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Summary

Cells integrate biochemical and mechanical information to function within multicellular tissue. Within developing and remodeling tissues,
mechanical forces contain instructive information that governs important cellular processes that include stem cell maintenance, differentiation and
growth. Although the principles of signal transduction (protein phosphorylation, allosteric regulation of enzymatic activity and binding sites) are

the same for biochemical and mechanical-induced signaling, the first step of mechanosensing, in which protein complexes under tension
transduce changes in physical force into cellular signaling, is very different, and themolecular mechanisms are only beginning to be elucidated. In
this Commentary, we focus on mechanotransduction at cell–cell junctions, aiming to comprehend the molecular mechanisms involved. We

describe how different junction structures are associated with the actomyosin cytoskeleton and how this relates to the magnitude and direction of
forces at cell–cell junctions. We discuss which cell–cell adhesion receptors have been shown to take part in mechanotransduction. Then we
outline the force-induced molecular events that might occur within a key mechanosensitive system at cell–cell junctions; the cadherin–F-actin
interface, at which a-catenin and vinculin form a central module. Mechanotransduction at cell–cell junctions emerges as an important signaling

mechanism, and we present examples of its potential relevance for tissue development and disease.

This article is part of a Minifocus on Adhesion. For further reading, please see related articles: ‘Cadherin adhesome at a glance’ by Ronen Zaidel-Bar (J. Cell Sci. 126, 373-
378). ‘Cycling around cell–cell adhesion with Rho GTPase regulators’ by Jessica McCormack et al. (J. Cell Sci. 126, 379-391). ‘E-cadherin–integrin crosstalk in cancer
invasion and metastasis’ by Marta Canel et al. (J. Cell Sci. 126, 393-401).
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Introduction

Physical forces can influence tissues not only by directing

changes in cell shape, but also by affecting a variety of cellular

processes, such as polarity, division and differentiation (Ingber,

2003; Jaalouk and Lammerding, 2009; Schwartz and DeSimone,

2008; Vogel and Sheetz, 2006). These cellular processes entail

complex biochemical signaling pathways and much of the current

research aims at understanding how physical forces control

cellular signaling. Cells experience changes in force that are

either derived externally by deformations of the extracellular

matrix (ECM) or by neighboring cells, or changes in internal

force, for instance induced by actomyosin contractility

(Maruthamuthu et al., 2010). Many of the generated forces

concentrate at adhesions between cells and the extracellular

matrix, or at homotypic cell–cell adhesions. Consequently, the

transformation of physical stimuli into intracellular biochemical

signaling (mechanotransduction) occurs within the multi-protein

complexes at these adhesion sites (Gomez et al., 2011; Leckband

et al., 2011; Lecuit et al., 2011; Moore et al., 2010).

To understand the molecular mechanisms that underlie

mechanotransduction, it is important to distinguish between

force-transmission and force-sensing. A protein that takes part in

force-transmission is part of a chain of proteins that connects one

physically restricted entity, e.g. a focal adhesion (FA), in which

integrins bind to rigid ECM, to another physically restricted

entity, e.g. a cadherin-based cell–cell junction complex. Changes

in force that occur anywhere in the force chain will be transmitted

through these proteins and result in an altered force distribution

across cells and tissue. As proteins are not completely rigid

structures, changes in force cause conformational deformations

across the force chain. In the past decades, it became clear that

several specialized protein machineries utilize such deformations

to sense changes in the magnitude of force and induce

proportional biochemical responses. These protein machineries

are called force-sensors or mechanosensors (Bershadsky et al.,

2006; Vogel and Sheetz, 2006).

In this Commentary we will discuss the force-sensing systems

that might function in mechanotransduction at cell–cell junctions.

Classical cadherins and the cytoplasmic protein complex that

connects them to the actomyosin cytoskeleton are central elements

in this response. We describe the organization of the actomyosin

cytoskeleton at different junction structures and how it is

integrated with local physical forces. We then outline which

molecular events might occur at the cadherin–F-actin interface in

response to force, and discuss their possible function in

mechanotransduction at cell–cell junctions.

Different conformations of cell–cell junctions

during formation, maturation and remodeling

Classical cadherins, and their connection to the actin cytoskeleton

are crucial for all stable cell–cell adhesions to be formed

(Gumbiner et al., 1988; Nagafuchi and Takeichi, 1988). The core
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protein complex needed for cadherin stability and for linking
cadherins to actin, consists of p120-catenin, b-catenin and a-

catenin. These proteins are always present at cadherin-dependent
cell–cell junctions at a level comparable to that of the cadherin
itself (Gumbiner, 2005). In addition to these proteins, other F-
actin-associated proteins localize to the cadherin complex, but

their levels vary and appear to depend on the conformation of the
cell–cell junctions and that of the associated actomyosin
cytoskeleton (see below). There is a strong relationship

between the organization and contractility of the actomyosin
cytoskeleton and the formation, maturation and remodeling of
cell–cell junctions (Cavey and Lecuit, 2009; Gomez et al., 2011;

Yonemura, 2011). In this section, we will discuss the different
conformations of cadherin-containing cell–cell junctions
observed by microscopic analyses, and we will indicate what is
known about the interaction with the actomyosin cytoskeleton at

these different stages of adhesion.

Forming cell–cell junctions adopt a punctate morphology and
are connected to radial actin bundles that extend from a network

of circumferential actin bundles (Adams et al., 1998; Yonemura
et al., 1995). Many actin regulatory proteins are recruited to these
punctate adhesions, including vinculin, zyxin, ena/VASP

proteins, formins and members of the ARP2/3 complex
(Kobielak et al., 2004; Kovacs et al., 2002; Vasioukhin et al.,
2000). These proteins are likely to control the extent and
direction of F-actin polymerization at these sites (Fig. 1A).

Activity of Rho-associated protein kinase (ROCK) signaling,
which promotes actomyosin contraction, is required to form
punctate adhesions (Vaezi et al., 2002), and a-catenin is a key

linker between F-actin and these adhesion structures (Huveneers
et al., 2012; Twiss et al., 2012). Besides cadherins, forming
junctions contain nectins (Meng and Takeichi, 2009; Ogita et al.,

2010), which can also bind to a-catenin and can thus form a
physical link to F-actin. Both cadherins and nectins are crucial
for junction formation (Mizoguchi et al., 2002; Tachibana et al.,

2000; Takai and Nakanishi, 2003) and it has, therefore, remained
unclear whether cadherins or nectins form the mechanical
connection to actomyosin that organizes junction formation.
Recently, we found that, in the absence of endogenous a-catenin,

expression of an E-cadherin-a-catenin fusion protein completely
restored cell–cell junction formation (Twiss et al., 2012). This
observation argues that a physical connection between cadherin

and F-actin is sufficient for junction formation and suggests that
nectins perform a different function at this stage.

After initial junction formation, cell–cell contact expansion

occurs through membrane protrusions and lateral distribution of
cadherins to form linear adherens junctions (Adams et al., 1998;
Ehrlich et al., 2002) (Fig. 1B). At these stages of junction
maturation, the activity of myosin II is particularly high at the

contact edges near the so-called actin arches and is thought to
drive the expansion of cell–cell junctions (Krendel et al., 1999;
Yamada and Nelson, 2007). Underscoring the close relationship

between cell–cell junctions and actomyosin, E-cadherin
engagement induces myosin II activity, which in turn promotes
the concentration of cadherins at sites of cell–cell adhesion

(Shewan et al., 2005). Once linear junctions have fully expanded,
the actin cytoskeleton in their vicinity has also remodeled to form
peri-junctional parallel actin bundles (Zhang et al., 2005). The a-

catenin- and F-actin-binding protein EPLIN (also known as
LIMA1) is needed to maintain linear adherens junctions, as in its
absence, junctions show a punctate morphology (Abe and

Takeichi, 2008). In addition, other actin regulatory proteins,
including cortactin, ARP2/3 (Helwani et al., 2004) and neural

Wiskott-Aldrich syndrome protein (N-WASP) (Kovacs et al.,
2011), are present. Cadherins, nectins and tight junction proteins
are all localized in close vicinity to linear cell–cell junctions.
Whether and how parallel peri-junctional actin bundles connect

to cell–cell junction complexes in this junction structure is not
clear. Relatively faint F-actin signals have been shown to
colocalize with linear cell–cell junctions in immunofluorescent

images, whereas thicker F-actin bundles run in close vicinity, but
do not seem to contact junctions directly (Fig. 1B), or move
coordinately with the junctions in time-lapse experiments [see

movie 2 (Huveneers et al., 2012) for a clear example].

In many epithelial cell lines, upon cell–cell junction formation,
cells polarize apico-basally, grow strongly in height and form an
apical zonula adherens (ZA) (Fig. 1C). In this conformation, most

cell–cell adhesion complexes are localized near the apical surface.
Cadherins and nectins concentrate just below the tight junctions to
form strong actin contacted adhesions, although cadherin

complexes lower down the lateral border are also described
(Smutny et al., 2010). Thick, myosin-II-dependent actin bundles
align tightly with ZA junctions, and this adhesion structure is

dependent on the actin linkers a-catenin, EPLIN and vinculin (Abe
and Takeichi, 2008; Miyake et al., 2006; Miyoshi and Takai, 2008;
Watabe-Uchida et al., 1998; Yamazaki et al., 2008). In 2D culture,
flat cells, such as endothelial cells, do not form a ZA and maintain

linear adherens junctions. Also, several epithelial cell lines,
including Madin Darby canine kidney (MDCK)-II cells do not
form a clear apical ZA under normal 2D culture conditions. The

fact that not all E-cadherin-positive epithelial cell lines form the
same type of E-cadherin-containing cell–cell junctions might
explain some of the current discrepancies in the field, including

whether or not vinculin is present at cell–cell junctions and
whether or not its presence is regulated by tension (see below).

Interestingly, during hepatocyte growth factor (HGF)-induced

disruption of epithelial cell sheets, and during the collective cell
movements induced by scratch wounding of epithelial
monolayers, the steps of cell–cell adhesion maturation appear
to occur in reversed order: cells flatten, there is a loss of apical

junctional F-actin, the contractility of cytoplasmic actomyosin
increases and the actomyosin cytoskeleton reorganizes to form
radial bundles that are connected to remaining punctate cell–cell

junctions, which then eventually are broken (de Rooij et al.,
2005; le Duc et al., 2010; Mangold et al., 2011; Taguchi et al.,
2011). A clear analogy exists between HGF-induced junction

disruption and vascular hormone-driven junction remodeling in
endothelial cells, which also encompasses a force-dependent
formation of punctate cell–cell junctions (Huveneers et al., 2012).
We have recently proposed to collectively name the punctate

cell–cell junctions that are observed during the formation,
remodeling and disruption of cell–cell adhesion, focal adherens
junctions (FAJ) (Fig. 1A), to underscore the fact that they depend

on classical cadherins and to highlight their analogy to integrin-
based FAs, which also connect to radial F-actin bundles and
depend on tension (Huveneers et al., 2012). In summary, different

conformations of cadherin-containing cell–cell junctions exist
that are interchangeable, and each subtype is characterized by a
specific local organization of the actomyosin cytoskeleton and

associates with a different set of intracellular proteins. What this
means for the organization of and response to forces will be
discussed below.
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Forces at cell–cell junctions

Transitions between the different junctional conformations, and

the concomitant changes in cytoskeletal organization must lead to

alterations in the magnitude and directions of forces exterted on

cell–cell junctions. The magnitude of forces at cadherin-based

junctions has been measured at different scales. Analysis

of force-induced dissociation of single cadherin–cadherin

interactions in atomic force microscopy shows that they can

resist forces ranging from ,10 to 157 pN for E-cadherin, 35 to

55 pN for VE-cadherin and 17 to 40 pN for N-cadherin bonds

(Baumgartner et al., 2000; Panorchan et al., 2006; Perret et al.,

2004; Shi et al., 2008). The amount of tension that E-cadherin- or

N-cadherin based cell–cell junctions between cell doublets in

suspension can resist before breakage ranges between ,1 and

200 nN (Chu et al., 2004; Stockinger et al., 2011). Intriguingly,

force-induced disruption of the cadherin complex between cell

doublets appears to occur at the interaction between b-catenin

and a-catenin, leaving cadherin and b-catenin at the plasma
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membrane, whereas a-catenin and actin are disassembled in the
cytoplasm (Maı̂tre et al., 2012). The pulling forces that are

exerted on cell–cell adhesions in small groups of cells have

recently been calculated from traction force measurements to
range between,40 nN to,150 nN (Ganz et al., 2006; Liu et al.,

2010b; Maruthamuthu et al., 2011). Experiments using the
fluorescence resonance energy transfer (FRET)-based ‘TSMod’

tension sensors indicate that tension on single cadherins at cell–
cell junctions are in the low pN range, similar to forces across

vinculin in FAs [(Borghi et al., 2012; Grashoff et al., 2010) and
M. A. Schwartz, personal communication], and the fluctuations

of single filament forces in the cytoskeleton appear to be in the
same range (5–7 pN) as indicated by the use of the spectrin-based

sstFRET probe in cytoskeletal proteins (Meng and Sachs, 2011).
It should be noted that the FRET-based tension measurements in

adhesion complexes are on the basis of the average of FRET
values in a large amount of clustered proteins. It is possible that

only a fraction of the cadherin molecules in such clusters is in

fact exposed to cytoskeletal pulling forces. This would mean that
the actual range of forces that cadherins that are connected to the

cytoskleleton experience, has been highly underestimated in

these studies. As the average tension on single proteins in cell–
cell junctions appears to be about four orders of magnitude lower
than the tension on the entire cell–cell junctions, it would be

interesting to test whether these values can indeed be related. This
could be achieved, for instance, by measuring force on single
molecules, total junction forces and the number of cadherin
proteins within one single unit of cell–cell adhesion (e.g. a FAJ).

Qualitative studies using laser ablations to disrupt junction-
connected actin networks revealed that, at the ZA, actomyosin-
based tension is oriented laterally along the junction (Fig. 1C)

(Cavey et al., 2008; Farhadifar et al., 2007), whereas tensile
radial actin bundles that are connected to FAJs create tension that
is oriented perpendicular to the junctions towards the cytoplasm
(Fig. 1A) (Huveneers et al., 2012; Liu et al., 2010a; Liu et al.,

2010b). The mechanosensing protein vinculin is localized to
FAJs as well as at ZA junctions, but it is mostly absent from the
linear junctions that are found in flat cells, such as Human

umbilical vein endothelial cells (HUVECs) and MDCKs
(Huveneers et al., 2012; le Duc et al., 2010; Yamada et al.,
2005). This could mean that there is less tension on the cadherin

complex at linear junctions than at other junction stages; a notion
that is corroborated by the recent study that used E-cadherin–
TSMod in MDCK cells to show that tension on E-cadherin in

linear AJs is comparable with tension experienced by E-cadherin
molecules that are in the plasma membrane outside of cell–cell
junctions (Borghi et al., 2012). The tension on E-cadherin
increases about threefold when external stretch is applied to cells,

and junctions remodel from linear into FAJ-like structures
(Borghi et al., 2012). Generally speaking, force measurement
experiments at cell–cell junctions have been limited thus far. It is,

therefore, unclear how the magnitude and directions of forces
fluctuate during cell–cell adhesion and tissue remodeling. It will
be interesting to use these newly developed FRET-based tension

sensors to systematically measure forces, or at least their
fluctuations, that associate with the different stages and
conformations of cell–cell junctions.

Mechanosensing at cell–cell junctions

Adhesion receptors currently implicated in

mechanosensing

In recent years, classical cadherin-based cell–cell adhesion

complexes have clearly emerged as mechanosensors. N-
cadherin has been implicated to act as a mechanosensor in
experiments that use micropillars to show a co-dependence of

pillar stiffness and N-cadherin-based traction forces (Ladoux
et al., 2010). Direct evidence for mechanosensing by E-cadherin
has been obtained from magnetic twisting cytometry of E-
cadherin-coated magnetic beads, which demonstrates that E-

cadherin-based cell–bead adhesions are stiffened in response to
prolonged shear forces, in a manner that is proportional to their
magnitude (le Duc et al., 2010). In endothelial cells, exertion of

increased force on cell–cell junctions by direct mechanical
tugging or myosin contraction increases junction size without a
loss of tension on the junction structure itself, suggesting the

activation of a mechanoresponse at the VE-cadherin complex that
enhances cell–cell adhesion (Liu et al., 2010b). The most recent
example of mechanosensing by a classical cadherin is that of the

pulling of beads coated with C-cadherin adhering to Xenopus

cells; this results in a polarized cell protrusion activity in the
direction opposite to the pulling force (Weber et al., 2012). This

Fig. 1. Adherens junction structures associated with the actomyosin

cytoskeleton. Cell–cell junctions exist in different conformations depending

on the maturity of the junction, the cell polarization state or junction

remodeling, which is regulated by hormones. Depicted here are three different

junction types typically observed in cell culture. FAJs, linear adherens

junctions and ZA junctions, which are distinct with regard to the organization

of the associated actomyosin network, the amount and direction of tension

applied to them, and their molecular composition. (A) FAJs: during the

formation of cell–cell junctions or the remodeling of existing cell–cell

junctions, junctions adopt a punctate morphology, and contain cadherin and

nectin adhesion complexes (Huveneers et al., 2012; Taguchi et al., 2011;

Takai et al., 2008; Twiss et al., 2012). Cadherin adhesions are physically

pulled by perpendicular actomyosin bundles (shown in green in the

immunofluorescence image). This probably brings a-catenin under tension,

and alters its conformation (as indicated by the elongated yellow shape) to

allow recruitment of vinculin to reinforce cell–cell adhesions (Huveneers et

al., 2012; Yonemura et al., 2010). In addition, several other actin regulatory

proteins are recruited to FAJs, such as zyxin, VASP, formin and ARP2/3,

which might be linked to cadherin or nectin complexes directly, or are part of

the actin cytoskeleton that is associated with FAJs. (B) After expansion of

FAJs to linear junctions, thick actomyosin bundles run in parallel with the

cell–cell contacts, whereas only thin F-actin structures exactly colocalize with

junction markers. Linear junctions contain only very little vinculin,

suggesting that they are not under tension (Huveneers et al., 2012; le Duc

et al., 2010) and depend on actomyosin activity to recruit EPLIN (Taguchi

et al., 2011). It is currently unclear whether EPLIN is interacting with the

cell–cell adhesion complex, or the peri-junctional F-actin, or both (see question

marks). EM and IF images from HUVECs in A and B were kindly provided by

Adam Grieve and Joppe Oldenburg, Hubrecht Institute, Utrecht, The

Netherlands. (C) In fully polarized cells, such as in epithelial monolayers, linear

junctions further mature into ZA junctions (Watabe-Uchida et al., 1998). In this

conformation, tight junction and cadherin–adhesion complexes are closely

connected to thick actomyosin bundles, which constrict the apical region of the

cell by applying forces that run in parallel to cell–cell junctions (Miyoshi and

Takai, 2008). The formation of a ZA depends on the a-catenin interacting

proteins vinculin and EPLIN (Abe and Takeichi, 2008; Watabe-Uchida et al.,

1998). Actin regulatory proteins, such as cortactin, N-WASP and Arp2/3, are

now in close proximity to the cell–cell adhesions complexes. The IF image of

DLD1 colon carcinoma cells was kindly provided by Floor Twiss, Hubrecht

Institute, Utrecht, NL. The EM image has previously been published by Tsukita

and colleagues (Tsukita et al., 2001) and was used with permission. Mv,

microvillus; DS, desmosome; AJ, adherens junction; TJ, tight junction.
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mechanoresponse was shown to be dependent on intermediate

filaments that connect to cadherin-based cell–cell junctions

through plakoglobin, whereas, in the other cases described

above, the measured cadherin mechanoresponses depend on the

actomyosin cytoskeleton. It should be noted that in most of

these studies, no direct biochemical readout of cadherin

mechanotransduction was used. Hence, the involvement of

biochemical signals (which is part of the definition of

mechanotransduction) in these studies was only inferred from

the apparent downstream cellular responses, and the challenge

now is to delineate the biochemical pathways involved.

Although recent work clearly implicates classical cadherins in

cell–cell mechanosensing, several other cell–cell junction

receptors that physically connect to cytoskeletons exist, and it

is highly possible that additional mechanosensitive adhesion

receptor complexes are present at cell–cell interfaces. In this

context, interestingly, platelet endothelial cell adhesion

molecule 1 (PECAM1) has been identified to be a

mechanosensor in shear-flow alignment of endothelial cells,

whereas VE-cadherin merely exerts an adaptor role in these cells

(Tzima et al., 2005). It is likely that the current models of

mechanosensing at cell–cell junctions will need to be adapted in

order to accommodate the contribution of multiple adhesion

complexes in their appropriate cellular context.

a-catenin and vinculin – a central protein pair in cadherin

mechanotransduction

Clearly, to function in mechanosensing, cell–cell adhesion

receptors must be present in a force chain that connects the

cytoskeletal networks of two neighboring cells. The existence of

a linear physical connection between cadherins and F-actin has

been debated in recent years, because a-catenin that has been

purified from cell lysates was found to be unable to bind to F-

actin and b-catenin simultaneously (Drees et al., 2005; Yamada

et al., 2005). The studies described above – which identified

cadherins as mechanosensors – nevertheless argued that such a

physical connection does exist in intact cells. Furthermore, recent

studies of a-catenin indicate that, in intact cells, it exists in a

conformation that allows it to directly bridge b-catenin and F-

actin (Kwiatkowski et al., 2010; Twiss et al., 2012; Yonemura

et al., 2010). Thus, the current models still favour a minimal core

structure consisting of cadherin, b-catenin and a-catenin that is

sufficient to form cadherin-based junctions that are connected by

actin. These three proteins would be the core force-bearing unit at

cadherin-based junctions (Fig. 2). The key mechanosensing event

in this unit then is the force-induced stretching of a-catenin,

which opens up a binding site for vinculin (Yonemura et al.,

2010). The resulting recruitment of vinculin is needed for the

mechanotransduction response (cell-stiffening), which has been

observed in magnetic twisting cytometry experiments with

cadherin-coated beads (le Duc et al., 2010; Twiss et al., 2012).

Moreover, by preventing vinculin recruitment (by replacing the

vinculin binding site in a-catenin), we showed that force-

dependent reinforcement of cell–cell adhesion is a function of

junctional vinculin. Vinculin that is recruited to FAJs during

thrombin-induced endothelial junction remodeling protects

junctions from breaking, and when it is recruited to FAJs

during de novo formation of epithelial cell–cell junctions, it

enhances sealing of the epithelial sheet (Huveneers et al., 2012;

Twiss et al., 2012). A role for vinculin in the tightening of

epithelial cell–cell junctions and the formation of the ZA has

been shown previously (Maddugoda et al., 2007; Watabe-Uchida

et al., 1998), but it remains unknown how this role relates to its

force-dependent recruitment to a-catenin and its localization to

FAJs. Thus, a-catenin and vinculin form a central functional

module in cadherin mechanosensing, and investigating the role

and regulation of their diverse interactions with other proteins

will be important to delineate the details of this process. We

have summarized the current knowledge about the structure,

conformational regulation and interactors of a-catenin and

vinculin in Box 1.

Exactly how vinculin propagates the mechanoresponse to bring

about the reinforcement of cell–cell junctions is not known. On

the basis of biochemical studies, the recruitment of vinculin upon
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stretching of a-catenin could simply strengthen cell–cell

adhesion by providing an additional bond between the cadherin

complex and F-actin (Fig. 2). Indeed, binding of a-catenin to the

head domain of vinculin enhances the binding of the vinculin tail

to F-actin (Choi et al., 2012; Peng et al., 2012), as has been

shown for many of previously identified factors that bind to the

head domain of vinculin (Ziegler et al., 2006). This scenario

would place vinculin into the force chain, between F-actin and

cadherin, and any tension across the cadherin-F-actin linkage

might therefore affect its conformation. Because vinculin

contains two actin-binding sites at its C-terminal tail

(Hüttelmaier et al., 1997), it might further reinforce cell–cell

adhesion by bundling of F-actin that is attached to the cadherin

complex. In addition to increasing the binding of F-actin,

vinculin might bring other factors to cadherin adhesions, such

as members of the vasodilator-stimulated phosphoprotein

(VASP) (Brindle et al., 1996) and ponsin families (Kioka et al.,

1999; Mandai et al., 1999), as well as the ARP2/3 complex

(DeMali et al., 2002; Tang and Brieher, 2012), to regulate F-

actin remodeling. Moreover, there is evidence that vinculin itself

has an actin-polymerization activity in its tail domain (Le

Clainche et al., 2010; Wen et al., 2009). Therefore, a force-

dependent increase in actin polymerization at cell–cell junctions

might serve to counteract the pulling force that is exerted by

contractile F-actin. In addition to binding vinculin, the force-

regulated D3 domain of a-catenin can bind to a-actinin (Nieset

et al., 1997) and its tail domain to EPLIN, which is somehow

regulated by myosin activity (Taguchi et al., 2011). These

interactions might further reinforce the linkage between cadherin

and F-actin (Fig. 2). Finally, the actin nucleator formin-1 also

binds to the D3 domain of a-catenin (Vasioukhin et al., 2000) and

might, thus, contribute to force-induced actin-polymerization at

cell–cell junctions. However, it remains to be elucidated which

of these possible events is indeed elicited by an increase in

tension on cell–cell junctions and thus contributes to cadherin

mechanotransduction.

Box 1. a-catenin, vinculin and their interaction partners – a central hub in cadherin mechanotransduction

a-catenin and vinculin are structurally homologous proteins, with a relatively low sequence homology. Overall structural information comes from

free full-length vinculin, which is comprised of multiple helical-bundle modules (Bakolitsa et al., 2004). The smallest modules are four-helix bundles,

which form the characteristic domains D1–4 that build the vinculin head domain (see Figure). Structural information of free a-catenin has been

limited to the fragments shown in full color (amino acid residues 82–262 and 388–629) (Pokutta et al., 2002; Pokutta andWeis, 2000), but indicates

that its overall organization is similar to that of vinculin (although the D2 domain is not present in a-catenin). Gray rods (in a-catenin) represent

domains for which no structural information is available. The tail domain of vinculin consists of five a-helices (schematically drawn for a clear display

of interactions) and is separated from the head domain by a flexible loop that contains several proline-rich elements. In free, full-length vinculin, the

D1 domain is interacting with the tail domain, which shields it from its binding partners (Johnson and Craig, 1995). The D4 domain also impairs D1

interactions (Cohen et al., 2005). Interactions with the D1 or tail domain of vinculin influence the interactions of its other domains, and this allosteric

regulation is referred to as ‘activation’ of vinculin. For a-catenin, there is also evidence for an allosteric regulation of its actin-binding activity (Drees

et al., 2005), as well as its vinculin-binding activity (Choi et al., 2012; Yonemura et al., 2010). Intermolecular shielding of the vinculin-binding domain

is taking place within the head domain through an interaction between the a-catenin D3 and D4 domains. This interaction is relieved in a myosin-

dependent manner, probably by stretching of the protein (Yonemura et al., 2010). Moreover, the vinculin-binding portion of a-catenin is linearized

when it is co-crystallized with vinculin, showing directly that extensive unfolding events occur (Choi et al., 2012; Rangarajan and Izard, 2012).

Additional interactions besides those with vinculin are likely to be influenced by force-dependent unfolding of a-catenin, and protein interactions with

vinculin itself might be affected as well if tension across vinculin increases. Taken together, a-catenin and vinculin are proteins that consist of helical

modules. Intermolecular autoinhibitory interactions occur between these modules, and their force-dependent disruption appears to be central to

mechanotransduction at cell–cell junctions. PIP2, phosphatidylinositol 4,5-bisphosphate.
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Vinculin and EPLIN – sensors of cadherin–F-actin tension

or sensors of F-actin organization?

The differences in the cadherin complex and the connected

actomyosin cytoskeleton that have been observed for the various
cell–cell junction conformations provoke the question whether the
same mechanical mechanisms apply for all cell–cell junctions. The

myosin-dependent recruitment of vinculin occurs both at the
tensile FAJs and at the ZA, but EPLIN is only found at ZAs and is
excluded from FAJs. Moreover, the release of tension on FAJs by

ablating the connected F-actin bundles increases the amount of
EPLIN at the resulting unstressed cell–cell contact sites (Taguchi
et al., 2011). Thus, it appears that the presence of vinculin and

EPLIN at FAJs is oppositely regulated by force, suggesting that
they fulfill complementary functions. There are also differences in
the organization of F-actin at FAJs and at the ZA that raise the
question of whether they employ the same molecular mechanisms

for vinculin recruitment. As indicated by laser ablation
experiments at cell–cell junctions (Cavey et al., 2008; Farhadifar
et al., 2007; Huveneers et al., 2012), the direction of force at ZA

and FAJ is different, and ultrastructural analysis of the associated
actomyosin cytoskeleton demonstrates that these adhesive
structures form different connections to F-actin (Yonemura et al.,

1995). The radial, contractile F-actin bundles that directly connect
to FAJs can be easily envisioned to put tension on the cadherin
complex (Fig. 1A). However, it is more difficult to imagine how

the parallel actin bundles that align the ZA in monolayers and
anchor at tri-cellular connections (Fig. 1C) exert tensile force on
cadherin complexes that are located in the middle between two
anchoring points. Interestingly, it has been shown that vinculin can

localize to apical cell–cell junctions in a force-dependent and
force-independent manner. The latter is mediated by an increased
stabilization of F-actin, and could thus rely on the actin-binding

activity of vinculin, rather than on its interaction with a-catenin
(Sumida et al., 2011). EPLIN also localizes to the actin
cytoskeleton outside of cell–cell junctions [(Abe and Takeichi,

2008; Song et al., 2002) and our unpublished observations]. On the
basis of these findings, one could speculate that, at least in part, the
localization of EPLIN and vinculin to the ZA is indirectly induced
by myosin II activity through a stabilization of F-actin at cell–cell

junctions (Shewan et al., 2005), whereas the localization of
vinculin at, and the exclusion of EPLIN from FAJs, is directly
regulated by force through its concomitant deformation of a-

catenin. In the case of FAJs, we directly confirmed the importance
of a-catenin for the recruitment of vinculin to junctions by
replacing endogenous a-catenin with a mutant form (a-catenin–

DVBS), which lacks the vinculin-binding sequence. In these cells,
FAJs that are devoid of vinculin still form, indicating that vinculin
is not required for junction formation per se (Huveneers et al.,

2012). Experiments that address the recruitment of these proteins
to the ZA will be more challenging, because a ZA is not formed at
all in the absence of vinculin or EPLIN recruitment (Abe and
Takeichi, 2008; Watabe-Uchida et al., 1998). In conclusion, the

exact mechanisms that recruit vinculin and EPLIN to the distinct
junctions structures are still unclear, and might involve both
recruitment by force-induced changes in a-catenin and changes in

the F-actin cytoskeleton.

Zyxin and VASP – potential cell–cell mechanosensing

beyond vinculin

In addition to vinculin and EPLIN, other proteins have been
found to accumulate at force-dependent cell–cell junctions,

including Zyxin and VASP (Nguyen et al., 2010; Sperry et al.,

2010). The molecular mechanisms underlying their recruitment to
junctions have not been established and might be complex. Zyxin
is recruited to tensile F-actin (Nguyen et al., 2010; Yoshigi et al.,

2005), which is certainly present at cell–cell junctions, but the
close Zyxin homologs Ajuba and lipoma preferred partner (LPP)
are known to be recruited by a-catenin and a-actinin (Hansen and
Beckerle, 2008; Marie et al., 2003), which are also present in

mechanical force-chains. Moreover, Zyxin localization to cell–cell
adhesions has recently been attributed to its interaction with nectin
(Gregory Call et al., 2011). VASP is recruited to F-actin structures

by Zyxin (Smith et al., 2010), and this may similarly mediate its
recruitment to cell–cell junctions (Fig. 2). However, vinculin also
contains a VASP-binding site (Brindle et al., 1996), providing

another possible means of recruiting VASP to cell–cell junctions.
Thus, potentially, the recruitment of Zyxin and VASP to tensile
cell–cell junctions contributes to F-actin remodeling independent

of a-catenin stretching, adding an additional layer to the
mechanosensing machinery at cell–cell junctions.

Alternative mechanosensing mechanisms at cell–cell

junctions

It is conceivable that alternative mechanosensing mechanisms are
at play in cell–cell junctions besides the described force-induced
stretching of a-catenin, although this has not been shown directly

yet. In the case of integrin-mediated adhesion, both the stiffness
of the ECM and actin flow rates determine the tension that
proteins within this linkage experience, and a special subset of

protein–protein bonds, the so-called ‘catch bonds’, directly
respond to increases in tension by growing stronger (Moore
et al., 2010; Vogel and Sheetz, 2006). Retrograde F-actin flow

also occurs at the edge of cells when new junctions are formed or
junctions are remodeling (Kametani and Takeichi, 2007). In these
situations, it is likely that there is increased tension on proteins
that connect cell–cell junction complexes and actin (Bard et al.,

2008; Kametani and Takeichi, 2007), and perhaps tension-
induced catch bonds exist within this linkage. Indeed,
measurements of single cadherin molecules using atomic force

microscopy indicate that cadherins themselves display catch
bond properties in response to tension (Rakshit et al., 2012).
Furthermore, mechanosensitive ion channels, such as the

transient receptor potential cation channel subfamily V member
4 (TRPV4) that can interact with the cadherin complex through
b-catenin, might localize at cell–cell contact sites (Janssen et al.,

2011; Ko et al., 2001; Sokabe et al., 2010). This raises the
possibility that force-dependent Ca2+ influxes are generated
through classical cadherin complexes, similar to channel-
dependent mechanosensing by the distantly related cadherin 23

in the inner ear (Müller, 2008). We expect that mechanosensing
mechanisms at cell–cell junctions extend beyond a-catenin
stretching, and a key challenge will be to delineate the hierarchy

and interdependence of these multiple mechanosensitive systems.

Cadherin mechanosensing in development and

disease

The cadherin mechanosensing systems discussed in this
Commentary are likely to be involved in the biophysical
control of tissue morphogenesis. As shown in Drosophila

melanogaster, actomyosin-based forces applied at cadherin-
based cell–cell adhesions further direct actomyosin contraction
to control tissue elongation. These are clear examples of
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developmental mechanosensing, but it is not known which
proteins fulfill structural roles and which fulfill mechanosensing

roles (He et al., 2010; Rauzi et al., 2010). In zebrafish cells,
differential tension in the cortical cytoskeleton directs sorting of

germline cells (Krieg et al., 2008). For this to occur, a mechanical
coupling between E-cadherin-based cell–cell contacts and actin is
required, and it was hypothesized that the strength of this

coupling is set by the cortical actin tension through cadherin
mechanosensing (Maı̂tre et al., 2012). In mammalian

development, mechanical control mechanisms are likely to be
similarly important (Papusheva and Heisenberg, 2010), and

vinculin knockout mice indeed show severe defects in tissue
morphogenesis, which are most notable in the development
of the central nervous system and the heart (Xu et al., 1998).

During tumor progression, physical parameters also control
morphogenesis. It is well established that increased stiffness

of the extracellular matrix, concomitant with intracellular
actomyosin contractility, results in disruption of epithelial
organization (DuFort et al., 2011; Paszek et al., 2005; Schedin

and Keely, 2011). Large-scale gene transcription has been shown
to be regulated by tumor tissue stiffness (DuFort et al., 2011;

Paszek et al., 2005; Schedin and Keely, 2011), and the
transcriptional regulators YAP and TAZ have been identified

as key intermediates in mechanically-induced cell growth and
differentiation processes (Dupont et al., 2011). Interestingly,
YAP was found to be directly regulated by a-catenin in

epidermal stem cells (Schlegelmilch et al., 2011; Silvis et al.,
2011), and by the E-cadherin complex in epithelial cell lines

(Kim et al., 2011), but it is unknown whether this relates to
mechanical forces at cell–cell junctions. Thus, mechanical forces

are driving embryonic and pathological tissue morphogenesis
events, and a role for cadherin mechanosensing is anticipated,
although any direct evidence has not yet been provided.

Many other examples that emphasize the physiological
importance of sensing mechanical forces come from vascular

studies (Hahn and Schwartz, 2009; Ingber, 2002), in which
hemodynamic forces remodel vessels (Lucitti et al., 2007) or
regulate growth factor-induced sprouting angiogenesis (Song and

Munn, 2011). Here, mechanosensing mechanisms are clearly
implicated in disease conditions. Endothelial responses to shear

flow have atheroprotective functions, and a disturbance of blood
flow, which leads to a drop in shear force and to different shear
force patterns, is strongly associated with the development of

atherosclerosis (Cunningham and Gotlieb, 2005; Hahn and
Schwartz, 2009). Dynamic regulation of the cadherin–F-actin

linkage is also important for transendothelial migration of
leukocytes (Schulte et al., 2011). In this process, transient

remodeling of cell–cell junctions is required (Vestweber, 2002)
and thrombin is one of the hormones that regulates this. On the
basis of our results that, during thrombin-induced junction

remodeling, junctions are protected by force-induced
recruitment of vinculin (Huveneers et al., 2012), we anticipate

that cadherin mechanosensing is involved in this process in vivo.
This would suggest that therapeutically stabilizing the interaction

between a-catenin and vinculin might result in vascular
stabilization, which will be useful to treat the many
inflammatory-based diseases that show excessive leukocyte

transmigration. Furthermore, excessive Rho-activity and
prolonged actomyosin contraction, which leads to disruption of

endothelial barrier function (Krishnan et al., 2011), is often
observed in pulmonary endothelial dysfunction (Storck and

Wojciak-Stothard, 2012). Here, a stabilization of the interaction

between a-catenin and vinculin could be envisioned to provide

protection against the loss of vascular barrier function, which

causes a large part of the associated clinical conditions.

Conclusions and future perspectives

Mechanoresponsive adhesion systems emerge as signaling

mechanisms in tissue development and disease, and increasing our

understanding of the molecular machineries involved will enhance

our knowledge of their relevance in vivo. Thus far, the best-

documented downstream effect of cadherin mechanosensing is the

protection of cell–cell junctions through recruitment of vinculin.

Harnessing this effect through the stabilization of vinculin at junctions

could be employed as a treatment for vascular diseases that entail

junction instability. Further elucidation of mechanosensitive

pathways and their underlying molecular mechanisms might thus

lead to the discovery of therapeutic targets and intervention strategies.

It is likely that the full molecular details of the interaction

between a-catenin and vinculin will be deciphered by structural

biologists, and some structures of the interaction sites have already

appeared in the literature (Choi et al., 2012; Rangarajan and Izard,

2012) (see Box 1). This will allow the development of specific

mutants that abolish this particular interaction without perturbing

any other crucial functions. The use of such a-catenin or vinculin

mutants in animal models will allow to assess the importance of

this interaction in tissue morphogenesis, inflammation and tumor

progression. Apart from vinculin, several other interaction partners

of a-catenin might be affected by its force-dependent

conformational regulation. Further investigation of the

composition of FAJs and the underlying regulatory mechanisms

will increase our understanding of force-dependent junction

remodeling, and our eventual ability to manipulate this process

for therapeutic use or in tissue engineering approaches.

Finally, the recent development of FRET-based tension

sensors, and the elucidation of force-dependent protein

interactions and localizations allow to directly assess forces and

their fluctuations by light microscopy. These tools will strongly

benefit the investigation of the mechanical properties of cell–cell

adhesions and their regulation in complex biological systems,

such as developing tissues, embryos and tumors, which had

previously been beyond our technical abilities. Therefore, new

insights into the biophysical properties of tissues and tumors, and

their relation to the state and progression of disease are expected

to be available in the near future.
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