCA+AGCC-AGUA-ACUU 

+2..lC:lC-2,1CA0+2,lCCA+2ACCC-2ACUA-2AUUU 

--CAAC+CAAU-GACA-GACC+GAUA+GAUA+CAUU 

‘-GGACtGC.4U-CGCA-CCCC+CCUA+CCUU 

-2CCACi?GCAU-2CCCA-2CCC+2GCUAtZCUUUU 

V,, = -A.4,4C-1 .4AAWtAACA+AACU-AAUA-AAUC 

-ACACtAG.lU+ACCA+ACCU-AGUA-ACUC 

-2AC:lC, ?,IC,.llJ+2ACCA+?ACCU-2,lCUA-2AUUC 

-tCAAC-CAAU-CACA-CACU+CAU,4+CAUC 

, CGAC-CCAU-GGCA-CCCU+CCUA-tCCUC 

+2GCAC-2GCAU-2CCCA-2CCCUt2CCUA+2CUUC 

I’ ,, = --A CC,1 , ..I CCC t .4 CUA + A UCA - A UCC- A UUA 

kGCCA-CCCG-CCUA tCUUC 

I’ y, = ACUA-AUUA-CCUAtCUUA 

v,l = -A CCU+ A UCU t CCCU-  CUCU 

v,: = A CCC-  A WC- GCCC t cum 

v,, = -A CGG+ A KC-I. cccc- cucc 

I’ ,, = A C’CA -A UCA - CCC.4 + C UCA 

I’ ,:, = ,I CA C- AC.4 U-A CCC- A UAC-1 

-CC,IC~GCAU~ CC’CC- CLJCIJ 

-AUAUtAUCC 

-ACCC+AUCC+CCCC-CUCC 

ACCC-AUCC-CCCCt CUCG 

V, = ACCA-AUGA-CCCAt CUCA 

V*. = -ACAlJd AUAUt CCAlJ-GUAU 

Vu, = .ICA:6-AU,lC-CCACt~UAC 

V,, = -ACAC tAUAC+CCAC-ClJAG 

V,: = -ACAA+AUAA+CCAA-CUAA 

V, = AAAC-AAAU4 AACA+AACC-AAUA-AAUU 

tACAC-ACAU+ACCA+ACCC-ACUA-ACLJU 

+2ACAC-2ACAU+2ACCA+2ACC-ZACUA-?ACUA-2ACUU 

-CAAC+CAAU-CACA-CACC+CAUA+CAUU 

-CGACtCCAU-CCCA-GCCC+CCUA+CGUU 

-2CCACt2CCAU-2CCCA-2CCC+ZGCUA+?GCUA+2CCUU 

Vt, = -AAACtAAAU+AACA+AACU-AAUA-AAUC 

-ACAC+ACAU+ACCAtACCU-ACUA-ACUC 

-2ACACt2ACAUt2ACCA+2ACCU-2ACUA-ZACUC 

tCAAC-CAAU-GACA-CACUtCAUAtCAUC 

tCCAC-CCAU-CCCA-CCCU+CCUAtGCUC 

+2CCAC-2CCAU-2CCCA-2CCCU+2CCUA+2CCUC 

v, = CCCA - CCCC- CCUA+CCUC 

V, = -GCAC+CCAlJtCCCC-CCGU 

V:, = -CCCA+GGCC+CCUA-CGlJC 

I’, = CGAC-CCAU-CCCC+CCCU 

I’,, = CA CA-  CT.4 CC-  C.4 UA t CA (JC 

v, = -CAAC+CAAU+CACC-CACU 

v,, = -AUCA+AUCC+AUUA-AUUC 

I“, = AI/AC-AUAU-AUCC+AUGU 

Vs3 = - .4CCA+ACCCtACUA-ACUC 

I’,, = -  ACACtACAUtACCC-ACGU 

vu = ACCA-ACCG-ACL’AtACUG 

I’, = -ACAC+AGAUtACGC-ACCU 

\‘,, = - AACAtAACCtAAUA-AAUC 

I’, = -AAAC+AAAUtAACC-AACU 

FIG. 4.-A basis for the subspace of all linear invariants of topology I 
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FIG. 5.-A five-species tree built by joining a two-species tree to a four-species tree 

generalizes matrix (2). If the additional constraints 

and 

pe_f+ (9) 

are imposed, these matrices form a multiplicatively closed set. That is, for each a and 

p there is an alternative semigroup. I should emphasize that equations ( 8) and (9) do 

not follow from matrix ( 7 ) . They are required to keep matrix ( 7 ) from breaking down 

over the millions of years. Each of these semigroups leads to invariants, as I shall 

show next. 

An Assay for Semigroups 

The following theorem provides a quick way of screening semigroups to see 

whether they give invariants. 

Theorem: If the two-species tree has no invariants under a given semigroup, then larger 

trees also have no invariants. 

I shall sketch the proof for three-species trees. Let 33 and 3’3 be the two-species 

and three-species versions, respectively, of 3’. Say Z2 contains every pattern AA, AG, 

. . . , UU. I show that X3 contains every pattern AAA, AAG, . . . , UUU. 

For example, here is how the pattern AGU arises. Let o(R, b,, c,) be the two- 

species expected spectrum from initial state R and Markov matrices bl and c, on the 

branches indicated in figure 6. Since Z2 contains every pattern, lambdas exist for 

which 

GU = C C hA’“o(A, b/p c m) + 2 2 hGima(G, b/p Cm) 
I m I m 

+ 2 2 hC'"~(C, b/, cm) + C C hU’“o(U, bl, Cm) a 

I m I m 
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Mechanized Derivation of Linear Invariants 3 13 

G  
\ U 

A_ b c c a e R 

FIG. 6.-Pattern AGU of a linear combination of possible spectra 

Similarly, for each R E { A, G, C, U } , thetas and rhos exist, with p E { A, G, C, U } , 

for which 

AR = C 2 2 ~ ~ ~ o(pk, a. e.) I? J * 
k i j 

Then 

AGU = c c c c c ( c e?hR’m)o(ok, ai, bl, Cm, ej) . 

kijlmR 

Notice that I am taking the point of view here that the probability mass function 

of the root is always unconstrained so that invariants do not depend on it, only on 

the semigroup. 

For an example, assume that b and c are Markov matrices of the form of matrix 

(7) so that c&,+c - bAu = O,etc.Let V=UPAC-PAU-~GC+GU.L~~~=(S~, 

SAG ,..., suu) be  any expected spectrum. Then Vis an invariant, since 

v ’ s = @sAc - f&U - mm + SGU 

= 2 h&@k,dRc - f&&w - &GCRC + bRG&u) 
R 

= c rR(PbR,q - bRG)@CRC - CRU) 

R 

= 0. 

This is because the binomial ( f3bRA - bRG) is zero when R E { C, U > and the other 

binomial is zero when R E { A, G } . 

One can see trivially that the converse of the theorem is true by considering the 

four-species invariant for topology IV: 

W= 2 2 ( uPXYAC - PXYAU - uXYGC + XYGU) , 

J&YE { A,GCU} 

which, since it can be verified or rejected without even looking at species A and B, is 

merely a restatement of the invariant v just proved. 

General Semigroups 

Let 8 be any semigroup of Markov matrices. 

8, i.e., the set of all matrices t of the form 

Let T be the algebra spanned bY 
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n 

t = c hk&, 
k=l 

where each Sk is in J?. Since T has at most 16 dimensions, there is a set of at most 16 

matrices tk that span T. Each of these is a linear combination of finitely many elements 

from S, so there is a finite subset of S that can serve in @ace of {p, , p2, . . . , p7 } in 

the algorithm to generate all linear invariants resulting from T (or, more exactly, 

from the set of all stochastic matrices in T, which is a semigroup contained in T and 

containing S). This shows that, despite appearances, the algorithm does not depend 

on having a semigroup that is defined by linear constraints. 

In practice one would ordinarily use the larger semigroup rather than S, since 

one’s assumptions are then weaker. There is no loss in doing this; the two semigroups 

have the same invariants, as one can easily prove using by-now familiar methods. 

The most familiar semigroup of Markov matrices is the one-parameter semigroup, 

a set of matrices of the form e”’ with A4 a fixed matrix and t a varying, real, “time” 

or “evolutionary-distance” parameter. Such a semigroup will have a basis of at most 

four matrices Sk (Brogan 1985, pp. 202-205,208-209). 

An Application 

The expected spectrum for a string of RNA is the sum of the expected spectra 

for many individual positions. Each summand is in Z, and therefore the sum is also. 

For a given tree and semigroup, an algorithm is at hand to compute &“. If the actual 

spectrum is significantly far from Z, either the tree or the semigroup must be rejected. 

The most fortunate user of the method would have some grounds for total faith in 

the semigroup and would find that a good statistical test rejects 14 of the 15 trees. 

I have not located a test of the hypothesis that the parameters of a multinomial 

satisfy given linear equations. Here I treat the problem with a multivariate normal 

approximation. I hope someone can show me a better way. 

Lake provided me with excellent data: aligned sequences of the 16s rRNA from 

the four species Homo sapiens, Desulfurococcus mobilis, Halobacterium volcanii, and 

Escherichia coli. I call these A, I3, C, and ID, respectively. The data are part of those 

treated by Lake (1988). There are 1,095 aligned patterns in the set. To create an 

observed spectrum S, I merely count the number of AAAA, AAAG, AAAC, . . . , 

UUUU. [They happen to be 121, 5,4,. . . ,74. Thus S = (121,5,4,. . . ,74).] 

I decompose S into a sum of two vectors S = h + x, where h satisfies the invari- 

ants (i.e., h E 2’) and where the “error” x is orthogonal to &” (which requires that x 

be a linear combination of the invariants). 

I assume that the distribution of S is multinomial, with parameters given by the 

frequencies in h. The reader should be aware of three objections to this commonly 

accepted practice. First, S is a mixture of multinomials, not a multinomial. The result 

is that my estimated variances will be too large. This does not invalidate the test, for 

the power rather than the size is what suffers damage. The nonlinear invariants- 

there are > 140 of them-might be used here to improve the power. Second, h is 

merely the element of &” that lies closest to S in Euclidean distance. It is a rough 

approximation for the element of Z that is best able to survive the subsequent x2 

test. Third, I always got absurd negative components in h. I arbitrarily replaced these 

with zeros. 

I next replace the multinomial with a multivariate normal having the same vari- 

ances and covariances. This is common practice, but, despite the reassurances of 
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Mechanized Derivation of Linear Invariants 3 15 

authorities (van der Waerden 1969, pp. 226-228), one should wonder about the 

effects of small sample size. 

The rest is routine. The normal distribution is projected (Graybill 196 1, theorem 

3.22, p. 68) into the subspace spanned by the invariants (because S was projected into 

this subspace to create x) ; x is recoordinatized in a frame where the normal is standard; 

and the length of x is tested with a one-tailed x2 with 54 or 68 degrees of freedom. 

And what resulted? Almost nothing. I reject only trees III and IX at the 1% (or 

5%) level. There are three possible explanations. First, the test I used, with its many 

approximations, could be at fault. Second, the semigroup L may be wrong. Third, 

maybe information about the ancestral connections of these four species is just not 

in their 16s ribosomal RNA. 

Are the conclusions of Lake (1988) unjustified, then? I think not. One valid test 

can reject while another accepts, and it is a grave sin in statistics to try one test after 

another on the same data, looking for the conclusion you prefer. I do not wish to be 

guilty of this (although I really have no preference among the 15 trees for these four 

species), so I urge the reader to regard my reanalysis as merely a demonstration of 

method. Clearly, a better-founded statistical technique is needed-and fresh data. 

Conclusion: A Mathematician’s Perspective 

If people must infer phylogenies from nucleic acid sequences, the method of 

linear invariants is, in my opinion, the best available today. But before I place too 

much confidence in it, I would like to know whether transversions are truly balanced. 

This will require statistical studies (designed first, conducted afterward!) involving 

large samples-and not just globin genes and not just vertebrates. I would also like 

to know how badly the method is affected by small deviations from this key assumption. 

Finally, and what is probably most difficult, I would like to know whether the as- 

sumptions of statistical independence can be justified. 

Acknowledgments 

I thank Glen E. Campbell, David Clair, Joseph Felsenstein, James A. Lake, Joe 

V. Petty, and John A. Williamson. Part of this study was funded by National Science 

Foundation grant BSR 88-05729. 

LITERATURE CITED 

ALBERT, A. A. 1937. Modern higher algebra. University of Chicago Press, Chicago. 

- 196 1. Structure of algebras. American Mathematical Society, Providence. . 

BROGAN, W. L. 1985. Modern control theory. Prentice-Hall, Englewood Cliffs, N.J. 

CAVENDER, J. A. 1978. Taxonomy with confidence. Math. Biosci. 40:271-281 [erratum, 44: 

308 (1979)]. 

CAVENDER, J. A., and J. FELSENSTEIN. 1987. Invariants of phylogenies in a simple case with 

discrete states. J. Classification 4:5 l-7 1. 

DEURING, M. 1968. Algebren. Springer, Berlin. 

DIEUDONN~~, J. A., and J. B. CARRELL. 197 1. Invariant theory, old and new. Academic Press, 

New York. 

GRAYBILL, F. A. 196 1. An introduction to linear statistical models. Vol. 1. McGraw-Hill, New 

York. 

GREUB, W. H. 1967. Multilinear algebra. Springer, New York. 

HOLMQUIST, R., M. M. MIYAMOTO, and M. GOODMAN. 1988. Analysis of higher-primate 

phylogeny from transversion differences in nuclear and mitochondrial DNA by Lake’s meth- 

ods of evolutionary parsimony and operator metrics. Mol. Biol. Evol. 5:217-236. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/6
/3

/3
0
1
/1

0
8
0
9
5
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



3 16 Cavender 

KEMENY, J. G., J. L. SNELL, and G. L. THOMPSON. 1974. Introduction to finite mathematics. 

3d ed. Prentice-Hall, Englewood Cliffs, N.J. 

LAKE, J. A. 1987. A rate-independent technique for analysis of nucleic acid sequences: evolu- 

tionary parsimony. Mol. Biol. Evol. 4: 167-19 1. 

- 1988. Origin of the eukaryotic nucleus as determined by rate-invariant analysis of . 

rRNA sequences. Nature 331: 184- 186. 

SERRE, J.-P. 1977. Linear representations of finite groups. Springer, New York. 

SMITH, K. T. 1983. Primer of modern analysis. Springer, New York. 

TAVARB, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. 

Pp. 57-86 in R. M. MIURA, ed. Lectures on mathematics in the life sciences, vol. 17: Some 

mathematical questions in biology: DNA sequence analysis. American Mathematical Society, 

Providence. 

VAN DER WAERDEN, B. L. 1969. Mathematical statistics. Springer, New York. 

WALTER M. FITCH, reviewing editor 

Received March 23, 1988; revision received November 15, 1988 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

rtic
le

/6
/3

/3
0
1
/1

0
8
0
9
5
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2


