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Efficient scanning of tissue that T cells encounter during their migratory life is pivotal to
protective adaptive immunity. In fact, T cells can detect even a single antigenic peptide/
MHC complex (pMHC) among thousands of structurally similar yet non-stimulatory
endogenous pMHCs on the surface of antigen-presenting cells (APCs) or target cells.
Of note, the glycocalyx of target cells, being composed of proteoglycans and bulky
proteins, is bound to affect and even modulate antigen recognition by posing as a physical
barrier. T cell-resident microvilli are actin-rich membrane protrusions that puncture
through such barriers and thereby actively place the considerably smaller T-cell antigen
receptors (TCRs) in close enough proximity to APC-presented pMHCs so that productive
interactions may occur efficiently yet under force. We here review our current
understanding of how the plasticity of T-cell microvilli and physicochemical properties of
the glycocalyx may affect early events in T-cell activation. We assess insights gained from
studies on T-cell plasma membrane ultrastructure and provide an update on current
efforts to integrate biophysical aspects such as the amplitude and directionality of TCR-
imposed mechanical forces and the distribution and lateral mobility of plasma membrane-
resident signaling molecules into a more comprehensive view on sensitized T-cell
antigen recognition.

Keywords: immune surveillance, mechanical force, T-cell antigen recognition, glycocalyx, physical barriers,
microvilli, membrane ultrastructure
INTRODUCTION

The adaptive immune response is an extraordinarily complex process involving a multitude of
different cell types, transmitters, and effector molecules performing their intended function in
diverse tissue environments, some of which are altered by disease and infection. Slight deviations
within the involved mechanisms can lead to severe medical complications, namely, allergies,
autoimmune diseases, hypo- or hyper-reactions to invading pathogens, and the development of
cancer. The degree of fine-tuning required for immune protection becomes apparent at multiple
regulatory levels controlling T-cell activation. The pivotal event preceding many of the ensuing
cellular interactions concerns the specific molecular recognition of processed pathogenic peptides
displayed in the context of the major histocompatibility complex (MHC and peptide-presenting
MHC; pMHC) by T cells via their clonotypic and genetically recombined T-cell antigen
receptors (TCRs).
org May 2022 | Volume 13 | Article 8863281

https://www.frontiersin.org/articles/10.3389/fimmu.2022.886328/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.886328/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:janett.goehring@meduniwien.ac.at
https://doi.org/10.3389/fimmu.2022.886328
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.886328
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.886328&domain=pdf&date_stamp=2022-05-26


Göhring et al. Mechanosurveillance: Tiptoeing T Cells
Interactions between stimulatory pMHCs and TCRs are
highly specific and confer exquisite T-cell antigen sensitivity, a
sine qua non considering the consequences of recognition failure.
It is, however, not yet clear how such a level of specificity and
sensitivity is maintained, since measured biochemical affinities
between TCRs and pMHCs are astonishingly low. A number of
models have been conceived and tested in the last two decades.
Experimental efforts focused on revealing the molecular
machinery involved in antigen recognition events and led to
the formulation of concepts implicating kinetic segregation,
kinetic proof-reading, co-receptor involvement, ligation-
triggered conformational changes, serial engagement, and the
contribution of mechanical forces in early recognition events
[reviewed in (1)]. These models have their merits, and the
ground truth will very likely be a combination of their aspects.

The complex interaction of naïve antigen-inexperienced T cells
with antigen-presenting cells such as dendritic and B cells can be
described on different spatial and temporal scales (see Figure 1 for
an illustration of these processes). Highly dynamic cellular
interactions involving massive cytoskeletal rearrangements
transpire during the entirety of the cell–cell contact. Before
antigen recognition, pre-existing membrane protrusions such as
microvilli scan the surface of the target cell in search of their
cognate antigen (2–5). As a result, physical barriers such as the
Frontiers in Immunology | www.frontiersin.org 2
glycocalyx of the target cell are overcome by the surveilling
microvilli. During scanning, surface receptors at the tip of the
microvilli are subject to a large range of mechanical forces such as
tensile, compressive, and shear stresses (6). Once a specific
recognition event is established, the T cell receives a
movement arrest signal and the two interacting cells start
reorganizing their conjugation plane, which involves massive
membrane undulations and the formation of other membrane
projections such as invadosome-like structures (2, 7–9).
Proteins within the entire conjugation plane become spatially
reorganized, forming the immunological synapse with a central
and peripheral domain (10).

The unique two- and three-dimensional properties of
immune synapses are likely to influence the dynamics of
intrinsic receptor–ligand interactions (11). For example,
massive membrane rearrangements ensue after initial contact
and produce spatial constraints that eventually result in the
molecular segregation of membrane receptors and ligands
based on the size of their extracellular domains (12). Signal-
maintaining microclusters are formed, containing ligated TCRs,
which are subsequently dragged by the cytoskeleton toward the
center of the synapse (13–17). This active process creates drag on
other constituents, causing membrane undulations due to elastic
deformation and relaxation (18). In this fashion, measurable
A B

DC

FIGURE 1 | Illustration of the membrane organization of scanning and activated T cells and the accompanying possible mechanical forces affecting surface receptors.
(A) During immune surveillance, T cells scan target cells via microvillar protrusions. The first physical barrier they encounter is the glycocalyx of the target cell. Antigen
scanning speed is impacted by the glycocalyx physicochemical properties such as stiffness, density, and matrix composition, but also by the migrational speed of the
T cell itself and its microvillar dynamics. (B) As soon as surface receptors on the microvillar tips interact with their ligands on the opposing membrane, the formed bonds
experience a force vector with normal and tangential components. The surface stiffness of the target cell and the microvillar elasticity also influence the interacting
receptor–ligand pairs. (C) Upon recognition of a cognate antigen, T-cell activation starts. Surface receptor molecules build signaling platforms while the two participating
plasma membranes approach each other, compressing the remaining glycocalyx components. (D) After the initiation of TCR signaling, the zonal organization of the
immunological synapse is established and signaling foci, called microclusters, are pulled by the actin cytoskeleton toward the center of the cell. This dragging motion is
also causing mechanical strain on the involved receptor–ligand pairs. APC, antigen-presenting cell.
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pulling forces are exerted by the regulated, centripetal flow of the
cortical actin cytoskeleton (19).

Considering the temporal flow of events, one must consider
that signaling events during T-cell activation are divided into
early recognition events, which eventually lead to motility arrest,
and signal-maintaining events. Early recognition events fulfill the
purpose of fast and efficient antigen screening (20, 21), whereas
later events are needed to maintain a steady T-cell response at a
continuous antigenic stimulus (14, 17, 22, 23).

In this review, we highlight the cell biological and biophysical
features of T-cell microvilli, which act as antigen-sensing units
and, in turn, reevaluate the impact of physical barriers and
mechanical forces on immune surveillance.
ANTIGEN SCANNING ENTITIES:
MICROVILLI OF T CELLS

T cells are exceptionally motile as they roam a multitude of
different environments during their life cycle (24, 25). After
differentiation and selection in the thymus, naïve T cells move
into the blood and lymphatic system to reach secondary lymphoid
systems. In doing so, T cells are exposed to strong shear forces
caused, for example, by the dynamics of the blood flow. To leave
the blood stream, T cells perform a complex maneuver along the
endothelial wall, comprising a selectin-mediated rolling and
adhesion cycle that eventually leads to diapedesis. After entering
a lymph node or tissue of interest, T cells start migrating through
dense three-dimensional extracellular matrices while continuously
screening antigen-presenting cells (APCs) or target cells, which
they continuously encounter for cognate antigen. Upon
stimulation, T cells switch their migration mode and form cell–
cell interfaces, which, depending on tissue properties, are termed
immunological kinapses or synapses. Subsequently, they start
proliferating, and eventually start their surveilling migration
anew throughout the body. Further triggering of an antigen-
experienced T cell leads to the fulfillment of its effector function
according to the subtype of the T cell.

During immune surveillance, the membrane ultrastructure of
scanning T cells is especially dynamic in order to guarantee
adaptation to different physical environments and functions.
Prominent structures are the actin-rich membrane protrusions
called microvilli, which play a central role in antigen surveillance.

Physical Barriers in Immune Surveillance
An interesting aspect of T-cell interactions concerns the
biophysical environment T cells experience while they are
scanning their surroundings. T cells are actively probing for
pathogen-derived or otherwise atypical or non-endogenous
peptides presented on the surface of cells that they encounter in
their migratory life. However, cells are protected by the glycocalyx,
a dense and wide coat of extracellular polysaccharides and
proteins, which creates a physical barrier, preventing the close
apposition of the cellular membranes and, consequently, any
intercellular ligand–receptor interaction (26–28). To deal with
Frontiers in Immunology | www.frontiersin.org 3
this, T cells feature membrane protrusions that can puncture
through the cell-resident glycocalyx to efficiently scan large
portions of a large variety of cells and drive TCR-specific
signaling (2, 4, 7, 29). The glycocalyx is a naturally occurring
physical barrier made of extracellular branched carbohydrates,
glycolipids, glycoproteins, and proteoglycans that covers the
plasma membrane of cells (30). The involved carbohydrates (i)
can be directly linked to their respective anchor molecules via N-
or O-glycosidic bonds or are independent entities within the
matrix, (ii) are continuously remodeled by cellular enzymes, (iii)
are primarily negatively charged, and (iv) play an important role in
cellular processes such as signal amplification, adhesion,
migration, and cell death (31). The complexity and height of
this dense, gel-like coating can vary from 250 to >500 nm (32) and
it is filled with ions, growth factors, chemo- and cytokines.

The exact composition of the glycocalyx has been
characterized in detail for endothelial cells: prominent
membrane-anchored proteoglycan groups are syndecans and
glypicans, whereas other proteoglycans such as mimecan,
perlecan, and biglycan are actively secreted into the
extracellular space and blood stream (33). These proteoglycans
form a dense network by associating with glycosaminoglycans
(GAGs) such as heparan sulfate, dermatan sulfate, chondroitin
sulfate, and hyaluronic acid, to name a few ubiquitous GAGs.
Apart from these components, a large variety of glycoproteins
such as selectins, integrins, and immunoglobulin-like proteins
also participate in forming a dense extracellular network (33). It
is beyond the scope of this review to discuss all the participating
glycocalyx players, but it is important to note the existence of a
complex, multi-layered, and highly dynamic layer beyond the
plasma membrane that impacts any cell–cell interaction.

The glycocalyx of the T cell consists mainly of a few
prominent surface proteins with large extracellular domains,
namely CD43 and CD44, and the protein tyrosine
phosphatases CD45 and CD148. These proteins' extracellular
domains are 3–4 fold larger in length than the physiological
intermembrane distance, allowing for a pMHC–TCR bond (~15
nm) (26, 34), and resemble stiff rod-like structures that are
unlikely to bend in response to external tensile forces (35).
Similarly, CD148 and CD45 also carry large extracellular
domains but fulfill additional signaling functions in the wake
of TCR triggering. During the immune synapse formation, these
proteins and integrin LFA-1 binding to ICAM-1 are positioned
in distinct zones creating varying intermembrane distances. This
zonal reorganization after TCR triggering leads to steep
membrane curvatures accompanied by dynamic membrane
tension profiles in the contacting APC and T cell membranes
[reviewed in (34)]. Not much is yet known with regard to the
presence of typical membrane-anchored and secreted
proteoglycans and glycoproteins in the glycocalyx of T cells,
yet one study investigated the upregulation of Mucin-1 (a very
large glycocalyx-building proteoglycan) after mitogenic stimulus
in activated T cells (36) and another study detected hyaluronan
(a prominent GAG) on the surface of T cells in certain conditions
(37). However, given their migratory lifestyle and the necessity to
visit and scan a large variety of tissues, the presence of a bulky
May 2022 | Volume 13 | Article 886328
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glycocalyx network seems disadvantageous and may only be
upregulated in certain scenarios such as trafficking and homing.
Also, T cells exhibit a stiffness modulus of only ~85 Pa, which is
very soft in comparison to other cell systems (38). This has
implications for cell–cell interactions, as the cell with the lower
rigidity spreads at the interface. Recent rheological measurements
of the viscoelastic properties of T cells during activation show a 2–
3 fold increase in stiffness after stimulation with an activating
microbead (39). The authors also performed AFM experiments
with T cell–APC conjugates and concluded that mechanical
changes occur within seconds of initial contact (39).

The glycocalic layers of professional APCs have so far been
investigated to a much lesser extent, and given the migratory life
of these cells, it is unclear if the glycocalyx layers are up or
downregulated in their immature/mature states or the varying
lymphoid environments they reside in. One study showed the
presence of Mucin-1 on dendritic cells in vivo (40). Also, a recent
publication investigated the contribution of hyaluronan (HA) to
the glycocalyx layer of migratory DCs and discovered a 400–500
nm thick glycocalyx layer anchored and regulated by the HA-
receptor CD44 (41). The study also showed that the HA content
within the glycocalyx was upregulated for mature DCs compared
to immature DCs, and consequently, that the presence of HA
glycocalyx is necessary for trafficking over the lymphatic
endothelium and allowing crawling along the endothelia (41,
42). This aspect becomes crucial considering that long-lived
MHC-dependent T cell–DC interactions occur on the luminal
side of afferent lymphatic capillaries (43, 44).

An interesting mechanism was recently uncovered in the
work of Imbert et al., characterizing the immune-modulatory
impact of the glycocalyx on the target cell during phagocytosis in
in vitro and in vivo settings (45). The elegant experiments
showed that the presence of a repulsive glycocalyx on target
cells prevents phagocytosis, leading to effective immune evasion,
and that, similarly the upregulation of glycocalyx layers on the
phagocyte itself led to the same inhibition of phagocytosis. The
study clearly showed that glycocalyx layers can actively prevent
immune recognition and the triggering of surface receptors by
restricting their accessibility. Along this line of thought,
cancerous cells have been shown to alter their glycocalyx
composition (46, 47), in that they vary its height and other
biophysical parameters, thereby promoting their immune
evasion capabilities (48, 49).

Biophysical parameters of the glycocalyx have been measured
using AFM nano-indentation (50), resulting in an elastic
modulus of around 0.39 kPa. The plasma membrane lacking a
glycocalyx has been found to be less flexible with an elastic
modulus of about 3 kPa. The corresponding stiffness of cells has
been experimentally determined to be in the range of 10 Pa to 10
kPa, the variability resulting from different cell types and
confounding parameters like intracellular pressure and actin–
myosin contractility of the underlying cytoskeleton and
differences in methodology (51). Interestingly, spread
mesenchymal stem cells exhibit a larger stiffness modulus than
rounded ones, with 3.2 and 2.5 kPa, respectively (52). The
stiffness of monocyte-derived dendritic cells has been reported
Frontiers in Immunology | www.frontiersin.org 4
to be in the range of 0.5 kPa, with their stiffness changing upon
inflammation (38), whereas another study reports a 2–3 fold
increase in stiffness for maturing DCs (within the range of 2 to 8
kPa) (53).

All these aspects become relevant when considering the
sensitivity of the T cell toward different substrate stiffnesses.
The stiffness and porosity of the glycocalyx of both T cell and
APC may hence be critical for antigen accessibility, whereas the
APC cortex stiffness may be critical for antigen sensitivity and
subsequent signaling (54). It has been comprehensively shown
that the stiffness of the ligand-presenting surface impacts T cell
signaling, proliferation, and differentiation (54–59). Some of
these studies report a positive correlation between the substrate
stiffness and T-cell activation (55–57), while others show an
inverse correlation (54, 58). The investigated stiffness ranged
from a few Pa to MPa, while most studies report a maximum
cellular response at a substrate stiffness of 100 kPa. In a more
physiological setting, Blumenthal et al. investigated the impact of
the cortical stiffness of dendritic cells on the T-cell response (53):
by varying the stiffness of stimulatory hydrogels in the
physiological range of immature and mature DCs (2 to 8 kPa,
respectively), the authors showed an increase in CD4+ T-cell
antigen sensitivity and responses under stiffness conditions
reflecting that of mature DCs. Strikingly and in contrast, CD8+

T cells only showed modest sensitivity toward stiffness. By
substituting pMHC as a stimulatory ligand for activating
antibodies, the authors revealed a dependence of the stiffness
response on the type of TCR–ligand engagement. Within the
measured physiological stiffness range (2–8 kPa), this limitation
dramatically affected T-cell responsiveness, as only treatment
with pMHCs but not with antibodies triggered T-cell activation
under these conditions, except for very high ligand densities (53).
Considering the effect of substrate stiffness on T-cell effector
function, recent studies reporting on the vulnerability of cancer
cells to T-cell cytolytic activity showed a positive correlation
between immune response and cellular rigidity (60). As a
consequence, cancer cells may actively evade antitumor
immune responses by softening their cortical actin cytoskeleton.

Microvilli Dimensions and Localization
In the mid-1970s to 1980s, efforts were made to morphologically
characterize lymphocytes using the then newly developed
technique of scanning electron microscopy, and consequently,
microvillar protrusions were discovered covering the surface of
lymphocytes (61–63). These membrane structures were
described as being dynamic and dependent on the cell cycle,
temperature, inter-cell contact, and even antigenic stimulus (64).
Twenty-five years later, it was possible to detect the presence of
membrane protrusions on the surface of circulating T cells (65),
and prior to engagement with antigen-presenting cells (2, 4, 66)
and within lymph nodes (3). These studies demonstrated the
existence of such membrane protrusions during initial contact
formation. Cai et al. quantified the occurrence of microvillar
protrusions via Lattice Light Sheet Microscopy: the cell
membrane is densely packed with highly dynamic microvillar
protrusions that cover 98% of the cellular surface over a time
May 2022 | Volume 13 | Article 886328
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period of 1 min (2). After the formation of the immunological
synapse, the membrane structure ultimately becomes more planar,
creating wider close-contact zones between the participating cell
membranes (66, 67). Leukocyte microvillar protrusions, used for
initial tethering to and rolling along the endothelia within the high
shear force conditions of the blood stream (9, 68, 69), will not be
the focus of this review in view of their largely different functions
and surface receptor composition.

Electron-microscopic snapshots of T cells interacting with
antigen-presenting cells allow the characterization of the
morphology of membrane protrusions on resting, scanning,
and activating T cells. The protrusions are 300–400 nm long
(median, up to 4 µm has been reported) and 70–350 nm in
diameter with a density of 3–4 protrusions per µm2 on a resting T
cell (3, 5, 7, 65, 70). So far, we are not aware of any comparative
study quantifying the abundance of microvilli on circulating and
scanning T cells. Interestingly, the dimensions of microvillar
protrusions are similar when comparing murine and human
blood-isolated lymphocytes, even though human lymphocytes
are in general twice as large in cell diameter (65). This conserved
feature size of the microvilli indicates the existence of a common
physical parameter T cells must overcome during their life time,
e.g., the thickness of the glycocalyx during immune surveillance
or similar shear forces during rolling tethering in the blood
stream. Upon contact formation with a professional antigen-
presenting cell, the protrusion tips form close contacts with the
opposing cellular membrane in an antigen-independent manner,
i.e., the interaction frequency and protrusion density remain
unchanged during surveillance and immune synapse formation
(2). Upon TCR ligation, however, the ensuing antigen-specific
interactions appear to lead to a longer dwell time of the
microvilli tip in the synaptic area (2) and may even deform the
target cell membrane, forming invadosome-like structures (4). It
still remains to be investigated whether microvilli and invadosome-
like structures are in fact morphologically and functionally similar
protrusions. Recent studies from the Husson as well as the Hivroz
group (71–73) have revealed the formation of large membrane
protrusions after synapse formation, the physiological role of which
remains unknown, but may not be confused with microvillar
protrusions during diapedesis and immune surveillance.

Microvilli were described as continuously forming under the
leading edge of the lamellipodium of migrating T cells. Upon
antigen encounter and synapse formation, membrane protrusions
can be preferentially observed forming at the synaptic periphery of
the T cell–APC interface (4). Importantly, the transient
interactions scanning microvilli form with their target surface do
not cease after antigen-dependent triggering of the T cell (2), much
in line with the findings that synapse maintenance depends on
continuous recruitment of new TCR–pMHC interactions (14, 17,
74, 75).

Monitoring and characterizing of T cell microvilli during
antigen scanning remains a big challenge within the otherwise
extensively researched field of T-cell activation. Previous
investigations are confounded by varying cell types, T-cell
receptors, and presented ligands, but ultimately by the applied
techniques and stimulation platforms. Studies were especially
Frontiers in Immunology | www.frontiersin.org 5
hindered by the lack of methods to investigate three-dimensional
and highly dynamic nanostructures on living cells (7). A few
research groups applied indirect observation methods to prove
the existence of membrane protrusions within the immunological
synapse, such as confocal microscopy (4), total internal reflection
microscopy (TIRF) (5, 70, 76), and super-resolution techniques (3,
77). Other techniques like lattice light-sheet microscopy and
synaptic contact mapping allow a more direct assessment of the
membrane structure of activating T cells (2).

Distribution of Signaling Molecules on
Microvillar Protrusions
As extensively reviewed by Orbach and Su (78), microvilli are
well-equipped for antigen recognition, and recent studies show
that microvillar protrusions are indeed the antigen-sensing
entities driving immune surveillance (79–81). In short, TCRs
and CD4 coreceptors, CD2 adhesion molecules and essential
proteins for T-cell activation, such as Lck and LAT, have been
found enriched in microvilli (80). Jung et al. investigated the
impact of membrane ultrastructure on TCR distribution on T
cells and observed TCR pre-clustering on resting T cells (3).
Interestingly, no TCR clusters were observed when T cells were
allowed to flatten out on non-activating surfaces (82). Recently,
the Ley group observed CD45 exclusion from microvilli tips
before antigen recognition (83), whereas Razvag et al. observed
an exclusion of CD45 shortly after contact formation (77).
Considering the kinetic segregation model, which postulates
that T-cell activation is induced by the spatial separation of
phosphatases such as CD45 from the phosphorylation sites of
TCRs, this implies a high sensitivity of tip-resident TCRs toward
antigenic pMHC. Indeed, contacts between microvilli and
stimulating surfaces were found to be sufficient for T-cell
activation (76, 84). What drives the organization of signaling
molecules in microvilli has so far remained elusive, but it is
speculated that the extreme membrane curvature and the lipid
composition, in particular cholesterol content, may play a role
(78). Furthermore, it is generally accepted that microvillar
protrusions contain parallel bundles of actin filaments (2, 65)
and may colocalize often, but not necessarily always, with TCR
molecules [(2) and reviewed in (78)].

In summary, it is evident that microvilli form a restricted
reaction volume harboring the necessary molecules for T-cell
activation. An exciting observation was recently made by
Klotzsch and colleagues, who demonstrated the ability of the T
cell to reach into narrowly confined spaces and who showcased the
very dynamic nature of their microvillar protrusions and their
ability to scan for occluded antigens (85). Interestingly, when T
cells reached into micropits below 200 nm in diameter, a slight yet
quantifiable antigen-independent cytokine upregulation started.
This observation indicates that the signaling molecules within the
limited reaction volume of microvilli may be sufficient for cell-
body independent signal amplification or, alternatively, that T cells
may reach an even higher degree of antigen sensitivity when the
dimensions of their microvilli are severely restricted. Effective T-
cell activation may hence be aided by enforcing the spatial
proximity of signaling molecules downstream of the TCR.
May 2022 | Volume 13 | Article 886328
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Microvilli Scanning Speed on Artificial and
Natural APCs
The fractal arrangement of microvilli enables T cells to efficiently
scan the surfaces of antigen-presenting cells (2). Scanning
human CD4+ T cells move with a mean velocity of ~3 µm/min
over cell surfaces (4). T cells perform immune surveillance in
lymph nodes in the presence of antigen with a scanning speed of
2.6 to 5.4 µm/min in a random walk fashion (86, 87), and a
dendritic cell typically interacts for ~3 min with individual T cells
(88). In resting murine OT-1 TCR-transgenic T cells, microvilli
were found to move at an average speed of 5.2 ± 0.4 mm/min,
resulting in a 98% coverage of the T cell surface within 1 min.
Similarly, the leading edge of the lamellipodium of migrating
fibroblasts moves at a velocity of 6.3 µm/min (89). Note that
comparable migration velocities have been observed for TCR
microclusters in Jurkat T cells (8.4 ± 0.36 mm/min) (90). The
mean velocity of actin retrograde flow in Jurkat T cells stimulated
with a strong agonist has been recorded to be ~4.8–5.4 µm/min
(91, 92), with faster velocities observed for weaker agonists (92).

Motion of any biological membrane in a perpendicular
direction to the plane of the receptor–ligand interaction occurs
at high frequencies and in the range of tens of nanometers due to
thermal fluctuations or stochastic membrane displacement
(reviewed in (34)). Perpendicular fluctuations of microvilli tips
of about 67 nm were observed within 1 second-long observation
windows (70). The lateral movement of microvilli within this
experimental setup across a non-activating surface was however
minimal, and only rarely spurts of tenths of a micrometer could
be observed (70). These results indicate that microvilli move
perpendicularly toward a cell surface and retract without much
lateral movement to reappear at a different position to continue
probing the APC surface. This observation of dynamic microvilli
behavior is intriguing, considering that T cells must overcome
the glycocalyx in order to probe for surface receptors. Lateral
movement through the dense surface layer may be energetically
disadvantageous. Also, the geometry of the antigen-presenting
surface is likely to influence scanning membrane protrusions
(4, 93).

In 2012, Sage et al. performed a series of experiments aimed at
determining the depth and width of “invadosome-like”
podosomes (ILPs). Although the depth of these structures was
found to be stimulus-independent, the width showed a
significant decrease in the presence of a specific antigen (4).
The authors also showed that calcium flux is initiated ~25 s after
the first appearance of an ILP. Interestingly, the presence of
antigen caused a substantial stabilization of the ILP lifetime (4),
i.e., the transient nature of the scanning ILP ceased to exist after
contact with cognate antigen. Cai et al. observed rapid scanning
of the opposing surface by microvillar structures and their
subsequent arrest or stabilization upon encountering cognate
antigen (2). This process seemed, however, to be independent of
downstream signaling. A theoretical model has been proposed,
attributing the microvilli contact stabilization to the formation of
catch bonds (non-covalent bonds whose lifetime increases under
force) between TCR and MHC loaded with stimulatory peptide
(21), implying a critical role of mechanical forces exerted via
Frontiers in Immunology | www.frontiersin.org 6
microvilli in antigen discrimination. The suggested mechanism is
in agreement with the finding that microvilli stabilization is
independent of actin (2). Further theoretical work indicated that
the antigen-dependent arrest of microvilli may indeed be
essential for ligand discrimination (94): Within their
framework, which was based on kinetic segregation, Fernandes
and coworkers found specific TCR triggering if (i) close contact
areas between T cells and APCs persisted for at least two seconds
and (ii) the radius of the area was smaller than 220 nm.

Considering the mobility of pMHCs on APCs as an additional
parameter for T-cell recognition, the field has not yet reached a
consensus on to what extent the laterally immobile or the mobile
fraction of pMHCs lead to efficient triggering in vivo (95–97).
Several studies have identified the velocity and quantified the
mobile fraction within the membranes of APC (98–100), but to
our knowledge, none has shown the functional connection to T
cell activation of either fraction. From our own experiments
using activating adhesion-competent gel-phase and fluid-phase
glass-supported lipid bilayers, we do know that T cells scan and
activate efficiently on both surfaces (101), but we could observe a
slight delay in response on laterally immobile surfaces, most
likely due to a stalled microcluster formation. These results were
corroborated by other studies (102, 103). A faster moving pMHC
molecule would increase the likelihood of encountering the
microvilli tips, which becomes important when contemplating
scenarios with very low densities of cognate antigens (21). On the
other hand, slower moving or immobilized pMHCs may
facilitate rebinding events if microvilli tips stay in close
proximity (21), which could influence antigen recognition
thresholds (104).

Force Profile of Membrane Protrusions
As motile entities, T cells experience considerable strain. T-cell
protrusions share many properties with filopodia, which are
actively used by other motile cells when they screen the
surroundings for biochemical and mechanical cues through
environment-sensing receptors residing on their tips (105).
Filopodia generation requires 5–30 pN (piconewton) of
protrusion force (106). Once formed and anchored to cortical
actin, they can exert extensive pulling forces on their own (79,
107). Podosome protrusion force was quantified using monocyte-
derived cells spreading on a deformable artificial membrane: an
average of 29 to 155 nN pushing force was measured, which was
positively correlated with substrate rigidity (108). Interestingly,
podosomes could adjust their core elasticity toward the substrate
rigidity, maintaining a constant indentation depth. Similar results
were obtained for podosomes of fibroblasts pushing against SLBs
(109). The latter study quantified the molecular tension exerted by
individual integrin molecules using DNA-based tension-gauge
tethers, hence confirming the tendency of podosomes to
predominantly exert perpendicular forces.

Via 3D traction force microscopy employing beads bound to
an elastic hydrogel, forces of up to several hundred piconewtons
exerted by single microvilli were observed (79). Force application
via membrane protrusions was found to be crucial for the
cytotoxic activity of CD8+ T cells (110): Knocking out the
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cytoskeletal regulator WASP not only led to diminished forces
and deformation of target cells, but also to a 50% reduction in
killing efficiency at low antigen levels.
MECHANICAL FORCES IN T-CELL
ANTIGEN RECOGNITION

For decades, scientists have attempted to tackle the mystery
surrounding the high sensitivity and specificity of T cells for
their cognate antigen and have naturally created a multitude of
T-cell activation models, each with their own merits and
weaknesses. These early models mainly investigated biochemical
aspects of the TCR–pMHC interaction, such as the multimeric
state of the ligands, the required ligand density for activation, or the
influence of co-receptor binding on triggering potency. However, it
quickly became apparent that all these models could not sufficiently
explain the high sensitivity and specificity of the TCR–pMHC
interaction. Eventually, a new parameter entered the field. In 2001,
the Dustin group observed that different experimental methods led
to marked differences in the measured kinetic parameters of the
TCR–pMHC interaction. Consequently, it was hypothesized that
the koff may increase due to mechanical force in a 2D setting, where
settling T cells interact with immobilized ligands on a surface (111).
The intuitive explanation for this phenomenon was the
involvement of dynamic cellular processes in destabilizing the
Frontiers in Immunology | www.frontiersin.org 7
TCR–pMHC interaction. Indeed, ten years later, Huppa et al.
observed a significant difference in 2D and 3D binding kinetics
and, additionally, a pronounced increase in TCR–pMHC
interaction lifetime upon the destabilization of the cortical
cytoskeleton, indicating that mechanical forces impact T-cell
antigen recognition and triggering (112).

The advancement of new techniques followed, with the
purpose of identifying the impact of mechanical forces on/
during T-cell activation (see Figure 2 for an overview of the
most prominent methods). For this review, we will discriminate
between the effects of externally applied mechanical forces and
forces exerted through the TCR itself.

Impact of Externally Applied Mechanical
Forces on T-Cell Activation
In a multitude of studies, mechanical forces were applied to the
TCR–pMHC bond to characterize the TCR as a mechanosensor.
Different approaches were devised to stretch the bond in a
defined manner (see overview in Table 1):

One of the first experimental strategies was to confront T cells
with a bead coated with a defined number of TCR–ligands,
followed by targeted force application and simultaneous
recording of TCR-downstream signaling. A force of as little as
50 pN applied to the pMHC-coated bead in a tangential but not
normal orientation with regard to the T cell surface turned out to
be sufficient to activate T cells (113). A subsequent study
A B

D EC

FIGURE 2 | Technical approaches for quantifying mechanical forces exerted on TCR–pMHC pairs. (A) Optical tweezer setup: ligand-coated beads are spatially fixed by
an optical trap. Upon TCR engagement, the bead is moved out of the laser focus. The deflection indicates the TCR-imposed mechanical force. (B) Biomembrane Force
Probes: A T cell and a red blood cell are aspirated and held in place via a micropipette setup. A ligand-coated bead is attached to the surface of the red blood cells.
Upon T-cell contact, altered thermal fluctuation of the bead indicates TCR–ligand engagement. Forces can be exerted by retracting the micropipette. (C) Atomic Force
Microscopy: A ligand-coated cantilever tip is brought into close proximity of the T cell surface. Upon TCR engagement, the deflection of the cantilever indicates force
generation. (D) Digital Molecular Force Sensors (MFS): A ligand is attached to a fluorescently labeled MFS unit. In their folded state, the fluorescence is entirely quenched.
Such sensors can withstand a certain threshold of strain before (Fr) unfolding. Upon TCR engagement and force generation, the digital MFS unfolds, reducing the
quencher efficiency and leading to a quantifiable increase in fluorescence. (E) Analog MFS: A ligand is attached to a fluorescently labeled spring unit framed with a FRET
(Förster resonance energy transfer) pair. In its coiled state (F=0) the fluorophores are in close proximity and the FRET efficiency is high. Upon TCR engagement and force
generation (F1<F2) the spring unit uncoils continuously decreasing the FRET efficiency between the two fluorophores. AFM, Atomic Force Microscopy; F, Force; Fr,
hairpin rupture force.
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determined the effect of applied shear and pulling forces on the
TCR–pMHC bond using artificial APCs and demonstrated that
mechanical forces can activate T cells as well in a cell–cell
conjugate (114). Forces of as little as 10 pN were found
sufficient to induce signaling when imposed through pMHCs
or TCR/CD3-specific antibodies (122). Combined, these studies
are consistent with the notion that triggering thresholds are not
only defined by the intrinsic biochemical properties of TCRs and
pMHC but also by force load and directionality. Interestingly, the
latter study revealed that forces applied to no more than 1
molecule at the bead–cell interface could not trigger a robust
T-cell response, whereas forces applied over 2 bonds resulted in
T-cell activation. Given that the physiological concentration of
presented antigen via pMHCI is estimated to be around 10–100
per interface (124), and as few as 3–10 bonds are sufficient to
trigger cytotoxicity (125), these insights let mechanical forces in
the context of scanning microvilli tips shine in a new light.

Adding to the multitude of unique insights, the study by Feng
et al. provided the first clear evidence that forces applied over
multiplebonds at thebead–cell interface arebeingdistributed (122).
Aprerequisite to loaddistributionwouldbe thephysical couplingof
the involved surface area. Along this line of reasoning, the
biophysical parameters of membrane curvature and tension
recently emerged as a possible mechanism influencing T-cell
motility, protrusion, and immune synapse formation (reviewed in
(126)). The decisive physical parameter in this model is the
modulation of membrane tension and tension decay at the
triggering point, which could even be used to explain certain
aspects of ligand discrimination (127) and synapse breaking (128).

By measuring TCR–pMHC dissociation kinetics under load
with the use of a biomembrane force probe (BFP), Zhu and
colleagues found a correlation between the bond lifetime and
stimulatory potency (116, 117, 119, 129). BFP probes were used
to apply mechanical forces to CD8+ (117) and CD4+ T cells (119,
123), and showed that for agonistic antigens, forces up to 10 pN
Frontiers in Immunology | www.frontiersin.org 8
prolong the interaction lifetime, forming ‘catch bonds,’ while
non-stimulatory pMHCs give rise to much reduced lifetimes
under load (‘slip bonds’). By using an optical tweezer setup (118),
catch-bond characteristics of stimulatory TCR–pMHC
interactions were also observed by others. Furthermore, the
directionality of externally applied forces probing the TCR–
pMHC interaction impacts the antigen sensitivity of the T cell
(122). Therefore, one prevalent model in the field describing
antigen discrimination concerns the mechanical probing of each
TCR–pMHC interaction. The TCR-imposed molecular forces
exerted by the structural dynamics of the cellular membrane help
in probing the ligand–receptor interaction, and only strong
agonists allow the necessary resistance (life-time) to trigger
activation (117, 122). It seems, therefore, plausible that linking
forces to synaptic lifetime and the stimulatory potency of a given
TCR–pMHC pair manifests as a major principle underlying
antigen discrimination in the physiological context of T-cell
antigen recognition. However, this has been contested by the
recent observation that even agonist pMHCs coated on beads
and interacting with a TCR-coated surface exhibited a clear slip
bond behaviour behavior under defined flow-generated force in
an in vitro experiment without cells (130).

Force Amplitude of TCR-Imposed
Mechanical Forces
Adhesion-related forces of about 1–2 nN have been reported
within cell–cell contacts. However, measured values varied
significantly depending on the cell line under investigation
(131, 132). Moreover, net adhesion forces recorded between
the conjugated cells correlated with the stimulatory potency of
the pMHC (132). Several attempts have since been made to
assess forces imposed on a truly molecular level (see Table 2).

Husson et al. (71) adapted the BFP technology with single-
molecule detection to visualize the temporal response of single T
cells to glass beads functionalized with anti-CD3 and covalently
TABLE 1 | Overview of published articles investigating the impact of mechanical forces on T-cell activation.

Forces Activate T cells Force Amplitude & Direction # Ligands Triggered Cells, Stimulus Ref.

Optical Tweezers Shear force (50 pN) activates T cells ~10/bead T cells (murine), pMHCI (113)

Flow Chamber/Micropipette Shear/Pulling forces activate T cells n.d. (cell surface) T cells (murine), aCD3 on aAPCs (114)

Atomic Force Microscopy ~20 +/−10 pN/bond
sensitivity ~10 pN

1/interface CD8+ T cells (murine), pMHCI (115)

Micropipette Assay Applied forces activate T cells 15–30/mm² CD8+ T cells (murine), pMHCI (116)

Biomembrane Force Probe Up to ~10 pN/bond enhances lifetime (catch) 1/interface CD8+ T cells (murine), pMHCI (117)

Optical Tweezer Up to ~15 pN/bond enhances lifetime (catch) 1/interface CD8+ T cells (murine), pMHCI (118)

Biomembrane Force Probe Up to ~10 pN/bond enhances lifetime (catch) 1/interface CD4+ T cells (murine), pMHCII (119)

Biomembrane Force Probe Up to ~10 pN/bond enhances lifetime (catch) 1/interface Pre-pMHC/TCR (murine), pMHCI (120)

Biomembrane Force Probe Up to ~10 pN/bond enhances lifetime (catch) 1/interface CD8+ Native/Recombinant TCR (121)

Optical Tweezer 10–20 pN/bond (in shear & normal direction);
Shear forces activate T cells more efficiently

1/interface to 200/interface (20,000 in
experiments without force)

CD8+ T cells (murine), pMHCI (122)

Biomembrane Force Probe Up to ~15 pN/bond enhances lifetime (catch) 1/interface CD4+ T cells (human), pMHCII (123)
May 2022 | Volume 13 | Article 8
pN, picoNewton; aCD3, antibody against CD3; aAPC, artificial antigen-presenting cell; n.d., not determined; Ref., reference number.
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attached to the surface of a red blood cell. Force generation was
monitored by the elongation of the red blood cell. In this fashion,
distinct pulling and pushing phases could be observed in
receptor-engaged T cells.

Traction force microscopy (TFM) has been applied to assess
forces related to T-cell adhesion and activation. This methodology
involves tracking the force-induced displacement of fluorescent
beads embedded in a matrix of defined stiffness resulting from cells
crawling or spreading thereon. From such studies, it was concluded
that T cells adapt their signaling response according to substrate
stiffness. TFM provided the net amplitude and directionality of
averaged cellular mechanical forces. With the use of elastic pillars
coated with pMHC or activating antibodies, Bashour et al.
visualized and quantified TCR-imposed forces (133): T cells
deflected pillars with approximately 200 pN per pillar in an
antigen-dependent manner. However, the exact number of
participating molecular bonds could not be determined. A similar
TFM experiment conducted with Jurkat T cells revealed that
activating surface conditions (anti-CD3 antibodies) produce
higher deforming forces than non-activating conditions (56).

Atomic force microscopy (AFM) using pMHC-coated
cantilevers confronting the T cell surface showed distinct
pushing and pulling phases without further application of
external force (19). The net pulling forces of activating T cells
were stronger for high affinity antibodies than for pMHC and
absent for control antibodies. Similarly, T cells immobilized on
AFM cantilevers exhibited both pushing and pulling forces when
contacting activating supported lipid bilayers (76).

Intra- and extracellular molecular force sensors (MFSs)
are recent technological additions to the field of nano-
mechanosensors and can either have an analog (for peptide/PEG-
Frontiers in Immunology | www.frontiersin.org 9
based sensors) or digital readout (for DNA-based sensors). By
defining the mechanical force necessary to unzip a DNA hairpin
spanned between a fluorescent dye and a quenching gold particle,
Salaita and colleagues successfully measured the range of forces
exerted by a defined number of TCR. CD8+ T cells were shown to
unzip pMHC-carrying hairpins of 12 pN but not of 19 pN
resistance, and CD4+ T cells unzipped hairpins of 4.7 pN
resistance (134, 135). In this follow-up study by the same group,
force probe-decorated gold particles were anchored to a fluid lipid
bilayer (135). Although this system can be considered mobile, the
force probe itself was still immobilized on a rigid surface, resulting
in a high counter force. Furthermore, the same technique was
applied to gain insights into the mechanical sampling of antigenic
peptides of varying potency. The authors reported a correlation
between tension, potency, and successful TCR triggering (136).

The shortcomings of digital MFSs can be mitigated by using
peptide-based analog MFSs. These contain a flexible peptide whose
extension is a continuous function of the applied force. Like a
macroscopic spring, the higher the pulling force is exerted, the larger
the end-to-end distance of the peptide becomes, allowing for direct
measurement of the force. This approach has been showcased by
the quantification of forces exerted by single integrins byMorimatsu
et al. in 2013 (137). Reasonable estimates of single integrin forces
were between 2 and 40 pN (AFM rupture forces), and maximal
transmitted forces were measured by a digital DNA-based force
sensor to be 20–30 pN. However, peptide-based analog force
sensors reported only 1–5 pN (extrapolated from bulk
measurements) (137) and 1–3 pN (determined by single-molecule
FRET measurements) (138) for individual integrins. There is a
considerable difference between the results of these studies
depending on the acquisition method. Given the more direct
TABLE 2 | Overview of published articles investigating mechanical forces exerted by T cells.

T cells Generate Forces Exerted Force Triggered Cells Ref.

Biomembrane Force Probe Contact force ~5 pN, ~25 pN (pushing),
~ 2 pN/s loading rate (pulling)
[stiffness: 50 pN/μm; sensitivity ~10 pN]

CD4+ T cells (murine), aCD3 (71)

Micropillars (TFM) ~200 pN/pillar CD4+ T cells (murine) (133)

Atomic Force Microscopy ~500 pN/cell (push) & ~800 pN/cell (pull) CD4+ T cells (murine) (19)

Digital Molecular Force Sensor 12–19 pN/bond
[results given in F1/2 values]

CD8+ T cells (murine), pMHCI (134)

Digital Molecular Force Sensor >4.7 pN/bond
[results given in F1/2 values]

CD4+ T cells (murine), aCD3 (135)

Digital Molecular Force Sensor >4.7 pN/bond
[results given in F1/2 values]

CD8+ T cells (murine), OT-1, pMHCI, aCD3, anti-PD1 (136)

Analog Molecular Force Sensor
(single-molecule resolution)

2–6 pN/bond
(activating & scanning conditions)
[1.5 pN/s loading rate]
2 pN/bond (scanning conditions)

CD4+ T cells (murine), aTCR
CD4+ T cells (murine), pMHCII

(101)

AFM Up to 1 nN/cell pushing, 2 nN/cell pulling CD4+ T cells (murine), OT-II TCR, pMHC and aCD3 on AFM cantilevers (19)

AFM Up to 2.5 nN/cell CD4+ T cells (murine), 5c.c7 TCR, pMHC on lipid bilayer (76)

Micropipette Force Probe Up to 0.5 nN/cell CD4+ T cells (human), aCD3, aCD28 (72)
May 2022 | Volume 13 | Article 8
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method of data acquisition with single-molecule resolution, the
latter studies likely approach the ground truth.

Using an analog peptide-based MFS, we recently quantified
the mechanical forces exerted by single TCRs and found a
striking difference between activating and scanning conditions
(101). We developed a quantitative FRET-based force sensor for
application within the immunological synapse, which operates at
the single-molecule level (101). As a spring element, we
employed a peptide derived from the flagelliform spider silk
protein with known elastic properties (139, 140). The
biotinylated spring peptide was conjugated to either (i) a
stimulating single-chain antibody fragment derived from the
TCRb-reactive H57 monoclonal antibody or (ii) the natural
ligand, an MCC-presenting MHC protein. The sensor fits well
within the immunological synapse, as it only spans 8 nm in its
collapsed configuration (2, 141). We observed 5 to 8 pN force-
peaks per TCR for T cells engaging gel-phase and ~2 pN for
fluid-phase glass-supported lipid bilayers using the H57-derived
MFS, and T cells stimulated with the natural ligand exerted an
average force of ~2 pN on gel-phase surfaces. The functional
consequences of mechanical forces along the bond axis remain to
be investigated, but this study suggests that perpendicular
endogenous forces seem negligible. Additionally, temporal
single-molecule force profiles revealed a strong molecular force
peak of 7.5 pN in early contact situations while T cells scan for
antigen and a late arising force peak of 5.6 pN after T-cell
activation (101). These results clearly show that force profiles
experienced by individual TCR–ligand pairs differ during
antigen surveillance and synapse formation. The analog MFS
further enabled us to record the time course of force application.
We observed linearly increasing forces at a rate of 1.5 pN/s for 2–
3 s, followed by a sudden drop to zero, which we speculate is due
to TCRs losing their frictional coupling to the actin cytoskeleton.

Force Orientation During
TCR Triggering
The impact of the orientation of the force vector on
mechanotransduction is another hotly debated topic in the
immune surveillance and T-cell triggering fields. The
aforementioned experiments using optical tweezers to pull a
bead tangentially or perpendicularly with respect to the T cell
surface (113) yielded the first insights into a differential response
toward the directionality of externally applied forces. Here, non-
agonistic antibodies binding to the CD3ϵg subunit of the TCR
could be used for triggering if pulled tangentially, but not
normally with respect to the cell surface. A recent study by the
Salaita group yielded the latest insights into the force vector
directionality for triggering of TCRs by applying a newly
developed technique named SIM-MFM, in which polarization-
modulated structured illumination is combined with DNA-based
membrane force sensor technology (142). Using an activating
antibody against CD3ϵ, they found no preferred direction of
TCR-imposed forces. Although these results do not answer the
question of force orientation during immune surveillance, the
reported method provides a first step toward resolving the force
direction required for TCR triggering.
Frontiers in Immunology | www.frontiersin.org 10
Impact of Mechanical Forces After
Immunological Synapse Formation
Investigating mechanical forces during T-cell activation lays bare
numerous differences in themechanisms employed by various T cell
lineages and subtypes. Adhesion cascades, cytoskeletal
rearrangement, and, consequently, synapse shape and dynamics
are very much dependent on the encountered cellular target. LFA-1
conformation and function clearly depend on the retrograde flow of
the actin cytoskeleton and impacts T-cell activation via co-
stimulation (143, 144). Naïve T cells scanning DCs within the
lymphoid tissue experience a rapid LFA-1 maturation cascade in
view of the ligand rigidification on the DC membrane (53, 98). The
latter study showed that for a DC subset, MHC mobility remained
unchanged upon DC cell differentiation (98). Whether MHC
molecules also experience mobility changes during or as a result of
certain signalingeventsor synapse formationremains tobeaddressed
(143). Another prominent example of how mechanical forces act
during T-cell activation concerns target cell killing by CD8+ T cells.
As shown by Huse and colleagues, antigen-experienced cytolytic T
cells massively strain and deform the target cell membrane surface
and promote in this fashion perforin function (145).
CONCLUDING REMARKS

T cells feature specialized membrane protrusions in varying
environmental contexts. In the last few years, membrane
protrusions have received much attention for their active role
during immune surveillance. Microvilli provide the platform for
exerting forces based on their cytoskeletal core and their
dynamic nature. So far, the community has gained the
following insights into the topic:

(i) Microvilli are important for fast and efficient antigen
scanning and sampling.

(ii) Microvilli carry all molecules necessary for adhesion and
initiating TCR-proximal signaling.

(iii) Microvilli form limited reaction volumes, which may
sensitize T cells for antigen.

(iv) Microvilli may not only be involved in the biochemical probing
of the environment but may also be necessary for testing the
biomechanical properties of the target cells and tissues.

(v) Glycocalyx and cellular stiffness parameters affect TCR
triggering.

Considering the dynamic cellular processes surrounding
mechanosurveillance, a precise temporal control of the
triggering event is a sine qua non for further insights in the
field, and based on the aforementioned studies, a number of
conclusions can already be drawn:

(i) Tensile forces do affect early T cell activation.

(ii) Force transduction is TCR- and peptide-dependent.

(iii) Shear forces or torque affect T cell activation more strongly
than normal forces.

(iv) Generated tensile forces are invariably tied to physiological T
cell recognition and precede T cell activation.
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(v) Individual molecules at protrusion tips are subject to pulling
and pushing forces in the pN range.

(vi) Tensile forces are generated internally by rearrangements of
the actin cytoskeleton and do not involve the action of acto-
myosin motor proteins.

(vii) Immune synapse formation generates mechanical forces
that activate ligand-bound integrins.

(viii) T cell-imposed forces deform target cells and promote their
killing.
OPEN QUESTIONS

(i) Are there any lateral movements of antigen-bound microvilli
tips? What resistance does the glycocalyx pose to the lateral
movement of microvilli? Can the microvillar scanning
process be imagined more like a “dragging through the
waves” or more like a repeated “poking through the barrier”?

(ii) There is conflicting evidence for increased microvilli life- or
dwell times upon antigen encounter. Does antigen binding
lead to an arrest of microvilli dynamics? Are such arrests only
happening for triggering interactions or also for probing
events?

(iii) Is the glycocalyx posing a resistance to microvilli penetration?

(iv) At what point is the force vector reversed from pushing to
pulling? How are adhesive interactions influencing this
process? Is this process used for ligand discrimination by
mechanical probing?
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(v) What is the fate of microvillar protrusions after TCR
triggering? Are the protein platforms at the microvillar tips
evolving to microclusters? What is the impact of LFA-1
maturation on signaling within microvillar protrusions?

(vi) Is the mobility of the pMHCs decisive for the interaction
probability and/or rebinding in the context of microvillar
scanning? Are target cells mechanically altering their
presenting surfaces to allow or inhibit efficient scanning of the
surface?

(vii) How are microvilli recognition events coupled to the
movement of the entire cell body? How are these signals
communicated within the T cell?
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