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Abstract: The possibility to change the morphology of organic and organometallic materials 

through mechanical stimulation is emerging as a general and powerful concept for the design 

of functional materials. In particular the photophysical properties, such as photoluminescence 

color, quantum yield and emission lifetime of organic and organometallic fluorophores can 

significantly depend on the molecular packing, enabling the development of molecular 

materials with mechanoresponsive luminescence characteristics. Indeed, an increasing 

number of studies have shown in recent years that mechanical force can be utilized to change 

the molecular arrangement, and thereby the optical response, of luminescent molecular 

assemblies of π-conjugated organic or organometallic molecules. This report reviews the 

development of such mechanoresponsive luminescent (MRL) molecular assemblies consisting 

of organic or organometallic molecules and summarizes emerging trends in this research field. 

After a brief introduction of mechanoresponsive luminescence observed in molecular 

assemblies, the concept of “luminescent molecular domino” is introduced, before molecular 

materials that show turn-on/off of photoluminescence in response to mechanical stimulation 



 

 

are reviewed. Mechanically stimulated multi-color changes and water-soluble MRL materials 

are also highlighted and approaches that combine the concept of MRL molecular assemblies 

with other materials types are presented in the last part of this progress report.  

 
1. Introduction 

 The construction of ordered assemblies of organic and/or organometallic compounds 

has attracted much attention in the past decades, because such architectures possess great 

potential as sophisticated functional materials.[1] Indeed, a broad range of ordered molecular 

assemblies ranging from crystals with high stiffness[2] to relatively soft self-assembled 

materials such as liquid crystals[1c, 3] and physical gels consisting of fluids and self-assembled 

fibers[4] has been intensely studied. In aqueous conditions, spherical micelles, cylindrical 

micelles, vesicles or membranes have been constructed by a variety of amphiphiles.[5, 6] 

Organic and organometallic molecules having extended π-electron conjugated moieties are 

adequate building blocks to prepare such ordered assemblies through noncovalent 

intermolecular interactions.[4f, 6, 7] In particular their rigid nature supports the formation of 

ordered assembled structures. Moreover, the extended π-conjugated system leads to various 

functions such as charge carrier transport,[8] nonlinear optical responses,[9] and luminescence[6, 

7, 10]. Therefore, the resulting molecular assemblies are promising candidates for materials 

used in electronic devices including light emitting diodes,[11] photovoltaic devices[12] and 

field-effect transistors.[13] In devices where a high charge carrier mobility is essential, the 

materials are typically designed to form well-ordered structures,[8a-c, 8f, 11-13] and it is desirable 

that no morphological changes occur during operation to achieve and retain high performance. 

In other words, such molecular packed structures are desired to be “static”.  

 By contrast, the possibility to impart changes to ordered molecular assemblies 

composed of organic and/or organometallic molecules having extended π-conjugated moieties 

by applying an external stimulus is useful to create “dynamic” functional materials, which 

change their properties “on command” and without cleavage of covalent bonds. Since the 



 

 

photoluminescent properties of many fluorescent compounds are significantly influenced by 

their molecular arrangements, rearrangement of the molecular packing of such materials via 

external stimuli can be utilized to alter their photophysical properties.[1g, 14, 15] Such materials 

would be good candidates for sensors, memories, informational displays and security features. 

For example, a variety of compounds changing the photoluminescent properties through 

thermal treatment without melting process have been prepared, because temperature change is 

well-known way to induce dynamic change in molecular assembled structures.[14, 16] An 

increasing number of studies has also shown that mechanical simulation can be utilized to 

control the molecular arrangement, and thereby the optical response, of luminescent 

molecular assemblies of π-conjugated organic or organometallic molecules. Indeed, during 

the last decade the possibility to change the morphology of such materials by mechanical 

stimuli has emerged as a general design tool to create functional materials.[1g, 15, 17] Most of the 

mechanoresponsive luminescent (MRL) materials developed to date show switching between 

only two colors, but recently, several organic or organometallic compounds have been found 

to display MRL behavior with unconventional properties, such as a “luminescent molecular 

domino effect”, turn-on/off behavior, multi-color changes and water-soluble behavior. It has 

also been shown that it is possible to covalently attach MRL molecular assemblies to other 

materials and bestow them with mechanoresponsive functionality. In this progress report, we 

focus on these emerging topics, after first providing a brief introduction of MRL effects and 

some promising design approaches to create such materials.  

 

2. Brief Introduction on Mechanoresponsive Luminescence 

 In order to enable the reader to put the more recent developments into context, this 

section provides a concise overview of the field using representative examples of MRL effects 

and materials. Since several excellent papers and book-chapters have recently reviewed the 

field,[1g, 15, 17] the account is held in a succinct manner.  

2.1. Definition of Terms 



 

 

 The term “piezochromic luminescence” was introduced in 2007 to describe a 

mechanically induced change of the luminescent color,[18] while in the meantime the 

expressions “mechanochromic luminescence”, “mechanofluorochromism”, 

“piezofluorochromism” and “luminescence mechanochromism” have established themselves 

and are often used in the literature in an interchangeable manner. In this report, we mainly use 

two terms “mechanochromic luminescence” and “mechanoresponsive luminescence”. The 

term “mechanochromic luminescence” is defined as the phenomenon in which a material 

displays a major and reversible change in photoluminescence color in response to mechanical 

stimulation. While the initial photoluminescence color must be restorable under this definition, 

such recovery typically requires subsequent exposure to stimuli other than mechanical force, 

e.g. temperature treatment or exposure to solvent vapors. A mechanically induced turn-on or 

turn-off of the photoluminescence is not included in this definition, because only one 

photoluminescence color is involved and no color change is at play. We thus refer to such 

changes using the broader definition of “mechanoresponsive luminescence”, which is used to 

describe a major change of the photophysical properties, including the luminescence color, 

intensity or lifetime by mechanical stimulation. Mechanochromic luminescent (MCL) 

materials belong to MRL materials. 

2.2. Crystalline Compounds 

2.2.1. Organic Crystalline Compounds 

 To our best knowledge, the first organic compound that exhibits mechanoresponsive 

luminescence in the solid state was reported by Gawinecki et al. in 1993,[19] who showed that 

the yellow-green luminescence of a solid-state sample of 4-tert-butyl-1-(4’-

dimethylaminobenzylideneamino)pyridinium perchlorate could be quenched by squeezing the 

material with a spatula and provided the first example of a turn-off type MRL material.      

 The number of organic compounds with MCL properties has rapidly increased since 

the 1,3,6,8-tetraphenylpyrene derivative 1 (Figure 1) was reported to exhibit 



 

 

mechanochromic luminescence by Sagara and Araki et al. in 2007.[18] Kunzelman and Weder 

et al. showed that cyano-substituted oligo(p-phenylene vinylene) derivatives (cyano-OPVs) 

2a and 2b exhibit mechanochromic luminescence in 2008.[20] A series of heteropolycyclic 

donor–acceptor π-conjugated fluorescent dyes including 3a-c were found to display mechano-

chromic luminescence by Ooyama and Harima et al..[21] Since the difluoroboron avobenzone 

4 was reported to show mechanochromic luminescence by Fraser’s group,[22] the relationship 

between molecular structures and the mechanoresponsive luminescence of many compounds 

with similar molecular structures have been intensely investigated.[23] Jia et al. described that 

the pyrene derivative 5 bearing an oligopeptide-based flexible group exhibits mechanochro-

mic luminescence.[24] The same group also reported another pyrene derivative with MCL 

properties.[25] Zhang and Wang et al. reported a benzothiadiazole derivative[26] and anthracene 

derivatives[27] with MCL properties in 2011. A benzodifuran derivative,[28] a salicylaldehyde 

azine derivative[29] and 4-[bis(4-methylphenyl)amino]benzaldehyde[30] were found to show 

MRL properties in 2011. In 2012, Mizoshita et al. introduced the perylene bisimide dye 6 that 

shows MCL behavior.[31] Isothermal recovery of the initial color at room temperature was 

observed when a small amount of silicon oil was mixed in the thin film of 6. Tuning the 

efficiency of fluorescent resonance energy transfer (FRET) by mechanical stimulation also 

leads to mechanochromic luminescence. In 2012, Baumgartner et al. demonstrated that a 

mixture of two π-extended phospholium salts 7a and 7b, which function as energy donor and 

acceptor respectively, changes its photoluminescence color from blue to orange upon 

mechanical stimulation.[32] Several carbazole-based dyes have been also shown to exhibit 

mechanochromic luminescence by Ooyama et al. since 2012.[33] In 2013, two groups 

demonstrated that divinylanthracene derivatives can exhibit mechanochromic 

luminescence.[34] A cyano-substituted diarylethene derivative[35] and a series of boron 

difluoride dyes[36] were also found to show MCL behavior in 2013. After these reports, 



 

 

several other organic compounds showing mechanoresponsive luminescence have been 

introduced.[37]  

 Recently, aggregation-induced emission (AIE) has become an attractive research 

object for researchers interested in the photophysical properties of organic and organometallic 

compounds and their applications.[38] The effect is an inversion of the common phenomenon 

that chromophore aggregation generally causes quenching of light emission. Thus, in AIE 

compounds the emission intensity is enhanced upon aggregation. Several AIE-active 

compounds have been also reported to show mechanochromic luminescence. Park et al. 

prepared cyanostilbene derivatives such as 8 with both AIE and MCL properties.[39] Tang et al. 

developed several AIE-active molecules that show mechanochromic luminescence, including 

compound 9.[40] In addition, a variety of AIE-active compounds with MCL properties have 

been developed by Chi and Xu’s group[41] and other groups.[42] 

2.2.2. Organometallic Crystalline Compounds 

 Several gold complexes have been reported to show mechanoresponsive luminescence 

by Fackler’s group,[43] Reber’s group,[44] and Eisenberg’s group.[45] In 2008, Ito et al. reported 

a typical mechanochromic luminescence effect for gold complex 10.[46] After this report, 

several gold(I) complexes with MCL properties have been prepared.[47] In 2005, Mizukami 

and Kanesato et al. described that the helical zinc complex 11 exhibits mechanoresponsive 

luminescence.[48] In 2010, Tzeng et al. reported MRL properties of a zinc(II)-based 

coordination framework.[49] An AIE-active zinc complex was also found to exhibit 

mechanochromic luminescence in 2011 by Chi and Xu et al..[50] Platinum (II) complexes also 

show mechanoresponsive luminescence. In 2009, Shinozaki et al. reported that yellow 

emission of simple platinum (II) complex 12 changes to orange.[51] Chen’s group has 

examined mechanochromic luminescence observed for some square-planar platinum(II) 

complexes.[52] Other researchers have also reported platinum complexes having MRL 

behavior.[53] The first MCL copper complex was reported by Perruchas and Boilot et al. in 



 

 

2010.[54] The copper(I) iodide cluster 13 exhibits a change in photoluminescence color from 

faint green to intense yellow and the initial green emission recovers after thermal treatment. 

The same group reported another MCL copper complex.[55] Other groups have also developed 

copper complexes with MRL properties.[56] In 2010, Tsukuda and Tsubomura et al. 

demonstrated a silver(I) complex (14) which exhibits mechanochromic luminescence.[57] The 

luminescence color of the silver complex changes from blue to green and the blue color is 

restored after annealing at 200 C for 10 min. Babashkina et al. reported one silver complex 

shows mechanoresponsive luminescence that is accompanied by mechanical stimuli-induced 

reaction.[58] Mechanochromic luminescence of tris(8-hydroxyquinoline)aluminium (Alq3) was 

also reported by Zhang and Wang et al. in 2011.[59] Ghedini et al. reported that rubbing the 

surface of a thin film of an ionic iridium complex 15 induces change the photoluminescence 

color from green to orange.[60] Su et al. have reported mechanochromic luminescent iridium 

complexes[61] as well as AIE-active iridium-containing complexes.[62] Other iridium 

complexes have been also reported to show mechanoresponsive luminescence.[63] In 2014, 

Sun and Liu et al. reported ionic iridium complexes showing mechanochromic, vapochromic 

and electrochromic luminescence.[64] In 2013, Zhang et al. reported a beryllium complex with 

MRL properties.[65] 

 In 2011, Lu and Wei et al. reported that layered host–guest materials in which self-

assembled organic fluorophores were sandwiched between layered double hydroxides change 

both absorption and photoluminescence color in response to the pressure applied to the host-

guest materials.[66] The color changes were explained with changes in the molecular packing 

of the dyes between the layered double hydroxides.  

2.3. Liquid-Crystalline Compounds 

 The liquid-crystalline (LC) properties of organic compounds represent another 

attractive basis for the development of MRL materials, [1g, 15] in particular because such 

materials can offer states that offer both, a high level of order and significant molecular 



 

 

mobility.[3] Indeed, phase transitions between different LC phases can induce dynamic 

changes of the molecular assemblies, which in turn may translate into changes of the 

materials’ photophysical characteristics. Kato’s group has demonstrated this at the examples 

of pyrene-,[67] anthracene-[68] and bithiophene-based[69] liquid crystals 16-18 in which 

dendrons induce LC properties. These LC materials change their photoluminescence color 

upon mechanically induced phase transition from cubic to columnar phases. A naphthalene 

moiety was also exploited as an emissive core for this type of LC mechanochromic 

luminescent material.[70] A smectic LC material comprising 10,10’-bis(phenylethynyl)-9,9’-

bianthryl moieties (19) has also been reported to exhibit mechanochromic luminescence by 

Yamane and Kato et al..[71] In this case, ordered assemblies of the 9,9’-bianthryl moieties 

showing green photoluminescence, can be disturbed by mechanical shearing, causing a 

transition to afford blue-green photoluminescence.  

 Liquid crystals having organometallic moieties also exhibit mechanochromic 

luminescence. For example, Kozhevnikov and Bruce et al. showed that a thin film of the LC 

platinum (II) complex 20 changes its photoluminescence color from yellow to red by 

rubbing.[72]  

2.4. Polymer-based Materials 

 MRL materials can also be created by introducing suitable dyes into ductile polymer 

mechanoresponsive matrices.[17l, 17m] In this case, the MRL properties are typically based on 

the formation of nano-scale aggregates of excimer-forming dyes in the polymeric host, which 

are irreversibly or reversibly dispersed upon deformation of the material, and thus cause a 

change of the material’s optical properties.[17c-e, 17j, 17l, 17m] In some cases, this can be achieved 

by creating physical blends of the dye and the host polymer, e.g. by conventional melt-

processing techniques. First examples of such materials were reported by Weder’s group,[73] 

who showed in 2002 that linear low-density polyethylene films containing small amounts of 

cyano-OPVs 21 or 22 change their photoluminescence color upon plastic deformation.[73a] In 



 

 

subsequent studies, this effect was extended to other polymers, including polyesters,[73c] 

polyurethanes,[73d, 73g] and fluorinated polymers,[73g] and it was shown that during tensile 

deformation, a breakup of nano-scale dye aggregates occurs and promotes a change of the 

photoluminescence color from excimer-dominant to monomer-dominant emission.[73e] Pucci 

et al. adapted the concept and reported MRL films comprising bis(benzoxazolyl)stilbene 

23
[74] or the perylene bisimide derivative 24.[75]  

 It is noteworthy that breaking covalent bonds by mechanical force is also a promising 

way to change the photophysical properties of chromophore-containing polymers.[76] Moore 

and Sottos et al. first demonstrated this when they reported a mechano-active polymer in 

which spiropyran groups are covalently introduced to polymer chains as a mechanically 

responsive motif, or “mechanophore”.[77] Upon elongation, the spiropyran mechanophore 

undergoes a (reversible) force-induced ring opening reaction to the merocyanine form. As a 

result, an intense reddish color appears; at the same time, an increase of the emission intensity 

can be observed. Craig’s group and Weng’s group also evaluated mechano-active 

fluorescence properties of polymers in which the spiropyran group is covalently introduced to 

polymer chains.[78, 79] Extending the scope of mechanochemical transduction, Sijbesma’s 

group introduced the bis(adamantyl)-1,2-dioxetane unit covalently introduced into polymer 

chains and demonstrated the mechanoluminescent behavior, i.e., emission upon mechanical 

stimulation without the need for excitation light by way of mechanically triggered 

chemiluminescence.[80] The luminescence color was tuned by changing dyes that work as 

energy acceptors. 

 

3. Mechanisms for Changes of the Photoluminescence Color of Molecular Assemblies 

 The requirements to develop molecular materials with MRL properties are as follows. 

Firstly, the molecules of interest should be luminescent and form at least two different stable 

molecular assemblies under ambient conditions. In other words, the presence of at least two 



 

 

thermodynamically (meta)stable states is the most significant requirement to achieve MRL 

behavior. Secondly, the arrangement and/or conformations of the π-conjugated moieties that 

give rise to the photoluminescence of the materials must be completely different in these 

different assembly states, which in turn can impact the photophysical properties on account of 

excimer formation,[81] exciton coupling,[82] conformational changes of individual molecules[14] 

and other intermolecular interactions such as aurophilic interaction.[83] Thirdly, it must be 

possible to change the molecular packing by application of mechanical force. Finally, 

aggregation-induced quenching should not occur for all molecular assembled forms, as 

otherwise no photoluminescence changes will be observable.     

 Most of the compounds showing mechanoresponsive luminescence have been found 

serendipitously or as a consequence of screening of compounds. However, the emerging 

knowledge regarding the relationship between molecular structures and mechano-

responsiveness permits to formulate several strategies to deliberately design materials with 

MRL characteristics. Some approaches to fulfill the first and most important requirement 

described above are overviewed in this section using specific examples. 

 Competitive effects between different sorts of intermolecular interactions represent an 

effective way to achieve molecular assemblies that are thermodynamically metastable. 

Various types of intermolecular interactions, such as hydrogen bonding, π-π stacking, ionic 

interactions and Van der Waals forces, function concurrently in molecular materials ranging 

from hard crystals to soft materials such as supramolecular polymers and liquid crystals. In 

conventional supramolecular design approaches, researchers design molecules so that the 

intermolecular interactions concertedly work to afford the targeted molecular assemblies, 

which often represent the thermodynamically most stable state. By contrast, 

thermodynamically metastable states can be accessed by using intermolecular interactions in a 

competitive manner (Figure 2a).  



 

 

 For example, as depicted in Figure 2b, 1,3,6,8-tetraphenylpyrene derivative 1[18] forms 

two different states on account of the competitive effect between hydrogen bonding and π-π 

stacking. In the as-prepared white powder showing blue photoluminescence (B-form), 1 forms 

columnar structures due to the quadruple hydrogen bonds between amide groups of adjacent 

molecules. The assembled structure is thermodynamically stable. However, the emissive cores 

are not closely packed because the length between amide groups forming hydrogen bonds is 

normally longer than distance between arenes moieties forming π-π stacks. Therefore, the 

formation of columnar structures is driven by hydrogen bonding-dominated assembly. After 

mechanical grinding, linear hydrogen bonds are disturbed and the emissive cores form more 

closely packed structures, leading to blue-green photoluminescence (G-form). The mechanical 

stimuli-induced G-form is thermodynamically metastable and a closed packing-dominated 

molecular assembly. In fact, a 1,3,6,8-tetraphenylpyrene derivative without amide group 

forms a closed packing-dominated molecular assembly not columnar structures similar to B-

form.[84]  

 Weder’s group showed in 2008 that in cyano-OPVs such as 2a and 2b a subtle balance 

between π-π stacking of the chromophores’ cores (which can be moderated by the presence of 

electron donating or withdrawing groups on the central core) and Van der Waals interactions 

among the aliphatic peripheral groups (which can be moderated by their length) leads to the 

formation of two polymorphs, whose different crystal structures lead to blue and yellow 

emission, respectively.[20]    

 Another example in which the competitive effect works well is an MCL fluorenone 

derivative 25 (Figure 2c) reported by Wang et al. in 2014.[85] The compound 25 forms red 

emissive crystal 25R or yellow emissive crystal 25Y, depending on the preparation procedure. 

Mechanical grinding induces transformation from 25Y to 25R and thus the emission color 

also changes from yellow to red. After subsequent exposure to dichloromethane vapor, the 

initial yellow photoluminescence recovers. The yellow emissive 25Y is a thermodynamically 



 

 

metastable state, while 25R is a thermodynamically stable state. X-ray single crystal structure 

analyses of 25R and 25Y reveal that the competitive effect between hydrogen bonding and π-

π stacking also functions effectively in this case. In the crystal structure of 25R, the π-π stacks 

dominate the packing, although weak hydrogen bond formation was also observed. Therefore, 

25R is regarded as π-π stacking-directed molecular assembly. By contrast, in 25Y, the 

molecules form hydrogen bonds and the resulting 2D sheet-like structures stack on top of 

each other to form the crystal structures, where no π-π stacking exists. Thus, 25Y is formed 

by hydrogen-bond-directed molecular assembly. A competitive effect between intermolecular 

interactions also works well for an amphiphilic oligo(phenylenevinylene) derivative described 

below, which shows a tri-colored change in photoluminescence.[86]  

 Another way to achieve two different stable states is to interfere with the formation of 

thermodynamically stable assemblies, for example by kinetically trapping molecular 

assemblies in thermodynamically metastable forms. The kinetically trapped molecular 

assemblies can be converted to thermodynamically stable states by mechanical stimulation 

(and typically also other mechanisms, including heating, exposure to solvents, etc.). One 

typical approach to induce such kinetically-trapped metastable states is the introduction of 

relatively bulky and flexible substituents. For instance, in the case of an MCL liquid crystal 

16,[67] the dumbbell-shaped molecules firstly form a kinetically-trapped cubic phase on 

cooling from the isotropic states. In the cubic phase, amide groups of 16 form disordered 

hydrogen bonds (Figure 2d). Mechanical shearing induces transformation from the metastable 

cubic phase to a thermodynamically stable columnar phase. The phase transition induces a 

change in the arrangement of the pyrene moieties, leading to interference with excimer 

formation. As a result, the photoluminescence color change from yellow to blue-green. Some 

arenedicarboxamides without such bulky dendrons have been reported to form one-

dimensional columnar structures in which the amide groups form linear hydrogen bonds in the 

crystals.[87] Therefore, the dendrons introduced to the luminescence core play a significant 



 

 

role to induce the metastable cubic phase. Hydrophobic dendrons are introduced to develop 

several MCL liquid crystals[67-70, 88], one of which exhibits a tri-colored change,[88] while some 

water-soluble MRL materials have been obtained by using hydrophilic dendrons.[89-91] 

 AIE-active molecular structures are also useful moieties to induce MRL properties. 

Most of the known AIE-active molecules have several aromatic rings that are introduced to π-

conjugated groups through C-C single bonds. The aromatic rings freely rotate around the C-C 

single bond, leading to non-radiative deactivation in solution.[38] Therefore, inherently, 

crystals consist of AIE-active molecules often have void and have potential to be transformed 

to more closed packed molecular assembled structures by mechanical stimulation.  

 

4. Luminescent Molecular Dominos 

 To achieve a complete change of the photoluminescence properties over an entire 

sample or object made from a crystalline or LC MRL material, upon mechanical stimulation 

such as grinding, pressing, shearing or rubbing, the mechanical stimulus must normally be 

applied over the entire materials, as a locally applied change remains confined and the 

resulting optical change does not spread to the other parts of the material. Recently, however, 

Ito et al. succeeded in changing the photoluminescence properties of molecular materials by 

remote mechanical stimulation using a simple gold complex.[92] Gold complex 26 (Figure 3a) 

has a more simplified molecular structure than the gold complex 10 reported by the same 

group in 2008.[46] One crystalline form (Ib) of 26 was obtained through rapid crystallization 

from a mixture of hexane and dichloromethane, while the other crystalline polymorph (IIy) 

was prepared by slow crystallization from the same solvent mixture. Polymorphs Ib and IIy 

exhibit blue and yellow photoluminescence under UV irradiation, respectively. The difference 

in photoluminescence color between the two crystalline states is ascribed to aurophilic 

interactions[83] that occur when one gold atom is located in the proximity (distance < 3.5 Å) to 

another gold atom. Aurophilic interactions cause a red shift of the emission band. In the 



 

 

crystal structure of Ib, only longer distances (> 4.65 Å) between gold atoms were observed 

(Figure 3b). By contrast, in IIy, the distance between adjacent gold atoms is much shorter 

(3.177 Å) and indeed short enough to support aurophilic interactions, leading to yellow 

photoluminescence (Figure 3c). Mechanical grinding of crystals Ib was found to change the 

photoluminescence color from blue to yellow. The photoluminescence spectrum and X-ray 

diffraction pattern of the ground sample are identical to those obtained from crystal IIy, 

indicating that the transition from crystal Ib to crystal IIy was achieved by mechanical 

stimulation. After confirming that the gold complex 26 shows “conventional” MRL behavior, 

the authors examined the mechanoresponsiveness of the complex by applying a much smaller 

mechanical force in a localized manner (Figure 3d). When a small pit was made on the 

surface of single crystal of Ib using a thin needle, a tiny spot showing yellow 

photoluminescence appeared on the surface of the crystal, indicating that mechanically 

induced transformation from Ib to IIy occurred at the position of mechanical stimulation. 

However, the yellow-emitting area was observed to gradually spread over the entire single 

crystal within several hours. This effect was shown to be caused by a single-crystal to single-

crystal (SCSC) transformation that was accompanied by change of the photoluminescence 

color. The transition from Ib to IIy was confirmed by examining the photophysical properties 

and XRD results obtained from the yellow-emitting, converted crystal. The author also found 

that the same SCSC transformation is achieved by contacting a seed crystal IIy to other 

crystals in Ib polymorph (Figure 3e).  

 The same group also reported another gold complex 27 that shows both picking- and 

seeding-induced SCSC transformations.[93] Compound 27 has a molecular structure similar to 

26 (Figure 3f). However, this compound exhibits a mechanically induced blue shift of the 

photoluminescence spectrum, though compound 26 shows a red-shift responding to 

mechanical stimuli. In the initial metastable crystals (Figure 3g), aurophilic interactions occur 

between gold atoms to afford green photoluminescence. The SCSC transformation gradually 



 

 

occurs from a cracked part as shown in Figure 3f, which is associated with a change of the 

photophysical properties. A single-crystal X-ray analysis for the resulting crystal showing 

faint blue photoluminescence reveals that compound 27 forms multiple CH-π interactions 

between the introduced methyl groups and the aromatic rings of adjacent molecules and no 

aurophilic interactions exist after the SCSC transformation (Figure 3h). The authors 

concluded that the introduction of the methyl groups stabilized structures which display no 

aurophilic interactions and, consequently, the emission band shows a blue shift upon 

transformation from the green emissive, metastable crystals. In the case of 26, crystal IIy 

exhibiting aurophilic interactions is thermodynamically more stable than crystal Ib in which 

aurophilic interactions are absent. 

 

5. Mechanically Induced On-Off Switching 

 Several organic or organometallic compounds have been found to show on-off 

switching of the photoluminescence upon mechanical stimulation, although most reported 

MRL materials show changes in luminescent colors. The first example of organic MRL 

materials exhibiting on-off switching of emission was reported in 1993 by Gavinecki et al..[19] 

4-Tert-butyl-1-(4’-dimethylaminobenzylideneamino) pyridinium perchlorate shows yellow-

green fluorescence and the fluorescence is quenched upon mechanical shearing. However, the 

detailed mechanism of the observed switching was not described in the original report. As for 

metal complexes, Fackler Jr. et al. reported a gold (I) complex that exhibits luminescent on-

off switching upon mechanical stimulation.[43] A single crystal of [(TPA)2Au][Au(CN)2] 

shows no luminescence, while the ground powder exhibits strong green emission at room 

temperature. The authors suggested that the mechanism for increased luminescent intensity 

after grinding involves a change of the molecular packed structures in the surface defects of 

the crystals. However, there were no examples whose relationships between on-off switching 



 

 

behavior and alteration in molecular assembled structures upon mechanical stimulation were 

unambiguously clarified until the early 2000’s. 

 In 2005, Mutai and Araki et al. reported a clear change in the molecular architecture 

accompanied by switching of photoluminescence intensity by thermal treatment, although it 

was not an MRL material.[14] The authors found that 2,2’:6’,2’’-terpyridine (TPY) forms two 

polymorphs depending on the cooling conditions to which hexane solutions were subjected. 

Fast cooling resulted in the formation of non-luminescent needle crystals, whereas slow 

cooling afforded blue emissive plate crystals. The emission quantum yield of the needle 

crystals was found to be smaller than 0.01, whereas that of the blue emissive plate crystals 

was 0.2. Heating treatment of the needle crystals at 89.5 C for 10 min caused the transition to 

the plate crystals, while no melting was involved. The X-ray crystallography reveals that the 

crystal structures of the two forms are completely different from each other. The authors 

suggested that the difference in dihedral angles between the pyridine rings in the crystals 

affects the luminescent properties of TPY. This study indicates that controlling molecular 

architecture by an external stimulus can be a promising way to achieve on-off switching in 

photoluminescence. After this report, several thermoresponsive luminescent materials have 

been prepared and the relationship between the assembled structures and the luminescent 

properties was investigated.[16]  

 

5.1. On-Off Switching Single Component Materials 

 In 2009, Park et al. reported that the mechanoresponsive cyano-substituted stilbene 

derivatives 28 and 29 show luminescence turn-on by smearing or photo irradiation (Figure 

4a).[94] Both molecules form antiparallel π-dimer stacks that show no photoluminescence in 

the crystalline states. Directly applied mechanical force (external mechanical stimuli) causes 

the displacement of molecules that form the π-dimer stacked structures, resulting in a blue 

photoluminescence. Upon UV irradiation, topochemical [2 + 2] cycloaddition reaction occurs 



 

 

between the central double bonds of two adjacent molecules forming the π-dimer stacks. The 

resultant σ-dimers, which are bulkier than the initial π-dimers, induce stress and pressure in 

the crystals. Consequently, the internal mechanical forces lead to the displacement of 

molecules of the surrounding π-dimers. Upon prolonged UV irradiation, most of π-dimers are 

converted to σ-dimers and a small amount of the remaining monomers exhibits the blue 

photoluminescence because monomers are not surrounded by π-dimers that function as energy 

transfer acceptors. The blue emission is turned off by heating to its melting point of 240 °C.

  In 2012, Park et al. demonstrated on-off luminescent switching using the donor-

acceptor-donor triad 30.[95] The cyano-stilbene derivative 30 has two carbazole moieties that 

are connected to the cyano-stilbene core via alkyl spacers (Figure 4b). The pristine powder of 

30, obtained by adding methanol to a dichloromethane solution, is an ordered crystalline 

material that shows no photoluminescence. A red emissive amorphous phase is induced by 

applying a mechanical force to the pristine powder. The luminescence intensity increases 

about 103 times upon mechanical stimulation. The conversion from the metastable amorphous 

phase back to the stable crystalline phase can be induced by heating to 120 °C and, 

concomitantly, the red luminescence is turned off. In addition to thermal erasing, exposure to 

THF vapor also erases the red photoluminescence. In the pristine powder, 30 forms an 

intramolecularly stacked assembly, where the luminescent core is sandwiched between two 

carbazole moieties. Because of this molecular arrangement, the emissive cyano-stilbene core 

forms a charge transfer complex with the adjacent carbazole groups after excitation of the 

core. The instant formation of the charge transfer complex significantly reduces the number of 

locally excited emissive species, leading to effective quenching. The intramolecularly stacked 

conformation is supported by the fact that compound 31 having a shorter linker than 30 shows 

no effective quenching due to conformational limitations to form the intramolecularly stacked 

structure. In ground samples of 30, the ordered structures formed in the crystalline phases are 



 

 

disturbed by mechanical stimuli and the rate of electron transfer becomes small, resulting in 

the relatively strong red luminescence. 

 Recently, the same group has reported a mechano- and acid-chromic luminescent 

molecule 32 (Figure 4c).[96] The donor-acceptor-donor triad 32 has a molecular structure that 

is similar to the one of 30. The carbazole groups of 30 are replaced with harmane moieties, 

which were selected because of their responsiveness to acids. Compound 32 exhibits no 

emission in the pristine solid state, while exposure to a dilute aqueous HCl solution or 

mechanical stimulation results in red emission. The acid treatment-induced red emission was 

turned off by subsequent neutralization. Protonation of the harmane groups stabilizes the 

HOMO of the harmane moieties and the HOMO becomes lower in energy than that of the 

emission core of 32, leading to blocking the photo-induced electron transfer that causes the 

effective quenching. The authors also demonstrated that thin films of a mixture of 32 and a 

photo acid generator can serve as a force- and light-sensing luminescent material. After the 

report on 32, another research group achieved photoluminescence on-off switching using 

cyano-substituted stilbene derivatives. Chang et al. have developed C3-symmetric molecules 

having p-bromophenyl moieties.[97] The authors found that compound 33 having cyano 

substituents at the α-position to the central phenyl moiety exhibits on-off switching in 

photoluminescence upon mechanical stimuli (Figure 4d). By contrast, compound 34, a 

constitutional isomer, shows normal mechanochromic luminescence. The exposure to organic 

vapor recovers the initial emission from each shear-induced state.  

 On-off switching of the photoluminescence can also be achieved using AIE-active 

compounds. Tang et al. reported on-off switching in photoluminescence exhibited by 

diphenyldibenzofulvene derivatives 35 and 36 (Figure 4e), although very weak 

photoluminescence was observed in the “off” states.[98] Compound 35 shows no 

photoluminescence in good solvents, while intense emission was observed upon increasing 

the water fraction in the solvent, which is the typical behavior of AIE-active molecules. The 



 

 

amorphous solid of 35 prepared by rapid cooling from the melt also shows very week orange 

emission (Φ < 0.01). On the other hand, 35 in the crystalline phases shows green or yellow 

emission depending on the sample preparation condition. The green emissive crystals change 

into non-luminescent amorphous upon mechanical shearing. The decrease in emission 

intensity is ascribed to disturbing the ordered structures and formation of excimers. Thermal 

annealing at 120 °C recovers the green photoluminescence again. DSC studies revealed that 

the amorphous phase is thermodynamically metastable and phase transition from the 

amorphous phase to the green emissive crystalline phase occurs without melting, which is 

consistent with the thermal treatment for the ground sample. It is noteworthy that the emission 

of 35 recovers spontaneously even at room temperature after mechanical grinding. Compound 

36 also shows the mechanoresponsive on-off switching in photoluminescence. The stability of 

the amorphous phase induced by mechanical shearing is higher than that of 35.  

  Several other MRL materials showing on-off switching of photoluminescence have 

been reported. Zhang et al. investigated arylamine derivatives showing the turn-on behavior 

in response to mechanical stimuli.[99] These compounds are little luminescent in the initial 

crystalline powder. The mechanical treatment induces a change of the molecular packing 

and/or the conformation of individual molecules, leading to appearance of strong emission. 

Zhang et al. reported four organoboron compounds exhibiting on-off switching of the 

photoluminescence in the near-infrared region.[100]  Yin and Liu et al. prepared gold 

complexes showing turn-on behavior upon mechanical grinding.[101] Chujo et al. reported that 

an o-carbolane-based material exhibits reversible thermo-, vapo-, and mechanoresponsive 

photoluminescent properties including on-off switching.[102] Furthermore, a metal-organic-

framework with a Borromean topology has been reported to show an increased 

photoluminescence intensity in response to mechanical stimulation.[103] While single crystals 

of the material show no luminescence, a purplish blue emission is induced upon mechanical 



 

 

grinding. After the ground powder is recrystallized from hot water, the material returns to the 

initial non-emissive state. 

 

5.2. On-Off Switching Multi Component Materials 

 Song and Pei et al. reported that an MRL mixture consisting of a luminophore and a 

luminescent quencher shows a high on-off contrast ratio in 2011.[104] They used 2,5-di(E)-

distyrylfuran 37 as the luminophore and maleimide 38 as the quencher (Figure 5). When an 

equimolar mixture of 37 and 38 was prepared, 37 and 38 form metastable complexes, where 

the electron transfer from 37 to 38 occurs. As a result, the emission of 37 is quenched in the 

initial state. After applying mechanical force, 37 and 38 form separate aggregates. This is 

supported by the fact that the XRD pattern obtained from the as-prepared mixture shows no 

diffraction peaks attributed to pure 37, while they appear after applying a mechanical stimulus. 

The mechanically induced state is thermodynamically more favorable than the co-assembled 

state because of relatively strong tendency for 37 to form aggregates. Due to the phase 

separation, the electron transfer from 37 to 38 is disturbed and the greenish-blue luminescence 

of 37 appears after mechanical grinding. Moreover, the recovered luminescence of 37 can be 

erased again by exposure to solvent vapor and thus new images can be written again. One of 

the most important points for the observed on-off switching for the mixture is controlling the 

stability of the metastable complexes consisting of 37 and 38. When compound 39 having no 

alkyl chain is used instead of 38, the luminescent of 37 is not quenched in as-prepared mixture 

and no mechano-responsive luminescent property was observed. In this case, compounds 37 

and 39 do not form co-assembled complexes in the mixture due to the strong packing nature 

of 39. Therefore, the efficient electron transfer does not occur.  

 

6. Multi-Color Photoluminescence Change in Response to Mechanical Stimulation  

6.1. Multi-Color Change with a Single Luminophore 



 

 

 One attractive feature of the approach to harness mechanically induced changes of 

molecular assemblies is the huge potential to create stimuli-responsive materials that exhibit 

multi-colored photoluminescence. As the photophysical properties of molecular materials 

depend on the molecular assemblies, the induction of the third molecular arrangement would 

result in development of MRL materials that exhibit three distinct photoluminescence colors, 

which are converted to each other by combination of mechanical and other external stimuli. 

However, most of MRL materials form only two molecular assemblies and, consequently, 

show only two different luminescence colors. Recently, several research groups have 

succeeded in preparing MRL materials that exhibit multi luminescence colors based on the 

concept described above. 

 The combination of hydrostatic pressure and normal mechanical grinding also leads to 

the multi-color change in photoluminescence. Gradual changes in photoluminescence color 

are achieved by applying relatively large pressure to molecular materials. Because the initial 

photophysical properties recover after releasing the applied pressure (of the order of several 

GPa), the mechano-sensing phenomenon using hydrostatic pressure is completely different 

from that observed for typical MCL materials, whose emission colors changed by mechanical 

stimuli usually remain after mechanical stimulation. However, in this section, MCL materials 

that show such a temporal color change induced by hydrostatic pressure are also introduced as 

an emerging subset of MCL materials. 

6.1.1. Organic Molecules 

 The first MCL liquid crystal that shows a multi-color change was reported by Sagara 

and Kato,[88] who demonstrated that an equimolar mixture of dumbbell-shaped molecule 40 

and molecule 41 (Figure 6a) exhibits three different photoluminescence colors under ambient 

conditions, although the LC mixture contains only one fluorophore, 9,10-

bis(phenylethynyl)anthracene. The phase transition and color change behavior are depicted in 

Figure 6a. The LC mixture exhibits a thermotropic micellar cubic phase showing reddish-



 

 

orange photoluminescence. Mechanical shearing the mixture in the cubic phase at 90 °C 

induces a phase transition to a columnar phase, which is accompanied by a 

photoluminescence color change from reddish-orange to green. The green photoluminescence 

is retained upon cooling to room temperature. On the other hand, the mixture in the cubic or 

the columnar phase shows a phase transition to an unidentified mesomorphic phase that 

exhibits yellow photoluminescence when mechanical shearing is applied to the mixture at 

room temperature. The cubic phase recovers after heating the mixture in the columnar or 

mesomorphic phase to the isotropic phase and subsequent cooling. The authors concluded that 

large changes in molecular assembled structures upon mechanically induced phase transitions 

caused the change in the emission color (Figure 6a). The reddish-orange and yellow 

photoluminescence are attributed to excimers and partial-overlap excimers of the emission 

cores, respectively. 

 Tang et al. reported that tetraphenylethylene derivatives 42-44 (Figure 6b) also show 

multi-color changes upon mechanical treatment or heating.[105] Here, 43 is highlighted as a 

typical case to explain the mechano-sensing behavior of these compounds. The AIE-active 43 

forms deep-blue emissive crystals (43CA) after slow evaporation of the solvent. Upon heating, 

43CA shows a phase transition to another crystalline state (43CB) showing sky-blue 

photoluminescence. When mechanical grinding is applied to 43CA or 43CB, the 

photoluminescence colors of both 43CA and 43CB turn to green (Figure 6b), which is 

ascribed to the amorphous state of 43. The deep-blue (43CA) or sky-blue (43CB) 

photoluminescence can be recovered through annealing the ground powder at 90 °C or 115 °C, 

respectively. The three emission colors of 43 are attributed to the difference in conformation 

of individual molecule in each state.  

 Yagai et al. prepared the amphiphilic oligo(p-phenylenevinylene) derivative 45 

(Figure 6c) that also shows a multi-color change by way of controlling the nature of the 

molecular assemblies via external stimuli.[86] The MRL properties were induced by competing 



 

 

effects of intermolecular interactions, the dipole repulsion force and the strong tendency to 

form phase segregated morphologies. After drop casting, 45 forms tilted, bilayer assembled 

structures (Figure 6c) where the luminescent cores stack face to face because of phase 

segregation of the incompatible hydrophobic groups and hydrophilic groups (45Y). The 

imperfect H-type aggregation allows the materials to show a radiative decay from the lower 

exciton state, leading to yellow photoluminescence. After pressing, the yellow-emitting 45Y 

is converted into an LC state that exhibits orange emission (45O). In the LC phase, repulsion 

force between the dipole moments is considerably dissolved. No strong exciton coupling 

occurs in the LC phase and the molecules adopt twisted structures in the π-conjugated groups. 

The observed orange emission arises from the intramolecular charge transfer states due to the 

twisted nature. When 45O is rubbed, a crystalline state appears (45G
#) and the 

photoluminescence color turns to green. Subsequent thermal annealing at 50 °C generates a 

more crystalline form exhibiting bluish-green photoluminescence (45G) (Figure 6c). A 

seeding-triggered phase transition from 45O to 45G
# was also demonstrated. Moreover, the 

authors showed one application as invisible inkjet printing utilizing both the seeding-triggered 

phase transition and phase stabilization by addition of lithium salt. 

 3,4-Bisthienylmaleimide 46 shows distinct responses to mechanical grinding and 

crushing.[106] Crystals showing orange photoluminescence (46OC) were obtained by 

recrystallization from the THF/ethanol solution. Upon being crushed with compressive stress 

in one direction, 46OC is converted to a yellow emissive solid (46YC) (Figure 6d). Moreover, 

46OC and 46YC are transformed into an amorphous state exhibiting weak red-shifted 

emission through continuous mechanical grinding process. Single-crystal X-ray diffraction 

studies reveal that 46YC and 46OC have the same crystal structure. The authors concluded 

that the different photophysical properties of 46OC and 46YC can be ascribed to the 

difference in particle sizes and the damaged surface structures induced by crushing. 



 

 

 The MCL anthracene derivative 47 (Figure 6e) was reported to show a gradual change 

in photoluminescence color upon applying hydrostatic pressure.[107] The anthracene derivative 

exhibits a strong green photoluminescence in the as-prepared powder state. After simple 

grinding, the photoluminescence color of the powder turns to yellow. The initial green 

photoluminescence recovers after heating the ground sample above 160 °C. The influence of 

applied hydrostatic pressure on the photoluminescence was also investigated. As the applied 

pressure increases, the photoluminescence color of the powder gradually changes from green 

(at 0 GPa) to red (at 7.92 GPa). The authors attributed the observed change in 

photoluminescence to transformation of the molecular assembled structures from J-type 

aggregation (no π-π interaction, green) to H-type aggregation (weak π-π interaction, orange) 

and then to aggregated dimers (strong π-π interaction, red) (Figure 6e).  

 Hydrostatic pressure-induced changes of the photoluminescence color were also 

observed for an intramolecular charge-transfer (ICT) fluorophore 48 (Figure 6f).[108] The 

crystals of 48 obtained through recrystallization from chloroform/ethanol solution show green 

photoluminescence (G-form). Upon grinding with a spatula the photoluminescence color 

changes from green (G-form) to red (R-form). In the hydrostatic pressure experiment, the 

photoluminescence color also shows a significant red sift from green to red as the pressure 

increases and subsequent releasing pressure recovers the initial green photoluminescence 

(Figure 6f). It has been suggested that the twist conformation of the cyanostilbene moiety and 

the T-type packing prevent tight packing in the G-form, resulting in green photoluminescence 

from the locally excited state, while the red photoluminescence observed for R-form is 

ascribed to the charge transfer state. A cruciform conjugated fluorophore with ICT character 

has been also reported to show luminescence color changes from yellowish green to orange 

upon simple grinding or applying relatively low hydrostatic pressure (10 MPa).[109] 

 Saito and Yamaguchi et al. have demonstrated an influence of the way to apply 

mechanical force to molecular materials on resulting changes in photoluminescence 



 

 

colors.[110] A tetrathiazolylthiophene derivative 49 (Figure 6g) shows distinct responses to 

mechanical grinding and hydrostatic pressure. Compound 49 exhibits a yellow emission in the 

crystalline state, and the photoluminescence color changes to green after mechanical grinding 

(Figure 6g). The results obtained from X-ray diffraction analysis, as well as solid-state 1H-

NMR and infrared spectroscopic measurements indicate that mechanical grinding induces a 

transformation from the crystalline state where compound forms face-to-face dimeric 

structures to a disordered state, leading to the interference with the excimer formation. By 

contrast, the photoluminescence color gradually changes from yellow to orange upon 

applying hydrostatic pressure up to 3.2 GPa (Figure 6g). The initial yellow 

photoluminescence is restored when the pressure is reduced to ambient pressure. The high-

pressure single-crystal XRD analysis revealed that the distance between adjacent molecules in 

the face-to-face dimer becomes shorter under high pressure, resulting in the red-shifted 

photoluminescence. 

6.1.2. Organometallic Compounds 

 Several organometallic compounds have been also found to display multi-color 

photoluminescence changes in response to mechanical stimulation. In 2011, Shinozaki et al. 

reported a platinum(II) complex 50 (Figure 7a) shows mechanochromic luminescence 

involving several distinct photoluminescence colors.[111] The Pt(II) complex 50 shows 

polymorphism and three different crystalline forms (Form Y, Form R and Form G) are 

prepared selectively. Form Y, Form R and Form G emit photoluminescence in yellow, red and 

near-infrared regions, respectively. X-ray crystallography revealed that no Pt-Pt bonds exist in 

Form Y. By contrast, Pt-Pt bonds form between adjacent two molecules in Form R and linear 

Pt chains were observed in Form G. Such difference in molecular architecture of 50 

significantly influences the photophysical properties. Upon being ground, all polymorphs 

show phase transitions to an amorphous phase that shows dark red photoluminescence. Form 

R is restored when the ground sample is heated. Because heating process induces irreversible 



 

 

crystal-crystal phase transitions from Form G through Form R to Form Y, the Form R-Form 

Y-amorphous phase transition cycle is achieved by a combination of heating and grinding 

(Figure 7a). 

 The pincer platinum(II) complex 51 (Figure 7b) with amide groups also shows a 

multi-color change induced by mechanical stimulation.[112] Green emissive crystals are 

obtained by recrystallization from DMF (51·DMF). Upon grinding in a ceramic mortar, the 

compound shows a conversion to an amorphous morphology, which is accompanied by a 

change of the photoluminescence color from green to orange (51·Powder). Furthermore, 

subsequent exposure to methanol vapors leads to the formation of a crystalline state that 

shows yellow emission (51·MeOH). The orange photoluminescence of 51·Powder can be 

restored by mechanically grinding 51·MeOH. Single-crystal X-ray diffraction studies indicate 

that the hydrogen-bonding networks that the amide groups form in 51·DMF and 51·MeOH 

are different from each other, leading to an evident difference in the Pt-Pt distance. The Pt-Pt 

distance observed in 51·MeOH is 3.385 Å, which is much shorter than that in 51·DMF (4.854 

Å), resulting in the excimer photoluminescence observed for 51·MeOH due to the metal-

metal interactions. The authors also attributed the orange photoluminescence of 51·Powder to 

metal-metal interactions. Interestingly, 51·DMF or 51·MeOH is also converted to 51·Powder 

by heating. Thermogravimetric analysis for 51·DMF reveals that release of DMF molecules 

from the crystals upon heating causes the same color changes as grinding.  

 Recently, Seki and Ito et al. have reported that a gold(I) isocyanide complex 52 

(Figure 7c) forms four individual solid states with different photoluminescence colors, which 

are interconvertible by treatment with acetone and mechanical shearing (Figure 7c).[113] The 

relatively high polarity of 52 may help the formation of weak interactions with acetone and 

enable solvent inclusion/release processes. The as-prepared crystalline powder (52Y) shows 

yellow photoluminescence due to aurophilic interactions. After being soaked in acetone, 52Y 

turns into a blue emissive powder (52B). The single crystal X-ray diffraction analysis of 52B 



 

 

reveals that the gold(I) complex forms layer-like structures with acetone sublayers, where the 

Au-Au distance of 3.545 Å is longer than necessary to form aurophilic interactions, resulting 

in blue photoluminescence. After the subsequent drying process, 52B transforms to a 

polymorph that exhibits green photoluminescence (52G). As for 52G, no aurophilic 

interactions occur and a much lower amount of acetone molecules resides in the crystalline 

structure compared to 52B. Increased intermolecular interactions and/or rather flat 

conformations of the chromophores are attributed to the green photoluminescence. Gentle 

mechanical grinding applied to 52G induces release of acetone molecules to afford 52Y and 

subsequent hard grinding leads to further transformation to 52O that exhibits orange 

photoluminescence. The aurophilic interactions with shorter Au-Au separation are present in 

52O, although the amorphous nature of 52O does not provide unambiguous information about 

the nature of the molecular assembly.  

 

6.2. Multi-Color Changes with Two Luminophores 

 Especially in the context of multi-color changes, MRL systems containing two 

luminophores represent an interesting alternative to one-component materials, as the larger 

number of different electronic states from which emission may occur also increases the 

changes to tune the emission wavelength to the related (meta)stable states. Based on this 

general concept, several precisely designed MRL materials having two luminophores have 

recently been developed.  

 Jia et al. reported that a mixture of two dipeptide derivatives 53 and 54 (Figure 8a) 

exhibits a multi-color change in 2012.[114] Compounds 53 and 54 feature a pyrene group and a 

rhodamine B moiety, respectively. In the crystalline form, compound 53 exhibits blue 

emission due to partial-overlap excimers of the pyrene groups. By contrast, green 

luminescence was observed for a mechanically induced amorphous phase. The formation of 

normal excimers of the pyrene upon mechanical shearing results in the emission color change 



 

 

from blue to green. Compound 54 displays red emission derived from the rhodamine B 

moieties attached to the dipeptide. The luminescent intensity of 54 is relatively low in a 

powder state and its red luminescence is intensified by mechanical stimuli, because most of 

the lactam forms of rhodamine B are converted to more conjugate ring-opening isomers by 

mechanical stimuli. The initial lactam form recovers through thermal treatment. Blue 

photoluminescence was observed from the as-prepared mixture obtained by evaporating the 

cyclohexane suspension of 53 and 54 at 100 °C. After applying mechanical stimuli, the blue 

photoluminescence changes into green and further shearing induces the change in 

photoluminescence color from green to red (Figure 8a). The authors concluded that the 

emission change from blue to green was driven by the morphological change of 53 and the 

change in photoluminescence from green to red are ascribed to the ring-opening of the lactam 

forms which enhances the red emission of 54 itself. The initial state showing blue emission 

recovers by heating both the green and red emissive states induced by mechanical shearing. 

 The mixture of 53 and 54 shows a multi-color change due to individual MRL 

properties of the two components. In 2013, Jia et al. reported that molecule 55 featuring both 

pyrene and rhodamine B moieties (Figure 8b) exhibits a multi-color change in 

photoluminescence.[115] As a powder prepared by evaporation of the dichloromethane solution, 

55 shows a blue emission. Slight grinding induces a green emission and further grinding 

results in a red emission with a new emission peak at 583 nm in the emission spectrum. 

Emission lifetime measurements reveal that the blue and green emissions are due to partial-

overlap excimers and normal excimers of the pyrene moieties, respectively. The appearance 

of red photoluminescence is based on the ring-opening reaction of the rhodamine B moiety of 

55 as observed for dipeptide derivative 54 described above. The blue emission also recovers 

by heating the red emissive powder at 120 °C for several minutes followed by exposure to 

dichloromethane vapor.  



 

 

 Although the molecular materials reported by Jia’s group show multi-color changes in 

luminescence exploiting two luminophores, the blue or green emissions still remain present in 

the heavily ground samples showing red photoluminescence, suggesting that FRET processes 

between energy donating and accepting groups are absent or inefficient. As a result, the 

contrast is not very high. Adequate changes of the arrangement of a FRET pair lead to 

significant changes of the emission spectrum based on changes in the efficiency of the FRET 

process.[32] Very recently, Park et al. reported a high-contrast, red-green-blue (RGB) 

tricolored change of photoluminescence using a mixture composed of two molecules (Figure 

8c).[116] The first component is the cyano-substituted oligo(p-phenylenevinylene) derivative 

8
[39a] as shown in Figure 1. Compound 8 shows blue luminescence after thermal annealing 

and green emission after mechanical shearing or solvent vapor annealing with 

dichloromethane. The second component is compound 30,[95]
 introduced in Section 5.1. As 

described above, the red emission of 30 appears upon mechanical shearing. A spin-coated 

8/30 mixture (10:3 w/w) shows blue photoluminescence after thermal annealing at 140 °C for 

3 min (λem= 458 nm) and green emission after solvent vapor annealing (λem= 527 nm). Both 

blue and green emissive states change into a red emissive state (λem= 594 nm) after 

mechanical shearing and the red luminescence returns to the blue and green emissions upon 

thermal or solvent vapor annealing, respectively. The FRET from 8 to 30 plays a significant 

role for the observed phenomena (Figure 8c, top). When energy donor 8 forms assembled 

structures with dimensions that are larger than the distance at which the FRET occurs 

efficiently, the photoluminescence from 8 is observed, because the FRET process is 

suppressed. Consequently, as energy acceptor 30 is in the non-luminescent state before 

grinding, the as-prepared, phase segregated mixture shows blue or green emission. However, 

upon grinding the two compounds appear to be molecularly mixed and FRET occurs from 8 

to 30. Therefore, the blue or green emission of 8 is effectively quenched. Because the 

mechanical stimulation simultaneously turns on the red emission of 30 (see Section 5.1), only 



 

 

red emission was observed for the ground samples. When the mixture shows the blue and 

green emissions, the efficiencies of FRET (η) estimated from the emission lifetime are 0.06 

and 0.03, respectively. On the other hand, mechanical grinding induces the effective FRET 

from 8 to 30 (η = 0.75), resulting in almost complete quenching of the emission from 8. The 

authors showed that it is possible to create high-contrast RGB patterns using this system, as 

shown in Figure 8c. The center of the thermally annealed sample was exposed to 

dichloromethane vapor to access blue and green emissive states, respectively. Subsequent 

mechanical shearing of the sample induced red photoluminescence at the scratched parts, 

resulting in the vivid RGB photoluminescent patterning. 

 

7. Water-soluble MRL Materials 

 While the organic or organometallic molecules that form MRL molecular assemblies 

discussed so far are insoluble in water, because of their hydrophobic character, water-soluble 

MRL materials would potentially be useful for biocompatible mechano- and humidity-sensing 

materials. Araki et al. examined the photophysical properties of 1,3,6,8-tetra(4′-

carboxyphenyl)pyrene in aqueous conditions and the MCL properties in the solid state in 

2012.[117] The four carboxylic acid groups enable the pyrene derivative to dissolve in certain 

aqueous media, such as water at high pH, a mixture of DMF and water (1:1), as well as 

methanol and ethanol. Yellow emission, which is characteristic of the dimer form, was 

observed for the solid state. Upon mechanical stimulation of the compound in the solid state, 

the emission color turns green, indicative of monomer emission. The authors also reported 

that exposure of the ground sample to methanol, ethanol, acetone, ethyl acetate, 

tetrahydrofuran, and dioxane vapor leads to recovery of the initial yellow emission. 

 It is well known that amphiphilic compounds having a rigid hydrophobic aromatic 

moiety and flexible hydrophilic chains form a variety of molecular assemblies such as 

spherical micelles, cylindrical micelles, vesicles and membranes in water.[5-6] The molecular 



 

 

assemblies consisting of amphiphiles were also exploited to develop MCL materials. In 2013, 

Sagara and Nagano et al. demonstrated that pyrene-based amphiphile 56 forms micellar 

assemblies in water and exhibits mechano- and humidity-sensing characters in the solid state 

(Figure 9a).[89] The dumbbell-shaped amphiphile 56 features two hydrophilic dendrons that 

are attached to the 1,6-bis(phenylethynyl)pyrene core via amide groups. Many micellar 

structures composed of 56 with diameter between 5 and 10 nm appear in the transmission 

electron microscope (TEM) images (Figure 9a). The average hydrodynamic diameter of the 

micelles obtained from dynamic light scattering measurements is approximately 7 nm, which 

is consistent with diameters of the micellar structures observed in the TEM images. Blue 

photoluminescence was observed for 56 in methanol under excitation at 365 nm, while 56 

exhibits yellow photoluminescence in water, indicative of excimer formation. These results 

indicate that the emissive cores of 56 form stacked structures in the micelles (Figure 9a). The 

authors also examined the MCL properties of 56 in the solid state. When 56 was prepared in 

the form of a cottony solid by simple lyophilization of the aqueous solution, yellow excimer 

emission was observed. Mechanical stimulation induces a change of the luminescence color 

from yellow to green (Figure 9a, bottom left). This reflects that the originally assembled 

excimer-forming structures are changed by mechanical stimulation and the emissive cores are 

placed in a different arrangement that does not support the formation of excimers. The authors 

also found that exposure of the ground sample to water vapor leads to recovery of the initial 

yellow emission. Therefore, amphiphile 56 functions as mechanosensor and humidity sensor. 

One practical application for water-soluble MCL materials was shown by the same group.[89] 

Compound 56 was used as a mechano-sensing indicator on friction wear test for grease due to 

its immiscibility with grease. By contrast, compound 16, which is one of hydrophobic liquid 

crystals showing mechanochromic luminescence,[67] is not suitable for such a friction test, 

because the LC compound easily mixes with grease due to its hydrophobic nature. 



 

 

 While several molecular assemblies consisting of amphiphiles have been reported to 

change their supramolecular assembly in response to the addition of guest molecules or 

ions[118] or changes of temperature,[119] redox state,[120] or pH value[121] in water, only a few 

studies documented alteration of molecular assembled structures with changes in 

photoluminescence color in water.[90, 91, 122] If an amphiphile having a fluorophore forms 

supramolecular assemblies in water and this supramolecular architecture is altered in response 

to mechanical stimulation in water, the photoluminescence properties of the system can be 

also expected to be responsive to mechanical force. According to this assumption, Sagara and 

Nagano et al. developed the amphiphilic anthracene derivative 57, which forms 

supramolecular assemblies in water, which exhibit a photoluminescence color change from 

yellow to green upon mechanical or thermal stimulation in water.[90] Although amphiphile 56 

shows both mechano- and humidity-sensing properties in the solid state,[89] the micelles 

formed by the self-assembly of 56 did not show any photoluminescence color changes in 

response to mechanical stimulation or temperature change in water. It appears that the two 

large hydrophilic dendrons of 56 stabilize the yellow-emissive micellar structures and forbid 

compound 56 to form two different molecular assembled states in water. Therefore, smaller 

dendrons were introduced to the emissive core of compound 57. In water, anthracene 

derivative 57 forms micellar structures and cylindrical molecular assemblies, which are one-

dimensional aggregates of the micelles (Figure 9b, bottom center). In the micellar structures, 

the anthracene moieties form stacks and thus the hydrophobic parts appear on the surface of 

the micelles in the direction of the stacks. The formation of one-dimensional cylindrical 

micelles is ascribed to the weak hydrophobic interaction between the anisotropic micelles. 

These molecular assemblies exhibit yellow photoluminescence derived from excimers and are 

shown to readily adsorb on glass substrates bearing amine groups. When the anisotropic 

micelles were rubbed from the glass substrate, a green emissive solution was obtained (Figure 

9b, top center). After mechanical stimulation, amphiphile 57 forms green-emitting micelles 



 

 

where the arrangement of the emissive core is different from that in the initial micellar 

structures, which leads to a decrease of the hydrophobic surface. Consequently, no cylindrical 

molecular assemblies appear in the TEM images, because the green-emissive micelles are not 

able to form one-dimensional aggregates. Thermal stimulation also induces the 

photoluminescence color change. After annealing the yellow-emissive water solution at 60 C 

for 5 min, the emission color becomes green. The green photoluminescence remains after 

cooling down to room temperature (Figure 9b, top right). After heating, the cylindrical 

micelles were not observed in the TEM images (Figure 9b, bottom right). 

 

8. Covalent Attachment to Other Materials 

 Most of the studies on mechanoresponsive luminescence have focused on the 

relationship between photophysical properties and molecular assembled structures and have 

examined the influence of mechanical force or other external stimuli on them. The outcomes 

of these investigations have led to a rather comprehensive understanding of useful 

mechanisms to design MRL molecular assemblies. Meanwhile, from the viewpoint of 

practical applications, it is also important to establish possibilities to integrate MRL molecular 

assemblies with other materials, such as glasses, polymers, metals and biomaterials, to detect 

mechanical force applied to the materials of interest. 

 In 2014, Sagara and Nagano et al. demonstrated the covalent attachment of MRL 

micelles to glass and polymer beads. [91] Amphiphilic compound 58 (Figure 10a) forms 

micelles in water and exhibits yellow photoluminescence under UV irradiation (365 nm). The 

yellow-emitting micelles (Y-micelles) have many amino groups at the peripheral positions. 

Therefore, using water-soluble linker 59, Y-micelles can be covalently introduced to other 

materials with amino groups on the surface as illustrated in Figure 10b. When sufficient 

mechanical stress is applied to the surface of the materials bearing Y-micelles, Y-micelles 

transform into green-emitting micelles (G-micelles) in water. The authors described a series 



 

 

of vortex experiments to evaluate the mechanoresponsive properties of the resulting glass 

beads and polylactic acid (PLA) beads with Y-micelles on the surface. The change in 

photoluminescence color was observed for the glass beads (Φ = 150–212 μm) bearing the 

micelles upon vortexing at 2000 rpm for 15 min at room temperature in a glass vial containing 

the glass beads and water (Figure 10c). These results indicate that transformation from Y-

micelles to G-micelles occurs in response to mechanical stimuli derived from collision 

between the glass beads. Confocal fluorescence microscopic images reveal that G-micelles 

were not detached from the surfaces of the glass beads due to covalent linkers. Because of the 

uniform size of Y-micelles (~ 6 nm), there is a threshold of mechanical force to induce 

transformation from Y-micelles to G-micelles. When the same vortex experiment was 

conducted for smaller glass beads (Φ < 106 μm) bearing Y-micelles, it required longer time (1 

h) to achieve complete color change. Moreover, PLA beads (Φ = 70–150 μm) with Y-micelles 

on the surface never show any changes in photoluminescence color after vortexing for 1 h 

under the same condition as the glass beads (Figure 10d). The glass beads are heavier than the 

PLA beads and the stiffness of the glass beads is much higher than that of PLA beads. 

Therefore, upon vortexing, mechanical force applied to Y-micelles attached to glass beads is 

much stronger than that applied to Y-micelles introduced to the PLA beads. It is noteworthy 

that the PLA beads show the photoluminescence color change when the PLA beads are 

vortexed with large glass beads (Φ = 425–600 μm) (Figure 10d).  

 

9. Summary and Outlook 

 The rapidly growing international efforts to develop MRL materials have yielded a 

large number of organic or organometallic molecules that exhibit mechanoresponsive 

properties. As is evident from the examples discussed in this contribution, in virtually all 

materials systems shown here, the mechanically induced changes of the photophysical 

properties are related to variations of the molecular assembly. Most of the materials 



 

 

developed just switch the photoluminescence color between only two states. However, several 

compounds show unconventional phenomena such as luminescent molecular dominos, which 

exhibit an intriguing amplification effect. The appearance or disappearance of 

photoluminescence and multi-color changes in response to mechanical stimuli expand the 

usage of MRL materials and permit the production of high-contrast multicolor images, which 

may be useful for data storage, sophisticated informational displays, and security inks. Water-

soluble MRL materials open the door for possible applications in the biomedical domain. 

Finally, the first example has shown that it is possibly to integrate MRL molecular assemblies 

with other materials of interest. Some research topics described in this report are at very early 

stages and one can expect considerable growth of the palette of MRL molecules and effects in 

the near future. As mentioned in the introduction, mechanically induced “dynamic” property 

changes driven by changes of the molecular assembly of functional molecules comprising π-

conjugated moieties can possibly lead to the control of properties other than their 

photophysical characteristics. Thus, it appears that the concepts for the design of MRL 

materials discussed here, may serve as a starting point for other types of mechanoresponsive 

materials, in which charge carrier transport properties, magnetic properties, and other 

functions can be changed on command. 
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Figure 1. Representative molecular structures of MRL compounds. 
 
 
 



 

 

 

 
 
Figure 2. Design approaches for MRL materials. a) Schematic illustration of design 
approaches to induce metastable states. b) Change in molecular assembled structures and 
photoluminescence color of compound 1 before and after grinding. c) Molecular structure of 
compound 25 and X-ray crystallographic packing of 25R and 25Y. d) Photoluminescence 
color change and schematic illustration of molecular assemblies of 16. Part b is adapted with 
permission.[1g] Copyright 2009, Nature Publishing Group. Part c is adapted with 
permission.[85] Copyright 2014, American Chemical Society. Part d is adapted with 
permission.[67] Copyright 2008, Wiley-VCH. 
 



 

 

 
 
Figure 3. Luminescent molecular dominos. a) Procedure to obtain two different crystals of 26 
and scheme of the single-crystal to single-crystal (SCSC) transformation. b,c) Crystal 
structures of Ib and IIy. d,e) Tiny picking-induced and seeding-triggered SCSC 
transformations of 26. f) Molecular structure of 27 and the cracking-induced SCSC 
transformation of 27. g,h) Crystal structures of the green emissive crystal and faint blue 
emissive crystal of 27. Parts a,b,c,d and e are adapted with permission.[92] Copyright 2013, 
Nature Publishing Group. Parts f, g and h are adapted with permission.[93] Copyright 2013, 
Wiley-VCH. 
 
 
 
 
 



 

 

 
 
 
Figure 4. Single-component MRL materials that display mechanically induced on-off 
switching. a) Molecular structures of compounds 28 and 29 and emission spectra of 28 before 
and after mechanical grinding. b) Molecular structures of 30 and 31 and photographs of the 
pristine and ground powders of 30. c) Molecular structure of 32 and pictures showing 
mechano- and acid-sensing behavior. d) Molecular structures 33 and 34 and pictures 
illustrating the mechanoresponsive properties. e) Molecular structures of 35 and 36 and 
images illustrating their photoluminescence color changes in response to external stimuli. Part 
a is adapted with permission.[94] Copyright 2009, American Chemical Society. Part b is 
adapted with permission.[95] Copyright 2012, Wiley-VCH. Part c is adapted with 
permission.[96] Copyright 2014, The Royal Society of Chemistry. Part d is adapted with 
permission.[97] Copyright 2014, The Royal Society of Chemistry. Part e is adapted with 
permission.[98] Copyright 2011, Wiley-VCH. 
 
 
 
 
 

 
 

 
Figure 5. Molecular structures of 37, 38 and 39 and photographs demonstrating the reversible 
MRL behavior of the mixture under UV irradiation. Adapted with permission.[104] Copyright 
2011, Wiley-VCH. 
 
 
 
 
 



 

 

 
 
 

 
 
Figure 6. Multi-color MRL materials based on a single component. a) Molecular structures of 
compounds 40 and 41, procedures to obtain three different luminescent colors, and schematic 
illustration of the assembled structures of the LC mixture that from the cubic, columnar and 
mesomorphic phases. b) Molecular structures of AIE-active compounds 42–44 and pictures 
illustrating the photoluminescence color changes of 43. c) Molecular structure of compound 
45, schematic representation of the multilamellar structure of 45Y and pictures revealing the 



 

 

photoluminescence color changes induced by external stimuli. d) Molecular structure of 
compound 46 and pictures showing the photoluminescence color changes. e) Molecular 
structure of compound 47 and schematic reflecting the relationships between the stacking 
modes and emission colors. f) Molecular structure of compound 48 and picture illustrating the 
photoluminescence color changes in response to hydrostatic pressure. g) Molecular structure 
of compound 49 and pictures documenting the photoluminescence color changes in response 
to mechanical grinding and hydrostatic pressure. Part a is adapted with permission.[88] 
Copyright 2011, Wiley-VCH. Part b is adapted with permission.[105a] Copyright, 2012 
American Chemical Society. Part c is reproduced with permission.[86] Copyright 2014, Nature 
Publishing Group. Part d is adapted with permission.[106] Copyright 2014, The Royal Society 
of Chemistry. Part e is reproduced with permission.[107] Copyright 2012, Wiley-VCH. Part f is 
reproduced with permission.[108] Copyright 2015, Wiley-VCH. Part g is adapted with 
permission.[110] Copyright 2013, American Chemical Society. 
 

 
 

 
Figure 7. Organometallic multi-color MRL materials. a) Molecular structure of compound 50 
and the phase transition diagram for 50. b) Molecular structure of compound 51 and pictures 
documenting the photoluminescence color changes in response to external stimuli. c) 
Molecular structure of compound 52, photographs of the powder forms of 52 showing 
different photoluminescence colors and schematic representation of the molecular 
arrangements of each emitting state. Part a is adapted with permission.[111] Copyright 2011, 
Wiley-VCH. Part b is adapted with permission.[112] Copyright 2012, The Chemical Society of 
Japan. Part c is adapted with permission.[113] Copyright 2015, The Royal Society of Chemistry. 
 

 
Figure 8. Multi-color MRL materials based on two luminophores. a) Molecular structures of 
53 and 54 and pictures showing the mechano-responsive behavior of the mixture. b) 
Molecular structure of 55 and emission spectra that document changes of the material’s 



 

 

photoluminescence spectra upon grinding. c) Concept of combining FRET with other MRL 
mechanisms and picture documenting the RGB luminescence capability of a 8/30 mixture on 
glass substrates. Part a is adapted with permission.[114] Copyright 2012, Wiley-VCH. Part b is 
adapted with permission.[115] Copyright 2013, Wiley-VCH. Part c is adapted with 
permission.[116] Copyright 2015, Wiley-VCH. 
 
 

 
 
 
Figure 9. Water-soluble MRL molecular assemblies. a) Mechano- and humidity-sensing 
behavior of 56 and molecular assembled structures consisting of 56. b) Mechanical and 
thermal stimuli-induced changes in photoluminescence color of micelles consisting of 57 and 
TEM images of the molecular assemblies. Part a is adapted with permission.[89] Copyright 
2013, Wiley-VCH. Part b is adapted with permission.[90] Copyright 2014, Wiley-VCH. 
 
 
 
 
 



 

 

 
 
Figure 10. Covalent attachment of MRL materials to other materials of interest. a) Molecular 
structures of amphiphilic pyrene derivative 58 and water-soluble linker 59. b) Schematic 
illustration of the attachment of MRL micelles onto glass or polymer beads. c,d) Pictures 
documenting the change of the photoluminescence color of the glass or polymer beads. The 
MRL micelles were covalently attached to the surface of the beads. Adapted with 
permission.[91] Copyright 2014, American Chemical Society.  
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