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Abstract 10 

Mechanical loading is a key factor governing bone remodeling and adaptation. Both preclinical and 11 
clinical studies have demonstrated its effects on bone tissue, which were also notably predicted in the 12 
mechanostat theory. Indeed, existing methods to quantify bone mechanoregulation have successfully 13 
associated the frequency of remodeling events with local mechanical signals, combining time-lapsed 14 
in vivo micro-computed tomography (micro-CT) imaging and micro-finite element (micro-FE) 15 
analysis. However, a correlation between the local surface velocity of remodeling events and 16 
mechanical signals has not been shown. As many degenerative bone diseases have also been linked 17 
to impaired bone remodeling, this relationship could provide an advantage in detecting the effects of 18 
such conditions and advance our understanding of the underlying mechanisms. Therefore, in this 19 
study, we introduce a novel method to estimate remodeling velocity (RmV) curves from time-lapsed 20 
in vivo mouse caudal vertebrae data under static and cyclic mechanical loading. These curves can be 21 
fitted with piecewise linear functions as proposed in the mechanostat theory. Accordingly, new 22 
remodeling parameters can be derived from such data, including formation saturation levels (FSL), 23 
resorption velocity modulus (RVM), and remodeling thresholds (RmT). Our results revealed that the 24 
norm of the gradient of strain energy density (ÑSED) yielded the highest accuracy to quantify 25 
mechanoregulation data using micro-FE analysis with homogeneous material properties, while 26 
effective strain was the best predictor for micro-FE analysis with heterogeneous material properties. 27 
Furthermore, RmV curves could be accurately described with piecewise linear and hyperbola 28 
functions (root mean square error below 0.2 µm/day for weekly analysis) and several remodeling 29 
parameters determined from these curves followed a logarithmic relationship with loading frequency, 30 
especially FSL and RmT values for both weekly and four-weekly analysis. Crucially, RmV curves 31 
and derived parameters could detect differences in mechanically driven bone adaptation, which 32 
complemented previous results showing a logarithmic relationship between loading frequency and 33 
net change in bone volume fraction over four weeks. Together, we expect this data to support the 34 
calibration of in silico models of bone adaptation and the characterization of the effects of 35 
mechanical loading and pharmaceutical treatment interventions in vivo. 36 

 37 
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Introduction 38 

Bone is a dynamic organ capable of adapting to its mechanical environment (Burr et al. 2002). 39 
Through a multiscale process, loads are transferred from the organ to the cellular level, eliciting 40 
highly coordinated biological responses that remodel its architecture (Wolff 1986, Lanyon 1992, 41 
Turner 1998). Indeed, several studies have successfully shown the influence of mechanical loading in 42 
bone adaptation, especially in trabecular bone, highlighting how mechanical cues guide the bone 43 
structure towards an optimal load transfer (Lanyon 1992, Rubin et al. 1994, Huiskes et al. 2000, De 44 
Souza et al. 2005, Lambers et al. 2011). From a mathematical modeling perspective, the mechanostat 45 
theory (Frost 1987) is a widely known proposal for the regulatory mechanism driving tissue-level 46 
bone adaptation, which has been successfully incorporated into in silico models of bone adaptation 47 
capable of approximating the trends observed in vivo in response to various interventions (Levchuk et 48 
al. 2014) and loading frequencies (Kameo et al. 2011). Such models can leverage time-lapsed in vivo 49 
micro-computed tomography (micro-CT) data, which has also enabled tracking structural changes in 50 
response to externally applied loading in preclinical animal studies, contributing to a comprehensive 51 
description of both morphometric changes and mechanoregulation information of bone adaptation 52 
(Schulte et al. 2013, Birkhold et al. 2017, Albiol et al. 2020, San Cheong et al. 2020). Notably, with 53 
aging and in certain disease contexts, this remodeling process becomes unbalanced (Rubin et al. 54 
1992, Bassey et al. 1998), often leading to further degenerative conditions such as osteoporosis, 55 
which precede an increased risk of fractures and culminate in considerable health and economic costs 56 
for society (Gabriel et al. 2002, Becker et al. 2010). An impaired bone mechanoregulation has been 57 
suggested as a possible cause of this problem. Therefore, advancing our ability to retrieve 58 
mechanoregulation information from time-lapsed in vivo micro-CT data can help better understand 59 
the underlying mechanisms and, with that, develop more effective treatments for these degenerative 60 
conditions. 61 

In this regard, preclinical models, such as the mouse caudal vertebrae or tibia loading model, have 62 
been foundational to explore bone adaptation processes by enabling controllable experimental 63 
settings that can also mimic clinical pathological conditions (Rubin et al. 1994, Robling et al. 2002, 64 
Webster et al. 2008, Vandamme 2014, Razi et al. 2015, Roberts et al. 2019). As a result, existing 65 
methods to investigate mechanoregulation have successfully linked remodeling events with tissue 66 
strains obtained from micro-finite element (micro-FE) analysis, showing strong associations between 67 
formation/resorption and high/low tissue strains, respectively (Schulte et al. 2013, Razi et al. 2015, 68 
Scheuren et al. 2020), which were summarized in conditional probability curves defined over a 69 
continuous range of tissue strains. To this end, several mathematical quantities have been proposed to 70 
describe the local mechanical signal: strain energy density (SED), effective strain, and norm of the 71 
gradient of SED (ÑSED). Deformation can be quantified using SED or effective strain (Pistoia et al. 72 
2002), a derived quantity from SED that accounts for differences in tissue stiffness. Likewise, it is 73 
hypothesized that load-induced bone adaptation arises from mechanical deformation perceived by 74 
osteocytes, the mechanosensitive cells in bone (direct cell strain), and interstitial fluid flow (shear 75 
stress) in the lacunar-canalicular network (Klein-Nulend et al. 1995, Fritton et al. 2009, Weinbaum et 76 
al. 2011). Mathematically, ÑSED represents spatial differences in tissue deformation, which are 77 
believed to induce fluid flow (Huiskes 2000). From this perspective, it is unclear which mechanical 78 
signal shows the best association with bone remodeling events. 79 

Furthermore, conditional probability-based approaches lack quantitative information describing the 80 
expected change in bone material for a given strain value. This dependency has been considered in 81 
silico (Levchuk et al. 2014, Goda et al. 2016, Louna et al. 2019) by defining the surface velocity in 82 
response to the perceived mechanical signals guiding remodeling events, analogous to the 83 
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mechanostat theory proposal. Besides, previous work has shown a dose-dependent effect of this 84 
mechanical stimulus (Mosley et al. 1998, Sugiyama et al. 2012, Scheuren et al. 2020, Walle et al. 85 
2021), but an association of surface velocity with mechanical signal has not been investigated at the 86 
tissue level in vivo. On the one hand, it hinders more detailed comparisons of degenerative conditions 87 
that may conserve the mechanosensation ability of bone cells, associated with mechanical signal 88 
thresholds that regulate remodeling events, but influence the magnitude of the response to the 89 
mechanical stimuli and the overall bone turnover. On the other hand, from a computational modeling 90 
perspective, retrieving such information from in vivo data can provide valuable calibration data for 91 
the mechanoregulation mechanisms implemented in such models to achieve more realistic bone 92 
adaptation representations. 93 

Therefore, the present study had two aims. First, we sought to identify which mechanical signal 94 
showed the best association with bone remodeling events using conditional probability curves and 95 
quantified with the correct classification rate (CCR) (Tourolle né Betts et al. 2020). Second, we 96 
aimed to propose a method to retrieve mechanoregulation information from time-lapsed in vivo 97 
micro-CT data that associates the surface remodeling velocity (RmV) with the local mechanical 98 
signal. We express this relationship in RmV curves from which several biologically meaningful 99 
parameters can be derived, such as formation/resorption thresholds and saturation levels. Notably, a 100 
consistent nomenclature of these parameters is proposed and formalized in alignment with the current 101 
understanding of the mechanostat theory. Furthermore, we applied our novel method to an in vivo 102 
mouse caudal vertebrae dataset (Scheuren et al. 2020) and quantified the local dynamic response of 103 
trabecular bone adaptation to static and cyclic loading of varying frequencies. We hypothesized that 104 
the effect of increased loading frequencies could be measured with our new analysis and compared 105 
through the parameters derived from these RmV curves. Finally, we investigated if there was a 106 
relationship between these parameters and loading frequency, analogous to the logarithmic 107 
relationship observed between loading frequency and net change in bone volume fraction over the 4-108 
week observation period (Scheuren et al. 2020). 109 

Materials and Methods 110 

Time-lapsed in vivo micro-CT mouse caudal vertebrae dataset 111 

The experimental data used for this study was collected in a previous longitudinal murine in vivo 112 
loading study (Scheuren et al. 2020), supporting 3R principles. Briefly, 11-week-old female 113 
C57BL/6J mice received surgery to allow mechanical loading of the sixth caudal vertebrae (CV6) via 114 
stainless steel pins (Fine Science Tools, Heidelberg, Germany) inserted into the fifth and seventh 115 
vertebrae following the protocol by Webster et al. (2008). After surgery and recovery, the 15-week-116 
old mice were split into five groups: sham loading (0 N), 8 N static, or 8 N cyclic loading with the 117 
frequencies of 2 Hz, 5 Hz, or 10 Hz. The loading regime was performed for five minutes, three times 118 
per week, over four weeks, as previously described by Lambers et al. (2011). With the start of 119 
loading, the animals were scanned weekly using in vivo micro-CT (vivaCT 40, Scanco Medical AG, 120 
Switzerland), with an isotropic voxel size of 10.5 μm. 121 

Automated compartmental analysis of the mouse caudal vertebrae 122 

Consecutive time-points of the micro-CT scans were initially registered to each other using the Image 123 
Processing Language (IPL Version 5.04c; Scanco Medical AG, Switzerland). For the identification 124 
of the trabecular and cortical compartments in the structure, the images were filtered with a Gaussian 125 
filter (sigma: 1.2, truncate: 1) as implemented in (Virtanen et al. 2020), binarized with a threshold of 126 
580 mgHA/cm3 (Scheuren et al. 2020), followed by automatic identification of the relevant 127 
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compartments following the protocol proposed by Lambers et al. (2011). This approach was 128 
implemented in Python (version 3.9.9) and validated against the existing pipeline in IPL 129 
(Supplementary Material 1.1.1). 130 

Micro-finite element analysis 131 

Micro-CT images were analyzed with micro-finite element analysis (micro-FE) to estimate the local 132 
mechanical signal. The simulations computed strain energy density (SED, in MPa) in the vertebrae, 133 
from which all derived quantities were determined after rescaling to match the forces applied in vivo: 134 
8 N for loaded groups and 4 N (physiological loading) for the sham-loaded group (0 N) (Christen et 135 
al. 2012). Two sets of simulations were performed for each sample: with homogeneous and 136 
heterogeneous material properties based on the binary and grayscale images of the samples. The 137 
former considered a Young’s modulus value of 14.8 GPa for bone and a Poisson’s ratio of 0.3 138 
(Webster et al. 2008), whereas the latter applied the linear relationship between bone mineral density 139 
and Young’s modulus in trabecular bone (Mulder et al. 2007), also using a Poisson’s ratio of 0.3. 140 
Image voxels were converted to 8-node hexahedral elements, and bone was assumed to behave 141 
within the linear elastic regime. Two cylindrical discs were added at the proximal and distal ends of 142 
the vertebra model (Webster et al. 2008), mimicking the role of the intervertebral discs. Disc settings 143 
were calibrated for micro-FE with homogeneous and heterogeneous material properties 144 
(Supplementary Material 1.2). The nodes at the proximal end of the micro-FE mesh were constrained 145 
in all directions, while the nodes at the distal end were displaced by 1% of the length in the z-axis 146 
(longitudinal axis of the sample). The pipeline was also implemented in Python, and the simulations 147 
ran on the Euler cluster operated by Scientific IT Services at ETH Zurich, using the micro-FE solver 148 
ParOSol (Flaig et al. 2011) on Intel Xeon Gold 6150 processors (2.7-3.7 GHz). 149 

Mechanoregulation analysis based on conditional probability curves 150 

The mechanoregulation analysis performed in this study considered three mathematical quantities 151 
representing the local mechanical signal: strain energy density (SED), effective strain, and the norm 152 
of the gradient of SED (ÑSED). In this context, the gradient was computed using the central 153 
difference scheme, and the norm was used as a proxy for the fluid flow in each voxel. For SED and 154 
effective strain, the values were collected on the voxels on the bone side of the surface interface 155 
between bone and marrow, while the values for ÑSED were collected on the marrow side. 156 

The conditional probabilities of a remodeling event (formation, quiescence, resorption) to occur at 157 
each value of mechanical signal were calculated as described previously by Schulte et al. (2013), for 158 
weekly intervals and the 4-week observation period. The quantification of the amount of 159 
mechanoregulation information recovered in the analysis relied on the correct classification rate 160 
(CCR), using an implementation proposed by Tourolle né Betts et al. (2020), which summarizes in a 161 
single number the ability to accurately classify remodeling events within the range of observed local 162 
mechanical signal values. 163 

Mechanostat remodeling velocity curve and parameter derivation 164 

Here, we introduce a novel method to estimate sample-specific remodeling velocity curves and their 165 
corresponding mechanostat parameters based on time-lapsed micro-CT data. The proposed method 166 
considers the scans from two time-points: baseline and follow-up images. First, the follow-up image 167 
is registered to the baseline, revealing volumes of formed, quiescent, and resorbed clusters. Next, 168 
these clusters are used to classify surface voxels of the baseline image: formation surfaces consist of 169 
the overlap between dilated formed clusters and the baseline surface, resorption surfaces refer to the 170 
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overlap between resorbed clusters and the baseline surface, and quiescent surfaces contain the 171 
remaining surface voxels. A distance transform (DT) algorithm (taxicab metric) is applied to the 172 
follow-up image and the inverted follow-up image and masked with the formation and resorption 173 
surfaces identified before, yielding the distance of each surface voxel to the surface of the follow-up 174 
scan. It is assumed that the distance transform of the follow-up reveals the amount of formed bone, 175 
while the inverted follow-up identifies the depth of resorption per surface voxel. The values assigned 176 
to formation surfaces are obtained by gray-dilating the distance transform values of the formed 177 
clusters into the neighboring formation surface voxels identified. Further, these are linearly scaled in 178 
a cluster-specific fashion to match the volume of the corresponding cluster (Supplementary Figure 2). 179 
Next, the mechanical signal (ms) computed from the micro-FE analysis of the baseline image is 180 
collected using the same remodeling surface masks. Specifically, we selected effective strain in 181 
microstrain (µe) as the mechanical signal descriptor. 182 

Given that each surface voxel contains information on the amount of surface change and the 183 
estimated mechanical signal, a 2D histogram is computed, considering the mechanical signal on the 184 
horizontal axis and the estimated distance on the vertical axis. The mechanical signal is capped at the 185 
99th percentile to eliminate very high (unphysiological) values, and the values are binned at 1% of 186 
this value. In the vertical axis, all values are considered and binned at 1% of the maximum value 187 
observed. A weighted average of the distance values is computed using the number of counts in the 188 
2D histogram as weights, providing a value for each mechanical signal bin and considering a value of 189 
0 for the quiescent surface voxels. The last step converts the estimated distance to a remodeling 190 
velocity magnitude by multiplying and dividing by the voxel size of the images and the interval 191 
between the time-points analyzed, respectively. For consistency with other dynamic morphometry 192 
quantities (such as mineral apposition and resorption rates), we chose to also express remodeling 193 
velocity in µm/day. 194 

Finally, mathematical functions are fitted to the curves obtained, yielding their quantitative 195 
parametric description, namely: piecewise linear (Equation 1), as proposed in the original 196 
mechanostat theory, and a continuous hyperbola function (Equation 2), both illustrated in Figure 1, 197 
and which enable quantifying new remodeling parameters in vivo. The piecewise linear function is 198 
defined by formation and resorption saturation levels (FSL/RSL, µm/day) which determine the 199 
maximum and minimum remodeling velocities observed, formation and resorption thresholds 200 
(FT/RT, µe) which determine the minimum/maximum mechanical signal value from which 201 
formation/resorption events are observed, and formation and resorption velocity modulus 202 
(FVM/RVM, µm/day / µe) which determine the change in remodeling velocity resulting from a 203 
change in mechanical signal, defined between FSL/RSL and FT/RT, respectively. Specifically, we 204 
highlight the proposal to define FVM/RVM as a modulus, because the values are also proportional to 205 
mechanical strain. Comparably, the hyperbola function comprises similar FSL and RSL parameters, a 206 
remodeling threshold (RmT, µm/day) corresponding to the mechanical signal value at which the 207 
RmV curve is zero and a remodeling velocity modulus (RmVM, µm/day x µe), which is defined as 208 
the scale factor determining the rate of change in remodeling velocity resulting from a change in 209 
mechanical signal. 210 

Piecewise linear: 211 
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RmV	(ms)	= 

⎩
⎪⎪
⎨

⎪⎪
⎧ RSL, ms<RT- RSL

RVM

-RT×RVM+RVM×ms, RT- RSL
RVM

<ms<RT
0, RT<ms<FT

-FT×FVM+FVM×ms, FT<ms<FT+ FSL
FVM

FSL, FT+ FSL
FVM

<ms

 (Equation 1) 212 

Hyperbola function: 213 

RmV	(ms) = FSL - RmVM
RmT + ms

  (Equation 2) 214 

Note that for the hyperbola function, RSL is defined as the value of the RmV function at the 215 
minimum mechanical signal value observed. 216 

The quality of the fits was assessed using the root mean squared error (RMSE) between the fitted 217 
curve and the corresponding velocity value at each mechanical signal value. The curve fitting was 218 
done with Scipy 1.7.3 (Virtanen et al. 2020) and Curve-fit annealing (Reinhardt 2019). 219 

Frequency dependency of estimated mechanostat parameters 220 

We implemented a balanced bootstrapping approach (Dvison et al. 1986) to characterize the 221 
distribution of the parameters estimated from the mathematical functions fitted to the remodeling 222 
velocity curves. Samples were randomly resampled 2500 times per group to generate a synthetic 223 
group of the same size, and the corresponding remodeling velocity curves were determined and fitted 224 
with the piecewise linear and hyperbola functions, yielding the estimations of the mechanostat 225 
parameters. We adopted the formula used previously (Scheuren et al. 2020) to evaluate the 226 
dependency of relevant parameters with cyclic loading frequency. Specifically, the median values of 227 
the distributions were plotted for each loading frequency and fitted with a logarithmic regression 228 
curve (Equation 3). The quality of the fit was assessed with the Pseudo-R2 (Schabenberger et al. 229 
2001) which allows comparing the quality of fitted relationships for parameters with different 230 
magnitudes. 231 

𝑦 = 𝑦! + a × ln	(𝑓), f represents the loading frequency (Equation 3). 232 

Statistical analysis 233 

Statistical analysis was performed with Python 3.10.5, using the packages SciPy 1.7.3 (Virtanen et al. 234 
2020) and Scikit_posthocs 0.7.0 (Terpilowski 2019), and in R (R Core Team 2022). The analysis of 235 
longitudinal measurements of bone structural parameters was performed through repeated 236 
measurements ANOVA (Scheuren et al. 2020), implemented as a linear mixed model from the 237 
lmerTEST package (Kuznetsova et al. 2017), after inspection of linear regression diagnostics plots. 238 
All other parameters were first checked for normality, using the Shapiro-Wilk test. Non-normally 239 
distributed parameters were presented as median and inter-quartile range, while the remaining were 240 
presented as mean and standard deviation. Subsequently, parametric (one-way ANOVA followed by 241 
Tukey HSD) and non-parametric tests (Mann-Whitney U-test; Kruskal-Wallis followed by Conover-242 
Iman test for multiple comparisons, corrected by Holm-Bonferroni method) were chosen based on 243 
the result of the normality test and indicated accordingly for each comparison. Mechanostat 244 
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parameter distributions generated by bootstrapping were compared using the Kolmogorov Smirnov 245 
test. Significance was set at p < 0.05 in all experiments, otherwise significance levels are reported. 246 

Results 247 

Performance comparison of mechanical signal descriptors for mechanoregulation analysis 248 

First, we extended previous results (Scheuren et al. 2020) by comparing SED, effective strain and 249 
ÑSED and their ability to quantify mechanoregulation information from time-lapsed in vivo micro-250 
CT data. Figure 2A illustrates the conditional probability curves for each combination of mechanical 251 
signal and group between weeks 0-4. This qualitative evaluation highlighted that, for all mechanical 252 
signal descriptors, resorption was tightly regulated within a small interval of low mechanical signal 253 
values (normalized mechanical signal < 10% for SED and ÑSED and normalized mechanical signal 254 
< 29% for effective strain), where it was associated with a higher conditional probability of 255 
occurrence. Furthermore, for higher magnitudes of the mechanical signal, the conditional probability 256 
curve displayed a more stochastic pattern oscillating around 0.33 for SED and ÑSED and stabilizing 257 
below this value for effective strain. ÑSED provided the best discriminative ability for formation and 258 
quiescence events for all groups, supported by statistically significant differences when comparing 259 
the difference between the conditional probability associated with formation and quiescence between 260 
the mechanical signal descriptors (p<0.001 for ÑSED-SED, ÑSED-effective strain and SED-261 
effective strain). This was also substantiated by the increasing separation between both curves with 262 
an increase in mechanical signal magnitude (Figure 2A). The 10 Hz group achieved the widest 263 
difference between these events with 38% for ÑSED, in comparison to 33% for SED and 20% for 264 
effective strain, respectively, while the sham-loaded group showed a maximum difference of 33%, 265 
24% and 12% for ÑSED, SED and effective strain, respectively. Conversely, effective strain was the 266 
best descriptor for resorption events based on the sharp increase in the conditional probability for this 267 
event within the interval of low mechanical signal values (normalized mechanical signal < 29%), 268 
reaching its maximum conditional probability value between 64% (2 Hz group) and 80% (static and 269 
5 Hz groups), contrasting with values ranging between 47% (sham-loaded group) and 52% (5 Hz 270 
group) for ÑSED. 271 

CCR was computed from the conditional probability curves, as a proxy of the amount of 272 
mechanoregulation information retrieved, quantifying the number of remodeling events which were 273 
correctly classified. Our analysis showed that ÑSED consistently achieved the best performance for 274 
the micro-FE analysis with homogeneous material properties, followed by effective strain and SED 275 
(Figure 2B). Across all groups and all timepoints, CCR values for ÑSED were significantly higher 276 
than those of SED (Figure 2B). A similar result was observed for ÑSED and effective strain, 277 
although no statistical differences were found for the loading frequencies groups of 5 Hz and 10 Hz 278 
after week 2 (Figure 2B). For the interval 0-4 weeks, CCR values for ÑSED were also significantly 279 
higher than those from SED (p<0.001) and effective strain (p<0.05) for all groups except for the 10 280 
Hz group (Table 1). The effect of increasing loading frequencies was also noticeable in the 281 
corresponding increase in CCR values in the same period (Table 1). Conversely, for the micro-FE 282 
analysis with heterogeneous material properties, effective strain showed the best association with 283 
remodeling events, followed by SED and ÑSED, albeit the accuracy was lower than what was 284 
observed for micro-FE with homogeneous material properties, both in the weekly analysis (Figure 285 
2B) and between 0-4 weeks (Table 1). Furthermore, there was a weaker increasing trend of CCR 286 
values with increasing loading frequencies (Table 1) in comparison to the micro-FE analysis with 287 
homogeneous material properties. 288 
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Quantification of remodeling velocity curves and mechanostat parameters 289 

Next, we investigated bone mechanoregulation from time-lapsed in vivo micro-CT data by deriving 290 
remodeling velocity curves and fitting piecewise linear and hyperbola functions to estimate the 291 
corresponding mechanostat parameters, namely formation and resorption saturation levels 292 
(FSL/RSL), velocity modulus (FVM/RVM) and thresholds (FT/RT) for the piecewise linear function 293 
and FSL/RSL, remodeling velocity modulus (RmVM) and remodeling thresholds (RmT) for the 294 
hyperbola function, respectively. We analyzed consecutive pairs of scans (Figure 3, Supplementary 295 
Table 1), one week apart and summarized the group differences over the four-week period of the 296 
study (Table 2). 297 

The raw net response curves shown in Figure 3 resemble the shape of the mechanostat schematic 298 
proposed by Frost (2000) within the adapted and mild overload windows, providing a qualitative 299 
validation of the output which evaluated supraphysiological cyclic loads applied to the mouse 300 
vertebrae.  301 

Increasing loading frequency led to an increased number of formation events in comparison to 302 
resorption for a given strain value, which is visible as a linear translation of the derived curves 303 
towards higher RmV values, with formation events starting from lower mechanical signal threshold 304 
values (Figure 3). Quantitatively, the parameters derived from the fitted curves showed an increase in 305 
the FSL and decreased RT and RmT values with increasing loading frequency for both the weekly 306 
and the 0-4 weeks analysis (Table 2, Supplementary Table 1). Furthermore, the RSL values 307 
decreased for increasing loading frequencies (Supplementary Table 1), especially for weeks 3-4. 308 

The RmV curves also allowed characterizing time-lapsed bone adaptation for each group, where the 309 
range of RmV values decreased weekly (Figure 3) and converged towards comparable values 310 
between groups. Overall, this result indicated that the magnitude of the mechanical signal in weeks 3 311 
and 4 no longer induced the same strong remodeling responses observed in the first two weeks. FSL 312 
values followed a similar pattern for each group over the four weeks (Supplementary Table 1). In the 313 
first week, the remodeling velocity curves highlighted the acute response to supraphysiological 314 
loading, since most loaded groups did not reach a plateau at their FSL value, which only occurred in 315 
subsequent time-points. This progression was visible in the raw net response curves and in the fitted 316 
mathematical functions (Figure 3). Concurrently, RVM and FVM values (Supplementary Table 1) 317 
increased over time such that, at weeks 0-1, only regions of either high or low effective strain could 318 
elicit the strongest response associated with the estimated formation and resorption saturation levels, 319 
respectively. Over time, as the bone structure adapted to supraphysiological loading, the extent of 320 
regions of either high or low effective strain decreased, also visible in the decrease in the range of 321 
mechanical signal values (except for the sham-loaded group), and RSL and FSL were reached for 322 
lower mechanical signal values (Figure 3, Supplementary Table 1). The remodeling velocity curves 323 
showed that even highly loaded groups evolved from a state of predominant formation in the first two 324 
weeks towards physiological remodeling conditions, where resorption is tightly regulated within an 325 
interval of low mechanical signals and in agreement with the conditional probability curves shown 326 
previously (Figure 2). These observations were also corroborated by an increase in Pearson 327 
correlation coefficients between net remodeling curves of 5 Hz and 10 Hz loaded groups and the 328 
sham-loaded group. Specifically, these increased from 0.828 and 0.822 (p<0.0001) for the weeks 0-1 329 
to 0.908 and 0.883 (p<0.0001) between weeks 3-4, for the 5 Hz and 10 Hz groups, respectively, 330 
supporting comparable bone remodeling responses between these groups except for their 331 
mechanosensitivity, as seen in the differences between FT and RT values. A similar result was 332 
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observed for Pearson correlation coefficients between the 2 Hz and 10 Hz groups, and the 5 Hz and 333 
10 Hz, increasing from 0.872 and 0.874 to 0.899 and 0.925, respectively. 334 

Static loading still induced an anabolic response in the first week, characterized by a higher FSL in 335 
comparison to the sham-loaded group (Figure 3). However, in weeks 1-2 and 2-3, this group already 336 
matched the FSL values of the sham-loaded group suggesting a return to a physiological remodeling 337 
condition and eventually reached a lower FSL in week 3-4. RT and FT were visibly higher in the 338 
static group than in the sham-loaded group across all weeks, indicating that this loading condition 339 
still produced high strains in the structure. 340 

Comparing the piecewise linear and hyperbola functions, the RMSE of the fitted curves indicated 341 
that these can be determined reliably and accurately, with an average RMSE of 0.357 and 0.314 342 
µm/day for the former and latter, respectively, over the 4-week interval (Table 2) and yielding even 343 
lower RMSE values for the weekly analysis (Supplementary Table 1), partially given the lower 344 
magnitude of remodeling velocities observed. Additionally, lower RMSE values coupled with wider 345 
range of remodeling velocities obtained with the fitting of the hyperbola function suggested more 346 
accurate curve fits than with the piecewise linear function, which is especially crucial for the 347 
quantification of remodeling thresholds in the region where the remodeling velocity is zero (Figure 348 
4A, Supplementary Table 1). 349 

Finally, our analysis also investigated the trend followed by the mechanostat parameters derived from 350 
the fitted remodeling velocity curves with loading frequency. As shown in Figure 4B, a logarithmic 351 
function was suitable for several parameters estimated from the piecewise linear and hyperbolic fits 352 
(Figure 4B, Supplementary Table 2). For the piecewise linear function, FSL was accurately modeled 353 
by a logarithmic function across all time-points (Supplementary Table 2, Figure 4B for the interval 1-354 
2), especially from the week 1 onwards and including between weeks 0-4. Additionally, FT values 355 
also followed the same trend for weeks 0-1 and 1-2, while RT showed the same behavior for all 356 
weekly time-points between week 1 and 4 (Supplementary Table 2). Similarly, for the hyperbola 357 
function, FSL was also accurately modeled by a logarithmic function across all time-points and 358 
weeks 0-4 (Supplementary Table 2, Figure 4B for the interval 1-2). RmT also followed a logarithmic 359 
relationship until week 2, analogous to the FT estimated with the piecewise linear function. 360 
Furthermore, all distributions generated for the fitted parameters were statistically significant from 361 
each other (p<0.0001, based on Kolmogorov-Smirnov test with Bonferroni correction for multiple 362 
comparisons), reinforcing the different responses to loading frequency. 363 

Discussion 364 

The present study aimed at evaluating mechanoregulation in trabecular bone adaptation and 365 
quantitatively characterizing the effects of loading frequencies on bone adaptation using a novel 366 
method to estimate remodeling velocity curves and their mechanostat parameters from time-lapsed in 367 
vivo mouse vertebra micro-CT data. Crucially, we showed that such RmV curves can be accurately 368 
determined and that several parameters obtained from them followed a logarithmic relationship with 369 
loading frequency, further supporting the trend observed previously for the change in bone volume 370 
fraction over the 4-week observation period (Scheuren et al. 2020). 371 

First, we consolidated key factors that yield the best association between mechanical stimuli and 372 
local bone remodeling using existing methods for mechanoregulation analysis. Our results revealed 373 
that micro-FE analysis with homogeneous material properties achieved the best performance in 374 
recovering mechanoregulation information. Indeed, previous work on the murine tibia (Oliviero et al. 375 
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2021) has shown that micro-FE analysis with homogeneous material properties achieved the highest 376 
correlation between experimental and estimated material properties, while micro-FE with 377 
heterogeneous material properties of the lumbar vertebra L6 did not improve the prediction of failure 378 
force in comparison to homogeneous material properties (Harris et al. 2020). In any case, other 379 
applications where more significant changes in bone mineralization are expected, such as during 380 
fracture healing of cortical bone in the mouse femur (Tourolle né Betts et al. 2020), were more 381 
accurately modeled with heterogeneous material properties. Specifically, a “multi-density threshold 382 
approach” (Tourolle né Betts et al. 2020) implemented to assess bone mechanoregulation in fracture 383 
healing indicated that subsequent mechanoregulation analysis could leverage the heterogeneous 384 
properties assigned during the micro-FE to achieve a more detailed characterization of this 385 
mechanobiological process. Still, in the context of load-induced trabecular bone adaptation as 386 
explored in this work, the micro-CT images did not show large dynamic ranges in bone 387 
mineralization and changes in bone volume (Lambers et al. 2011, Oliviero et al. 2021), suggesting 388 
that the use of homogeneous material properties in micro-FE analysis is appropriate to model 389 
mechanically driven bone adaptation. 390 

From a mathematical modeling perspective, the mechanostat theory (Frost 1987) is an established 391 
paradigm to describe bone adaptation in response to mechanical loading that has also been 392 
successfully applied in preclinical in silico models (Levchuk et al. 2014, Pereira et al. 2015, San 393 
Cheong et al. 2020, San Cheong et al. 2020). The analysis proposed in this work enables a direct 394 
estimation of such a relationship from time-lapsed in vivo micro-CT data and can be applied in a 395 
sample-specific or group-wise fashion and for an arbitrary time interval between the input images. 396 
We also proposed a nomenclature of mechanostat parameters, unifying the descriptions used in 397 
previous studies. For instance, the change in bone material in response to mechanical loading was 398 
originally named bone turnover and bone growth by Frost (1987), and later adapted to growth 399 
velocity using a detailed mathematical framework in silico (Levchuk et al. 2014, Goda et al. 2016, 400 
Louna et al. 2019). Here, we opted for remodeling velocity which fits the context of bone adaptation 401 
where there can be negative and positive growth, commonly termed remodeling (Hadjidakis et al. 402 
2006). Conversely, formation/resorption thresholds and saturation levels were consistent with 403 
previous approaches (Levchuk et al. 2014, San Cheong et al. 2020). Regarding the change of RmV 404 
with mechanical signal, it was appropriate to align this term with the naming structure of the 405 
remaining parameters and provide an intuitive, succinct description integrating a modulus 406 
terminology: formation/resorption/remodeling velocity modulus. In this way, we aimed to strengthen 407 
the association of these terms with the mechanical signals, as modulus is inherently linked with other 408 
mechanical terms that relate a change in a quantity with a change in mechanical strain such as 409 
Young’s modulus, describing the relationship between stress and strain for a given material. 410 

Skerry (2006) stated that different loading conditions, such as those induced in vivo through varying 411 
loading frequencies, produce deviations to the habitual strain stimuli of the structure. Furthermore, he 412 
argued that different anatomical sites have specific “customary strain stimulus (CSS)” values to 413 
which the structure adapts. Our results align with these beliefs, where different loading frequencies 414 
produced significantly different responses (Scheuren et al. 2020), and the RmV curves evolved 415 
towards a state where remodeling thresholds were very close, suggesting a return to the habitual 416 
mechanostat rule and its local CSS value. For this reason, it is understandable that FT and RmT were 417 
no longer logarithmic dependent on loading frequency at week 4. Conversely, RT conserved a 418 
logarithmic trend with loading frequency for all weeks, which aligns with the tight regulation of 419 
resorption events observed in conditional probability and RmV curves. Crucially, an accurate 420 
derivation of the mechanostat curve required a calibration of the volume estimated for each 421 
remodeling cluster (Supplementary Figure 1A). For instance, smaller clusters with a high surface-to-422 
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volume ratio were expectedly overestimated by the distance transform operation. This artifact is 423 
particularly noticeable for formation clusters where the identification of the neighboring surface from 424 
which they emerged requires a morphological dilation operation, leading to an increase in the number 425 
of surface voxels related to this event. While previous studies (Schulte et al. 2013, Razi et al. 2015, 426 
Scheuren et al. 2020) assessing bone mechanoregulation focused exclusively on conditional 427 
probabilities, which only consider the frequency of mechanical signal values per remodeling event, 428 
this volume correction becomes of significant importance in our proposed method, where a new axis 429 
focusing on the remodeling velocity at each voxel is considered and ultimately enabling the 430 
estimation of critical setpoints such as formation and resorption thresholds, where the RmV curve 431 
approaches zero. Importantly, the interval defined by these thresholds is typically described as a lazy 432 
zone, i.e., a range of strains where bone formation and resorption balance each other (Frost 1987). 433 

In this regard, and in agreement with previous findings (Sugiyama et al. 2012, Schulte et al. 2013, 434 
Razi et al. 2015, San Cheong et al. 2020), our results provided no evidence of the existence of a lazy 435 
zone. This was further supported by the lower RMSE values associated with the fitted hyperbola 436 
mathematical functions which, by definition, cannot accommodate such an interval. Regardless, the 437 
estimated remodeling velocity curves agree with previous publications (Schulte et al. 2013, Razi et 438 
al. 2015), where resorption seems to be more tightly regulated than formation, based on the width of 439 
the interval of mechanical signal values allocated to each remodeling event, consistent for all groups 440 
and loading frequencies. Furthermore, the estimated remodeling rates, ranging between 0 and 3 441 
µm/day, agree with the corresponding bone formation and resorption rates previously reported for 442 
this dataset (Scheuren et al. 2020) at around 2 µm/day, averaged across all remodeling clusters 443 
identified. Besides, the decreasing RSL values for increasing loading frequencies observed 444 
(Supplementary Table 1), especially for weeks 3-4, also align with previous work on the mouse tibia 445 
that showed an increase in the depth of resorption cavities with loading (Birkhold et al. 2017). Given 446 
the correction included in the curve estimation that ensures accurate volumes, established dynamic 447 
morphometry indices characterizing bone formation and resorption rates in a single value can now be 448 
expanded into a range of mechanical signals. 449 

Nonetheless, there are some limitations to consider in this study. First, although the estimation of 450 
RmV curves can be determined in a sample-specific fashion, we observed that the analysis of group 451 
average curves was more reliable. These naturally contained more data points which were also 452 
filtered such that at least three samples were considered per mechanical signal value. Eventually, 453 
these factors were vital to produce relatively smooth RmV curves and enable consistent and plausible 454 
piecewise linear and hyperbola fits. In any case, as previous work has focused on group average 455 
results both in vivo (Schulte et al. 2013, Razi et al. 2015, San Cheong et al. 2020) and in silico 456 
(Levchuk et al. 2014, San Cheong et al. 2020, Boaretti et al. 2022), our analysis still aligns with such 457 
standard practices. Second, contrasting with conditional probability-based approaches, remodeling 458 
events are no longer characterized separately since our approach yields a single curve representing 459 
the average RmV for a given mechanical signal. Nonetheless, our goal was to derive a relationship in 460 
alignment with the mechanostat theory which, by definition, also does not describe remodeling 461 
events independently. Although conditional probability curves showed that these events can occur 462 
across the entire range of mechanical signals and highlight the interrelated effect of mechanical and 463 
biological cues governing targeted and non-targeted bone remodeling (Parfitt 2002, Schulte et al. 464 
2013), we consider our approach complementary to this probability-based method. Furthermore, as 465 
different mechanical signal quantities performed differently for formation and resorption events, 466 
future approaches can attempt to combine both methods and derive separate RmV curves for 467 
formation and resorption using the mechanical signal that best associates with each event. 468 
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It should be noted that the current micro-CT image resolution challenges an accurate identification of 469 
sub-voxel phenomena. Indeed, such information would help to elucidate the assumption considered 470 
in our remodeling velocity estimation that the remodeling distance measured for each voxel 471 
surrounding a remodeling cluster can be linearly scaled to match the measured volume of the cluster. 472 
For the same reason, this factor also implies that the proposed method cannot recover single-cell 473 
behavior. Nonetheless, loading frequency was shown to be positively correlated with the number of 474 
osteocytes recruited in response to an increase in applied strain (Lewis et al. 2017), with a special 475 
focus on bone formation in a murine metatarsal model. Additionally, in a rat tibia model, increasing 476 
loading frequency was associated with a decrease in the estimated peak microstrain triggering 477 
periosteal bone formation and an increase in the rate of bone formation per microstrain (Hsieh et al. 478 
2001). Combined, these results would emerge as an increase in FVM and a decrease in FT values 479 
with increasing frequency, which is indeed what our RmV curves show until week 3. Furthermore, 480 
the decreased anabolic response observed in the RmV curves for high strains may also be linked to a 481 
decrease in mechanosensitivity resulting from increased cell stiffness, as previously reported for such 482 
high strain values (Nawaz et al. 2012). Therefore, the trends estimated with the mechanostat 483 
remodeling velocity curves could be leveraged by in silico simulations that also rely on time-lapsed 484 
in vivo micro-CT data as input, such as novel agent-based models that simulate individual cell 485 
populations in 3D (Tourolle 2019, Boaretti et al. 2022) and with that, improve the accuracy of their 486 
predictions with respect to in vivo data. In this regard, our results demonstrating that several 487 
parameters estimated from the mechanostat also follow a logarithmic relationship with loading 488 
frequency can help to calibrate such models and investigate loading frequency-dependent responses 489 
in silico. With the advent of more powerful imaging methods, cell populations may soon be 490 
efficiently measured from in vivo samples and compared with the results of these in silico models. 491 
Additionally, our approach can support preclinical in vivo studies focusing on bone 492 
mechanoregulation. Previous work exploring the effects of aging and degenerative conditions 493 
described changes in conditional probabilities between young and aged groups (Razi et al. 2015), 494 
while studies focusing on pharmaceutical interventions characterized changes in global morphometry 495 
indices and micro-FE properties (Roberts et al. 2020). Therefore, investigating the effects of these 496 
conditions on remodeling thresholds (FT, RT, RmT) and remodeling modulus (FVM, RVM, RmVM) 497 
could help to identify effective mechanisms to counter degenerative conditions and maximize the 498 
potential of pharmaceutical interventions. 499 

In conclusion, we have presented a novel method to estimate remodeling velocity curves and their 500 
parameters from time-lapsed in vivo micro-CT data. Furthermore, we applied this approach to 501 
evaluate the effects of different loading frequencies on the time-lapsed changes of bone 502 
microarchitecture by quantifying critical parameters describing bone mechanoregulation, such as 503 
formation saturation levels and remodeling thresholds. Crucially, we reinforced previous results that 504 
revealed a logarithmic relationship of bone volume change with loading frequency by showing that 505 
the mechanostat parameters estimated from RmV curves, such as remodeling thresholds and 506 
formation/resorption saturation levels, are also logarithmically dependent on loading frequency. 507 
Altogether, we expect these results to support future in silico and in vivo studies comparing the 508 
effects of mechanical loading and pharmaceutical treatment interventions on bone mechanoregulation 509 
and bone adaptation and, ultimately, identify more effective treatment plans that can be translated 510 
into clinical settings. 511 
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 687 

Figure 1 688 

Overview of the computational pipeline for high-throughput analysis of time-lapsed in vivo micro-CT 689 
mouse caudal vertebra samples. A) Qualitative visualization of representative samples highlighting 690 
the original bone structure, the identification of regional compartments (trabecular compartment in 691 
blue and cortical compartment in orange), the local mechanical signal computed as strain energy 692 
density (SED) from micro-FE analysis, the remodeling map obtained from time-lapsed micro-CT 693 
images and the remodeling distance associated with surface voxels (Scale bar: 500 µm). B) Diagram 694 
of the workflow included in the computational pipeline, starting from pre-processing of micro-CT 695 
images to post-processing steps, featuring mechanoregulation analysis. C) Illustration of the 696 
workflow for mechanoregulation analysis and estimation of mechanostat parameters: for each surface 697 
voxel, remodeling events are identified by overlapping consecutive time-points, the mechanical 698 
signal in the structure is computed with micro-FE and the remodeling distance is determined with a 699 
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distance transform operation (see Materials and Methods). The data is used to compute conditional 700 
probability curves for each remodeling event (dashed line represents a random probability of 701 
occurrence) and a remodeling velocity curve (dashed line represents zero remodeling velocity), 702 
which can be fitted with a piecewise linear function or a continuous hyperbola function to retrieve 703 
biologically meaningful parameters. Parameter legend (see Materials and Methods for an extended 704 
description): A- Resorption saturation level (RSL), B- Resorption velocity modulus (RVM), C- 705 
Resorption threshold (RT), D- Formation threshold (FT), E- Formation velocity modulus (FVM), F- 706 
Formation saturation level (FSL), G- Remodeling threshold (RmT), H- Remodeling velocity modulus 707 
(RmVM). 708 

 709 

 710 

Figure 2 711 
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Quantification of mechanoregulation information from time-lapsed in vivo micro-CT image data. A) 712 
Conditional probability curves connecting the mechanical environment with remodeling events, 713 
computed for all groups and mechanical signal descriptors considered (SED, effective strain and 714 
∇SED). The plots show the mean probability line per group after applying a LOWESS operation for 715 
the interval 0-4 weeks and its corresponding 95% confidence interval. Dashed line at 0.33 identifies 716 
the probability of a random event for a ternary classification case. B) Comparison of correct 717 
classification rate (CCR) values obtained by SED, effective strain and ∇SED as local mechanical 718 
signal descriptors, computed from micro-FE with homogeneous or heterogeneous material properties. 719 
Higher CCR values indicate higher sensitivity to retrieve mechanoregulation information. Statistical 720 
significance determined by Conover-Iman test, corrected for multiple comparisons by Holm-721 
Bonferroni method. Statistical significance legend: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 722 
0.0001. 723 

 724 

 725 

Figure 3 726 

Estimation of the mechanostat remodeling velocity (RmV) curve from time-lapsed in vivo micro-CT 727 
imaging data, illustrated with the average raw net response (top row) per group, the fitted piecewise 728 
linear functions (middle row), as described in the mechanostat theory and continuous hyperbola 729 
functions (bottom row) for the weeks 1-2. Data points are filtered such that at least three mice are 730 
averaged for each mechanical signal value. 731 

 732 
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 733 

Figure 4 734 

A) Root mean squared errors (RMSE) associated with the piecewise linear (top row) and hyperbola 735 
(bottom row) fitted functions are shown, highlighting that the hyperbola function consistently 736 
achieved lower errors than the piecewise linear function. B) Logarithmic relationships fitted to the 737 
bootstrapped distributions of mechanostat parameters estimated from the piecewise linear (top row) 738 
and hyperbola (bottom row) functions fitted to the remodeling velocity curves for the weeks 1-2. 739 
Formation saturation levels (FSL), formation and remodeling thresholds (FT and RmT) were among 740 
the parameters that follow a logarithmic trend throughout the 4 weeks of the study. C) Qualitative 741 
visualization linking remodeling distance measurements with the mechanical environments in vivo as 742 
effective strain. 743 

 744 

Tables 745 

Table 1 746 

Correct classification rate (CCR) for all groups, mechanical signal descriptors and material properties 747 
analyzed, for the weeks 0-4. Data presented as “median (IQR)”. Statistical significance legend: a – 748 
“SED – Effective strain”, b – “Effective strain – ÑSED”, c – “SED – ÑSED”; *p < 0.05, **p < 0.01, 749 
***p < 0.001, ****p < 0.0001. Statistical significance determined with Conover’s test corrected for 750 
multiple comparisons with step-down method using Bonferroni-Holm adjustments.  751 

Material properties Group Mechanical signal 
p-value 

SED Effective strain ÑSED 

Homogeneous Sham 0.378 (0.374 - 0.391) 0.400 (0.392 - 0.404) 0.421 (0.413 - 0.440) *a, **b, ****c 

Static 0.389 (0.375 - 0.395) 0.405 (0.403 - 0.410) 0.434 (0.427 - 0.448) *b, ***c 
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02Hz 0.402 (0.387 - 0.404) 0.411 (0.407 - 0.417) 0.450 (0.430 - 0.451) *b, ***c 

05Hz 0.396 (0.387 - 0.397) 0.404 (0.399 - 0.422) 0.446 (0.439 - 0.454) *a, *b, ***c 

10Hz 0.417 (0.382 - 0.443) 0.418 (0.395 - 0.428) 0.461 (0.431 - 0.489) ns 

Heterogeneous Sham 0.381 (0.373 - 0.387) 0.423 (0.410 - 0.432) 0.371 (0.366 - 0.374) *b, **c 

Static 0.386 (0.379 - 0.392) 0.423 (0.416 - 0.434) 0.377 (0.364 - 0.381) *b, **c 

02Hz 0.387 (0.387 - 0.397) 0.430 (0.399 - 0.434) 0.382 (0.375 - 0.391) *b, **c 

05Hz 0.394 (0.387 - 0.398) 0.420 (0.412 - 0.431) 0.380 (0.372 - 0.391) ns 

10Hz 0.397 (0.387 - 0.435) 0.427 (0.414 - 0.447) 0.395 (0.365 - 0.408) ns 

 752 

Table 2 753 

Parameters of the mathematical functions fitted to the estimated mechanostat group average 754 
remodeling velocity curves for the interval weeks 0-4. Root mean squared error (RMSE) was used to 755 
characterize the quality of the fit. See Materials and Methods for an extended description of the 756 
parameters. The row “Effective strain range” indicates the range of mechanical signal values from 757 
which the fit of the mathematical functions was derived. 758 

Function Parameter Unit Group 

Sham Static 2Hz 5Hz 10Hz 

Piecewise linear RSL µm/day -4.305 -3.062 -1.729 -2.570 -4.112 

RVM (x103) (µm/day) 
/ µe 

29.748 5.737 8.802 16.245 45.003 

RT µe 145 544 246 187 101 

FT µe 440 1511 270 190 110 

FVM (x103) (µm/day) 
/ µe 

1.676 1.919 2.435 2.330 2.481 

FSL µm/day 0.180 0.891 1.274 1.640 1.954 

RMSE µm/day 0.381 0.382 0.227 0.407 0.388 
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Hyperbola RSL µm/day -5.776 -4.115 -2.390 -3.208 -4.180 

RmVM (x10-3) (µm/day) 
x µe 

-0.236 -1.037 -0.843 -0.769 -0.507 

RmT µe 482 899 268 228 158 

FSL µm/day 0.038 0.522 1.468 1.836 2.051 

RMSE µm/day 0.274 0.347 0.226 0.372 0.350 

Effective strain range µe 10–1280 10–2240 10–2060 10–2520 10–2650 

 759 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 8, 2023. ; https://doi.org/10.1101/2023.01.07.523082doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.07.523082

