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Linear invariants, discovered by Lake, promise to provide a versatile way of inferring
phylogenies on the basis of nucleic acid sequences (the method that he called “evo-
lutionary parsimony”). A semigroup of Markov transition matrices embodies the
assumptions underlying the method, and alternative semigroups exist. The set of
all linear invariants may be derived from the semigroup by using an algorithm
described here. Under assumptions no stronger than Lake’s, there are >50 inde-
pendent linear invariants for each of the 15 rooted trees linking four species.

Introduction

The recent discovery by Lake (1987) of linear invariants promises to provide zﬁl
extraordinarily versatile method of inferring phylogenies from nucleic acid sequence,s
while providing naturally for statistical testing of phylogenies as hypotheses.

The method is particularly recommended by the nature of the assumptions thgt
underlie it. These are not philosophical principles but sharply defined scientific hg-
potheses about the observable relative rates of replacement of particular nucleotidgfs
by others. Indeed, linear invariants themselves provide a method of testing these hg-
potheses. Most important, the assumptions are mild without precedent, allowing&
different free choice from a large family of substitution probabilities for every bran
of the tree of evolution and every position in the molecule. g

In this paper, I present the theory of linear invariants in conventional mathﬁ-
matical language, describe a mechanical method for generating linear invariants, anii
expand the number of known independent linear invariants for a given tree from tvw
to >50.

0} papeojumoq

e//:s

Invariants

60801/10€/

The problem to be treated is to distinguish among the 15 phylogenetic trees &f
figure 1. For data, homologous strings of RNA are provided for the four tip speciés,
A, B, C, and D. Each of these strings is regarded as a sequence of letters from tl&
alphabet { A, G, C, U}. Deletions, rearrangements, etc., are outside the theory; evé—
lution proceeds by substituting letters for other letters. Substitutions at different pe-
sitions on the string are independent random events. At a given position at any tm}g
in the course of evolution, the usual Markov property applies: what happens next may
be influenced by the current state but is otherwise independent of the past. (Whife
this independence assumption is probably harmless, the influence of coevolving o§
ganisms and of other changing environmental conditions could theoretically rendér
it false.) A change from A to G, from G to A, from C to U, or from U to C is called
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FIG. 1.—The 15 topologies on which four species can be placed. On each tree the lowest point is
root (the last common ancestor of the four species).
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a transition. The other eight possible changes are transversions. (When A goes to U
and then to G, it will be mathematically convenient to call the whole compound
transaction a “transition from A to G.”)

In this paper, I will also treat the problem of classifying five species. The way to
extend the method to other numbers of species will become obvious.

To understand the results, if not the methods, presented here, one only needs
the simplest ideas of Markov processes (Kemeny et al. 1974, pp. 137-144, 153-184,
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203-214) and the ideas of basis and subspace, from linear algebra (Smith 1983, pp.
178-185).

For a person wishing to solve this problem, nothing could be more desirable than
a function of the data whose value depends on the topology and on no other attribute
of the tree (such as branch lengths and times of divergence ). Since there are degenerate
trees with more than one topology, one cannot hope for a single function taking 15
separate values for the 15 topologies. The best that can be expected are functions that
take some constant value under some topologies but do not necessarily always take
this value under the others. Such functions can reasonably be called invariants because
their values remain unchanged over the course of evolution and because the known
examples (Cavender and Felsenstein 1987) are actually invariants of algebraic varieties.

Of course, rare, chance events can always cause data from different topologies t¢/
be identical. Thus, the definition of invariant must be framed to account for randoms
ness. There are at least three possibilities: First, one might say that a function of th@l
expected value of the data is an invariant of a topology if for that topology there i§
only one value that it can take. (To be useful for discriminating topologies, it musg
also take some other value at least sometimes for at least one other topology. I do nog
add this proviso to the definition because an invariant can also be useful in othef
ways.) This is what I and my coauthor meant by “invariant” in a previous article;
(Cavender and Felsenstein 1987). Second, one could require the expected value o§
the function to be constant when it is applied to the random data. For linear functlong_
of the data, this stronger definition is actually equivalent to the first one. The definitiory
that I shall make is formally of this second type. Third, one might say a function of
the data is an invariant if its distribution, rather than just the mean, is constant fog
all trees of the given topology (J. Felsenstein, personal communication ). 3

At each position in the RNA sequence, there is an assignment of a letter A, G2
C, or U to each species A, B, C, and D. The notation AUUG for a pattern meang:
species A, B, C, and D have letters A, U, U, and G, respectively, at this position. Ther&
are 256 such patterns possible. The 256-dimensional vector that contains the 25@
observed frequencies of the patterns is called the spectrum of the RNA sequence (Cavo
ender 1978; Lake 1987). It is a complete summary of the data for the mferencg;
problem.

It is convenient to let AUUG also denote the spectrum that represents nothméﬂ
but a single occurrence of the pattern AUUG, i.e., a vector with a one and 255 zeross
Using this notation, we define a spectrum Y as

DI

Y = ACAC + AUAU + GCGC + GUGU + CACA + CGCG + UAUA
+ UGUG — ACAU — AUAC — GCGU — GUGC — CACG - CGCA
— UAUG — UGUA — ACGC — AUGU — GCAC — GUAU — CAUA
— CGUG — UACA - UGCG + ACGU + AUGC + GCAU + GUAC
+ CAUG + CGUA + UACG + UGCA .
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Let S be an observed spectrum and let a function y be defined by the dot product
¥(S) = Y+ S. Lake (1987) showed that, under assumptions, y is an invariant, with y
= 0, of the topologies in the left and right columns of figure 1. Symmetrically, he
exhibited both a vector X that gives an invariant x of the middle and right columns
and a Z that gives an invariant z of the left and middle columns. Henceforth, I shall
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call Y, rather than y, the “invariant.” I make this a definition. The notation E[H]
denotes the expected value of the random variable H.

Definition: A linear invariant of a topology is a vector ¥ such that E[ V- S] =
for spectra S under that topology.

If U and W are two vectors with E[U-S] and E[ W- S] both equal to nonzero
constants, then it is easily shown that U can be obtained from W by adding an invariant
and multiplying by a constant. Therefore, because there is essentially only one of
them, vectors such as these are excluded from the definition. The archetype is (1, 1,

, 1), which only returns your sample size to you.

Restrict attention to a single position in the molecule. Its spectrum S will comprise
255 zeros and a one. Its expected spectrum is more interesting, with 256 nonnegative
numbers summing to 1. If a vector V'is an invariant for each position in the moleoule
i.e., if E[S;- V] = 0, where i indexes positions in the molecule, then E[ X S;- V'] =En0
= 0, where 7 is the size of the sample of positions; so an invariant good for éach
position is good for the whole sample. This is true whether or not the spectragfor
different positions are statistically independent, but I retain the assumption of ngle-
pendence to justify statistical tests. j

If Y - S'is significantly far from zero, where S is the spectrum of the whole sam@l
then topologies I and III can both be rejected as hypotheses. Lake splits Y into gvo

parts, Y = Y* — Y~ where
= ACAC + AUAU + GCGC + GUGU + CACA + CGCG
+ UAUA + UGUG + ACGU + AUGC + GCAU + GUAC
+ CAUG + CGUA + UACG + UGCA

and

~ = ACAU + AUAC + GCGU + GUGC + CACG + CGCA
+ UAUG + UGUA + ACGC + AUGU + GCAC + GUAU
+ CAUA + CGUG + UACA + UGCG,

#G60801/1.0€/€/9/31011E/2GW/WO0D dNO"IWSPED

so that the hypothesis Y-S = 0says Y*-§ = Y- S. Both sides of this equatlon are
merely counts of positions in the molecule. Lake tests this hypothesis with the “gll-
known X? test for the equality of two events (van der Waerden 1969, pp. 40-42).
However, Y*-S and Y-S are dependent random variables, so this is not a valid
application of that test. The marginal distribution of Y*- S, given (Y* + Y 7). $is
binomial with n = (Y + Y ~)- S, and a test of whether p = ¥ in this binomial E a
valid test of whether E[Y-S] = 0 (Holmquist et al. 1988; David Clair, persdilal
communication ).

Lake’s two invariants, Y and Z, for topology I are basis vectors for a two-dlmign-
sional space of invariants. That is, the space consists of linear combinations of these
two and of nothing more. Are all linear invariants in this space? Not at all. Under
assumptions no stronger than Lake made, the subspace of invariants has 68 dimensions
(for the symmetric trees I-III) or 54 dimensions (for all the others). Since many
choices of assumptions are possible, it is important to have an algorithm that can
generate the invariant subspace from given assumptions. These assumptions can be
characterized in terms of families of Markov matrices.
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Markov Matrices

Choose a single position in the molecule and restrict attention to it. Consider
two species, R and S, anywhere on the tree. Define pag to be the conditional probability
of G being in the chosen position at R, given that A is in that position at S. For each
other pair of letters from the set { A, G, C, U }, define another p similarly. The Markov
matrix from R to S is

Daa DPac Dac Pau
P Dca Do Pcc Pcu ) (1)
- Dca DPcc Pcc DPcu

Dua DPuc Puc Duu
)

The usual term is Markov transition matrix, but that would be confusing here. Agois
usual in Markov chain theory, the probability mass function at R can be written ag a
row vector and multiplied by Pgs, with the matrix on the right, to get a row vecg)r
of probabilities at S. I shall use only Markov matrices that point forward in time frgm
an earlier species R to a later species S. If R evolves into T which evolves into S, th%n
Pgs = PrrPrs. Thus, when I admit a set of matrices to my model, I shall be for@d
to also admit all products of members of that set.

opeoe//:s

A Semigroup of Markov Matrices

For each of the six branches of the tree and for each position in the molecu?e
there is a Markov matrix. Thus, if there are 1,000 positions, there will be 6,000 dlﬂ‘ere!;lt
matrices involved. This complexity can be brought under control by treating just one
position and extending the invariants to the whole sample by linearity. There will Be
no linear invariants unless some restriction is placed on the Markov matrices. I shgﬂ
specify a set of Markov matrices that satisfies a consistency property (multiplicatiye
closure) and shall derive invariants from this set. Since every assumption about the
process of evolution is potentially an error, I want to make this set as large as possibie.

w
In particular, I shall use Markov matrices of the form <
e f & & g
h i j j é)
k kI m .
nonop g P
‘ &

These matrices state as generally as possible Lake’s assumption that, when a trans-
version occurs, the two possible outcomes are equally probable. Let # be the set Dgf
all matrices of this form. >

The product of two matrices from # is sometimes outside of # (i.e., # is ffot
“multiplicatively closed’’), and this would be a serious inconsistency if invariants wé%e
derived from . Thus, it is important to know that the union .L of all multiplicativ@y
closed subsets of # is the largest multiplicatively closed subset of # and is characterized
by the additional constraints

e—f=i—h : 3)
and

I-m=gq-p. 4
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By multiplying two general matrices of the form of matrix (2) and insisting that psc
= pau in the product, one quickly sees the necessity, for multiplicative closure, of
equation (4). Similarly, equation (3) follows from pca = pcg. Sufficiency is established
through a prodigy of high school algebra: multiply two general members of .L and
verify that the product is in .L.

A multiplicatively closed set of matrices such as L is a semigroup of matrices.
Unlike some semigroups, .L is defined almost entirely by linear constraints on the
components of the matrices. (The exception is the requirement that a Markov matrix
have no negative components.) This makes it only slightly different from an algebra
of matrices, so something of use to taxonomy may be present in the extensive theory
of algebras (Albert 1937, pp. 217-250, 1961; Deuring 1968).

Every matrix in £ is a linear combination A'p, + A%p, + - - - + A”p, (and lgre
the superscripts are not exponents) of the seven matrices

g
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Conversely, every linear combination of these seven that is a stochastic matrix (i.e.,
has rows summing to 1 and lacks negative components) is in .L. Derivation of a basis
such as {p,, p,, ..., p;} from linear constraints of the sort that define .£ is routine.
One regards the elements of .L as 16-dimensional vectors. The constraint pac = pau
says that these vectors are all orthogonal to a particular vector—Xx,, say. Five more
such vectors, x,, x1, ..., Xs, are apparent. To ensure that the row sums are equal,
the constraints

DPaa + Pag t+ Pac + Pau = Pa + PG t+ Poe + Dou
Daa + Pag t+ Pac + Pau = Pca + Pcc + Pcc + Peu ,

and

Daa + Dag + Pac + Pau = pua + Puc + Puc + puu

0] papeojumoq

must also be treated. (If the row sums equal something other than 1, there will be tgo
harm in it.) These last three constraints give x5, xg, and xs. To find matrices suchas

Di, D2, - .., D7 is to find seven independent 16-dimensional vectors that are each
orthogonal to all of x), X3, ..., Xo. A matrix inversion algorithm, for example, wﬁll
do this. %
Generating Invariants §
©

Assume all Markov matrices are drawn from £ and continue to restrict attentign
to one position in the molecule. Let # be the smallest subspace of 256-dimension§l
space that contains all expected spectra that can arise. The subspace of linear invariars
is the set of all vectors that are orthogonal to #. (A vector is orthogonal to # if itds
orthogonal to every vector in #, and this is true if it is orthogonal to every vector &n
some basis for #.) The computation of a basis for the space of invariants from a ba@s

for # is exactly like the computation of the matrices p,, . . . , p; from the constraini@
vectors X, . .., X,. Thus, it suffices to compute a basis for #. This leads into som
discussion of computational shop technique. oo

At the heart of my computer programs is a “triangularizer” subroutine. It maiJii}
tains a list of linearly independent vectors. When a new vector 4 is presented to the
triangularizer, it determines whether A can be written as a linear combination of vectogs
already in the list. If not, the list is enlarged so that it can be. It is useful for efficiendy
to keep the list in row-echelon form, so this enlargement is a more complicated process
than merely adding 4 to the list. Round-off error would be disastrous to this process,
so everything must be done in integer arithmetic. In particular, 4 is a vector of integemg—
not an expected spectrum at all, but a multiple of one. If I throw enough vectors&h
into this subroutine, the list becomes a basis for #, for the span of the list is the span
of the vectors thrown in. The problem is to generate enough vectors / so that every
expected spectrum is a combination of some of them.

For concreteness, assume topology IV. Let the Markov matrix on branch a also
be called a. Its components are of the form axy where X, Y € {A, G, C, U}. Name
the Markov matrices on the other branches b, ¢, d, e, and f The probability of pattern
AUUG, eg., is

P{AUUG} = E 2. rraraSrsbsuestcrudrc , )
R S T
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where R, S, and T, all elements of { A, G, C, U }, are possible states of interior nodes
as marked in figure 2 and where ry is the probability of R in the ancestor. [I never
constrain the initial distribution 7 = (74, rg, ru, rc).] There are analogous formulas
for the other 255 patterns. Thus, you could compute the expected spectrum if you
knew the matrices a, b, ¢, d, e, f and the initial distribution r. You could generate all
possible expected spectra if you knew all possible g, b, ¢, d, e, f and r. The formula
(5) for P{AUUG}, with its 255 analogues, generalizes equation (1) of Cavender
(1978) and equation (2.3) of Tavaré (1986, p. 59).

Give the name o to the function that assigns an expected spectrum #
= (P{AAAA}, P{AAAG},..., P{AUUG},. , P{UUUU }) to a set of matrices
a b, c d e andf and an mmal distribution r. That is,h=0(a, b, ¢, d e f r). Then
¢ is a multilinear. That is, o(a, Ab, + ub, ¢, d, e, f, r) = Ao(a, by, c, d, e, L)
+ uo(a, by, c, d, e f, r), and similarly for q, ¢, d, e, f, and r. This follows fr@n
formula (5).

Letr; = (1,0,0,0), 7, = (0, 1,0,0), r3 = (0, 0, 1, 0), and r,4 = (0, 0, 0, i)
Then every initial distribution is a linear comblnatlon of vectors from {r,, r,, %3,

ra}. Leteachset {ai, ay,..., a7}, {b1, b2y ..., 07}, ..., {fi, 5, ... ﬁ}beeq@al
to {p1, D2, ..., D7}, the set of seven matrices that spans .C Then the set {c(a,,
ko A, €m, Jo, Tg)}, where g€ {1,...,4}and i, j, kI mne{l,...,7},of 4 -§76=

(470,596 ) spectra is a spanning set for the span # of all possible expected spectra. Exln
fact, every expected spectrum / can be written

h=o(a b c d e fr)
=o(X Ma, T Mb, 3 Ma, ..., S Ar)
i k q

J

=3 Mo(a, I Mb, 3 Me, ..., S Ar,)
i J k q

=3 3 MMo(a, by, 3 M, ..., S Adr,)
k q

i

=3T3 T3 T MMMMAIAAS(a, b, e, ..., 1),

i j k I m n g

Zz0z 1snBny |z uo1senb Aq #56080 1/1.0E/E/9/3101HE/2qW /W02 dNOOlWSpPE

FIG. 2.—Pattern AUUG in topology IV. The edge labels may be identified with Markov matrices,
which are generalized branch lengths. Capital letters are nucleotide names rather than species names.
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a combination of elements from the set of 470,596. These 470,596 are the vectors A
that I feed to the triangularizer.

This approach is traditional. The ordered sets (a;, b;, ¢k, . . . , ry) are tensors that
convert the multilinear map o into a linear map whose dommn is a tensor product
of six copies of the seven-dimensional space .L and the four-dimensional space of
initial distributions. ## Is the image of this linear map (see Greub 1967, pp. 1-12, 19;
Dieudonné and Carrell 1971, pp. 1-7). Lake’s approach was different. He noted that
a, b, ¢, and d have natural actions on the space of expected spectra. That is, the 4 X 4
matrices extend to 256 X 256 matrices. Then # is stable (Serre 1977, pp. 1-7) under
these larger matrices, which Lake calls “operators.”

Figure 3 shows the 54 independent linear invariants of topology I'V that result
from this procedure. Figure 4 gives 68 invariants of topology I. If you cleverly assig
and reassign the names A, B, C, and D to your four species, you can avoid treatm§
any topologies besides [ and IV,

An Improved Algorithm

0l} papeo|

The procedure just described takes many hours on a dedicated, fast computea
Most of this time is spent in the triangularizer. If the algorithm as it stands wel‘§
applied to five species, the triangularizer would be handling spectra four times as long
and 49 times as many of them. Months would be needed. Fortunately, most of thfg
computation can be avoided by computing five-species (1,024-dimensional ) expecteg
spectra # from the 202 (or 188) basis vectors already identified for the foulg
species #. 5

The idea is to graft a minimal, two-species tree onto a tree for which # is already
known (fig. 5). Let g¥, be the conditional probablhty of A and C in the species shows
in the figure, given U at the join. Define 63 more g%y in the same way for other )ﬁ
Y, and R € {A, G, C, U}. Clearly, g€ = arcbra, Where a and b are the Marko&
matrices on the branches indicated in the figure. Let § = (Saaana, SAAAG> - - - » SUUU
be the expected spectrum of the four-species tree. Then the probability of the pattcrm
shown is

P{GUCAG} = ¥ scurcqdta = 2 ScurGarchra .
R R

A
a vs6d@h1/10¢/

There are 1,023 more formulas like formula (6), as there are 255 more like formula
(5). With the whole set of 1,024, you generate a five-species expected spectrum. Yo#
could generate all possible five-species spectra if you knew all possible s, a, and b. The
derivation of the algorithm continues from this point just as before. Knowing 202
basis vectors for # is as good as knowing all possible s, and knowing seven basg
matrices for .L is as good as knowing all possible a or all possible b in L. The tnarg
gularizer will be called 202 - 72, or 9,898 times, not 23,059,204.

ngA

N
o
N
Beyond Balanced Transversions h
Let o and P be positive numbers. The matrix
e [ g ag
h i j aj
k Bk 1 m (7
n pn p g



V= CAAA-CAAC+LAGCA-CACC+2CACA=-2CACE
1 UCAA=-CCAC+CCCA-CCCC+2CCCA-2CCCC
~2CCARL-2CCAC+ICCCA~-1CCCC+4CCCA-1CCCT
~UA4A+ UAAC-VACA+UACC-2VACA+2UACC
~UCAA+UCAC-UCCA+UCCC-2UCCA+2UCCE
=AU0UAA Y TUUAC-2UUCA+TUUCC -5 ULUA +4UULC

Vi CAAA~CAAC+CACA-CACC+ICACA-2CACC
1 CCAA-CCAC+CCCA-CCCC+ICCCA-2CGCCC
2CAA-2CCACHICCCA-1CCCC+ICCCA -4CCCE
~UAAA T VAAC=UACA+ UAGC-2UACA+2VACC
SUGCAA Y UGAC-UGCA UCCC-2UCCA+2UCCC
S2LUAANQUUAGC-TUUCA+2UUGCC~-LUUCA4 4 UUCC

Vit —CAAA-CAAC-2CAAC+CACA+CACC+2CACC
~CCAA-CCAG-2CCAC+CCCA+CCCC+CCCC
=2CCAA~2CCAC-4CCAC+2CCCA+2CCCC+4CCCC
+UVAAAL UAAC+2UAAC-UACA-UACGC-2UACC
4 UGAA+UCAC+2UCAC-UGCA-UGCCG-2UGGC
4 WUAASRVUACHIUVUAU-1UUCA-21UUCG -4 ULCY

Vi==CAAA-CAAC-2CAAC+CACA+CACC+1CAGC
~CCAA-CCAC~2CCAC+CCCA+CCCC+2CCCC
~2CCAA-2CCAG—4CCAC+2CCCA+2CCCCr4CCCC
+UAAA+ UAACH+2UAAC-UACA-UACG-2UAGC
+UGCAL+UCAC+2UCAC-UCCA-UCCC-2UGCC
+2UVAA +2UUACHIVUAC-2UUCA-2VUCC -4 UUCC

Vy= =CAAL+CAAC~CACA+CACC-2CACA+2CACC
~CGAA+CCAC~-CCCA+CCCC-2CCCA+2CCCC
~2CCAA+2CCAC~2CCCA+2CCCC~4CCCA+4CCCC
+UAAA-UAAC+UACA-UACC+IUACA-2UACC
+UCAA-UCAC+UGCA-UGCCC+2UCCA-2UCCC
+2UCAA-2UCAC+2UCCA-2UCCC+4UCUA~1UCUC

Vy= —~CAAA+CAAGC~CACA+CACC-2CACA+2CACC
—~CCAA+CCAC~CCCA+CCCC-1CCCA+2CCCC
-2CCAA+2CCAC-2CCCA+2CCCC-4CCCA+4CCCC
+UAAA-VAAC+UACA-UAGC+2UACA-2UACC
+UCAA-UCAC+UCCA-UCCC+2UGCCA-2UCCC
+2UCAA-2UCAC+2UCCA-2UCCCH+IUCCA-1UCCC

V1= ~CAAA-CAAC-2CAAC+CACA+CACC+2CACC
-CCAA-CCAC-2CCAC+CCCA+CCCC+2C0CCC
~2CCAA-2CCAC~4CCAC+2CCCA+2CCCC+4CCCC
+UAAA+UAAC+2UAAC-UACA-UACC-2VUACC
+UCAA+UCAC+2UCAC-UCCA-UCCC-2UCCC
+2UCAA+2UCAC+4UCAU-2UCCA-2UCCC~4UCCU

FiG. 3.—A basis for the subspace of all linear invariants under topology IV. This is probably neither the simplest nor most symmetric basis that could be found.

FUGAA+ UCAC-2UC. .
1IUCAAIUCAC 4 UCAC

Vo5 =UAACH UAAU=-UACA=UACC  UAALUAUY
+UCAC-UCAU» UGCA+UCCC-UCUA-UCUY

Vi ~CAAL-CAAC~2CAAU-CACA-CACC-20ACC
~2CACA=2CACC=21CACC-2CACU+CCAA Y CCAC
+2COAULCCCA+CCCCHCCCLI2CCCAH2CCCT
+2CECCHICECU+ UAAA+ UAACHIUAACHUACA
+UACC+2UACCH2UACCHAVACCHUAUATIUAUC
~UCAA-UCAC-2UGCAC-UCCA-UCCC-2UCCC
-2UGCC-2UCCC-2UCUA-2UCUC

¥, = = UGCA+ UGCC+UCUA - UCUC

Vi = CAAA+CAACH2CAAUH CACA+CACC +2CACC
+2CACA+2CACC+2CACCH2CACY-CCAA=CCAG
~2CCAU-CCCA-CCCC-2CCEC-2CCCA-2CCCC
~2CCCC-1CCCU-UAAA=UAAC-2UAAU=-UAGA
~UACC=2UACC~2UACA=2UACC~2UACC-2UACU
+UCAA+UCACH2UCAU+UCCA+ UCCC12UCCE
+2UCCA +2UCCC +2UCCC+IUCCU

V,y = UCAC=UCAU-UCCCHUCCU

Vi, = = UACA+ UACG+UAUA - UAUG

Vi = UAAC=UAAU-UAGC+UACU

V= CCAA-CCAC+CCCA-CCCC+2CCCA-20CCCC
~CUAA+CUAC-CUGA+CUCC-2CUUA+2CUUC

Vi = CCAA-CCAC+CCCA-CCCC+2CCCA-2CCCC
~CUAA4CUAG-CUGA+CUCC-2CUCA+2CICC

V,y = =CCAA-CCAC-2CCAC+CCCA+CCCG+2CCCC
+CUAA+CUAC+2CUAU~CUCA-CUCC-2CUCU

Viy = =CCAA-CCAC-2CCAC+CCCA+ CCCC+2CCCL
+CUAA+CUAG+2CUAC~-CUCA-CUCC~2CUCC

Vy = =CCCA+CCCC+CCUA-CCUC

¥y = CCAC-CCAU-CCCC+CCCU

V

CAAC-CAAUL CACA+ CACC-CAUA - CAUY

acGa CH CCAU-CCCA-CCCCHCTUA COUU

= CAACHCAAUYCACA+ CACU=-CAUA-CALC
CCAC-CGAU-CCCA-CCCUY CCUA CCUC

= COCA-CCCC-CCUA+ CCUC

= CCAC=CCAU-CCCC CCCU
= CACA=-CGACG = CAUA | CAUG

2= CAAC-CAAU-CACC+CAGU

TAAAC-2AANUI2AACA+TAACC-2AAUA=2AA UV
+ACAC-ACAU4+ ACCA+ACCC-ACUA-ACUU
FAUAC-AUAU+AUCA+AUCC-AVUA-AUUU
~2CAAC+2CAAU-2CACA-2CACCHICAUA+2CAUU
~CCAC+CCAU-CCCA-CCCC+CCUA+CCUY
~GUAC+CUAU-CUCA-CUCC+CUUA+CUUU

Vy = —4AAACHIAAAU=24ACCH2AACU=24AUCH2 AL VU

JACAA+ACACH4ACAULACCA=-ACCC+2ACCA
V2ACCU42ACUA+2ACUU-3AUAA-AUAC~4AUAC
=AUCA+AUCC-2AUCA-1AUCC-2AUUA-2AVUC
+4CAAC-4CAAUL2CACC-2CACU+2CAUC-2CAUY
=3CCAA-GCAC-1CCAU-CCCA+CCCC-2GCCA
~2GCCU-2CCUA~2CCUU+ICUAA+CUAC+4CUAC
4 CUGCA-CUCC+2CUCA+2CUCC+20UUA+ICUUC

Vi = GCAA-CCAC+GCCA-GCCC+2GCCA-2GCCC

~CUAA+CUAC-CUCA-+CUGC-2CUUA +2CUUC

Vi = ~4AACA-24AACC-2AACU+4AAUA+2AAUC+2AAUU

+IACAA+ACAC+2ACAC+IACAU+ACCA-ACCC
AHACUA42ACUCH+2ACUU=IAUAA-AUAG-2AUAC
~2AUAU~AUGA+AUCGC-4AUCA-2AUCC-2AUCU
+4CACA+2CACC+2CACU=-4CAVUA-2CAUC-1CA VU
~3GCAA~CCAC~-2GCAC-2GCAU-CCCA+GCCC
~4CCUA-2GCUC-2GCUU+ICUAA+CUAC+ICUAC

+2CUAU+CUCA-GUCC+iGUCA+20UCC+2CUCY

Vyy = CCAA-CCAC+GCCA-CCCC+2GCCA-2CCCG

=CUAA+CUAC-CUGA+CUCC-2CLC4+1CUCC

Vi3 = =CCAA=CCAC-2CCAC+CCCA+CCCC+2CCGC

+GUAA+CUAC+2CUAU-GUCA-CUCC-2CUCY

Vi = ~CCAA-CCAG-2CCAC+CCCA+CCCC+2CCCC

+CUAA+GUAC+2CUAC-CUCA-CUGC-2CUGC

Vi = CCCA~CCCC~CCUA+CCUC
Vi 8 CCAC-GCAU-CCGC4 GLCU

Viu = CAAC-CAAU+CACA 1+ CACC-GAUA-CA
~CCAC+CCAU~GCCA-CCCC+CCUA+ CCUHy |

Spojumoq

Q.
Vi 2 =CAAC+CAAU+CACA+ CACU-CAVA - GAlC
+CCAC~GCAU-CGCA-CCCU+CCUA+ CCUD

Vi = CCCA-CCCC-CCUA+GCUC
V,=-CCAC+CCAU+CCGC-CGCU

v ~GACA+GACC+CAVA-CAUC

L}

peoe//:sdiy w

Vi = =CAAC+CAAU+CACC-CACY

0]

Vi © ACAA=ACAC+ACCA=ACCC+24CCA-14CEC
~AUAA+AUAC—AUCA+AUGC-24UUA+2AVPC
o)

V= ACAA~ACAG+ACCA~ACCC+24CCA-2AELC
—~AUAA+AUAC-AUCA+AUCC-2AUCA+24 !.’Gg:

o
Vo = —~ACAA=ACAC-2ACAC+ACCA+ACCC+2ALCC
+AUAA+AUAC+2AVUAU-AUGCA-AUCC-24 U§1

[on

Vu= —ACAA-ACAC-2ACAC+ACGA+ACCC+284LCC
+AUAA+AVAC+2AUAC-AUCA-AUCC-24UGE
=

Vi = ACCA=ACCC- ACUA+ACUC

Vu = —ACAC+ACAU+ACGC-ACCU

&e/9/010n

Vi = AAAC-AAAU+AACA+AACC-AAUA-AA
~ACAC+ACAU-ACCA-AGCCC+AGUA+ACULD
-

Vi = ~AAAC+AAAU+AACA+AACU=AAUA - A4GC
+ACAC-ACAU=ACCA-ACCU+ACUA+ACUC)

Vi = ACCA=ACCC~ACUA+ACUC
V., = ACAC-ACAU=~ACCC+ACCU
Vi = =AACA+AACCHAAUA=AAUC

Ve = AAAC=AAAU-AACC+AACU

7 LZ uo1senb Aq 660



V, = ACAA-ACAG+ACCA-ACCG+2ACCA-2ACCC
~AUAA+AUAC-AUGA+AUCC-21AUCA+2AUCC
+CAAA-CAAG+CAGA~CAGG+2CACA-2CACC
+CCAA~CCAC+CCCA-CCCG+2CCCA-2CCCC
~UAAA+UAAC-UAGA+UAGC-2UACA+2UACG
- UUAA+UUAC-UUGCA+UUGC-2UVVUA+2UUUC

Vy = ACAA-ACAC+ACGA-ACCG+2ACCA-2ACCC
—~AUAA+AUAGC-AUGA+AUGG-2AUCA+2AUCG
+CAAA=CAAC+CAGA-~CAGCG+2CACA-2CACC
+CCAA-CCAG+CCCA~CCGG+2CCCA-2CCCC
~UAAA+UAAG-UAGA+UAGG-2UACA+2UACG
~UUAA+UUAG-UUGA+UUCC-2UUCA+2UUCG

Vy = ACAA+ACAG+2ACAC-ACCA-ACGG-2ACCGC
~AUAA-AUAG-2AUAC+AUGCA+AUCG+2AUCC
+CAAA+CAAG+2CAAC—-CAGA-CACG-2CACC
+CCAA+CCAC+2CCAC-CCGA-CCGC-2CCCC
—UAAA~UAAC-2UAAC+UAGCA+UACG+2UAGC
~UUAA-VUAG-2UUAU+ UUGA+UUGC+2UUGU

V,= ACAA+ACAG+2ACAC-ACGA-ACGC-2ACCC
~AUAA~AUAC-2AUAC+AUGA+AUGG+2AUCC
+CAAA+CAAG+2CAAC-CAGA-CAGG-2CAGC
+CCAA+CCAG+2CCAC-CCGA-CCCG-2CCGC
~UAAA-UAAG-2UAAC+UAGA+UAGG+2UAGC
—UUAA-UUAG-2UUAC+ UUGA+ UUGG+2UUGC

Vs = ACAA-ACAG+ACGA-ACGG+2ACCA~-2ACCC
—AUAA+AUAG-AUCA+AUGG-2AUCA+2AUCG
~CAAA+CAAG-CAGA+CAGG-2CACA+2CACG
~CUAA+CUAG-CUGA+CUCG-2CUCA+2CUCG
+UAAA-UAAC+UAGCA~UAGG+2UACA-2UACG
+UCAA-UCAG+UCGA~UCGC+2UCUA-2UCUC

V= ACAA-ACAC+ACCA-ACCC+2ACCA-2ACCC
—~AUAA+AUAG~AUGA+AUCG-2AUCA+2AUCC
~CAAA+CAAG-CAGA+CAGC-2CACA+2CACG
~CUAA+CUAG-CUGA+CUGG-1CUCA+2CUCC
+UAAA~UAAG+UACA~UAGCG+2UACA-2UACC
+UCAA-UCAG+UCGA-UCGG+2UCCA-2UCCG

Vy = ACAA+ACAG+1ACAC-ACGA-ACGG-2ACCGC
~AUAA-AUAG-2AUAC+AUGA+AUGG+2AUGC
~CAAA~CAAGC-2CAAC+CAGA+CAGG+ICAGC
- CUAA-CUAG-2CUAC+CUGA+CUGG+2CUGC
< UAAA+UAAGCH2UAAC-UAGA-UAGC-2UAGC
+ UCAA+UCAGC+2UCAU-UCGA-UCCC-2UCGU

Vi = ACAA+ ACAG+2ACAC-ACGCA-ACGG-2ACCC
—~AUAA-AUAC-2AUAC+AUCA+AUCC+2AUCC
~CAAA-CAAG-2CAAC+CAGA+CAGCG+1CAGC
-CUAA-CUAG-2CUAC+CUGA+CUCC+2CUCC
L UAAA+ JAAC+2UAAC-UAGCA-UAGG-2UAGC
4+ UCAA +UCAG+2UCAC-UCCA-UCCGC-2UCGC

Vy = AAAC-AAAU+AACA+AACC-AAUA-AAUU
~ACAC+ACAU-ACCA-ACCCH+ACUA+AGUU
+GAAC-GCAAU+GACA+CACC~CAUA-GCAUU
~GGAC+GCAU-CCCA-GGCC+EGGUA+GCUY
+2CAAC-2CAAU+2CACA+2CACC-2CAUA-2CCAC
+2CCAU~2CCGCA-2CCCC+2CCUA-2UAVU+2UCUU

Vig + =AAACHAAAU+ AACA+ AACU-AAUA-AAUC
+AGAC-AGAU-AGCA-ACCU+AGUA+ACUC
~CAAC+CAAU+GACA+GACU-CAUA-CAUC
+CCAC-CCAU-CGCA-CCCUL+GGUA+GCUC
~2CAAC+H2CAAU+2CACA+2CACU-2CAUA+2CCAC
=2CCAU-2CCCA-2CCCU+2CCUA-2UAUCHUGUC

Vi = =CACA+CACG+CAUA{-CCCA-CGCG~CGUA
+UACA-UACG-UAUA+UGUG

CAUA-CGUA=-UAUA+UGUA

k]

<
<
n

- CACU+CGCU+ UACU-UGCU
Viy = CACC- CCCC-UACCH UGCC
Vs = CACG-CGCG-UACG+UGCG
Vie = CACA=CCCA=UACA+UGCA

Vis = =CAAC+CAAU+CAGC+ CGAC-CCAU-CGCC
+UAAC-UAAU~UAGCC+UGGU

Vis = CAGC-CGCC-UACC+UGGC
Vi 2t GAGC-CCGG-UAGC+UCCE

Va = CAGA-CGGA-UAGA+UGGA

Vo = —CAAU+CCAU+UAAU-UGAU
Vy =2 CAAC-CGAC-UAAC+UGAC
Va =2 CAAG~CGAG~UAAG+UGAC
Vyy = ~CAAA+CGAA+ UAAA-UGAA

Vay = UACA=UACG~UAUA+UAUG

Vg = UAAC-UAAU-UAGC+UAGU
Vi = —~CUCA+CUCG+ CUUA-CUUG
Vu = CUAC~-CUAU-CUCC+CUCU
Va = ~CCCA+CCCC+CCUA-CCUG

CCAC-CCAU~CCCC+CCCU

&
p

Vo = AAAC=AAAU+AACAH+AACC-AAUA-AAUU
~ACAC+AGCAU~AGCCA-AGCC+ACUA+ACUU
+CAAC-CGAAU-+GACA+GACC-CAUA-GAUY
—~CGAC+GCAU~CGCCA-CGCC+GCUA+GCUU
+2CAAC-2CAAU+2CACA+2CACC-2CAUA~2CAUU
~2CCAC+2CCAU-2CCCA~2CCCC+2CCUA+2CCUY

Vi = —AAACHAAAUL AACA+ AACU~AAUA-AAUC
+ACAC-ACAU-AGCA-AGCU+AGUA+ACUGC
—CAAC+CAAULGACA+GACU~GAUA-GAUC
4+ CGAC~-CGAU-CGCGCA-CGCU+GCUA+CGUC
~2CAAC+2CAAU+2CACA+2CACU-2CAUA~2CAUC
+2CCAC-2CCAU~2CGCA-2CCCU+2CGUA42CCUC

Vyy = CGCA-CGCG-CCUA+CCUC
Vi = = CCAC+CCAU+CCCC-CCCU
Vy, = ~CACAL CACC + CAUA~CAUG
Vi = CAAC=CAAU-CAGC+CAGU

Vi = AAAC-AAAU+AACA+AACC-AAUA—-AAUU
+ACAC-ACAU+AGCA+AGCC-AGUA-AGUU
+24CAC-2ACAU+2ACCA+2ACCC-2ACUA~2AUUU
=~ GCAACH+GAAU~GACA-GACC+GAUA+GAUU

*-GGAC+GGAU~CGGCA-CGCC+GCUA+GCUU
~2GCAC+2GCAU-2CCCA-2CGCCC+2GCUA+2GUUU

Vy = —AAACH AAAUSAACA+AACU-AAUA-AAUC
—AGAC+AGCAU+AGCA+ACCU-AGUA~-ACUC
~“2ACAC+2ACAU+2ACCA+2ACCU-2ACUA-2AUUC
+GAAC-CAAU-~GACA-GACU+GAUA+CGAUC
+GCAC-GCAU~GCCA-GCCCU+GCUA+GGUC
+2GCAC-2GCAU-2GCCA-2CCCU+2GCUA+2GUUC

Vi = = ACCAHACCCHACUA+AUCA-AUCC-AUUA
+CGCCA-CCCC~CCUA+GUUG

Vi = ACUA~AUUA-CCUA+CUUA

Vy = ~ACCU+AUCU+GCCCU-GUCU
Vi = ACCC-AUCC-GCCC+GUCE
Vi = = ACCC+AUCC+CCCC-GUCC
Vi = ACCA-AUCA-GCCA+GUCA

Vi = ACAC=ACAU=ACCC-AUACHAUAU+AUCC
~GCACHGCAU+CCCC-GUCY

FIG. 4.—A basis for the subspace of all linear invariants of topology 1

V. = —ACCC+AUGC+GCCC-CUCC

Va = ACGC-AUCC-GCCG+GUCT

Va = ACGA~AUGA-GCGCA+GUCA 8

Vi = —ACAULAUAU+ CCAU-GUAU §

Vi = ACAC~AUAC-GCAC+HGUAC 8

V, = ~ACAC-+AUAC4+CCAC-CGUAC %
=

Vi = —ACAA+AUAA+CCAA-CUAA g
=

Vyy = AAAC-AAAU+AACA+AACC-AAUA-AAUTE
+ACAC-AGAU+ACCA+ACCC-ACUA-AGUUD
+2ACAC-2ACAU+24CCA+2ACCC-2ACUA-2ACUU
~GAAC+GAAU~GACA-GACC+CAUA+CAUUS
~CCAC+GGAU-CCCA-GCCC+CCUA+CCUL
~2GCAC+2GCAU-2G0CA-1GCOC+1CCUA+1EEVY

Vi = ~AAACHAAAULAACA+AACU~AAUA= AABC
~ACAC+AGAU+AGCA+ACCU-AGUA=AGUC
~2ACAC+2ACAU+2ACCA+1ACCU~2ACUA-2ABUC
+CAAC-CAAU-CACA-CACU+GAUA+GAUCD
+CGAC-GCAU-GGCA-CCCU+GCUA+GCUR
+2CCAC-2GCA u-zccc,«-zcccunccuuz%uc

=3

Vi = GCCA- GCCG~CGCUA+GCUG

Viy = - GCAC+GCAU+CGCCC-CCCU

Vi, = —~CCCA+GGCC+CCUA-CCUC

V,y = CGAC-CGCAU-GCCC+CCGU

Vi = GACA=~GACG-CAUA+GAUG

Ve = =CAAC+CAAU+CAGC-CGAGU

Vi = —AUCA+AUCG+AUUA=-AUUC

Vg = AUAC=AUAU=AUGC+AUGU

Vi = ~ACCA4+ACCC+ACUA-ACUG

Vi = —ACAC+ACAU+ACGC-ACGCU

Vi = AGCA—ACCC-ACUA+ACUG

Vi = —ACAC+AGAU+ACGC-AGCGU

V= —AACA+AACC+AAUA-AAUC

Ve = ~AAAC+AAAU+AAGC~AAGU

0z ¥snbny |z uo }senb Aq $560801/10E/E/9/2101E/OqW
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FiG. 5.—A five-species tree built by joining a two-species tree to a four-species tree
generalizes matrix (2). If the additional constraints
q
ol—m==-
p p
and

i
—f==—h

Be—f B
are imposed, these matrices form a multiplicatively closed set. That is, for each o gnd
B there is an alternative semigroup. I should emphasize that equations (8) and (9 gdo
not follow from matrix (7). They are required to keep matrix (7) from breaking dewn
over the millions of years. Each of these semigroups leads to invariants, as I sﬁall
show next.

9

Ie/aqul/woo°dno-olWgRed.//:sd)Y Wolj papeojumoq

Ad ¥56080

An Assay for Semigroups

The following theorem provides a quick way of screening semigroups tOdee
whether they give invariants.
Theorem: If the two-species tree has no invariants under a given semigroup, then Iager
trees also have no invariants. N

I shall sketch the proof for three-species trees. Let /#, and /#; be the two-spegies
and thtee-spemes versions, respectively, of #. Say #, contains every pattern AA, ZgG

, UU. I show that #; contains every pattern AAA, AAG, ..., UUU. N

For example, here is how the pattern AGU arises. Let c(R, b;, ¢m) be the tiwo-
species expected spectrum from initial state R and Markov matrices b; and c,,, on the
branches indicated in figure 6. Since #, contains every pattern, lambdas exist for
which

1s®

GU = 3 T MMo(A, by, cm) + 2 Z A°"6(G, by, ¢n)
I m I m

+ > S ACMS(C, by, o) + 2 D AVMS(U, by, Cm) -
I m I m
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FiG. 6.—Pattern AGU of a linear combination of possible spectra

Similarly, for each R € { A, G, C, U}, thetas and rhos exist, with p € {A, G, C, U}
for which

AR = Z E Z 0o (pk. air ) .

Then

AGU = 2 E E E 2 (Z elﬂjxklm)c(pk' a;, bl' Cm, ej) .
kK i j 1 m

R

"OlWapeoe.//:sdny woll papeojumoq

Notice that I am taking the point of view here that the probability mass functloIE
of the root is always unconstrained so that invariants do not depend on it, only org
the semigroup.

For an example, assume that b and ¢ are Markov matrices of the form of matmg
(7) so that abac — bay = 0, etc. Let V = afAC — BAU — aGC + GU. Let s = (SAAﬁ
SAG> - - - » Suu) be any expected spectrum. Then V' is an invariant, since

w/w

Ves= GBSAC - ﬁsAU — asge + Sgu

= X rr(aPbracrc — Pbracru — WbrGCre + BrGCRU)
R
= 2 rr(Bbra — brg)(@Crc — CrU)

=0.

UO 1sonb Aq $560801/10€/E/9/210

This is because the binomial (Bbra — brc) is zero when R € {C, U} and the other,
binomial is zero when R € {A, G}.

One can see trivially that the converse of the theorem is true by considering th@
four-species invariant for topology IV:

W= > (aBpXYAC - BXYAU - aXYGC + XYGU),

X,YE{AG,C,U}

ny |

cecocis

which, since it can be verified or rejected without even looking at species A and B, is
merely a restatement of the invariant V just proved.

General Semigroups

Let § be any semigroup of Markov matrices. Let T be the algebra spanned by
&, i.e., the set of all matrices ¢ of the form
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n
t=3 Ms,
k=1
where each sy is in &. Since 7 has at most 16 dimensions, there is a set of at most 16
matrices f, that span 7T . Each of these is a linear combination of finitely many elements
from &, so there is a finite subset of § that can serve in place of {p, p2, ..., p7} in
the algorithm to generate all linear invariants resulting from 7 (or, more exactly,
from the set of all stochastic matrices in 7, which is a semigroup contained in 7 and
containing ). This shows that, despite appearances, the algorithm does not depend
on having a semigroup that is defined by linear constraints.

In practice one would ordinarily use the larger semigroup rather than &, since
one’s assumptions are then weaker. There is no loss in doing this; the two semlgr(mps
have the same invariants, as one can easily prove using by-now familiar methodg.

The most familiar semlgroup of Markov matrices is the one-parameter semigréup,
a set of matrices of the form e*" with M a fixed matrix and ¢ a varying, real, “tiﬁxe”
or “evolutionary-distance” parameter. Such a semigroup will have a basis of at rgost
four matrices s; (Brogan 1985, pp. 202-205, 208-209).

An Application

e//:sdpy w

The expected spectrum for a string of RNA is the sum of the expected spéctra
for many individual positions. Each summand is in /#, and therefore the sum is §lso
For a given tree and semigroup, an algorithm is at hand to compute #. If the acs‘tual
spectrum is significantly far from #, either the tree or the semigroup must be reje@ed
The most fortunate user of the method would have some grounds for total faith in
the semigroup and would find that a good statistical test rejects 14 of the 15 tr

I have not located a test of the hypothesis that the parameters of a multinofial
satisfy given linear equations. Here I treat the problem with a multivariate no&nal
approximation. I hope someone can show me a better way.

Lake provided me with excellent data: aligned sequences of the 16S TRNA %om
the four species Homo sapiens, Desulfurococcus mobilis, Halobacterium volcamz,@nd
Escherichia coli. 1 call these A, B, C, and D, respectively. The data are part of those
treated by Lake (1988). There are 1,095 aligned patterns in the set. To creat&an
observed spectrum S, I merely count the number of AAAA, AAAG, AAAC, § .
UUUU. [They happen to be 121, 5,4, ...,74. Thus S = (121, 5,4, ...,74).]2

I decompose S into a sum of two vectors S = h+ x, where h satlsﬁes the 1n‘Ear1
ants (i.e., # € #) and where the “error” x is orthogonal to /# (which requires th!at X
be a linear combination of the invariants). :

I assume that the distribution of S is multinomial, with parameters given by'the
frequencies in /4. The reader should be aware of three objections to this commgnly
accepted practice. First, S is a mixture of multinomials, not a multinomial. The résult
is that my estimated variances will be too large. This does not invalidate the tes% for
the power rather than the size is what suffers damage. The nonlinear invariarits—
there are >140 of them—might be used here to improve the power. Second, 4 is
merely the element of /# that lies closest to S in Euclidean distance. It is a rough
approximation for the element of # that is best able to survive the subsequent %>
test. Third, I always got absurd negative components in A. I arbitrarily replaced these
with zeros.

I next replace the multinomial with a multivariate normal having the same vari-
ances and covariances. This is common practice, but, despite the reassurances of
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authorities (van der Waerden 1969, pp. 226-228), one should wonder about the
effects of small sample size.

The rest is routine. The normal distribution is projected (Graybill 1961, theorem
3.22, p. 68) into the subspace spanned by the invariants (because .S was projected into
this subspace to create x); x is recoordinatized in a frame where the normal is standard;
and the length of x is tested with a one-tailed ? with 54 or 68 degrees of freedom.

And what resulted? Almost nothing. I reject only trees III and IX at the 1% (or
5%) level. There are three possible explanations. First, the test I used, with its many
approximations, could be at fault. Second, the semigroup £ may be wrong. Third,
maybe information about the ancestral connections of these four species is just not
in their 16S ribosomal RNA.

Are the conclusions of Lake (1988 ) unjustified, then? I think not. One valid tesf/
can reject while another accepts, and it is a grave sin in statistics to try one test aftef
another on the same data, looking for the conclusion you prefer. I do not wish to beu
guilty of this (although I really have no preference among the 15 trees for these fouﬁ
species), so I urge the reader to regard my reanalysis as merely a demonstration of
method. Clearly, a better-founded statistical technique is needed—and fresh data.

B//:sdpy w

Conclusion: A Mathematician’s Perspective

If people must infer phylogenies from nucleic acid sequences, the method og
linear invariants is, in my opinion, the best available today. But before I place toé_g?_
much confidence in it, I would like to know whether transversions are truly balanced:,
This will require statistical studies (designed first, conducted afterward!) involving
large samples—and not just globin genes and not just vertebrates. I would also like
to know how badly the method is affected by small deviations from this key assumption3
Finally, and what is probably most difficult, I would like to know whether the as®
sumptions of statistical independence can be justified.
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