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Abstract

The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained

suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed

the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting

optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their

treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope.

The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological

activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of

cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals

using in bio-imaging applications.
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Background

Zinc sulfide (ZnS) has been one of the most studied

semiconductor materials, because of interesting proper-

ties, which can be applied in optoelectronic, photocata-

lytical, and biomedical field [1]. Its transition from

bulk- to nanosized particles has brought forth some

drastic changes in its properties, mainly in the optical

ones [2]. Nanoparticles offer opportunities to become a

system for targeted drug delivery as well as imaging

agent, thanks to their multi-functionalization [3]. Sev-

eral studies dealing with the biomedical application of

ZnS have been published recently [4–8]. In these pa-

pers, as well as in plenty of others, the results show that

the prepared nanoparticles based on zinc sulfide exhibit

high quantum yield, which can be utilized in fluores-

cence images for the better resolution of the appropriate

biological structures.

When using inorganic nanoparticles for bio-imaging

applications, it is necessary to cover them by a

biocompatible, organic material to become acceptable

for bio-systems and for the study of possible changes in

cells, tissues, or organs. However, it is a natural prop-

erty of nanoparticles to coagulate and agglomerate

which, is a result of their large surface area. From this

point of view, it is important to ensure their water dis-

persibility [5] and stability [9]. This can be achieved by

modification of their surface using an appropriate cap-

ping agent, e.g., polymer [10, 11], surfactant [9, 12, 13],

silica layer [14], lipid layer [15], and amino acids [16].

The covering of nanoparticle surface by chitosan was

also used in many examples [17–19]. Chitosan is a non-

toxic, polycationic polymer that has been broadly used

in pharmaceuticals, drug carriers, and delivery systems.

The capping of ZnS nanoparticles with this polymer

was also described [20, 21].

ZnS or ZnS-capped chitosan nanoparticles were pre-

pared by several methods, e.g., γ-radiation [20], col-

loidal synthesis [21], or co-precipitation [22]. The wet

mechanochemical approach was also successfully ap-

plied for the preparation of nanoparticles covered by

biocompatible material [11, 13, 16]. Binary InAs/ZnS

system was covered by chitosan as well [17]. The ob-

tained nanosuspensions were stable for a long time
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without formation of aggregates. The preparation of

nanosuspension containing pure ZnS and chitosan as

capping agent by mechanochemical route was not re-

ported until now. Therefore, in this paper, it was pre-

pared by wet milling using a circulation mill. Using this

method, the nanoparticles of ZnS were well dispersed

in water solution based on chitosan. The properties of

the obtained suspension were determined using zeta

potential measurement, particle size distribution, and

FTIR technique. Moreover, its biocompatibility and

bio-imaging properties were confirmed in vitro on four

selected cancer cell lines.

Methods

The nanosuspension was prepared in a laboratory cir-

culation mill MiniCer (Netzsch, Germany). Four grams

of ZnS nanocrystalline sample (prepared according to

procedure described in [23]) was subjected to wet mill-

ing process in the presence of 300 mL chitosan (high

molecular weight, M(w) = 310–375 kDa, >75% deacety-

lated, Sigma-Aldrich, USA) water solution (0.1 wt.%)

for the duration of 120 min at the milling speed of

3500 rpm. The mill was loaded with yttrium-stabilized

ZrO2 balls, 0.6 mm in diameter. The resulting nanopar-

ticle suspension was centrifuged at 8000 rpm. After-

wards, the nanosuspension was characterized and

stored in refrigerator (4 °C).

The particle size distribution was measured by photon

cross-correlation spectroscopy using a Nanophox par-

ticle size analyzer (Sympatec, Germany). A portion of

each nanosuspension was diluted with the stabilizer-

containing solution to achieve a suitable concentration

for the measurement. This analysis was performed using

a dispersant refractive index of 1.33. The measurements

were repeated three times for each sample.

The zeta potential (ZP) was measured using a Zetasizer

Nano ZS (Malvern, Great Britain). The equipment mea-

sures the electrophoretic mobility of the particles, which is

converted to the zeta potential by using the Helmholtz–

Smoluchowski equation built into the Malvern zetasizer

software. The zeta potential was measured in the original

dispersion medium, and the measurements were repeated

three times with at least 12 subruns for each sample. The

average values were denoted.

The FTIR spectra were recorded using a Tensor 29

infrared spectrometer (Bruker, Germany) using the

ATR method.

The optical spectra were recorded using a UV–Vis

spectrophotometer Helios Gamma (Thermo Electron

Corporation, Great Britain) in the range 200–800 nm.

The photoluminescence (PL) spectra at a room

temperature were acquired at the right angle on a pho-

ton counting spectrofluorometer PC1 (ISS, USA) with

an excitation wavelength of 365 nm. A 300-W xenon

lamp was used as excitation source. The emission was

collected in a 25 cm monochromator with a resolution

of 0.1 nm equipped with a photomultiplier.

The human cancer cell lines HCT116 (human colo-

rectal carcinoma) and HeLa (human cervical adenocar-

cinoma) were cultured in RPMI 1640 medium (Biosera,

Kansas City, MO, USA). CaCo-2 (human colorectal

adenocarcinoma) and MCF-7 (human breast adeno-

carcinoma) cell lines were maintained in a growth

medium consisting of high-glucose Dulbecco’s modified

Eagle’s medium with sodium pyruvate (GE Healthcare,

Piscataway, NJ, USA). Both media were supplemented

with a 10% fetal bovine serum (FBS), penicillin (100 IU/

mL), and streptomycin (100 μg/mL) (all Invitrogen,

Carlsbad, CA, USA) in an atmosphere containing 5%

CO2 in a humidified air at 37 °C. The cell viability, esti-

mated by the trypan blue exclusion, was greater than

95% before each experiment.

The metabolic activity colorimetric assay (MTS) was

used to determine the effects of ZnS nanosuspension

(cZn = 1–10 μg/mL) on the metabolic activity of different

cell lines. After 72 h of incubation, 10 μL of MTS (Pro-

mega, Madison, WI, USA) was added to each well ac-

cording to the CellTiter 96® AQueous One Solution Cell

Proliferation Assay protocol. After minimum 1 h incuba-

tion, the absorbance was measured at 490 nm using the

automated Cytation™ 3 Cell Imaging Multi-Mode Reader

(Biotek, Winooski, VT, USA). The absorbance of the

control wells was taken as 100%, and the results were

expressed as a percentage of the control. All experi-

ments were performed in triplicate.

For the flow cytometry analyses of cell granularity, the

cells were seeded at a density of 3 × 104 in Petri dishes

(Sarstedt, Germany). Twenty-four hours after cell seed-

ing, the cells were treated with ZnS nanosuspension

(cZn = 0.5 μg/mL) for 72 h, washed two times with 1×

PBS (Sigma-Aldrich, Great Britain) and harvested by

trypsinization. The uptake of the nanoparticles by the

different cell lines was analyzed through granularity

(side scatter of light (SSC-H) vs. forward scatter of light

(FSC-H)) changes on FACSCalibur flow cytometer

(Becton Dickinson, USA).

For cell imaging analyses, the cells (6 × 104) were

seeded on six-well plates (Sarstedt, Germany) and culti-

vated for 24 h in a complete medium with 10% FBS.

Afterwards, the cells were treated with ZnS nanosuspen-

sion (cZn = 1 μg/mL) for 72 h. At the end of the incuba-

tion time, the cells were washed twice in 1× PBS, fixed

with 4% paraformaldehyde and permeabilized with 90%

methanol (Ites, Slovakia) for 20 min on ice. The nuclei

were stained with SlowFade® Gold antifade reagent with

4′,6-diaminidino-2-phenyl-indole dihydrochloride (DAPI)

(Invitrogen). The slides were analyzed using Cytation™ 3

Cell Imaging Multi-Mode Reader (Biotek).
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Results and Discussion

Characterization of ZnS Nanocrystals

The ZnS nanocrystals were synthesized by the mechano-

chemical route from zinc acetate and sodium sulfide pre-

cursors as was described for the first time in our previous

work [23]. The XRD analysis confirmed the presence of

both cubic sphalerite (β-ZnS) and hexagonal wurtzite

(α-ZnS) phases.

The structure of ZnS nanocrystals with the crystallite

size of 2–4 nm was clearly identified by Williamson–

Hall analysis and Warren–Averbach method, which was

in good accordance with HRTEM analysis. The nano-

crystal aggregate formation, and the surface uniformity

and homogeneity were well documented. The UV–Vis

absorption spectrum showed a blue shift compared with

the bulk ZnS indicating its quantum confinement. The

more detailed structure and surface as well as optical

properties of the mechanochemically synthesized ZnS

nanoparticles were studied in paper [24].

The micro-Raman and micro-photoluminescence spectra

with the calculated quantum yield of ZnS nanocrystals were

published in our previous paper [25]. The Raman spectrum

of ZnS showed one intensive peak, centered at 346 cm−1,

and a weak peak, centered at 690 cm−1, associated with the

first-order longitudinal optimal photon (1LO) and second

(2LO) vibrational mode of ZnS, respectively. The micro-

photoluminescence spectrum of ZnS comprised most of

the visible spectrum with quantum yield of 2.5% at room

temperature showing the role of holes/electron interactions.

Preparation of Chitosan-Coated ZnS Nanocrystals

In order to obtain well-dispersed ZnS nanocrystals, the

wet ultra-fine milling in chitosan water solution

(0.1 wt.%) was performed, thus resulting in the prepar-

ation of nanosuspension. The evolution of the particle

size distribution during the milling process is shown in

Fig. 1. As can be seen, the average particle size, d50, of

obtained suspension was gradually decreasing with the

increasing milling time (from 987 nm after 30 min to

614 nm after 120 min). In all cases, the distributions

were of polymodal shape. By subsequent centrifugation

of the sample milled for 120 min at 8000 rpm, it was

possible to affect the parameter d50 further and the ob-

tained distribution curve had bimodal shape. The largest

particles with the sizes of micrometer range disappeared,

and only nanosized particles with the average size, d50 =

381 nm, remained in suspension. It was not possible to

obtain unimodal particle size distribution by subsequent

increasing of centrifugal force. Such prepared ZnS-

chitosan suspension was stable, and the particles did not

settle down.

The zeta potential (ZP) measurements, which are one

of the most important characteristics for the determin-

ation of stability, were performed in a pH range from 3

to 8 (Fig. 2). In the case of ZnS particles dispersed in

distilled water (ZnS-H2O), it can be evidenced that the

sample reached positive values of ZP in almost entire

studied pH range. These obtained values are due to the

positive Zn(II) ions present at the surface of the particles

Fig. 1 Evolution of particle size distribution during the preparation of chitosan-coated ZnS nanosuspension using wet ultra-fine milling. Milling

time, revolutions of centrifugation, and average particle size d50 are described
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and their transfer into the water. The highest value of

ZP was obtained at pH 3 (+19 mV). With the increasing

pH, the ZP reached less positive values and the isoelec-

tric point (IEP) of ZnS nanoparticles was determined at

pH 7.3. Our value is considerably higher in comparison

with the literature sources, where the IEPs were referred

below 3.0 [26], or in the case of natural sphalerite (ZnS)

at 3.0 [27], or for synthetic ZnS prepared by [28], the

values in a range 3.0–3.5 were obtained. This increase is

connected with the high specific surface area (126 m2/g

[13]) of the mechanochemically prepared ZnS and sub-

sequently higher amount of active sites, which are avail-

able for the dissolution of Zn(II) ions from the surface.

During the mechanochemical synthesis, a lot of defects,

cracks, open pores, and intergranular spaces are created

at the surface of the samples [29], and in many cases,

such samples allocate the increased reactivity [30–32].

After the milling of ZnS sample in chitosan solution

(ZnS-chitosan), the increase in the ZP to more positive

values was evidenced in the entire studied pH range.

This shift was caused by properties of chitosan. Chitosan

is a cationic polymer, with pKa ~6.5, which is insoluble

in water at neutral pH, at which the majority of amines

from the molecule are deprotonated. On the other hand,

at acidic pH, the chitosan becomes water soluble, as it is

positively charged [33]. The creation of ZnS-chitosan

colloidal system brought about the increased stability of

the suspension from incipient instability area to good

stability area (up to +57 mV at pH 3). As was determined

earlier [17, 21, 34–36], Zn(II) ions presented at the surface

of particles can interact with the amine, amide, and hy-

droxyl groups of chitosan. As a consequence, the coating

of ZnS nanocrystals by chitosan has led to high positive

values of ZP and to their better stability.

The possible interaction between ZnS particles and

chitosan were studied using FTIR spectroscopy. The vi-

brations of pure chitosan were described in detail in our

previous work [17]. As was mentioned in that paper,

amine, amide, and hydroxyl groups are the most reactive

sites of chitosan and are involved in the interactions

with the ambient cations and anions. In Fig. 3a, the

spectrum of chitosan-coated ZnS nanocrystals is shown.

Some changes in comparison with pure chitosan spectrum

can be noticed. The individual groups, which were in-

volved in the interactions, are illustrated in Fig. 3b–d.

The visible shifts of vibrations occurred mainly in the

amide I band corresponding to the carbonyl C=O

stretching of the amide group and amide II band corre-

sponding to the N–H bending vibrations in amide group

and of the deacetylated primary amine –NH2 (shifts

from 1649 and 1583 cm−1 to 1547 cm−1, respectively,

Fig. 3b). Further changes are denoted in the hydroxyl

group attributed to the OH and CH vibrations present

in the ring (from 1419 and 1316 cm−1 to 1408 and

1341 cm−1, respectively, Fig. 3c) and in the secondary

and primary alcohol vibrations (from 1064 cm−1 for C3–

OH vibration in the secondary alcohol and 1027 cm−1

for C6–OH vibration in the primary alcohol to 1049 and

1013 cm−1, respectively, Fig. 3d). The similar shifts were

observed in a binary InAs/ZnS nanocomposite system

prepared in chitosan [17]. These shifts indicate that inter-

action between Zn(II) ions and chitosan indeed exist.

Optical Properties of Chitosan-Coated ZnS Nanocrystals

The optical properties of chitosan-coated ZnS nanocrys-

tals were investigated using UV–Vis and PL spectroscopy

measurements. Appropriate UV–Vis and PL spectra are

shown in Fig. 4a, b.

The characteristic absorption peak for chitosan below

220 nm [37] can be also seen in our sample located at

215 nm (5.7 eV) (Fig. 4a). It is in good accordance with

the result present in our previous paper [17]. The ab-

sorption peak observed at 320 nm (3.8 eV) for chitosan-

coated ZnS nanocrystals is strongly blue shifted with

respect to the bulk ZnS reported at 340 nm (3.6 eV)

[21]. The higher optical bandgap observed for our sam-

ple is likely due to the well-known quantum confine-

ment effect [38]. The observed absorption peaks indicate

the existence of a chemical bond between chitosan and

ZnS nanocrystals [39].

The bandgap of chitosan-coated ZnS nanocrystals was

approximated using the Tauc relation [40] extracted

from the UV–Vis spectrum, considering ZnS as a direct

bandgap semiconductor, by plotting the squared absorb-

ance versus energy and extrapolating to zero, as shown

in the inset of Fig. 4a. The bandgap of chitosan-coated

ZnS nanocrystals is estimated to be 3.8 eV, which is in

good agreement with the previous reports [21, 41] and is

assigned to the optical transitions of the excitonic states

in ZnS. The obvious blue shift could be attributed to the

existence of very small ZnS nanocrystalline particles [38].

Fig. 2 Zeta potential versus pH dependence for pure chitosan and

ZnS nanocrystals measured in water and chitosan
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The emission spectrum was recorded at excitation

wavelength 350 nm as shown in Fig. 4b. However, in

the majority of the previous papers, rather than the

band-edge emission in the UV wavelength range, ZnS

nanocrystals always exhibit radiative recombination in

the wavelength range of 400–550 nm at room

temperature which is related to surface states or deep-

level defects [42–44]. A very weak PL peak of chitosan-

coated ZnS nanocrystals is centered at 425 nm

(2.9 eV), and a little stronger one is located at 470 nm

(2.6 eV). The emission bands below 450 nm are mostly

associated with Vs (vacancies of sulfur, S2−) and IZn

(Zn2+ at interstitial sites at the nanocrystal lattice) de-

fects, and the band at 470 nm may be assigned to sur-

face defects according to the energy-level diagrams

described by Wageh [45].

Fig. 4 a UV–Vis spectra of pure chitosan (black curve) and chitosan-coated ZnS nanocrystals (red curve); inset: Tauc relation. b PL spectrum of

chitosan-coated ZnS nanocrystals

Fig. 3 FTIR spectra of a chitosan-coated ZnS, b amide I and II band, c hydroxyl group in a ring, and d secondary and primary alcohol vibrations.

Black lines vibrations for pure chitosan, red lines vibrations for chitosan-coated ZnS nanocrystals
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In Vitro Studies

For in vitro tests of chitosan-coated ZnS nanocrystals,

four cancer cell lines, CaCo-2, HCT116, HeLa, and

MCF-7, have been applied. For the studying of nanocrys-

tal behavior in these cell lines, fluorescence microscopy

and flow cytometry analysis showing granularity were

applied (Figs. 5, 6, 7, and 8a). The cancer cells were cul-

tivated with ZnS nanocrystals (cZn = 0.5 μg/mL) for 72 h.

For the live cell imaging analysis, cell nuclei were stained

with DAPI and the images of nanocrystal autofluores-

cence were acquired sequentially and then combined

using Gene5 software (merge).

From the microscopic point of view, it can be seen

that the fluorescent nanocrystals passed through the

cell membrane, entered into the cytoplasm, and sur-

rounded the nucleus (Figs. 5, 6, 7, and 8a bottom). In

many cells, the nucleus was observed as a distinct ob-

ject with nanocrystals outlining it as is shown on the

merged pictures. Similar observations were found also

in the case of BaTiO3 nanoparticles [46].

According to flow cytometry analysis, namely forward

and side scatter of light (FSC-H and SSC-H), which are

proportional to cell size and to their granularity, respect-

ively, some changes in these characteristics can be seen,

when applying chitosan-coated ZnS nanocrystals (Figs. 5,

6, 7, and 8a top). The granularity of cells was signifi-

cantly increased in all the cases as a consequence of cel-

lular uptake of these particles into the cytoplasm. On

the other hand, the changes in the cell sizes were not

evident. Similar but stronger effect was observed in our

previous research after the treatment of cells with the

chitosan-coated InAs/ZnS nanocrystals, where not only

the granularity of cancer cells was rapidly increased but

also they were enlarged (mostly in the case of CaCo-2

and HeLa cell lines) [17].

The metabolic activity of four cancer cell lines after

their exposition toward the ZnS nanocrystals was also

pursued. The results are depicted in Figs. 5, 6, 7, and 8b.

From the obtained results, it can be clearly seen that the

ZnS nanocrystals do not influence the metabolic activity

of the studied cancer cell lines. Only in the case of HeLa

cell line, the survival of cells was decreased to 80%

when applying the highest studied concentration of

zinc (10 μg/mL). According to the observed results, it

can be concluded that the studied suspension is not

toxic and it has fluorescence properties, which could be

used in bio-imaging applications.

Conclusions

In this paper, the nanosuspension of chitosan-coated

zinc sulfide nanocrystals was prepared by wet ultra-fine

milling process for the first time. The nanosuspension

was very stable, and the zeta potential reached high posi-

tive values (up to +57 mV). As a consequence, the nano-

particles in the suspension did not agglomerate and

settle down. Using FTIR spectroscopy, it was found that

Fig. 5 a Flow cytometry and fluorescence microscopy analysis and b relative survival of CaCo-2 cells after their treatment with chitosan-coated

ZnS nanocrystals
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Fig. 7 a Flow cytometry and fluorescence microscopy analysis and b relative survival of HeLa cells after their treatment with chitosan-coated

ZnS nanocrystals

Fig. 6 a Flow cytometry and fluorescence microscopy analysis and b relative survival of HCT116 cells after their treatment with chitosan-coated

ZnS nanocrystals
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the amine, amide, and hydroxyl groups from chitosan

were actively involved in bonding with Zn(II) ions from

ZnS. The promising results from measurements of op-

tical properties (using UV–Vis and PL spectroscopy)

were verified on four different cancer cell lines, and the

autofluorescence of the prepared nanocrystals was evi-

denced. The cells were more visible in comparison with

non-treated ones under the fluorescence microscope.

Moreover, chitosan-coated ZnS nanocrystals suggest to

be nontoxic, and the nanoparticles did not influence the

metabolism of the cells. According to the results of the

present study, as well as to that mentioned in the litera-

ture, it seems that the ZnS nanocrystals could be used as

alternative to conventional imaging agents.
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