
Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

Pierre Lescanne

Mechanizing Common Knowledge Logic
using COQ

Received: date / Accepted: date

Abstract This paper presents a formalization in COQ of Common Knowledge
Logic and checks its adequacy on case studies. Those studies allow exploring ex-
perimentally the proof-theoretic side of Common Knowledge Logic. This work is
original in that nobody has considered Higher Order Common Knowledge Logic
from the point of view of proofs performed on a proof assistant. As a matter of
facts, it is experimental by nature as it tries to draw conclusions from experiments.

1 Introduction

We must not judge humans by what they do not know, but by what they
know and by the way they know it.

Vauvenargues
Thoughts and Maxims

Epistemic Logic is the logic which formalizes knowledge of agents [12,34].
It is an extension of classical (or non classical) logic obtained by adding modal-
ities. Actually one modality is added for each agent: it describes the fact that the
agent knows a proposition or a fact. In this paper I am interested in a strong exten-
sion of Epistemic Logic, namely Common Knowledge Logic, which adds a new
modality called common knowledge. It has been considered first by the philoso-
pher Lewis [27] and later more formally by the economist Aumann [2] (see also
the formal presentation of Milgrom [35] where “formal” is not taken at the degree
required by a mechanization). Among many applications it is used in game theory
and economic behavior [3,15], in artificial intelligence [33,18], in databases [14],
in verifying cryptographic protocols [21] and in distributed systems [23].

Laboratoire de l’Informatique du Parallélisme,
École Normale Supérieure de Lyon
46, Allée d’Italie, 69364 Lyon 07, FRANCE
E-mail: Pierre.Lescanne@ens-lyon.fr

2

Since its introduction Common Knowledge Logic has been studied as a log-
ical system, but most of the authors [12,34] consider it from its model-theoretic
point of view. In this paper the proof-theoretic aspect and mostly the actual mech-
anization of the Common Knowledge Logic is considered. Only a few approaches
are close to this paper. Let me cite Alberucci and Jäger [1], Kaneko [22] and, Lis-
mont [29] but these authors consider only the proof theory aspect whereas I look
at how Common Knowledge Logic can actually be implemented in a computer.

What should be expected from mechanizing logic?

Unlike human proofs which are sometime fuzzy and lacking on detail, mechaniz-
ing proofs shows exactly (in every detail) how theorems are proved from axioms.
In particular, when experimenting with a proof assistant it is often the case that
weaknesses appear in axiom systems, which could not have been discovered by a
careful human examination. Those who have experienced mechanized proof know
that bugs are discovered at an amazingly early stage in the process. Most of the
time those bugs have to do with limit situations like initializations or “straight-
forward” or less important cases. This was true in the experiment described in
this paper. I do not claim that I found bugs or an inconsistency, but I have shown
that axiomatizations proposed in the literature are erroneous, usually due to typos.
More specifically I have shown that the axiom systems for Common Knowledge
Logic proposed by a classical textbook in Common Knowledge Logic is not ro-
bust. By “robustness”, I mean the ability of a system of axioms to stay consistent
even when its scope is extended. In the case of a system of axioms for n agents, a
natural question is: Is the system still sound when n = 0? We will see (Section 4)
that this is not trivial in the kind of mechanization which I conducted, but this is
an essential feature as it makes full sense to start on 0 an inductive definition on n.
I have also shown that often people have difficulties in handling rules and/or com-
mon knowledge modalities. Actually in hand made proofs, it is difficult to detect
whether a specific implication lies in the theory or in the metatheory. As a conse-
quence, sometimes a proposition is modified by a common knowledge modality
because it is associated with a theory implication and sometime it is not because
it is associated with a metatheory implication (see Section 6 and Appendix C for
a discussion and examples). This confusion between theory and meta-theory hap-
pens especially in applications to game theory.

I have chosen to embed Common Knowledge Logic into the COQ proof assis-
tant [6,11]. There are many reasons for that. COQ, which is based on the calculus
of inductive constructions, offers a very general tool for representing logic the-
ories, in particular Higher Order Epistemic Logic can be easily implemented. In
COQ, proofs are first class citizens, i.e., they are mathematical objects that are built
by a sophisticated computer aided system and exchanged among researchers. Cur-
rently COQ is used and developed by a large community of users and sophisticated
tools are offered. It is clear that the choice of COQ is not a key issue in what fol-
lows but its strong logic background makes it really appropriate. However tools
like ISABELLE [36] or HOL [16] could have been used.

In what follows, I am not going to fully introduce COQ as it is not the aim
of this paper and a good book exists [11], but I hope to give enough information
for a reader to catch much of the concepts necessary to understand the develop-

3

ment of Common Knowledge Logic presented here. Anyway, the main purpose of
this paper is not the use of COQof any logical framework, but the fact that fully
mechanized proofs have been performed and lead to interesting discussions.

Shared knowledge, common knowledge.

Common knowledge logic is also known as the logic of knowledge [33,32,18],
it deals with modalities, which are not part of traditional logic and which mod-
ify the meaning of a proposition. For instance such a modality is the knowledge
modality: “agent Alice knows that ...”, written KAlice. There is a notion of group G
of agents and there is one knowledge modality Ki for each agent i in G, so when
there are n agents, there are n knowledge modalities. From the Ki’s, one can build
two new modalities, namely a modality EG of shared knowledge, which modifies
a proposition ϕ into a proposition EG(ϕ) and which means that “everyone in the
group G knows ϕ” and a modality CG of common knowledge. Not all approaches
of Epistemic Logic consider common knowledge, but for many people, it is es-
sential for the application and I put a strong emphasis on it. CG(ϕ) would say
“ϕ is known to everybody in the group G” in a very strong sense since knowledge
about ϕ is known at every level of knowledge. Slightly more precisely, if G is the
group of agents and ϕ is a proposition, EG(ϕ) is the conjunction over the i ∈ G of
the Ki(ϕ) and CG(ϕ) means something like “everybody knows ϕ and everybody
knows that everybody knows ϕ and ... and everybody knows that everybody knows
that everybody knows ... that everybody knows ϕ...” This infinite conjunction is
handled by making CG(ϕ) a fixpoint. For philosophers and economists who, like
Aumann [3], study game theory, common knowledge is the basis of rationality.
See Appendix A for an example where common knowledge applies.

In this paper, the main goal of the implementation of Common Knowledge
Logic is to handle properly the concepts of knowledge of an agent, shared knowl-
edge and common knowledge, but also induction and higher order propositions. In
COQ it is possible to make assumptions on propositions, like “there are proposi-
tions Alice knows that she knows”. For the reader who wants to learn more about
Common Knowledge Logic, the two textbooks [12,34] are excellent introductions.
Rules of Common Knowledge Logic are given in Section 3.

Deduction rule and Hilbert-style presentation.

The well-known deduction rule is as follows: if a statement ρ can be deduced from
a set {ψ1, ...,ψm} of hypotheses augmented by φ, then the theorem ”φ implies ρ”
can be deduced from {ψ1, ...,ψm}

ψ1, ...,ψm,φ ` ρ

ψ1, ...,ψm ` φ⇒ ρ

Most logics, noticeably the calculus of inductive constructions, fulfill the deduc-
tion rule, but modal logic and epistemic logic do not, therefore they cannot be
represented directly in COQ or in any logical framework. Indeed suppose that we

4

have the deduction rule in epistemic logic (or in modal logic by the way) and a
rule like Knowledge Generalization (Figure 1)

ψ1, ...,ψm ` ϕ

ψ1, ...,ψm ` Ki(ϕ)
. We would have ϕ ` ϕ and then

ϕ ` ϕ

ϕ ` Ki(ϕ)

and then using the deduction rule we would get ` ϕ⇒Ki(ϕ). This would translate
into “if ϕ holds then agent i knows ϕ” which is not what we want in formalizing
Epistemic Logic. Indeed we want to model agents who know part of the truth not
all the truth. However in modal logic the following rule is valid

ψ1, ...,ψm ` ϕ
(Gen)

Ki(ψ1), ...,Ki(ψm) ` Ki(ϕ)

This extension or a close one is usually used by people who formalize modal logic,
but this is a drastic extension of natural deduction which does not make it directly
embeddable in COQ.

Consequently, for an implementation of Common Knowledge Logic one has
either to implement the above rule or to formalize propositional logic and predi-
cate calculus in a Hilbert-style approach. Both approaches involve embedding the
calculus as a specific theory in COQ. For the Hilbert style approach, one defines
the set of propositions as a Set in COQ and the property for a proposition of be-
ing a theorem as a predicate on proposition. This kind of approach is called
deep embedding and requires a very expressive logic. The formalization one gets
eventually is a higher order Common Knowledge Logic in type theory.

Structure of the paper

The goal of this paper is to present Common Knowledge Logic, its implementation
in COQ and its application to classical examples taken from the literature. This
work is experimental by nature. It is structured as follows. In Section 2, I outline
for didactic reasons the implementation of predicate calculus in COQ (the reader
which is at ease with encoding logic in metalanguages or logical framework can
easily skip this section). In Section 3, I describe Common Knowledge Logic and,
in Section 4, I show how it is implemented. Section 5 and Section 6 are devoted to
two examples. Section 7 presents related works and Section 8 is the conclusion.

The whole development in COQ is available on the WEB at http://perso.
ens-lyon.fr/pierre.lescanne/COQ/EpistemicLogic.v8.

2 Predicate calculus in COQ

In what follows I use a typewriter font for excerpts of the COQ script, e.g.,
proposition and I use italics for mathematical formulas, e.g., proposition.

5

A Hilbert-style presentation

As said, if one aims to introduce modal logic, natural deduction does not work
cleanly. A Hilbert-style presentation is required. Here is what one does: one em-
beds a logic (or a theory) namely Common Knowledge Logic into a metatheory,
namely COQ. Both the theory and the metatheory have their implications and their
quantifications. The difference will be indicated by syntactical notations. The im-
plication in the theory will be called just the implication when the implication in
the metatheory will be called the COQ implication, the same for quantifications.

The set of propositions

First, I introduce a type proposition which is an inductive Set in COQ. In a
rough description, this would give something like

p,q : proposition ::= p⇒ q | ∀A P | K i p |C g p

where ∀A depends on A, P : x 7→ P x is a function from A to proposition1, i is a
natural and, g is a list of naturals. For defining the set proposition, COQ uses an
inductive definition with four constructors, namely the implication Imp (later writ-
ten ==> as an infix), the quantifier Forall (later written \-/) and two operators
for modalities K and C. As noticed, COQ has its own quantification which is used
in the definition of Forall2.

Inductive proposition: Set :=
Imp : proposition -> proposition -> proposition |
Forall : forall A : Set, (A -> proposition) -> proposition |
K : nat -> proposition -> proposition |
C : (list nat) -> proposition -> proposition.

In the inductive definition, COQ gives the signature of the constructors3. Now we
are ready to use abbreviations and I will write ==> for Imp and \-/ for Forall.
Notice that the COQ keyword forall (with a lower case f) is the built-in COQ
quantification, whereas our temporary notation Forall is the quantification in the
object theory.

Once one knows what a proposition is, one can introduce the concept of the-
orem, for that I introduce a predicate theorem in the set proposition, abbrevi-
ated |-, which tells which propositions are theorems. For instance, |- p says that
proposition p is a theorem in the object theory representing Common Knowledge
Logic4. See in appendix B, the full COQ definition of theorem.

1 A quantification applies on a predicate and no variable binding is required a priori.
2 However notice that Forall uses a quantification over all the inhabitants of Sets. Therefore

it requires to use impredicative Sets, a feature which is no more accepted by default in the ver-
sions of COQ, greater or equal to 8. However the option -impredicative-set when invoking
COQ enables performing the experiments with the most recent versions of COQ.

3 Technically COQ does not allow using infix abbreviations in definitions, but it allows re-
placing postfix notations by infix ones. When a new constructor is introduced in an inductive
definition, it has to be prefix.

4 Notice that I do not use the above stated rule about infix and prefix and to make formulae
more readable, I write |- p instead of the cumbersome theorem p, hoping that the reader will
forgive me. As the reader understands, this is improper in COQ.

6

Propositional Logic.

The axioms of propositional logic say that some propositions are the basic theo-
rems of the theory. They use |- and they are:

Hilbert_K: forall p q : proposition, |- p ==> q ==> p

Hilbert_S: forall p q r : proposition,
|- (p ==> q ==> r) ==> (p ==> q) ==> p ==> r

Classic_NotNot: forall p : proposition, |- (¬¬p) ==> p.

plus the modus ponens as a rule:

MP: forall p q : proposition, |- p ==> q -> |- p -> |- q.

Here -> is the COQ implication, i.e., the implication in the metatheory. In the
propositions-as-types approach (a. k. a. Curry-Howard correspondence), -> is
also the type constructor for function spaces. Notice the notation fun x:A =>
... for a function from A into some other set. A function in proposition ->
proposition could be the identity written

fun p:proposition => p.

A rule in the theory is a way to deduce a new theorem from one or more previous
ones. A n-adic rule has the form

|- Hyp1 -> . . . |-Hypn -> |- Conclusion.

If n = 0, it is a logical axiom.
Rule MP is used to prove theorems as follows. Suppose that one has a theorem

of the form |- ϕ ==> ψ and a theorem |- ϕ, it suffices to apply MP to these two
theorems to “produce” the new theorem |- ψ. Actually, one is rather in the situa-
tion of trying to prove |- ψ and one looks for two theorems with can be invoked
with MP to produce it. For instance, if one has to prove |- q ==> p ==> p, one
invokes

apply MP with (p ==> p)

which produces two subgoals |- (p ==> p) ==> q ==> p ==> p (an instance
of Hilbert_K) and |- p ==> p, an already proven meta-theorem.

Predicate Logic.

The syntax

As said, instead of Forall A (fun x:A => ϕ), I write \-/(fun x:A => ϕ)
where I use the notation \-/. Indeed COQ allows dropping A if COQ can infer
A. It is not needed to bind a variable when this is not necessary, i.e., when the
function is not given by an expression, but just by its name. Thus COQ allows
writing the shorter notation \-/P instead of \-/(fun x:A => (P x)). Here I
use the COQ notation => in fun x:A => (f x) which should not be confused
with my notation ==> for the implication. The below axiom Forall2 is one of the
few exceptions where the two notations => and ==> are used in the same context.

7

The axioms

There are two axioms for universal quantification (see for instance [39] p. 68):
Forall1: forall (A: Set)(P:A -> proposition)(a:A),

|- (\-/P) ==> (P a)

Forall2: forall (A: Set)(P: A -> proposition)(q: proposition),
|- (\-/(fun x:A => (q ==> P x)) ==> q ==> \-/P)

and there is one rule:
ForallRule: forall (A: Set)(P: A->proposition),

(forall x:A |- (P x)) -> |- \-/ P.

Explanations

The operator (or the quantifier) \-/ whose signature is part of the definition of
proposition depends on a set A and builds a proposition from a predicate. In
COQ a predicate is a function (A -> proposition) — notice the use of -> as a
constructor for a function space — and the quantification \-/ takes a predicate P
to produce a proposition \-/ P.

Forall1 is the translation in COQ of ` (∀x : A)P x⇒ P a and Forall2 is the
translation in COQ of ` [(∀x : A)(q⇒P x)]⇒ q⇒ (∀x : A)P x provided that x does
not occur freely in q. Notice how the expression “provided that x does not occur
freely in q” is taken into account in COQ. Indeed, in Forall2, the expression fun
x:A => (q ==> (P x)) represents a predicate which depends on x. Declaring
that q is a proposition (not a function in A->proposition) means that q does
not depend on any parameter, in other words neither x nor any other variable
occurs in q, which means that q is just a propositional variable.

ForallRule is a rule that says that if for each x in A, (P x) is a theorem, then
\-/ P is a theorem. It translates the monadic rule called ∀-introduction:

` P x

` ∀x (P x)

In the statement of ForallRule, notice the COQ forall x:A. Indeed, an inter-
esting connection between the meta-quantification and the quantification in the
object theory is established by ForallRule. This presentation allows the user to
get rid of the machinery for handling free variables and captures, leaving that basic
task to COQ.

Other connectors and quantifiers.

In intuitionistic logic each connector and each quantifier must be defined inde-
pendently of the others, unlike classical logic where one defines usually only two
connectors and one defines the other connectors from those two. In higher order
logic, the situation is similar to classical logic [41]. One can define all the connec-
tors and quantifiers from two of them, even in intuitionistic logic5. Hence I use the

5 An axiomatization of higher order intuitionistic epistemic logic is obtained by removing the
axiom Classic_NotNot.

8

connector ==> and the quantifier \-/ as primitive and I derive the other connectors
namely AND, OR, TRUE, FALSE and, NOT together with the quantifier Exists.

Definition AND (p q : proposition) :=
\-/(fun r:proposition => (p ==> q ==> r) ==> r).

for
p ∧ q , (∀r : proposition)(p⇒ q⇒ r)⇒ r

Definition OR (p q : proposition) :=
\-/(fun r:proposition => (p ==> r) ==> (q ==> r) ==> r).

for
p∨q , (∀r : proposition)(p⇒ r)⇒ (q⇒ r)⇒ r

Definition FALSE := Forall proposition (fun p:proposition => p).
Definition TRUE := Exist proposition (fun p:proposition => p).
Definition NOT (p : proposition) := p ==> FALSE.

for

FALSE , (∀p : proposition) p T RUE , (∃p : proposition) p

¬p , p⇒ FALSE.

As noticed by a referee, it should have been more natural to define T RUE as
FALSE ⇒ FALSE, but the above definition is this of the implementation I have
developed in COQ.

Definition Exist (A : Set) (P : A -> proposition) :=
\-/(fun p:proposition => \-/(fun a:A => P a ==> p) ==> p).

for
(∃x : A)(P x) , (∀p : proposition)[(∀a : A)(P a⇒ p)⇒ p]

In what follows AND is written &, OR is written V and NOT is written ¬.

Lemmas and derived rules.

For use in later examples, I proved lemmas like

Lemma OR_comm : forall p q : proposition, |- p V q ==> q V p.

which says that V is commutative. Often in a proof, one wants to reverse the order
of the components of a disjunction, for that its companion rule is more convenient:

Lemma rule_OR_comm :
forall p q : proposition, |- p V q -> |- q V p.

It is used as follows. If the goal is |- q V p, it boils down to prove |- p V q. In
my experiments, I noticed that the Transitivity_of_Imp rule, namely

forall p q r:proposition, |- p ==> q -> |- q ==> r -> |- p ==> r.

9

was very handy. It corresponds to the rule

` p⇒ q ` q⇒ r

` p⇒ r

which means that to prove |- p ==> r one has to prove a theorem p ==> q and
a theorem q ==> r, where q is a newly introduction proposition.

Of course, I used it only after proving that it is a derived rule in the sys-
tem, I mean that I proved the Transitivity_of_Imp rule using the axioms and the
rules stated in COQ for the logic. Actually its proof comes from the proof of
forall p q r:proposition, |- (p ==> q) ==> (r ==> p) ==> r ==> q
using twice the modus ponens.

From the definition of Exist, I proved the theorem

[(∀x ∈ A) (P x⇒ q)]⇒ [(∃x ∈ A) P x]⇒ q x /∈ FV (q)

stated in COQ as

Lemma Exist2: (A: Set)(P:A -> proposition)(q:proposition)
|- (\-/ (fun x:A => ((P x) ==> q))) ==> (Exist A P) ==> q.

The proof relies on a lemma (I called Forall_Imp) that says that for every predicate
P1 and P2 and every a in A, one has P1 a⇒ [(∀y ∈ A)(P1 y⇒ P2 y)]⇒ P2 a, which
is a variant of [(∀y ∈ A)(P1 y ⇒ P2 y)]⇒ P1 a ⇒ P2 a, which itself is an instance
of Forall1. Then one unfolds Exist in the statement of Exist2, getting

[(∀x ∈ A) (P x⇒ q)]⇒ [(∀p ∈ proposition) ((∀x ∈ A)(P x⇒ p))⇒ p]⇒ q

Then one applies Forall_Imp with A as proposition, a as q, y as p, P1 as y 7→
(∀x ∈ A)(P x)⇒ y, then P1 q is (∀x∈ A)(P x⇒ q) and P1(p) is (∀x∈ A)(P x⇒ p)
and P2 as x 7→ x, then P2 y is p and P2 a is q. This way, one obtains theorem Exist2
which should be compared with [(∃x ∈ A) (P x⇒ q)]⇒ [(∃x ∈ A) P x]⇒ q which
is the similar rule in [39], on page 68 (it is fair to say that it is a typographic error)
and was my first attempt of a theorem I was unable to prove.

3 The rules of Common Knowledge Logic

âpístămai: I. know how to do, be able to do, capable of doing.
II. . c. acc., understand a matter, know, be versed in or acquainted with.

Henry George Liddell, Robert Scott,
A Greek-English Lexicon

What is modal logic?

Modal logic has been introduced by Aristotle and deepened by Leibniz [24].
A modal logic is a logic in which operators are added to modify the propositions.
This can be done to weaken (possibility), to strengthen (necessity), to extend the
scope of a proposition over time (temporal logic), to tell the effect of an action on
a proposition (dynamic logic) or to assume that an agent knows a fact (epistemic
logic) or a group of agents knows a fact (common knowledge).

10

`K ϕ

Tautologies
` ϕ

K
` (Kiϕ∧Ki(ϕ⇒ ψ))⇒ Kiψ

T
` Kiϕ⇒ ϕ

` ϕ ` ϕ⇒ ψ

Modus ponens
` ψ

` ϕ

Knowledge Generalization
` Kiϕ

Positive Introspection
` Kiϕ⇒ KiKiϕ

Negative Introspection
` ¬Kiϕ⇒ Ki¬Kiϕ

Fig. 1 The basic rules of epistemic logic: the system S5

What is Common Knowledge Logic?

Common knowledge logic was suggested by the philosopher Lewis in 1969 [27]
and formally defined by Aumann [2] in the context of economy (see [15] for an
introduction in that context) and further studied in the context of artificial intelli-
gence [18] and computer science [23,17,14]. In Common Knowledge Logic the
modifiers of proposition, e. g., the modalities are basically of three sorts, namely
the knowledge modality Ki for each agent i, the shared modality EG for a group G
of agents and, the common knowledge modality CG for a group G of agents. Other
modalities could be considered but they will not be here. Let me recall what I have
mentioned in the introduction, namely that the knowledge modality Ki applied to
ϕ means that agent i “knows” ϕ, that the shared modality EG applied to ϕ means
that the group G of agents knows ϕ and that the common knowledge modality CG
applied to ϕ means that the shared modality is iterated ad infinitum to ϕ. As we
will see, common knowledge is axiomatized by a fixpoint.

The rules of Common Knowledge Logic

In this section, I give, with slight variation, the rules of Common Knowledge Logic
as they are usually given in the classical literature with no intent to discuss them
or propose alternative rules. The Common Knowledge Logic has the axioms and
rules given in Figure 1. Notice that `K ϕ means that ϕ is a classical tautology.

K is sometime called Distribution Axiom or Normalization axiom. It can be
also written ` Ki(ϕ ⇒ ψ) ⇒ Kiϕ ⇒ Kiψ where one sees how Ki acts as a kind
of morphism over ⇒. These two forms are equivalent as proven in COQ. T is
sometime called Knowledge Axiom. The logic defined by the set {Tautologies,
Modus ponens, Knowledge Generalization, K, T} is called T.

Let us suppose that we have a group G of agents. The knowledge of a fact ϕ

can be shared by the group G, i. e., “each agent in G knows ϕ”. We write EG(ϕ)
and the meaning of EG is easily axiomatized by the equivalence given in Figure 2
which can also be seen as the definition of EG; it is called shared knowledge.

In Common Knowledge Logic, there is another modality, called common knowl-
edge which is much stronger than shared knowledge. It is also associated with a
group G of agents and is written CG. Given ϕ, CG(ϕ) is the greatest solution of the

11

Definition of E
` EG(ϕ) ks +3____

^
i∈G

Kiϕ
Fixpoint

`CG(ϕ)⇒ ϕ∧EG(CG(ϕ))

` ϕ⇒ ψ∧EG(ϕ)
Greatest Fixpoint

` ϕ⇒CG(ψ)

Fig. 2 The rules for common knowledge

equation

x ⇔ ϕ∧EG(x).

“Greatest” should be taken w.r.t. the order induced by ⇐. A proposition ψ is less
than a proposition ρ if ψ⇐ ρ. As well known in the fixed point theory, the greatest
solution of the above equation is also the greatest solution of the inequation:

x ⇒ ϕ∧EG(x).

The axiomatization of Figure 2 characterizes CG(ϕ) by two properties. Together
with the system T and the definition of EG it forms the system CKG. It asserts two
things.

1. CG(ϕ) is a solution of the inequation x⇒ ϕ∧EG(x), axiom Fixpoint,
2. If ρ is another solution of the inequation, then ρ implies CG(ϕ), which means

that ρ is greater than CG(ϕ)). This is rule Greatest Fixpoint.

One can prove that CG satisfies axioms and rules of T, where Ki is replaced by CG
even when G = /0. Thus we have proved in COQ:

KC
` (CGϕ∧CG(ϕ⇒ ψ))⇒CGψ

TC
`CGϕ⇒ ϕ

` ϕ
KGC

`CGϕ

KGC stands for Common Knowledge Generalization.
Notice that the axiom and the rule given in Figure 2 for C are not the axiom

and the rule given in [12]. The difference is in axiom (Fixpoint). I have chosen
those ones since they are robust, i.e., they stay consistent on a large domain taking
the same concept of robustness as this known in software design [40] or statis-
tics [37]. More precisely a robust axiomatization of common knowledge should
work even for an empty group of agents. An empty group of agents arises natu-
rally on definitions by induction which are routine in a theorem prover based on
type theory like COQ. Indeed, one defines shared knowledge on the empty group
of agents first and one extends it by adding one agent at a time. CG (even when G
is empty) satisfies the axioms of modalities namely K and T. Let us look at other
systems of axioms and rules.

12

CG(ϕ⇒ EG(ϕ))∧ϕ⇒ ϕ

CG(ϕ⇒ EG(ϕ))⇒ EG(CG(ϕ⇒ EG(ϕ)))
�� ��A8

CG(ϕ⇒ EG(ϕ))⇒ (ϕ⇒ EG(ϕ))
�� ��A7

CG(ϕ⇒ EG(ϕ))∧ϕ⇒ EG(ϕ)

CG(ϕ⇒ EG(ϕ))∧ϕ ⇒ EG(CG(ϕ⇒ EG(ϕ)))∧EG(ϕ)
A lemma of common
knowledge logic.

CG(ϕ⇒ EG(ϕ))∧ϕ ⇒ EG(CG(ϕ⇒ EG(ϕ))∧ϕ)

CG(ϕ⇒ EG(ϕ))∧ϕ ⇒ ϕ∧EG(CG(ϕ⇒ EG(ϕ))∧ϕ)
Greatest Fixpoint

CG(ϕ⇒ EG(ϕ))∧ϕ⇒CG(ϕ)

CG(ϕ⇒ EG(ϕ))⇒ ϕ⇒CG(ϕ)

Fig. 3 A proof of Meyer and van der Hoek’s axiom (A10)

The axioms of Meyer and van der Hoek.

On page 46 of [34] the axioms of common knowledge are

(A6) EG(ϕ) ks +3____ K1(ϕ)∧ ...∧Km(ϕ)
(A7) CG(ϕ) ⇒ ϕ

(A8) CG(ϕ) ⇒ EG(CG(ϕ))
(A9) CG(ϕ)∧CG(ϕ⇒ ψ) ⇒ CG(ψ)
(A10) CG(ϕ⇒ EG(ϕ)) ⇒ ϕ⇒CG(ϕ)

(R3)
ϕ

CG(ϕ)

This system of axioms is close to ours, as axioms (A7) and (A8) are a split-
ting of my axiom Fixpoint (see appendix C for more detail). Rule (R3) which is
a version of rule Knowledge Generalization adapted to the modality CG is easily
proved in my system. The main interesting axiom is (A10). (A10) can be proved
using COQ in my system of axiom and rule. The COQ proof is sketched in Fig-
ure 3. Uses of propositional calculus are assumed and are not shown. Notice that
the proof uses (A7) and (A8) which can be proved elsewhere.

Vice-versa, the rule Greatest Fixpoint can be derived in Meyer and van der
Hoek’s system as follows.

ϕ⇒ ψ∧EG(ϕ)

ϕ⇒ EG(ϕ)
(R3)

CG(ϕ⇒ EG(ϕ))
(A10+MP)

ϕ⇒CG(ϕ)

ϕ⇒ ψ∧EG(ϕ)

ϕ⇒ ψ
(R3)

CG(ϕ⇒ ψ))
(A9+MP)

CG(ϕ)⇒CG(ψ)
(Transitivityo f ⇒)

ϕ⇒CG(ψ)

Sato’s axioms.

In [38], Masahiko Sato presents an axiomatization (due to John McCarthy et
al. [33]) of common knowledge, which relies on the existence of a specific agent

13

who has the common knowledge. Let us call 0 this agent. It satisfies

(∀i ∈ G) ` K0(ϕ)⇒ Ki(K0(ϕ)).

Notice that in COQ it is possible to state by a unique statement the above propo-
sition although it is quantified over the set of agents. From this one can deduce
K0(ϕ)⇒ ϕ∧EG(K0(ϕ)) then by (Greatest Fixpoint) K0(ϕ)⇒CG(ϕ). Symmetri-
cally CG(ϕ)⇒ K0(ϕ) is a consequence of TC. On another hand it is easy to prove
that for i ∈ G, 0 ∈ G and ` K0(ϕ)⇒Cg(ϕ) then ` K0(ϕ)⇒ Ki(K0(ϕ)). Therefore
McCarthy et al. axiomatization can be proved in COQ to be equivalent to mine.
Actually this axiomatization accepts the group of plain agents to be empty, just
take G = {0}.

The axiom of Fagin et al.

The Fixpoint axiom given on p. 35 in [12] (see also [1]) is

CG(ϕ) ks +3____ EG(ϕ∧CG(ϕ))

Combined with the definition

EG(ϕ) ks +3____
^
i∈G

Ki(ϕ)

this yields E /0(ϕ) = true which induces C/0(ϕ) ks +3____ true, in contradiction with
Exercise 3.11 which asks to prove ` CG(ϕ) ⇒ ϕ. It is fair to say that this book
essentially considers models. In this case it is meaningless to speak about an empty
set of agents and actually on page 49 line 4, the set of agents is explicitly said to
be non empty.

4 Modal Logic and Epistemic Logic in COQ

"Reports that say something hasn’t happened are always interesting
to me, because as we know, there are known knowns; there are things we
know we know,"

"We also know there are known unknowns; that is to say we know there
are some things we do not know. But there are also unknown unknowns –
the ones we don’t know we don’t know."

Defense Secretary of USA Donald Rumsfeld,
at a news briefing in February 2002

Common knowledge logic requires knowledge modalities which satisfy the
axioms of modal logic. I introduced infinitely many modalities (K i) (see Sec-
tion 2) even though most of the examples require only finitely many ones. Indeed
in COQ this is an easy task because the Set nat is given as a primitive. Therefore,
K has the signature nat -> proposition -> proposition. From now on, I re-
strict myself to the logic T. The other axioms for S5 are easily introduced, but not
used in examples. There are two axioms for T:

14

K_K: forall (i:nat) (p q:proposition),
|- (K i p) ==> (K i p ==> q) ==> (K i q).

K_T: forall (i: nat) (p:proposition), |- (K i p) ==> p.

and a rule

K_rule: forall (i: nat) (p:proposition), |- p -> |- (K i p).

Common knowledge logic requires to introduce a modality E for shared knowl-
edge. This is done in COQ by using the operator Fixpoint

Fixpoint E (g : list nat) (p:proposition) {struct g}:proposition
:=
match g with
| nil => TRUE
| i :: g1 => K i p & E g1 p
end.

E is defined by structural induction on the group g of agents as said by the anno-
tation {struct g}. It takes a proposition p and returns a proposition (E g p). E
defined by structural induction on g means that

E nil p = T RUE
E (cons i g1) p = (K i p) & (E g1 p)

Notice the case when the group is empty. E enjoys nice properties that can be
proved in COQ like

forall (g : list nat) (p q : proposition),
|- E g p & E g q ==> E g (p & q).

C is the modality for common knowledge, it is defined by the axiom

forall (g : list nat)(p : proposition),
|- (C g p ==> p & E g (C g p))

and the rule

forall (g : list nat)(p q : proposition),
|- (q ==> p & E g q) -> |- (q ==> C g p).

i.e.,

`CG(p)⇒ p∧EG(CG(p))
` p⇒ (q∧EG(p))

` p⇒CG(q)

Lemmas about C,

one has for instance

Lemma C_T: forall (g:list nat) (p:proposition),
|- (C g p) ==> p.

Lemma C_CE: forall (g:list nat)(p:proposition),
|- (C g p) ==> (C g (E g p)).

15

i.e., `CG(p)⇒ p and `CG(p)⇒CG(EG(p)) or a fixpoint property like

forall (g:list nat) (p:proposition),
|- (p & (E g (C g p))) ==> (C g p).

i.e., ` p∧EG(CG(p))⇒CG(p)
This shows that CG(p) is a solution of the equation p ∧ EG(ϕ) ks +3____ ϕ with

unknown ϕ. The rule shows that if ψ is another solution of that equation then
ψ⇒CG(p).

Rumsfeld’s theorems.

To show the power of higher order as implemented in COQ, let me prove three
statements due to Rumsfeld. These statements are interesting not because of the
depth of their proofs, but because like the definition of connectors &, V and Exist
they make quantifications over propositions which are impredicative.

The first statement says that “we know there are known knowns”, in other
words every agent knows there is a proposition that he knows that he knows.

Theorem Rumsfeld1:
forall i:nat,

|- K i (Exist _ (fun p : proposition => K i (K i p))).

The proof of this statement requires Positive Introspection. The actual known
proposition is TRUE. The second statement says that “we know there are known
unknowns” in other words if one considers any agent, he knows there is a propo-
sition that he knows that he does not know.
Theorem Rumsfeld2:
forall i:nat,

|- K i (Exist _ (fun p:proposition => K i ¬ (K i p))).

We code the sentence agent i does not know p by ¬Ki p. A referee suggested the
translation ¬Ki p∧¬(Ki¬p). This is debatable and philosophers argue on the for-
mal translation of this kind of sentence. This discussion of discussion is out of the
scope of this paper (see for instance [42]) and this section should be considered as
an exercise to test the ability of our implementation to handle higher order state-
ments, i.e., statements with quantifications over propositions. The proof of this
second statement requires Negative Introspection. The actual known proposition
is FALSE. The third statement “there are unknows unknows” means (as expound
by its author) there is a proposition ϕ such that we don’t know that we don’t know
ϕ, i.e., (∃ϕ ∈ proposition)¬Ki(¬Kiϕ), which implies (∃ϕ ∈ proposition)Ki ϕ,
then TRUE is such a proposition.

5 The muddy children

Let us go quickly to the house to clean my head, said Paul.
Countess de Ségur, Les malheurs de Sophie

16

This problem is considered by Fagin et al. [12] as the illustration of Common
Knowledge Logic, especially of common knowledge. Let us give the presenta-
tion of [34]. A number, say n, of children are standing in a circle around their
father. There are k(1≤ k ≤ n) children with mud on their heads. The children can
see each other but they cannot see themselves. In particular, they do not know
if they themselves have mud on their heads. ... Father says aloud: “There is at
least one child with mud on its head. Will all children who know they have mud
on their heads please step forward?”... This procedure is repeated until, after the
k-th time Father has asked the same question, all muddy children miraculously
step forward. I propose a proof of the correctness of the puzzle under reasonable
and acceptable hypotheses. The main question is “What does it mean to say that
the children see each other and what consequences do they draw from what they
see?” For me, “the children see” means that

– they know whether the other children have mud on their head,
– they notice the children stepping forward or not.

on his head.

one child with mud

There is at least

Fig. 4 The muddy children

The main interest of the muddy children puzzle lies in the use of common
knowledge (modality C).

I define two predicates depending on two naturals, namely At_least and
Exactly. (At_least n p) is intended to mean that among the n children, there
are at least p muddy children, whereas Exactly means that among the n chil-
dren, there are exactly p muddy children. Exactly (n p : nat) is defined as
(At_least n p) & ¬(At_least n p+1).

Moreover [:n:] stands for list [n−1, ...0], that is the group of the n children.

The hypothesis.

Suppose that after the statements of Father, we have reached a situation where

Fact 1 all the children know that there are at least p muddy children,
Fact 2 all the children know that there are not exactly p muddy children.

17

Fact 1 is there since the children know that there are p muddy children because
they see them or because they acquired that information by deduction. Fact 2 is
the knowledge shared by the group [:n:] on the non exactness of the number p
of muddy children. The absence of step forward of children makes Fact 2 known
by every child. Therefore Fact 2, namely (E [:n:] ¬(Exactly n p)), is known
by every child, i.e., K i (E [:n:] ¬(Exactly n p)). In other words, after no
child has stepped forward, every child knows that all the children know that there
are not exactly p children. To summarize at step p,

– Fact 1 is (E [:n:] (At_least n p))
– Fact 2 is (E [:n:] ¬(Exactly n p)),
– Conclusion is K i (E [:n:] ¬(Exactly n p)).

and Fact1⇒ Fact2⇒Conclusion. In other words, I can state the axiom:
Axiom Knowledge_Diffusion : forall n p,i : nat

|- (E [:n:] (At_least n p))
==> (E [:n:] ¬(Exactly n p))
==> (K i (E [:n:] ¬(Exactly n p))).

which is in usually mathematical notation:

` E[:n:](At_least(n, p))⇒ E[:n:](¬Exactly(n, p))⇒ Ki(E[:n:](¬Exactly(n, p)).

This axiom typically describes dynamic in Common Knowledge Logic [34], Chap-
ter 4. From it, I prove two lemmas:
Lemma E_Awareness : forall n p :nat

|- (E [:n:] (At_least n p))
==> (E [:n:] ¬(Exactly n p))
==> (E [:n:] (E [:n:] ¬(Exactly n p))).

i.e.,

` E[:n:](At_least(n, p))⇒ E[:n:](¬Exactly(n, p))⇒ E[:n:](E[:n:](¬Exactly(n, p)))

Lemma C_Awareness : forall n p:nat
|- (C [:n+1:] (At_least n+1 p))

==> (E [:n+1:] ¬(Exactly n+1 p))
==> (C [:n+1:] ¬(Exactly n+1 p)).

i.e.,
`C[:n+1:](At_least(n+1, p))⇒ E[:n+1:](¬Exactly(n+1, p))

⇒C[:n+1:](¬Exactly(n+1, p))
Notice that the lemma C_Awareness can only be proved for a non empty group

of children. I use these lemmas to prove the main result, I called Progress, which
shows how the knowledge of the children progresses.
Lemma Progress:
|- (C [:n+1:] (At_least n+1 p)) & (E [:n+1:] ¬(Exactly n+1 p)))

==> (C [:n+1:] (At_least n+1 p+1))).
i.e.,
`C[:n+1:](At_least(n+1, p))∧E[:n+1:](¬Exactly(n+1, p))

⇒C[:n+1:](At_least(n+1, p+1))
In other words: “If it is a common knowledge that there are at least p muddy

children and if every child knows that there are not exactly p muddy children then
it is a common knowledge that there are at least p+1 muddy children.” Therefore

18

a child knows that there is at least p + 1 muddy children and if he sees p muddy
children, he steps forwards. This is the secret of the apparent miracle.

Discussion

After the above statement, the proof is almost complete, but here I give comple-
ments for the interested reader that can be skipped in a first reading.

A lemma on Exactly and At_least.

Before starting the proof, a lemma is needed. Assume Knowledge diffusion and
assume that the children reason perfectly6. They should conclude that there is at
least p+1 muddy children, as shown by the following lemma proven in COQ.

Lemma At_least_p_and_not_Exactly_p: forall n p:nat
|- (At_least n p) & ¬(Exactly n p) ==> (At_least n p+1).

The knowledge diffusion axiom.

Here I address one of the main difficulties of using Common Knowledge Logic
in practice, namely translating a statement of a scenario (a puzzle or a real live
situation) into logical statements. In my case, I have to translate i.e., to formalize
the verb “to see” in a formal formula. Dynamic logic [9,13,19,20] can be used for
this (see [34] chapter 4 and [10]). The axiom I propose expresses this.

Now suppose that I am one of these children and that I am the agent Paul.
After all the previous statements of Father, suppose that everyone knows (shared
knowledge) that there is at least p muddy children. Moreover suppose that every-
one knows (again shared knowledge) that there is not exactly p muddy children.
Then I know by watching the scene that everybody knows there is not exactly p
muddy children. This implication “I see then I know everybody knows” is what is
meant in the Knowledge_diffusion. Thus

Axiom Knowledge_Diffusion_for_Paul : forall n p:nat
|- (E [:n:] (At_least n p))

==> (E [:n:] ¬(Exactly n p))
==> (K Paul (E [:n:] ¬(Exactly n p))).

I have taken Paul as a generic name but this can be generalized to all the children,
hence the universal quantification on i (see above). Note that this axiom does not
involve any common knowledge.

Why progress in common knowledge and not in shared knowledge?

One may wonder why one makes progress in common knowledge and not in
shared knowledge. Actually this may work if one would have been able to prove
a lemma of the form

` E[:n:](At_least(n, p))⇒ E[:n:](¬Exactly(n, p))
⇒ E[:n:](¬Exactly(n, p+1))

6 “Perfect reasoning” of the agents is a (debatable) assumption of Common Knowledge Logic.

19

but one is only able to prove a lemma like
` E[:n:](At_least(n, p))⇒ E[:n:](¬Exactly(n, p))

⇒ E[:n:](E[:n:](¬Exactly(n, p+1)))
with two levels of E in the consequent. This does not allow us to use a generaliza-
tion rule for E as I was able to do in the proof of

`C[:n+1:](At_least(n+1, p))⇒ E[:n+1:](¬Exactly(n+1, p))
⇒C[:n+1:](¬Exactly(n+1, p+1))

and this is the key of proof of the C_Awareness lemma.

On the strength of common knowledge and on the importance of Father first state-
ment.

In Common Knowledge Logic, it is always difficult to acquire a common knowl-
edge. For instance, cryptographic communication through a network relies on the
common knowledge of assignments of given public keys to given persons and we
know that that these assignments and this common knowledge of the assignments
require careful protocols in public key infrastructures. Similarly, in the coordi-
nated attack problem (see [12] section 6.1), generals will be unable to acquire a
common knowledge on the agreement for the attack hour on a asynchronous and
unreliable network. We also know that teaching traffic regulations on roads re-
quires training and the training is aimed to acquire the common knowledge among
the drivers. In our problem, an initial common knowledge is given by Father at the
beginning and the lemma I called Progress shows how this common knowledge
can be enlarged by the other statements that do not involve common knowledge.
Without this first statement the kids will not be able to acquire any kind of com-
mon knowledge in this respect. They will not be able to increase their common
knowledge and even their shared knowledge as well.

Finishing the proof.

To complete the proof I consider a given muddy child and I try to prove that
eventually this muddy child knows there are as many muddy children as chil-
dren around Father. For that, I declare three variable nb_children, nb_muddy
and muddy_child for the total number of children, for the number of muddy chil-
dren and for a given muddy child. The role of the variable muddy_child is to take
one child who has a muddy face and to see that at the end of the process he knows
that he has a muddy face. This can be seen as a kind of Skolemization and take
the place of a statement like “at the end, there is child who knows that his face is
muddy and therefore steps forwards”. Moreover one needs a few more axioms.

Axiom At_least_1: (le (1) nb_children).
Axiom Muddy_child_is_a_child: (In muddy_child [:nb_children:]).
Axiom First_Father_Statement:

|- (C [:nb_children:] (At_least nb_children (1))).
Axiom What_they_saw: forall q:nat (lt q nb_muddy) ->

|- (E [:nb_children:] ¬(Exactly nb_children q)).
Axiom What_the_muddy_child_sees:

|- (K muddy_child ¬(At_least nb_children nb_muddy+1)).

20

The first axiom says that there is at least one child. The second one says the muddy
child is a child. The third one translates the first Father statement. The fourth one
translates what is seen when the children step forward. The last one is what that
muddy child sees, that is that there could not be more that nb_muddy+1 muddy
children as he (she) sees nb_muddy-1 muddy children.

By induction, one proves

If nb_muddy > 0 then `C[:nb_children:](At_least(nb_children,nb_muddy)).

If the number of muddy children is greater than 0, then this is a common knowl-
edge that there are nb_muddy muddy children. Then one gets

If nb_muddy > 0 then ` Kmuddy_child(Exactly(nb_children,nb_muddy)).

that is the muddy child knows that there are nb_muddy muddy children.

6 The king, the three wise men and the hats

So king Solomon exceeded all the kings of the earth for riches and for
wisdom.

The First Book of the Kings, X, 23

Is common knowledge needed?

A question that proof theorists ask regularly is whether a given hypothesis is ac-
tually required in the proof of a given theorem in a given deduction system. Here
the hypothesis is common knowledge of fact(s), the theorem to prove is the so-
lution of a known and classical puzzle and the deduction system is the Common
Knowledge Logic as implemented and mechanized in COQ. The question is “Is
common knowledge of the hypotheses required in the proof?” Since often hand
proofs are somewhat sloppy, nothing is better than an implementation to actually
verify which statements are used or not used in a proof.

The statement of the puzzle

The classical puzzle I consider is the puzzle of the king, the three wise men and
their hats (Figure 5). In [12], Exercise 1.3, it is presented as “There are three wise
men. It is common knowledge that there are three red hats and two white hats.
The king puts a hat on the head of each of the three wise men and asks them
(sequentially) if they know the color of the hat on their head. The first wise man
says that he does not know; the second wise man says that he does not know; then
the third man says that he knows”. To ease the reference to them, in what follows
the wise (wo)men are called agents with names Alice, Bob and Carol. Actually in
COQ, Alice, Bob and Carol are taken as abbreviations for 0, 1 and 2. In general,
the usual assumption is that the statements of the problem are common knowledge
among the agents.

The experiments show that no common knowledge is required and in addition
I have shown that the two middle sentences can be weaken in “It is a fact that
there are red hats and two white hats. The king puts hats on the head of each of

21

Alice

�� ��
�� �� �� ��

Carol Bob
Fig. 5 The three wise (wo)men

the three wise men and asks them (sequentially) if they know whether they wear a
white hat on their head.“

The puzzle is based on a function

Definition Kh := fun i => (K i (white i)) V (K i (red i)).

which says that the “agent i knows whether or not she (he) wears a white hat”.
With a minimal set of hypotheses, I am able to prove

|- (K Bob ¬(Kh Alice)) & ¬(Kh Bob) ==> (red Carol).
In other words, “If Bob knows that Alice does not know whether she wears a

white hat and if Bob himself does not know whether he wears a white hat, Carol
wears only red hats.” If (red Carol) is provable from the two premises, then
Carol knows that fact; therefore if she knows that if Bob knows that Alice does not
know whether she wears a white hat and if Bob himself does not know whether he
wears a white hat, Carol wears only red hats, then she knows that the color of her
hats and even more (since she knows that the color of all her hats is red).

The above involved sentences are typical assertions about knowledge. Phrased
in English, they are hard to understand for a human. Stated formally they are better
understood and they can be checked by a computer

What are the assumptions?

There are five.

– An agent wears a white hat xor red ones. “xor” is the exclusive or written |.

forall i:nat |- (white i) | (red i).

– There are only two white hats. Actually I do not need such a general statement.
I only have to state that “If Bob and Carol wear a white hat, then Alice wears
red hats.” which translates in COQ into

|- ((white Bob) & (white Carol) ==> (red Alice)).

Note that we are not interested in a statement like “If Carol and Alice wear a
white hat, then Bob wears red hats.” Moreover the number of red hats is irrel-
evant and surprisingly an agent can wear more than one hat (like in Figure 5).

22

– Each agent knows the color of the hats of the two other agents. Actually we
are even more restricted than that, namely Alice knows when Bob (resp. Carol)
wears a white hat and Bob knows when Carol wears a white hat.

|- (white Bob) ==> (K Alice (white Bob)).
|- (white Carol) ==> (K Alice (white Carol)).
|- (white Carol) ==> (K Bob (white Carol)).

These hypotheses assert that the agents can be supposed to be in a row Carol,
Bob, Alice and that each agent knows the color of the hats of the agents before
her or him. This is sometime a presentation of this puzzle (see for instance
[12] Exercise 1.3 (b)). Actually, I saw in my proof, that the fact that the color
of a hat is red is of no interest for any agent.

It should be emphasized that I made actually less hypotheses than in the usual
statement of the puzzle7.

The proof.

The proof requires just eight small lemmas and needs only modal logic, i. e., no
common knowledge. This comes from the fact that “common knowledge” has
been replaced by assertion of facts. The mechanization of the proof shows us
that many hypotheses made in classical presentation of this puzzle are redundant.
Perhaps a careful human analysis of the problem would have lead to the same
hypotheses, but what is interesting in this experiment is that this comes naturally
from the mechanical development of the proof. One makes the proof and then one
traces the hypotheses which are actually used. For instance, in a first attempt I
made much more statements about the knowledge of the agents about the color
of the hat of the other agents than actually needed. Afterward, in cleaning up the
proof I removed the useless hypotheses leading to the weakening of the initial
statement.

The main lemmas are
` (white Bob) & (white Carol)⇒ (K Alice (red Alice)).
` ¬((white Bob) & (white Carol))⇒ (red Bob)∨ (red Carol).
` ¬(Kh Alice)⇒ (red Bob)∨ (red Carol).
` ¬(Kh Alice) & ¬(red Carol)⇒ (red Bob).
where the second one requires a classical proof. The final theorem is
|− (K Bob ¬(Kh Alice)) & ¬(Kh Bob)⇒ (red Carol).
with the corollaries:
` (K Carol (K Bob¬(Kh Alice)) & ¬(Kh Bob))⇒ (K Carol (red Carol)).
` (K Carol (K Bob¬(Kh Alice)) & ¬(Kh Bob))⇒ (Kh Carol).
The last corollary means “If Carol knows that Bob knows that Alice does not

know whether or not she wears a white hat and Bob does not know whether or not
he wears a white not, then Carol knows whether she wears or not a white hat”. If
there only one hat on each head then Carol knows that she wears a red hat.

7 Sato [38] makes the same comment.

23

Is common knowledge needed after all?

I have chosen to state hypotheses as meta-axioms (axioms in COQ) of the form
|- Facts and to prove results of the form |- Result. Another possibility is to
prove statements of the form |- Hyp ==> Result in the theory. In that case hy-
potheses have to be made common knowledge, i.e., Hyp is C [:n:] Facts. In-
deed asserting a fact as a meta-axiom makes it automatically common knowledge
by the rule of Knowledge Generalization, in other words if something is a fact it is
common knowledge. I am currently experimenting the king, three wise men and,
hats puzzle along those new lines.

7 Related works

Epistemic logic is usually mechanized by model checking [30,31]. The work pre-
sented in this paper is to my knowledge the first exposition of the mechanization
of the proof theory of Common Knowledge Logic based on rules. Concurrently
Paulien de Wind has made her own mechanization using COQ based on an ex-
tension of natural deduction with several levels [43] using basically the above
rule (Gen). It is close to reasoning in Kripke models and she has not investigated
common knowledge. Notice that Common Knowledge Logic is more than modal
logic. Not surprisingly there are many attempts to implement modal logic in log-
ical frameworks. The LF group in Edinburgh has shown the difficulties of such
an enterprise, with the clear conclusion that modalities are not easily coded in a
logical framework [4,5,28]. Notice that I am not faced to that problem as I per-
form a deep embedding of a modal logic not just a coding of modalities in the
logical framework. However the most noticeable papers exploring the connection
between logical framework and modal logic are due to Basin, Matthews and Vi-
ganó [7,8]. See there for a survey of the other approaches. Their implementation
is not made in natural deduction, but in a modified natural deduction the so called
labelled natural deduction for modal logic. Sequent calculus and natural deduc-
tion for Common Knowledge Logic has been studied by several authors [1,22,
29,38], but none has studied Higher Order Common Knowledge Logic and none
considers mechanization. For instance, Common Knowledge Logic in presence of
induction or quantification has not been considered and even less quantification
over propositions (see Section 4).

8 Conclusion

Since one cannot be universal and know everything on everything, one
must know something on everything. Indeed it is much more beautiful to
know something on everything than to know everything on something; this
universality is more beautiful.

Blaise Pascal
Pensées

Let me draw some lessons of my experiments.

24

The strength of higher order.

COQ supports higher order. Therefore one can state propositions with any kind
of quantification, even quantifications over propositions like in Rumsfeld’s theo-
rems and one has induction for free. Moreover inductions (induction on natural or
structural induction) are built-in and used extensively.

The proofs.

Building proofs in a Hilbert-style system is said often to be more difficult than in
natural deduction as one does not have the ability to discharge hypotheses. Fortu-
nately the use of rules like modus ponens, Transitivity_of_Imp or rules specific to
modal logic and Common Knowledge Logic allows us to organize the proof. One
can postpone the proof of some statements of the form ` · · · and one can divide
and conquer proofs. I foresee that some of the tasks of the proof developers can be
lightened by tactics to be developed. Anyway, my experience has shown me that
after a training the implementation become easy to use. The difficulty lies more in
understanding epistemic statements.

What logic is needed?

The above examples have answered a question one may have when using modal
logic, namely: which fragment of logic is required to reason? Our conclusion is
that one definitely needs classical logic as a basis. Indeed at some places reasoning
based on excluded middle is necessary. On the other hand, except for the notice-
able exception of Rumsfeld’s theorems, no positive or negative introspection is
needed, then T is enough. Moreover higher order plays a key role in expressing
fixpoints and inductions and it is explicitly used in Rumsfeld’s theorems where a
quantification over propositions is part of the statement.

Right modeling and acceptable hypotheses.

A challenge in building proofs in Common Knowledge Logic is to state reasonable
and acceptable hypotheses. Unfortunately acceptable hypotheses are not known a
priori. I noticed that I built often proofs of properties backward from the con-
clusion I wanted to prove. Usually there is not so much facility offered by proof
assistants, for that. A good approach is to state temporary axioms for the interme-
diary lemmas and see what can be proved from them and proceed backward, until
an acceptable hypothesis is reached.

Common knowledge vs statements of facts

One of the issue in formalizing problems or situation involving Common Knowl-
edge Logic is to choose whether hypotheses have to be written as facts i. e., stated
as axioms or added as premises of the implications in the theories. In the second
case, they have to be made common knowledge or at least made known by some
of the agents. In COQ, we have to choose between |- Fact ->|- Conclusion

25

and |- (C G Fact) ==> Conclusion. The question of choosing between facts
stated as axioms and premises as common knowledge has still to be investigated.

Acknowledgements I acknowledge René Vestergaard for lively discussions on this topic and
related ones. I would like to thank Masahiko Sato for pointing me the work done in the context
of artificial intelligence in the middle seventies by John Mc Carthy and his coworkers. Daniel
Dougherty and Luigi Liquori deserve a special mention for their careful reading and for their
interest in this work. A referee gave very accurate comments which contributed to improve
greatly the paper.

References

1. Luca Alberucci and Gerhard Jäger. About cut elimination for logics of common knowledge.
Annals of Pure and Applied Logic, 2004. to appear.

2. Robert J. Aumann. Agreeing to disagree. Annals of Statistics, 4(6):1236–1239, 1976.
3. Robert J. Aumann. Backward induction and common knowledge of rationality. Games and

Economic Behavior, 8:6–19, 1995.
4. Arnon Avron, Furio Honsell, and Ian A. Mason. Current trends in hardware verification

and automated theorem proving, chapter An overview of the Edinburgh logical framework,
pages 323–340. Springer-Verlag New York, Inc., New York, NY, USA, 1989.

5. Arnon Avron, Furio Honsell, Marino Miculan, and Cristian Paravano. Encoding modal
logics in logical frameworks. Studia Logica, 60(1):161–208, 1998.

6. Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David De-
lahaye, Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin,
Gérard Huet, Henri Laulhère, César Muñoz, Chetan Murthy, Catherine Parent-Vigouroux,
Patrick Loiseleur, Christine Paulin-Mohring, Amokrane Saïbi, and Benjamin Werner. The
Coq Proof Assistant Reference Manual. INRIA, version 6.3.11 edition, May 2000.

7. David A. Basin, Seán Matthews, and Luca Viganò. Labelled propositional modal logics:
Theory and practic. J. Log. Comput, 7(6):685–717, 1997.

8. David A. Basin, Seán Matthews, and Luca Viganò. Labelled modal logics: Quantifiers.
Journal of Logic, Language and Information, 7(3):237–263, 1998.

9. Mordechai Ben-Ari, Joseph. Y. Halpern, and Amir Pnueli. Deterministic propositional dy-
namic logic: Finite models, complexity, and completeness. Journal of Computer and System
Sciences, 25:402–417, 1982.

10. Johan van Benthem. Games in dynamic epistemic logic. Bulletin of Economic Research,
53(4):219–248, 2001.

11. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development
Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag, 2004.

12. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. The MIT Press, 1995.

13. Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18:194–211, 1979.

14. Dov M. Gabbay, Christopher John Hogger, and John Alan Robinson, editors. Handbook of
Logic in Artificial Intelligence and Logic Programming, chapter Epistemic and Temporal
Logics, Epistemic aspects of databases. Clarendon Press, 1995.

15. John Geanakoplos. Handbook of Game Theory, volume 2, chapter Common knowledge,
pages 1437–1496. Elsevier, Amsterdam, 1994. R. Aumann and S. Hart ed.

16. Michael J.-C. Gordon and Tom F. Melham. Introduction to HOL: a theorem proving envi-
ronment for higher order logic. Cambridge University Press, 1993. ISBN 0-521-44189-7.

17. Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. In PODC ’84: Proceedings of the third annual ACM symposium on Principles
of distributed computing, pages 50–61, New York, NY, USA, 1984. ACM Press.

18. Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity for modal
logics of knowledge and belief. Artif. Intell., 54(3):319–379, 1992.

19. Joseph Y. Halpern and John H. Reif. The propositional dynamic logic of deterministic,
well-structured programs. Theoretical Computer Science, 27:127–165, 1983.

20. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.

26

21. Jon Howell and David Kotz. A formal semantics for SPKI. In Proceedings of the Sixth
European Symposium on Research in Computer Security (ESORICS 2000), pages 140–158.
Springer-Verlag, October 2000.

22. Mamoru Kaneko. Common knowledge logic and game logic. The Journal of Symbolic
Logic, 64(2):685–700, June 1999.

23. Daniel Lehmann. Knowledge, common knowledge and related puzzles (extended sum-
mary). In PODC ’84: Proceedings of the third annual ACM symposium on Principles of
distributed computing, pages 62–67, New York, NY, USA, 1984. ACM Press.

24. Gottfried Wilhelm Leibniz. Discours de métaphysique, 1686. Published in [25], translated
into English in [26].

25. Gottfried Wilhelm Leibniz. Discours de métaphysique, volume 1 of Collection historique
des grands philosophes. F. Alcan, Paris, 1907. Introduction et notes, par Henri Lestienne;
préface de Auguste Penjon, available on http://gallica.bnf.fr/.

26. Gottfried Wilhelm Leibniz. Discourse on Metaphysics and the Monadology (trans. George
R. Montgomery). Prometheus Books, 1992. (first published by Open Court, 1908).

27. David Lewis. Convention: A philosophical study. Harvard University Press, Cambridge,
MA, 1969.

28. Luigi Liquori, Furio Honsell, and Marina Lenisa. A framework for defining logical frame-
works. http://hal.inria.fr/inria-00088809, August 2006.

29. Luc Lismont. Common knowledge: Relating anti-founded situation semantics to modal
logic neighbourhood semantics. Journal of Logic, Language and Information, 3:285–302,
1995.

30. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using CSP
and FDR. In T. Margaria and B. Steffen, editors, Tools and Algorithms for the Constrcution
and Analysis of Systems, TACA’96, volume 1055 of Lecture Notes in Computer Science,
pages 147–166, 1996.

31. Will Marrero, Edmund Clarke, and Somesh Jha. Model checking for security protocols.
Technical Report CMU-CS-97-139, Carnegie Mellon University, 1997.

32. John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages
463–502. Edinburgh University Press, 1969. http://www-formal.stanford.edu/jmc/
mcchay69.pdf.

33. John McCarthy, Masahiko Sato, Takeshi Hayashi, and Shigeru. Igarashi. On the model
theory of knowledge. Technical Report AIM-312, Stanford University, 1977.

34. John-Jules Ch. Meyer and Wiebe van der Hoek. Epistemic Logic for Computer Science and
Artificial Intelligence, volume 41 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1995.

35. Paul Milgrom. An axiomatic characterization of common knowledge. Econometrica,
49(1):219–222, 1981.

36. Larry C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor, Logic in
Computer Science. Academic Press, 1990.

37. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., chapter Robust
Estimation, pages 694–700. Cambridge University Press, 1992.

38. Masahiko Sato. A study of Kripke-type models for some modal logics by Gentzen’s se-
quential method. Publications of the Research Institute for Mathematical Sciences, Kyoto
University, 13(2):381–468, 1977.

39. Anne S. Troelstra and Dirk van Dalen. Constructivism in mathematics: an introduction,
volume I. North Holland, 1988.

40. Greg Utas. Robust Communications Software: Extreme Availability, Reliability and Scala-
bility for Carrier-Grade Systems. John Wiley & Sons, 2005.

41. Dirk van Dalen. Logic and Structure. Springer Verlag, 1994.
42. René Vestergaard, Pierre Lescanne, and Hiroakira Ono. The inductive and modal

proof theory of Aumann’s theorem on rationality. Technical Report IS-RR-2006-
009, JAIST, 2006. available as http://www.jaist.ac.jp/~vester/Writings/
vestergaard-IS-RR-2006-009.pdf.

43. Paulien de Wind. Modal logic in Coq. Master’s thesis, Vrije Universiteit Amsterdam, 2002.
available at http://www.cs.vu.nl/~pdwind/thesis/thesis.pdf.

27

A A metaphor of common knowledge

A metaphoric example (with the weakness of all metaphor) for common knowledge is traffic
regulations or more precisely its reification in actual life where drivers are supposed to drive on
the right side of roads (common knowledge). When, as a driver, Alice enters an intersection she
knows that Bob on her left will let her go, moreover she knows that he knows that she has the
right to go and she is sure (she knows) that he will not go because he knows that she knows
that he knows that she has the right to go etc. Actually she passes through an intersection with
a car on her left, because there is common knowledge on the rule of priority between her as a
driver and Bob the driver of the other car. But those who travel have experienced the variability
of common knowledge (for instance of the actual implementation of traffic regulations), because
common knowledge is a specificity of a group of agents (a country or a community of countries)
and changes as the group of agents changes. Actually common knowledge is (a consequence
of) the culture or (of) the rationality of a given group of agents. Take a stop sign. In Europe it
means that the person who has a stop sign will let the other pass through the intersection8. In
other countries the meaning is different since it is common knowledge among the drivers that
nobody will respect the traffic signs and therefore everybody will act appropriately, i.e. nobody
will ever assume that the fact that a driver has a stop sign will mean he will let the other pass.

B The COQ definition of theorem

Inductive theorem : proposition -> Prop :=

(* ----------------- Propositional calculus ----------------- *)

(* Hilbert axioms for intuitionistic propositional logic *)
| Hilbert_K : forall p q : proposition, theorem (p ==> q ==> p)
| Hilbert_S : forall p q r : proposition,

theorem ((p ==> q ==> r) ==> (p ==> q) ==> p ==> r)
| (* Classic *)

Classic_NotNot : forall p : proposition, theorem (¬¬p ==> p)
| (* Modus Ponens *) (* p ==> q , p |- q *)

MP : forall p q : proposition, theorem (p ==> q) -> theorem p -> theorem
q

(* ------------------ Predicate calculus ------------------ *)

| Forall1 : forall (A : Set) (P : A -> proposition) (a : A),
theorem (\-/P ==> P a)

| (* x not in FV(q) (\-/x (q ==> (P x))) ==> q ==> (\-/x(P x)) *)
Forall2 : forall (A : Set) (P : A -> proposition) (q : proposition),

theorem (\-/(fun x : A => (q ==> P x)) ==> q ==> \-/P)

| ForallRule : forall (A : Set) (P : A -> proposition),
(forall x : A, theorem (P x)) -> theorem (\-/P)

(* ----------------- Modal calculus ----------------- *)

| (* Distribution Axiom *)
K_K : forall (i : nat) (p q : proposition),

theorem (K i p ==> K i (p ==> q) ==> K i q)
| (* Knowledge Axiom *)

K_T : forall (i : nat) (p : proposition), theorem (K i p ==> p)

8 In the USA, the common knowledge is different since there are intersections of two crossing
roads with four stop signs and this has puzzled more than one European. Clearly the common
knowledge on the meaning of traffic signs is different between the USA and Europe.

28

| (* Knowledge rule *)
K_rule : forall (i : nat) (p : proposition), theorem p -> theorem (K i p)

| (* Positive introspection *)
K_4 : forall (i : nat) (p : proposition), theorem (K i p ==> K i (K i p))

| (* Positive introspection *)
K_5 : forall (i : nat) (p : proposition), theorem (¬ K i p ==> K i (¬ K

i p))

(* ----------------- Common knowledge logic ----------------- *)

| Fixpoint_C : forall (g : list nat) (p : proposition),
theorem (C g p ==> p & E g (C g p))

| Greatest_Fixpoint_C : forall (g : list nat) (p q : proposition),
theorem (q ==> p & E g q) -> theorem (q ==> C g p).

C More on Meyer and van der Hoek

It is clear that from axiom (A10) CG(ϕ⇒ EG(ϕ)) ⇒ ϕ⇒CG(ϕ) and rule (MP) we derive

CG(ϕ⇒ EG(ϕ))

ϕ⇒CG(ϕ)

and, using rule (R3), a new rule
ϕ⇒ EG(ϕ)

(nR10)
ϕ⇒CG(ϕ)

Notice that (nR10) has a flavor of induction for defining C. We could consider rule (nR10) as
weaker than axiom (A10), this is not the case. Here is a sketch of the proof of (A10) using
(nR10). Let us state A ≡ CG(ϕ⇒ EG(ϕ)) in this proof. First, let us prove A∧ϕ⇒CG(A∧ϕ).

CG(ϕ⇒ EG(ϕ))⇒ EG(CG(ϕ⇒ EG(ϕ)))
�� ��(A8)

A∧ϕ⇒ EG(A)

CG(ϕ⇒ EG(ϕ))⇒ (ϕ⇒ EG(ϕ))
�� ��(A7)

CG(ϕ⇒ EG(ϕ))∧ϕ⇒ (ϕ⇒ EG(ϕ))∧ϕ (ϕ⇒ EG(ϕ))∧ϕ ⇒ EG(ϕ)

CG(ϕ⇒ EG(ϕ))∧ϕ⇒ EG(ϕ)

A∧ϕ ⇒ EG(A∧ϕ)

(nR10)

A∧ϕ⇒CG(A∧ϕ)

The rest, namely A∧ϕ⇒CG(ϕ), comes from (A∧ϕ)⇒ ϕ, then CG((A∧ϕ)⇒ ϕ) and, CG(A∧
ϕ)⇒CG(ϕ) by (R3), (MP) and transitivity of ⇒.

D Barcan’s formula.

The axioms of epistemic logic given in Figure 1 are in propositional logic. The Barcan formula

(∀P : A→ Bool) [(∀x : A)Ki(P x)]⇒ Ki((∀x : A)P x)

is a proposition stated in predicate calculus. It defined the connection between K and \-/. It can
be written readily in COQ:
forall (i: nat)(A:Set)(P:A->proposition),

|- (\-/ fun x:A => K i (P x)) ==> K i (\-/ P)

It says that if it occurs that for each element in a set A, if an agent knows a fact, then he knows
necessarily that the fact holds for each element in A. This a very strong property which I do not
consider except to show that it can be stated easily in COQ.

