
Mechanizing the Powerset Construction for

Restricted Classes of ω-Automata⋆

Christian Dax1, Jochen Eisinger2, and Felix Klaedtke1

1 ETH Zurich, Switzerland
2 Albert-Ludwigs-Universität Freiburg, Germany

Abstract. Automata over infinite words provide a powerful framework
to solve various decision problems. However, the mechanized reasoning
with restricted classes of automata over infinite words is often simpler
and more efficient. For instance, weak deterministic Büchi automata
(wdbas) can be handled algorithmically almost as efficient as determin-
istic automata over finite words. In this paper, we show how and when
the standard powerset construction for automata over finite words can be
used to determinize automata over infinite words. An instance is the class
of automata that accept wdba-recognizable languages. Furthermore, we
present applications of this new determinization construction. Namely,
we apply it to improve the automata-based approach for the mixed first-
order linear arithmetic over the reals and the integers, and we utilize
it to accelerate finite state model checking. We report on experimental
results for these two applications.

1 Introduction

Automata over infinite objects have emerged as a powerful tool for spec-
ification and verification of nonterminating programs [23,32], and for im-
plementation of decision procedures for logical theories [2, 4, 9, 18]. For
instance, the automata-theoretic approach to model checking is easy to
understand, automatic, and thus attractive to practitioners. However, its
effectiveness is often sensitive to the automaton model and the sizes of
the automata.

In [5], it is remarked that many specifications in model checking
describe languages that can be recognized by restricted classes of au-
tomata. Reasoning about or with restricted classes of automata over in-
finite words is often simpler and more efficient. A prominent example
are weak deterministic Büchi automata (wdbas), which can be han-
dled algorithmically almost as efficient as deterministic automata over
finite words. For instance, in contrast to Büchi automata, wdbas have

⋆ This work was supported by the German Research Council (DFG) and the Swiss
National Science Foundation (SNF).

2 C. Dax, J. Eisinger, F. Klaedtke

a canonical minimal form, which can be obtained efficiently [25]. wdbas
can be used to represent and manipulate sets definable in the mixed
first-order logic over the reals and the integers with addition and the or-
dering, i.e., FO(R, Z,+, <) [4]. Such an automata-based representation
of FO(R, Z,+, <)-definable sets has applications in infinite-state model
checking (see, e.g., [3, 9]). Further, languages that describe temporal
properties like safety and guarantee properties and boolean combina-
tions thereof, so-called obligation properties, can be recognized by wdbas
(see [6]).

However, it is not obvious how we can benefit from the algorithms for
wdbas if a given automaton is, e.g., a nondeterministic Muller automa-
ton that accepts a wdba-recognizable language. In [19], Kupferman et al.
observed that the standard powerset construction for automata over finite
words can be used to obtain an equivalent wdba from a given automa-
ton when it accepts a wdba-recognizable language. However, no concrete
algorithm is given. In particular, the crucial point how to efficiently de-
termine the accepting states of the wdba is not addressed.

In this paper, we provide an efficient algorithm to determine the ac-
cepting states of the wdba obtained by the standard powerset construc-
tion for automata over finite words. Furthermore, we give a sufficient con-
dition for automata for which we can use the powerset construction to
obtain equivalent deterministic Büchi automata. For such automata, we
provide a general determinization construction. We also present a method
to check whether this new determinization construction can be applied.
Finally, we propose how to use the new constructions in relevant applica-
tions. We evaluate our approaches experimentally.

One of the applications is the construction of automata-based rep-
resentations for sets definable in FO(R, Z,+, <). Our new construction
handles quantifiers more efficiently than previously proposed construc-
tions as, e.g., in [4]. Another application for our determinization con-
structions discussed in this paper is finite state model checking. When-
ever the specification is an obligation property, we suggest to construct
the minimal wdba. The advantage of using the minimal wdba is that
it contains no redundant states and no nondeterminism that might lead
to a more expensive verification process. In [29], Sebastiani and Tonetta
suggest an approach with a similar flavor to optimize the verification pro-
cess. Instead of constructing the minimal wdba, they apply heuristics to
reduce nondeterminism in the transition function of the Büchi automa-
ton for the specification. For both applications, our evaluations show an
improvement in the state of the art in the respective area.

Powerset Construction for Restricted Classes of ω-Automata 3

We proceed as follows. In §2, we recall background. In §3, we show
how and when we can use the powerset construction for automata over
infinite words. In §4, we give applications and experimental results of the
new determinization constructions. Finally, in §5, we draw conclusions.

2 Background

We assume that the reader is familiar with the basics of automata theory.
The purpose of this section is to recall background in this area, and fix
some of the notation and terminology that we use in the remainder of the
text.

Let Σ be an alphabet. We denote the set of all finite words over Σ

by Σ∗. We define Σ+ := Σ∗ \ {ε}, where ε is the empty word. Σω is the
set of all infinite words over Σ. We often write a word w ∈ Σ∗ of length
ℓ ≥ 0 as w0 . . . wℓ−1 and α ∈ Σω as α0α1 . . . , where wi and αi denote the
ith letter of w and α, respectively. We denote the infinite repetition of a
finite word u ∈ Σ+ by uω.

A transition system (ts) T is a tuple (Q,Σ, δ, qI), where Q is a finite
set of states, δ : Q × Σ → P(Q) is the transition function, and qI ∈ Q is
the initial state. We extend δ to the function δ̂ : Q ×Σ∗ → P(Q) defined
as δ̂(q, ε) := {q} and δ̂(q, bu) :=

⋃
p∈δ(q,b) δ̂(p, u), where q ∈ Q, b ∈ Σ,

and u ∈ Σ∗. T is deterministic if |δ(p, b)| = 1, for all p ∈ Q and b ∈ Σ.
In this case, we write δ(p, b) = q and δ̂(p,w) = q instead of δ(p, b) = {q}
and δ̂(p,w) = {q}, respectively.

For L ⊆ Σω, we define the congruence relation ≈L⊆ Σ∗ × Σ∗ as
u ≈L v iff uα ∈ L ⇔ vα ∈ L, for all α ∈ Σω. If ≈L has finite index, we
define the deterministic ts CL as CL := ({[v] : v ∈ Σ∗}, Σ, δ, [ε]) with
δ([v], b) := [vb], where [u] denotes the equivalence class of u ∈ Σ∗, i.e.,
[u] := {v ∈ Σ∗ : v ≈L u}. Note that δ is well-defined.

In the following, let T = (Q,Σ, δ, qI) be a ts. A state q ∈ Q is reachable

from p ∈ Q if there is a word w ∈ Σ∗ such that q ∈ δ̂(p,w). In the
remainder of the text, we assume that every state in a ts is reachable
from its initial state. A strongly connected component (scc) of T is a
set S ⊆ Q such that every p ∈ S is reachable from every q ∈ S and S is
maximal. A loop in T is a word q0 . . . qn ∈ Q∗ with n ≥ 1, q0 = qn, and for
all i ∈ {0, . . . , n−1}, there is a letter b ∈ Σ such that qi+1 ∈ δ(qi, b). A run

of T on α ∈ Σω is a word ̺ ∈ Qω such that ̺0 = qI and ̺i+1 ∈ δ(̺i, αi),
for all i ≥ 0. Inf(̺) is the set of states that occur infinitely often in ̺.

4 C. Dax, J. Eisinger, F. Klaedtke

An automaton A is a tuple (T,C), where T is a ts and C is an
acceptance condition. In the following, we mainly use the Büchi and co-
Büchi conditions, which are defined as follows.
– S ⊆ Q satisfies the Büchi condition C ⊆ Q if S ∩ C 6= ∅.
– S ⊆ Q satisfies the co-Büchi condition C ⊆ Q if S ∩ C = ∅.

Due to space limitations, we do not give the definition of the other com-
mon acceptance conditions like Muller, Rabin, and Streett condition. In-
stead, we refer the reader to [31]. A run ̺ is accepting if Inf(̺) sat-
isfies the acceptance condition C; it is rejecting, otherwise. We define
L(A) :={α∈Σω : there is an accepting run of A’s ts on α}.

We type an automaton A = (T,C) according to its acceptance condi-
tion C. For instance, if C is the Büchi condition, A is a Büchi automaton

(ba) and if C is the co-Büchi condition, we call A a co-Büchi automaton

(co-ba). If T is deterministic, A is a deterministic ba (dba) or determin-

istic co-ba (co-dbas), respectively. A ba (T,C) is weak if S ∩ C = ∅ or
S ⊆ C, for every scc S ⊆ Q. We use the initialisms wba for “weak Büchi
automaton” and wdba for “weak deterministic Büchi automaton.”

WDBA denotes the class of languages L for which there is a wdba

A with L(A) = L. The classes of languages DBA and coDBA are de-
fined as expected. There are different characterizations of these classes of
languages and the relation between the classes has been investigated in-
tensively. For example, it holds that DBA∩ coDBA = WDBA. For details,
we refer the reader to [6].

3 Determinization with the Powerset Construction

In this section, we investigate when and how we can use the powerset
construction to determinize automata over infinite words. The powerset

transition system of a ts T = (Q,Σ, δ, qI) is P(T) := (P(Q), Σ, η, {qI})
with η(R, b) :=

⋃
q∈R δ(q, b), for R ⊆ Q and b ∈ Σ. Let CONG be the

class of languages L for which the dba (CL, E) accepts L, for some set E.

Lemma 1. Let A = (T,C) be an automaton. If L(A) ∈ CONG then there

is a set F such that the dba (P(T), F) accepts L(A).

Proof. Assume that T = (Q,Σ, δ, qI) and that the dba (CL(A), E) accepts

L(A). Define F := {P ⊆ Q : δ̂(qI, u)= P and [u]∈E, for some u ∈ Σ∗}.
For α ∈ Σω, let ̺ be the run of CL(A) and ̺′ be the run of P(T). We
show that ̺i ∈ E iff ̺′i ∈ F , for all i ≥ 0. Let v := α0 . . . αi−1. Note that
̺i = [v]. The direction from left to right holds by the definition of F .
For the other direction, assume that ̺′i ∈ F , i.e., there is a word u ∈ Σ∗

Powerset Construction for Restricted Classes of ω-Automata 5

with δ̂(qI, u) = ̺′i and [u] ∈ E. Since ̺′i = δ̂(qI, u) = δ̂(qI, v), we have that
u ≈L(A) v and hence, [u] = [v] = ̺i. ⊓⊔

Note that Lemma 1 establishes the existence of the Büchi acceptance
condition F for the ts P(T). It is left open how to algorithmically deter-
mine the set F . A naive algorithm checks whether it holds that the dba

(P(T), F) accepts L(A), for each F ⊆ P(Q). In §3.1 and §3.2, we present
more sophisticated algorithms to determine such a set F . For certain
language classes, our algorithms have an exponentially better worst-case
complexity than the sketched naive algorithm. With such algorithms at
hand, we obtain new automata constructions for determinizing automata
whenever they accept languages in CONG or subclasses thereof. We give
concrete applications of these constructions in §4. Before we present the
algorithms and their applications, we look in more detail at the languages
in CONG and at the automata that accept languages in CONG.

First, we remark that the converse direction of Lemma 1 does not
hold in general. To see this, let L be the language {α ∈ {0, 1}ω :
1 occurs infinitely often in α}. Since ≈L has only one equivalence class,
it is straightforward to see that L 6∈ CONG. However, there is a dba

A = (T,C) that accepts L and since T is deterministic, there is obviously
a set F such that the dba (P(T), F) accepts L. Second, we observe that
CONG (DBA. By definition, every language in CONG can be accepted
by some dba. As we have seen above, the dba A accepts a language not
in CONG.

Further, note that for a language L ∈ WDBA, there is some dba

(CL(A), E) that accepts L [26]. Hence, CONG subsumes important classes
of ω-regular languages. For instance, the ω-regular languages that de-
scribe boolean combinations of safety and guarantee properties are in
CONG (see, e.g., [6]). Moreover, CONG contains the languages that are
definable in the mixed first-order logic over the integers and the reals
with addition and the ordering [4]. Unfortunately, checking whether an
automaton accepts a language in CONG is PSPACE-hard. This can be
shown by a similar argumentation as in the proof of Theorem 4.2 in [20].

Finally, note that for a language L ⊆ Σω, the minimal number of
states of a deterministic automaton A with L(A) = L is at least the
index of the congruence relation ≈L. In the case where L ∈ CONG, the
minimal number of states of a deterministic automaton A that accepts
L is the index of ≈L. From Lemma 1, it follows that for A’s ts T there
exists a set F of states such that the dba (T, F) accepts L. Note that the
powerset transition system of T is isomorphic to T when we remove the
states that are not reachable from its initial state. Similarly, as remarked

6 C. Dax, J. Eisinger, F. Klaedtke

in the paragraph after Lemma 1, it is left open how to determine the set F

of accepting states algorithmically from the automaton A. The algorithms
presented in the following subsections can be used to solve this problem
for converting the acceptance condition to a Büchi acceptance condition.

3.1 Determinization of Automata with Languages in WDBA

We first consider the special case, where we assume that the automaton A

accepts a language in WDBA. Assume that A is the automaton (T,C) with
T = (Q,Σ, δ, qI) and that P(T) = (P(Q), Σ, η, {qI}). Before we present
the automata construction to determinize A, we make the following ob-
servations. From [26], we know that some dba (CL(A), E) accepts L(A).
It follows from Lemma 1 that for some F ⊆ P(Q), the dba (P(T), F)
accepts L(A). According to Theorem 5.2 in [4], (P(T), F) is inherently
weak, i.e., there is no scc S of P(T) with an accepting and a rejecting
loop. Here, we call a loop Q0 . . . Qn ∈ P(Q)+ accepting if Qi ∈ F , for
some i ∈ {0, . . . , n − 1}, and rejecting, otherwise.

Lemma 2. Let R ∈ P(Q), u ∈ Σ∗ such that η̂({qI}, u) = R, and w ∈ Σ+

such that η̂(R,w) = R. It holds that uwω ∈ L(A) iff all loops of the scc

that contains R are accepting.

Proof. (⇒) If uwω ∈ L(A) then uwω ∈ L(P(T), F). Since (P(T), F) is
inherently weak and R occurs infinitely often in the run of P(T) on uwω,
all loops of the scc that contains R are accepting.

(⇐) If all loops of the scc that contains R are accepting then uwω ∈
L(P(T), F). Since L(P(T), F) = L(A), we have that uwω ∈ L(A). ⊓⊔

The determinization of A comprises two steps.3 First, we construct
P(T). Second, we use the algorithm in Figure 1 to compute a set F ′ ⊆
P(Q), where F ′ is the union of the sccs for which the algorithm returns
“accepting.” In the algorithm the words u and w can be found, e.g., by
a breadth-first search. Note that uwω ∈ L(A) is equivalent to {uwω} ∩
L(A) = ∅. We can construct an automaton that accepts {uwω}∩L(A) and
check its emptiness according to A’s acceptance condition. See [7,14,17],
for several efficient emptiness checks with respect to the automaton’s
acceptance condition.

3 In [19], it is stated that for a ba B = (U, G) that accepts a language in WDBA, the
Büchi condition for P(U) can be chosen as {P : P ∩G 6= ∅}. A counterexample for
this claim is the ts ({r, s, t}, {0}, δ, r) with δ(r, 0) = {r, s} and δ(s, 0) = δ(t, 0) = {t}
and the Büchi condition {s}.

Powerset Construction for Restricted Classes of ω-Automata 7

1: if S has no loop then return rejecting
2: Let R be some state in S.
3: Let u ∈ Σ∗ a word such that η̂({qI}, u) = R.
4: Let w ∈ Σ+ a word such that η̂(R, w) = R.
5: if uwω ∈ L(A) then return accepting else return rejecting

Fig. 1. Algorithm to determine whether an scc S of P(T) is accepting or rejecting.

The correctness of this construction can be seen as follows. Note that
for an scc S without a loop it is irrelevant whether its states belong to F ′

or not. The language of the automaton is not altered, since these states
can only occur at most once in a run. We make them rejecting. Otherwise,
let S be an scc with at least one loop. From Lemma 2, it follows that
the algorithm in Figure 1 returns “accepting” for S iff all loops of S are
accepting. It follows that L(P(T), F) = L(P(T), F ′).

We remark that the constructed automaton is weak. Further, the con-
struction is parametric in the type of the acceptance condition of the
automaton A. We obtain translations to wdbas for automata with ac-
ceptance conditions such as parity, Rabin, Streett, and Muller.

In summary, the construction described in this subsection establishes
the following theorem.

Theorem 3. Let A be an automaton with n states. If L(A) ∈ WDBA

then we can construct a wdba with at most 2n states that accepts L(A).

3.2 The General Case

In this subsection, we consider the general case, where we are given an
automaton A with L(A) ∈ CONG. We do not require that A accepts a
language in WDBA as in the previous subsection. From Lemma 1, we
know that there is a set F such that the dba (P(T), F) accepts the
language of A, where T is the ts of A. So, as in §3.1, we are left with
the problem to determine algorithmically a set F ′ such that the dba

(P(T), F ′) accepts L(P(T), F). In fact, the algorithm that we present in
the following solves a more general problem. The input of the algorithm
consists of an automaton B and a deterministic ts U . The algorithm
requires that there is at least one set F such that the dba (U,F) accepts
L(B). It outputs a set F ′ such that the dba (U,F ′) accepts L(B). Assume
that U = (P,Σ, η, pI).

Observe that we can consider each scc of U separately, i.e., for each
scc S, we can compute a set FS ⊆ P without taking into account the
states of U in the other sccs of U . Note that such a set FS is not uniquely

8 C. Dax, J. Eisinger, F. Klaedtke

1: R← ∅
2: A← ∅
3: Let G be the graph (V, E) with V :=S and E :={(p, q) : η(p, b)=q, for some b ∈ Σ}.
4: while there is a loop π = v0 . . . vℓ in G with ℓ ≤ |S| and v0 ∈ V \R and

there is no X ∈ A such that X ⊆ {v0, . . . , vℓ−1} do

5: Let u ∈ Σ∗ be a word with η̂(qI, u) = v0.
6: Let w ∈ Σ+ be a word of length ℓ with η(vi, wi) = vi+1, for all 0 ≤ i < ℓ.
7: if uwω 6∈ L(B) then

8: R← R ∪ {v0, . . . , vℓ}
9: Update A, i.e., remove the vis in every X ∈ A.

10: else

11: A← A ∪
˘

{vi : 0 ≤ i ≤ ℓ and vi /∈ R}
¯

12: end if

13: while there is a vertex v ∈ V with {v} ∈ A do

14: Delete vertex v from G.
15: Update A, i.e., remove X ∈ A whenever v ∈ X.
16: end while

17: end while

18: return S \R

Fig. 2. Algorithm to determine the set of accepting states for an scc S of T ′.

determined and there might be dependencies on the states in S that we
have to take care of. The algorithm in Figure 2 returns such a set FS , for
an scc S of U . F ′ is then the union of the sets FS , for all sccs S of U .

Due to space limitations we only sketch the algorithm. We iteratively
investigate loops π in the scc S from which we gain additional informa-
tion about which of the states in S have to be accepting and which have
to be rejecting. For a loop π = p0 . . . pℓ, there is a word w ∈ Σ+ that
visits the states in π in the same order. Moreover, there is a word u ∈ Σ∗

with η̂(qI, u) = p0. We check if uwω ∈ L(B). If this is not the case, we
know that the states p0, . . . , pℓ−1 must not be in FS . If uwω ∈ L(B), we
know that at least one of the states p0, . . . , pℓ−1 has to be in FS . The
algorithm maintains a set R, where R contains the states that must not
be in FS , and it maintains a set A of sets of states, where X ∈ A means
that at least one of the states in X has to be in FS . Initially, R and A

are empty. If we derive the fact that a state p ∈ S has to be rejecting, we
put p in R and delete p in every X ∈ A. If A contains a singleton {q}, we
know that the state q ∈ S has to be accepting and we remove the sets X

from A that contain q.

The algorithm also maintains a graph G. Intuitively speaking, G to-
gether with the set A describe the loops of the scc S that we still need to
investigate. Initially, G is the transition graph of the scc S. Note that we
need not to investigate loops in G that visit a state for which we already

Powerset Construction for Restricted Classes of ω-Automata 9

know that it has to be in FS . Thus, as soon as we conclude that a state p

is accepting, we delete p in G (and all its in-going and out-going edges).
That means, that no loop in the updated graph will visit p. Further, a
loop π has to visit at least one state for which we do not know whether it
is accepting or rejecting. Without loss of generality, we assume that π0 is
such a state. Moreover, we can restrict ourselves to loops π for which the
set of visited states is not a superset of any X ∈ A. The reason for this
is that at least one state in X has to be accepting and thus, xyω ∈ L(B),
where x ∈ Σ∗ is a word from pI to the state π0 and y ∈ Σ+ is a word
corresponding to the loop π. Therefore, we do not obtain any new infor-
mation by investigating π. Finally, note that it suffices to check loops of
length at most |S| + 1.

The algorithm in Figure 2 terminates since it only checks finitely many
loops. In the worst case, it checks exponentially many loops: Assume that
the given deterministic ts U has the graph

•
''NN

NN
• . . . •

((QQ
QQ •

''NN
NN

1
•

77pppp

''NN
NN

2
•

77pppp

''NN
NN

n−1
•

66mmmm

((QQ
QQ

n

•

ECD@GF
��

•

77pppp
• . . . •

66mmmm •

77pppp

and state 1 is the initial state. This graph has 2n−1 loops of length 2n that
start in state 1. If the infinite repetition of the words corresponding to
these loops are in L(B), the algorithm checks exponentially many loops.
We remark that from smaller loops we can obtain more information. In
particular, from a self-loop we immediately see if the state in the self-loop
has to be accepting or rejecting. So, a heuristic is to check loops ordered
increasingly by their lengths.

Finally, note that the algorithm in Figure 2 can be easily adapted
such that we can use it to obtain a set F ′ ⊆ P for the co-Büchi condition,
i.e., that the co-dba (U,F ′) accepts L(B).

3.3 Remarks on the Precondition of the Algorithm

In this subsection, we want to comment on the requirement of the al-
gorithm in §3.2, i.e., the existence of a set F such that the dba (U,F)
accepts L(B). If we do not know whether such a set F exists, we can
proceed as follows. We use the algorithm presented in §3.2 to obtain a
set F ′ of states of the ts U and check whether the dba (U,F ′) accepts
L(B). Note that this check can be done by checking L(U,F ′) ⊆ L(B)
and L(B) ⊆ L(U,F ′), or equivalently, (Σω \ L(U,F ′)) ∩ L(B) = ∅ and
(Σω \ L(B)) ∩ L(U,F ′) = ∅, respectively. The first check can be done

10 C. Dax, J. Eisinger, F. Klaedtke

in polynomial time. Note that dbas can be complemented in polynomial
time [22]. However, the second check is expensive, since we have to com-
plement B (e.g., by using the construction in [21] when B is a ba), which
can lead to an exponential blowup.

Note that the decision problem of determining the existence of a set
of states F such that the dba (U,F) accepts L(B), for an automaton B

and a deterministic ts U is PSPACE-complete. The hardness follows by
reducing the universality problem for bas to it. The decision problem is
in PSPACE, since we can guess a set F and check in PSPACE that it is
indeed the case that the dba (U,F) accepts L(B).

4 Applications

In this section, we give applications of the determinization construction
presented in §3.1 for languages in WDBA.

4.1 Projection of Definable Sets in Linear Arithmetic

In [4], Boigelot, Jodogne, and Wolper show that wdbas can be used to
decide the mixed first-order logic over the reals and the integers with ad-
dition and the ordering, i.e., FO(R, Z,+, <). The elements of the domain
are represented by infinite words. For a given formula, one constructs
recursively over the formula structure an automaton. This automaton ac-
cepts precisely the infinite words that represent the real numbers that
satisfy the formula. Automata constructions handle the logical connec-
tives and quantifiers. With the automata construction presented in §3.1,
we can handle the quantifiers more efficiently.

Handling Quantifiers Since wdbas are closed under complement, it
suffices to consider existential quantifiers. Assume that the wdba Aϕ ac-
cepts the words that represent the satisfying assignments for the formula
ϕ. We want to construct a wdba for the formula ∃xϕ. From Aϕ, we first
construct a wba B that—intuitively speaking—guesses the digits for x.

In [4], Boigelot, Jodogne, and Wolper utilize the breakpoint construc-
tion [21, 27] to obtain a wdba A∃xϕ from the wba B. They turn B into
an equivalent co-ba and apply the breakpoint construction to it. From
the resulting co-dba, they obtain the desired wdba A∃xϕ. The last con-
struction step is possible, since B accepts a language in WDBA.

Instead of using the breakpoint construction, we can apply the pow-
erset construction to turn the wba B into an equivalent wdba A′

∃xϕ

Powerset Construction for Restricted Classes of ω-Automata 11

(see §3). Since wdbas have a canonical form, minimization of A∃xϕ and
A′

∃xϕ result in wdbas that are isomorphic [25].
Using the powerset construction has the following advantages over

the breakpoint construction. Theoretically, we do not have to take a de-
tour by switching the acceptance condition. We stay in the framework of
weak Büchi automata. Practically, the advantages are: (1) The powerset
construction builds automata that usually have fewer states than the au-
tomata obtained by the breakpoint construction. The worst case of the
powerset construction is slightly better than the worst case of the break-
point construction. (2) The powerset construction is easier to implement.
For instance, the breakpoint construction builds an automaton, where
the states are pairs of sets of states of a given co-ba; in the powerset
construction, we only have to deal with sets of states.

Experimental Evaluation We implemented both constructions in our
tool lira [2] and evaluated them. The savings in terms of number of states
range from 15% to 20%. Since the number of generated states is directly
linked to the runtime required to construct the automata and it takes less
time to minimize smaller automata, the savings in terms of runtime are
slightly better, i.e., the improvement ranges from 20% to 25%.

4.2 Model Checking Finite State Systems

In model checking we want to establish automatically whether a system
M satisfies a property ϕ. A practical relevant subclass of this problem is
where M is a finite state system and the property ϕ is given as a formula
in (propositional) linear time temporal logic (ltl). This model checking
problem can be solved algorithmically by using automata-theoretic meth-
ods [32]: M and ¬ϕ are translated to bas AM and A¬ϕ, where AM accepts
the traces of the system M and A¬ϕ accepts the traces that violate the
property ϕ. It holds that M satisfies ϕ iff L(AM) ∩ L(A¬ϕ) = ∅. The
emptiness of the intersection of the languages can be checked by building
the product automaton of AM and A¬ϕ on the fly [13]. For instance, the
model checker spin [15] is based on this automata-theoretic approach.

Instead of using the ba A¬ϕ for checking L(AM)∩L(A¬ϕ) = ∅, we sug-
gest to use the minimal wdba B for ¬ϕ whenever ϕ describes a language
in WDBA. The intention of using the minimal wdba is to accelerate the
emptiness check of the product automaton. First, note that in practice
A¬ϕ is much smaller than AM . Hence, an (even theoretically expensive)
additional computation on A¬ϕ that accelerates the emptiness check can
result in an overall speed-up. Intuitively, the algorithm of the emptiness

12 C. Dax, J. Eisinger, F. Klaedtke

of formulas safety guarantee obligation

eh 12 3 (25%) 1 (8%) 4 (33%)
sb 27 8 (30%) 9 (33%) 15 (56%)
patterns 55 36 (65%) 1 (2%) 40 (73%)

Table 1. Characterization of ltl formulas found in the literature.

check has to resolve the nondeterminism of A¬ϕ during the on-the-fly
traversal of the product automaton of AM and A¬ϕ. Using the minimized
deterministic version of A¬ϕ means solving this task in an optimal way.
Note that the ba A¬ϕ might contain states that are redundant, i.e., states
from which we accept the same language. Minimizing a wdba merges
states that are redundant.

Before we evaluate the suggested method, we survey on specifications
that describe languages in WDBA and give details of how to construct
the minimal wdba B.

Obligation Formulas In [6], the properties that describe languages in
WDBA are called obligation properties. These properties are boolean com-
binations of safety and guarantee properties. Intuitively, a safety property
states that some bad thing never happens. A guarantee property is the
negation of a safety property. Our survey of commonly used ltl formulas
show that about half of them describe obligation properties. We checked
12 “hand selected formulas, including many that are in common use” [10],
27 “common formulae and formulae found in the literature” [30], and
55 formula patterns [8], which regularly occur in verification tasks. In the
following, we refer to these formula suites as eh, sb, and patterns, respec-
tively. Table 1 shows how many of these formulas describe safety, guaran-
tee, and obligation properties. Note that safety and guarantee properties
are also obligation properties.

WDBA Construction For deciding whether an ltl formula describes
an obligation, safety, or guarantee property, we implemented a prototype
tool that takes an ltl formula as input and characterizes the described
property. Moreover, if the ltl formula describes an obligation property,
our tool outputs the minimal wdba for the language described by the
ltl formula.

Our tool works as follows. It first constructs bas A and B for the
given ltl formula ϕ and its negation, respectively. Based on the powerset
construction and the algorithm in §3.1, we build from A a wdba A′.
We use the algorithm described in §3.3 to check whether ϕ describes an
obligation formula, i.e., whether it holds (Σω \ L(A)) ∩ L(A′) = ∅ and
(Σω \L(A′))∩L(A) = ∅. Since complementing the ba A is expensive, we

Powerset Construction for Restricted Classes of ω-Automata 13

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35

A
ut

om
at

a
S

iz
e

LTL Formula

SPIN
TMP

Modella
LTL2BA

WDBA

Fig. 3. Automata sizes for ltl formulas.

use B instead. Note that complementation of wdbas is simple: we just
need to swap accepting and rejecting states.

– If the check is negative, i.e., A′ does not accept the same language as
A, ϕ is not an obligation formula, and our tool stops.

– Otherwise, ϕ is an obligation formula. In this case, we minimize A′ by
applying the algorithm in [25] and output the resulting minimal wdba

A′′. Moreover, we check whether ϕ describes a safety or guarantee
property. Our check is based on the following fact: The minimal wdba

A′′ describes a safety property iff A′′ has at most one rejecting state
q and q is a sink state [24]. The dual statement holds for guarantee
properties, since guarantee properties are negated safety properties.

Experimental Evaluation We conducted two different kinds of experi-
ments.4 For both experiments we used a computer with an Intel Pentium 4
processor with 3 GHz and with 4GBytes of main memory.

In the first experiment, we used different translators from ltl to bas
to compare the constructed automata with the minimal wdbas. Namely,
we used the tools tmp [10,11], ltl2ba [12], modella [29], and the trans-
lator that is included in the model checker spin. Moreover, we used our
prototype implementation that outputs the minimal wdba whenever the
input ltl formula describes a language in WDBA.

As test cases we used the 40 negated ltl formulas in patterns that
describe obligation properties. Figure 3 summarizes the sizes of the bas
that are produced by the different tools. Although in theory, the mini-
mal wdba can be exponentially larger than an equivalent ba, we never
observed such a blow-up on our test cases. Surprisingly, in all cases the
size of the minimal wdba is equal or even smaller than the smallest ba

4 The experimental data is publicly available on the web page http://www.inf.ethz.

ch/personal/daxc/atva07/.

14 C. Dax, J. Eisinger, F. Klaedtke

bobdb (56,56) elevetor2 (14) giop (3) signarch (2)
time memory time memory time memory time memory

spin 14m04 2865 – > 3 GBytes – > 3 GBytes 17m57 2003
tmp 13m53 2865 7m19 2235 0m04 378 14m25 2003
ltl2ba 14m04 2865 7m16 2107 0m15 488 14m23 2003
modella 14m04 2865 6m41 2162 – > 3 GBytes 14m09 2003
wdba 8m05 2112 6m31 2034 0m06 350 5m17 778

Table 2. Running times (in minutes) and memory usage (in MBytes) of the model
checker spin.

constructed by one of the other tools. We want to remark that the con-
structed bas are nondeterministic in almost all cases, even in the cases
where they have the same number of states as the corresponding mini-
mal wdbas. For each of the given ltl formulas, the construction of the
minimal wdba only took a few seconds.

In our second experiment, we measured the impact of the constructed
bas in finite state model checking. We used models from the database
BEEM [28], which contains numerous finite state systems. For example, it
contains the systems bobdb and elevator2: bobdb models an audio/video
power controller and elevator2 models an elevator controller. Addition-
ally, we used the system model described in [16], which we name giop

and the system model described in [1], which we name signarch.
Table 2 lists the running times and the memory usage of some of our

test cases. Most of the models have parameters, which can be instantiated
to concrete values, e.g., the model elevator2 is parameterized by the
number of floors. In the table, the numbers in the parentheses after the
model names are the used values for the parameters of the models. Due to
space limitations, we do not list all the concrete values for the parameters
that we used in our tests. For all test cases, using the minimal wdba

accelerated the emptiness checks and reduced the memory usage. For the
test case signarch, we obtained a speed-up of a factor of almost 3. The
memory usage was smaller by more than a factor of 2. For the test case
bobdb, spin, tmp, ltl2ba, and modella produced almost identical bas
for the given ltl formula. So, it is not surprising that the consumed
memory and the running times are similar for this test case. Further, we
remark that the model giop does not satisfy the given property. With
the bas generated by spin and modella, we were not able to find a
counterexample.

5 Conclusion

We have presented novel automata constructions for determinizing
restricted classes of automata over infinite words. We have applied

Powerset Construction for Restricted Classes of ω-Automata 15

and evaluated the constructions in the automata-based approach for
FO(R, Z,+, <). Moreover, based on the new determinization construc-
tions, we have presented and evaluated a new method for model checking
obligation properties. In both application areas, our experimental eval-
uations demonstrate that the new constructions lead to faster running
times and reduced memory usage. Further improvements are possible by
tailoring the emptiness check in spin for wdbas. Our experiments also re-
vealed that many specifications that occur in practice describe obligation
properties that can be represented by small wdbas.

As future work, we want to use co-dbas and minimal wdbas for opti-
mizing the SAT encoding of the specifications in bounded model checking.
We believe that, similar as for explicit model checkers like spin, the use of
deterministic automata accelerates the SAT solving. Moreover, we want
to investigate and evaluate the presented determinization constructions
for runtime verification.

Acknowledgements We thank the reviewers for their detailed comments
to improve this paper.

References

1. D. Basin, H. Kuruma, K. Miyazaki, K. Takaragi, and B. Wolff, Verifying
a signature architecture: a comparative case study, Formal Aspects of Computing,
19 (2007), pp. 63–91.

2. B. Becker, C. Dax, J. Eisinger, and F. Klaedtke, LIRA: Handling con-
straints of linear arithmetics over the integers and the reals, in CAV’07, vol. 4590
of LNCS, pp. 312–315.

3. B. Boigelot, L. Bronne, and S. Rassart, An improved reachability analysis
method for strongly linear hybrid systems (extended abstract), in CAV’97, vol. 1254
of LNCS, pp. 167–178.

4. B. Boigelot, S. Jodogne, and P. Wolper, An effective decision procedure for
linear arithmetic over the integers and reals, ACM Trans. Comput. Log., 6 (2005),
pp. 614–633.

5. I. Cerná and R. Pelánek, Relating hierarchy of temporal properties to model
checking, in MFCS’03, vol. 2747 of LNCS, pp. 318–327.

6. E. Chang, Z. Manna, and A. Pnueli, The safety-progress classification, in Logic
and Algebra of Specifications, F. Bauer, W. Brauer, and H. Schwichtenberg, eds.,
NATO Advanced Science Institutes Series, Springer-Verlag, 1991, pp. 143–202.

7. E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of
finite-state concurrent systems using temporal logic specifications, ACM Trans. Pro-
gram. Lang. Syst., 8 (1986), pp. 244–263.

8. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, Patterns in property spec-
ifications for finite-state verification, in ICSE’99, pp. 411–420. See also http:

//patterns.projects.cis.ksu.edu/.
9. J. Eisinger and F. Klaedtke, Don’t care words with an application to the

automata-based approach for real addition, in CAV’06, vol. 4144 of LNCS, pp. 67–
80.

16 C. Dax, J. Eisinger, F. Klaedtke

10. K. Etessami and G. J. Holzmann, Optimizing Büchi automata, in CONCUR’00,
vol. 1877 of LNCS, pp. 153–168.

11. K. Etessami, T. Wilke, and R. A. Schuller, Fair simulation relations, parity
games, and state space reduction for Büchi automata, SIAM J. Comput., 34 (2005),
pp. 1159–1175.

12. P. Gastin and D. Oddoux, Fast LTL to Büchi automata translation, in CAV’01,
vol. 2102 of LNCS, pp. 53–65.

13. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, Simple on-the-fly automatic
verification of linear temporal logic, in 15th IFIP WG6.1 Int. Symp. on Protocol
Specification, Testing and Verification, vol. 38 of IFIP Conf. Proc., 1995, pp. 3–18.

14. M. R. Henzinger and J. A. Telle, Faster algorithms for the nonemptiness of
Streett automata and for communication protocol pruning, in Scandinavian Work-
shop on Algorithm Theory, 1996, pp. 16–27.

15. G. J. Holzmann, The Spin Model Checker: Primer and Reference Manual,
Addison-Wesley, 2004.

16. M. Kamel and S. Leue, Formalization and validation of the General Inter-ORB
Protocol (GIOP) using PROMELA and SPIN, Int. J. Softw. Tools Technol. Transf.,
2 (2000), pp. 394–409.

17. V. King, O. Kupferman, and M. Y. Vardi, On the complexity of parity word
automata, in FoSSaCS’01, LNCS, pp. 276–286.

18. N. Klarlund, A. Møller, and M. I. Schwartzbach, MONA implementation
secrets, Int. J. Found. Comput. Sci., 13 (2002), pp. 571–586.

19. O. Kupferman, G. Morgenstern, and A. Murano, Typeness for ω-regular
automata, Int. J. Found. Comput. Sci., 17 (2006), pp. 869–884.

20. O. Kupferman and M. Vardi, Freedom, weakness, and determinism: From
linear-time to branching-time, in LICS’98, pp. 81–92.

21. , Weak alternating automata are not that weak, ACM Trans. Comput. Log.,
2 (2001), pp. 408–429.

22. R. P. Kurshan, Complementing deterministic Büchi automata in polynomial time,
J. Comput. Syst. Sci., 35 (1987), pp. 59–71.

23. , Computer Aided Verification of Coordinating Processes, Princeton Univer-
sity Press, 1994.

24. L. H. Landweber, Decision problems for ω-automata, Math. Syst. Theory, 3
(1969), pp. 376–384.

25. C. Löding, Efficient minimization of deterministic weak ω-automata, Inform. Pro-
cess. Lett., 79 (2001), pp. 105–109.

26. O. Maler and L. Staiger, On syntactic congruences for omega-languages, The-
oret. Comput. Sci., 181 (1997), pp. 93–112.

27. S. Miyano and T. Hayashi, Alternating finite automata on ω-words, Theoret.
Comput. Sci., 32 (1984), pp. 321–330.

28. R. Pelánek, BEEM: Benchmarks for explicit model checkers, in SPIN’07,
vol. 4595 of LNCS, pp. 263–267. See also http://anna.fi.muni.cz/models/.

29. R. Sebastiani and S. Tonetta, “More deterministic” vs. “smaller” Büchi au-
tomata for efficient LTL model checking, in 12th IFIP WG 10.5 Advanced Research
Working Conference, vol. 2860 of LNCS, 2003, pp. 126–140.

30. F. Somenzi and R. Bloem, Efficient Büchi automata from LTL formulae, in
CAV’00, vol. 1855 of LNCS, pp. 248–263.

31. W. Thomas, Automata over infinite objects, in Handbook of Theoretical Computer
Science, J. van Leeuwen, ed., vol. B, Elsevier, 1990, ch. 4, pp. 133–192.

32. M. Vardi and P. Wolper, An automata-theoretic approach to automatic program
verification, in LICS’86, pp. 322–331.

