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Mutations in methyl CpG binding protein 2 (MeCP2) are the major cause of Rett

syndrome (RTT), a rare neurodevelopmental disorder with a notable period of

developmental regression following apparently normal initial development. Such MeCP2

alterations often result in changes to DNA binding and chromatin clustering ability, and

in the stability of this protein. Among other functions, MeCP2 binds to methylated

genomic DNA, which represents an important epigenetic mark with broad physiological

implications, including neuronal development. In this review, we will summarize the

genetic foundations behind RTT, and the variable degrees of protein stability exhibited by

MeCP2 and its mutated versions. Also, past and emerging relationships that MeCP2 has

with mRNA splicing, miRNA processing, and other non-coding RNAs (ncRNA) will be

explored, and we suggest that these molecules could be missing links in understanding

the epigenetic consequences incurred from genetic ablation of this important chromatin

modifier. Importantly, although MeCP2 is highly expressed in the brain, where it has

been most extensively studied, the role of this protein and its alterations in other tissues

cannot be ignored and will also be discussed. Finally, the additional complexity to

RTT pathology introduced by structural and functional implications of the two MeCP2

isoforms (MeCP2-E1 and MeCP2-E2) will be described. Epigenetic therapeutics are

gaining clinical popularity, yet treatment for Rett syndrome is more complicated than

would be anticipated for a purely epigenetic disorder, which should be taken into

account in future clinical contexts.

Keywords: methyl CpG binding protein 2, Rett syndrome, mutations, protein stability, RNA binding

INTRODUCTION

The term epigenetics has gained much popularity and has gathered the attention of many
researchers in recent years. Yet, the term has, at times, been loosely used and quite often in an
ambiguous way (Greally, 2018).

In the right context, epi (beyond)-genetics is defined as gene expression alterations resulting
from a change in the DNA/chromatin structure which does not involve a change in the underlying
DNA nucleotide sequence (i.e., mutations). At the molecular level, this can be elicited by chemical
post-replication/post-translational “tags” that mark DNA (Bird, 1993; Greenberg and Bourc’his,
2019), histones (Bannister and Kouzarides, 2011) (the main protein component of chromatin) or
other chromosomal and non-chromosomal proteins. These “tags” (for instance DNA methylation
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(Greenberg and Bourc’his, 2019) or protein modifications) are
written and erased through the action of different enzymes
(writers and erasers) and read by transcriptional regulatory
cofactors (readers) (Marmorstein and Zhou, 2014; Seto and
Yoshida, 2014). Such is the case for the methyl CpG binding
protein 2 (MeCP2), a DNA methylation reader protein. This
protein, initially thought to have repressor activity (Nan et al.,
1997), is now recognized to have both transcriptionally repressive
and activating functions through its interaction with different
cofactors (Yasui et al., 2007; Chahrour et al., 2008). The protein is
able to recognize (or read) DNA and histone methylation marks
(Lewis et al., 1992; Thambirajah et al., 2012; Lee et al., 2020)
and, hence, it acts as a methylation-dependent transcriptional
modulator within the context of chromatin (Li et al., 2020). DNA
methylation dysregulation is one of the hallmarks of diseases
such as cancer (Baylin and Jones, 2016), and MeCP2 mutations
can alter the reading of this mark, as in RTT (Kriaucionis
and Bird, 2003), where it can impact the normal activity of
cells. Interestingly, MeCP2 has been recognized as a bona fide
oncogene and has been involved in many cancers (Neupane et al.,
2015). In any such instance, these diseases often have a genetic
origin with downstream epigenetic effects (Yoon et al., 2020).

From structural and functional perspectives, MeCP2 is a
good example of an intrinsically disordered protein (IDP)
(Dunker et al., 2001; Hite et al., 2012), given its relatively low
contents of secondary and tertiary structure organization in
solution. Despite this, the protein can be divided into several
well-defined structural/functional domains (Ghosh et al., 2010):
NTD; N-terminal; MBD, methyl binding; ID, intervening; TRD,

Abbreviations: ATRX, α-thalassemia, mental retardation, X-linked protein; AS,
alternative splicing; BDNF, brain-derived neurotrophic factor; BRG1, brahma-
related gene 1; CD44, cluster of differentiation 44; Cdk10, cyclin-dependent kinase
10; ChIP, chromatin immune-precipitation; CTD, C-terminal domain; DGCR8,
DiGeorge syndrome Critical Region 8; DNMT1, DNA methyltransferase 1; DLX1,
distal-less homeobox 1; Dlx5, distal-less homeobox 5; eAT-hook, extended AT-
hook; FBP11, formin-binding protein 11; FOXG1, fork head box G1; FOXP3,
fork head box P3; FRG1, FSHD region gene 1; GABA, gamma aminobutyric
acid; EHMT, euchromatic histone-lysine N-methyltransferase; ERK, extracellular
signal-regulated kinase; EVF2,Rattus norvegicus non-coding RNA;HIF1a, hypoxia
inducible factor 1 alpha; hmC, hydroxymethyl cytosine; HD, Huntington’s disease;
HDAC, histone deacetylase; HMG, high mobility group; HSATII, human satellite
II; HTT, huntingtin; HYPC, huntingtin yeast partner C; ID, intervening domain;
IDP, intrinsically disordered protein; INDEL, insertions and deletion; lncRNA,
long non-coding RNA; Malat1, metastasis-associated lung adenocarcinoma
transcript 1; MBD, methyl biding domain; MeCP2, methyl CpG binding protein
2; mTOR, mechanistic target of rapamycin; NCoR, nuclear receptor co-repressor;
ncRNA, non-coding RNA; NEAT1, nuclear enriched abundant transcript 1;
NFκB1, nuclear factor kappa B subunit 1; NID, NCoR interaction; NLS, nuclear
localization sequence; NME, N-methionine excision; NTD, N-terminal domain;
NSC, neural stem cell; PDE4D, cAMP-specific 3′-,5′-cyclic phosphodiesterase
4D; PEST, enriched in proline, glutamate, serine, threonine; PPARG, peroxisome
proliferator activated receptor-γ; PRC1, polycomb group complex 1; PRMT6,
protein arginine methyltransferase 6; PRPF3, pre-mRNA processing factor 3;
PTM, post-translational modification; RANKL, receptor activator of nuclear
factor-κB ligand; RBD, RNA binding domain; RBP, RNA binding protein; RIP,
RNA immunoprecipitation; RNCR3, retinal non-coding RNA 3; RTT, Rett
syndrome; Sin3A, switch independent 3 gene encoded protein a; SDCCAG1,
serologically defined colon cancer antigen gene 1; SIRT1, Sirtuin 1; SMRT, silencing
mediator of retinoic acid and thyroid hormone receptor; SWI/SNF, switch of the
mating type/sucrose non-fermenting; TBLR1, transducin beta-Like 1X-Related
protein 1; TRD, transcription repression; UPS, ubiquitin–proteasome system;
UTR, untranslated region; WWDR, WW domain binding region; YB-1, Y box
binding protein 1.

transcription repression; NID, NCoR interaction; and CTD,
C-terminal; domains (see Figure 1). The TRD includes the
nuclear localization sequence (NLS) [amino acids 253–271 in
MeCP2-E2 nomenclature (Figure 1B)]. Genetic mutations in
the coding region of the X-chromosome-linked MECP2 gene
alter the ability with which its encoded protein MeCP2 binds
to DNA within the context of chromatin. In particular, those
mutations affecting the MBD of the protein (Figure 1) which
affect the stability (Kucukkal et al., 2015) and affinity (Yang et al.,
2016) of its DNA binding and which represents an important
aspect of this review.

Besides its ability to bind methylated DNA and histones,
MeCP2 was earlier recognized (Jeffery and Nakielny, 2004)
and more recently confirmed to be (Castello et al., 2016) an
RNA binding protein. This less studied facet of MeCP2 will be
described next. Following this, we will focus on an equally less
understood role of this protein, namely its function in tissues
other than those within the brain, and will finally conclude this
review with the controversial potential physiological relevance
of the two isoforms, MeCP2-E1 and MeCP2-E2 (Figure 1), in
RTT (Liyanage and Rastegar, 2014; Martínez de Paz et al., 2019).
Because the MeCP2-E2 isoform was the first to be discovered
(Lewis et al., 1992), the mutations observed in RTT originally
referred to this isoform. Therefore, the amino acid numbers
(mutations) referring to the protein sequence of MeCP2 used
in the following sections will be those of this isoform (unless
otherwise indicated).

SUBSECTIONS

Genetic Origin of Rett Syndrome
Most of the nucleotide transition mutations in Rett syndrome
are the C > T type that take place at CpG hotspots (Wan et al.,
1999), and likely reflect variable site methylation in the male
germline (Cheadle et al., 2000). Hence, all the sporadicmutations,
which represent more than 99% of the individuals affected by
this syndrome (Chahrour and Zoghbi, 2007), and which involve
de novo mutations (Comings, 1986) of the MECP2 gene, are
of paternal origin (Trappe et al., 2001). This paternal origin
may be explained by a combination of the elevated levels of
methylation and mitotic divisions in the male germline (Driscoll
and Migeon, 1990; Shahbazian and Zoghbi, 2002). As in the case
of other C > T transition mutations, this is likely to involve
methyl cytosine oxidative deamination of abnormally methylated
cytosines (Tomatsu et al., 2004).

Rett syndrome is almost exclusively a disease that affects
girls (XX), yet is not a disease with epigenetic inheritance, such
as Prader-Willi syndrome and Angelman syndrome, where the
clinical outcome depends on whether a mutation is transmitted
from a paternal or maternal chromosome, and RTT mutations
are not epigenetic mutations (epimutations) per se. Rather, RTT
mutations have epigenetic consequences, as MeCP2 is considered
to be a reader of epigenetic signals. Although considered a disease
affecting girls, this is not completely exclusive. The vast majority
of mutations that lead to RTT occur de novo in paternal germline
cells (Cheadle et al., 2000), and these can only be transmitted to
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FIGURE 1 | Schematic representation of MECP2 gene organization (A) and different protein domains of the MeCP2-E1 and MeCP2-E2 isoforms (B). NTD,

N-terminal; MBD, methyl binding; ID, intervening; TRD, transcription repression; NID, NCoR interaction; CTD, C-terminal domains; NLS, nuclear localization signal.

female offspring and never to males. De novo MECP2 mutations
can occasionally be transmitted from mothers, or inherited from
mothers who either have mild cognitive impairment or are
asymptomatic, due to skewed X-inactivation favoring expression
from their wild-type allele.

Rett syndrome clinical features include regression of motor
and communicative skills after 6–18 months of apparently
normal development [the reader is referred to Einspieler and
Marchik (2019) and Banerjee et al. (2019)] for comprehensive
descriptions and review of typical and atypical RTT clinical
features. While females born with a de novo (from mother’s or
father’s germ cells) or inherited (from a carrier mother) MECP2
RTT mutation may have a wide spectrum of severity, males
with the same MECP2 mutations typically have much severer
consequences, with a more rapid progression of symptoms and
lower average age of death (Neul et al., 2019). However, these may
be ameliorated in the presence of an additional X chromosome
(Klinefelter’s syndrome), or where the mutation is a somatic
mosaic rather than germline. Also, there are reports of males
with MECP2 mutations that are not known pathogenic RTT
mutations who are affected, but not with classical RTT (Neul
et al., 2019), and some where the clinical presentation includes
psychiatric disorders such as schizophrenia (Cohen et al., 2002;
Villard, 2007; McCarthy et al., 2014; Curie et al., 2017; Sheikh
et al., 2018), bipolar disorder (Sheikh et al., 2016), and Asperger’s
(Curie et al., 2017).

MeCP2 Mutations and the High
Complexity of MeCP2 Stability
Rett syndrome can arise from a number of missense, nonsense,
frame shift, splice site, and start codon mutations as well as larger
deletions that can lead to a range of phenotypes with varying
degrees of severity (Chahrour and Zoghbi, 2007). From the

protein structural point of view (Figure 1B), MeCP2 mutations
can be grouped into three main broad categories. The first
corresponds to mutations that affect the NTD, a second, and
corresponding to a very significant group of RTT phenotypes, are
those that affect the MBD, and a third, those affecting the rest
of the molecule. This classification is not arbitrary as the NTD
has been shown to modulate the ability of MeCP2 (through the
MBD) to interact with DNA (Martínez de Paz et al., 2019) as well
as to influence the turn-over rate of the protein (Sheikh et al.,
2017; Martínez de Paz et al., 2019), and hence mutations within
this region can affect these parameters. With the MBD being the
only structurally ordered portion of MeCP2, mutations within
the MBD can affect the tertiary structure (folding) (Figure 2B;
Kucukkal et al., 2015) of this region and hence its binding
affinity (Yang et al., 2016). Many of the remaining mutations
are located in the C-terminal domain (Moncla et al., 2002;
Bebbington et al., 2010) and can affect the interactions of MeCP2
with many of its diverse interaction partners (Lyst et al., 2013),
including the chromatin (Nikitina et al., 2007a) itself and RNA
(see following section).

The first attempts to study the functional correlation between
RTT MeCP2 mutations and the impairment to DNA methyl
binding and transcriptional regulation activities were carried out
in the late Alan Wolffe’s lab (Yusufzai and Wolffe, 2000) soon
after the discovery of their involvement in this disease (Amir
et al., 1999). These initial results were subsequently followed
by a detailed characterization of the binding affinity alterations
caused by several missense mutations within MBD (Ballestar
et al., 2000) and set the framework for the type of work which
will be described in the following sections.

MeCP2 N-Terminal Mutations

Although not as frequent as the mutations affecting the MBD or
TRD at their C-termini (Shah and Bird, 2017; Spiga et al., 2019),
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FIGURE 2 | Placement and amino acid sequence and PTMs of the RNA Binding Domain (RBD) within the MeCP2-E2 domains. The main missense RTT mutations

are in red (A). Detail of the DNA-bound MBD three dimensional structure (Ho et al., 2008) (Protein Data Bank PDB ID 5BT2) (Berman et al., 2000) (B). Cartoon

representation of RNA-bound MeCP2 within a chromatin context (C). Red spheres, DNA methylation; Gray cylinders, nucleosomes.

several NTD mutations have been described to date and are
more often than not associated with a typical RTT phenotype
(Saunders et al., 2009). However, as with mutations elsewhere
in MeCP2, other factors, skewing of X-inactivation, for example,
play a role. Without the ability to compare clinical severity across
a larger number of RTT girls with the same N-terminal mutation,
and without identification of males with these mutations, it
is difficult to draw any firm conclusions. However, a study of
clinical severity, albeit with only five cases with N-terminal
mutations, of which four displayed typical RTT, suggests on
average lower clinical severity in comparison to the common
nonsense mutations and missense mutations such as T158M
(Cuddapah et al., 2014). It is important to note that the two
isoforms differ at the N-terminal sequences, with the MeCP2-
E2 N-terminus encoded by exon 2, and the slightly longer
MeCP2-E1 N-terminus coming from exon 1 (Figure 1). It is
also worth emphasizing that, until recently, no unequivocal RTT
mutations have been reported within exon 2 (or indeed for any
clinical entity). Very recently, however, there is a report of a
NM_004992:c.7G > C; p.Ala3Pro Rett mutation in exon 2 (Wen
et al., 2020). Given its rarity, it will be important to assess the
molecular effects of this variant to confirm its true pathogenicity.

The MeCP2-E1 N-terminus contains polyGGC and
polyGGA stretches that encode stretches of alanine and

glycine residues, respectively. In-frame insertions and deletions
within the polyalanine and polyglycine regions of exon 1
(Figure 1B) have been identified. Although initially they
were suggested to be a relatively frequent cause of intellectual
disability or developmental delay (Harvey et al., 2007), with
the current availability of exome sequence data from large
control populations1 it is likely that these in-frame indels are
unrelated to disease.

Although genuine disease-causing mutations within exon 1
would appear to affect the MeCP2-E1 isoform exclusively, this
is not necessarily the case. The first mutation reported in exon
1, an 11 bp frameshifting deletion, was described when the
MeCP2-E1 isoform itself was first reported (Mnatzakanian et al.,
2004). Since then, the same mutations have been reported in
multiple studies (Saunders et al., 2009), and in one study it was
shown that, while there was no disruption of transcription of the
MeCP2-E2 mRNA, there was interference with, and reduction of
translation of MeCP2-E2 protein (Saxena et al., 2006), leading to
the possibility that mutations within the MeCP2-E1 N-terminus
affect both major isoforms.

However, subsequently, several classic Rett patients were
identified with mutations affecting the start codon in exon

1gnomad.broadinstitute.org
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1 (Gauthier et al., 2005; Saunders et al., 2009). Levels of
mRNA for MeCP2-E1 and E2 were unaffected, and peripheral
blood lymphocytes were still positive for MeCP2 antibodies,
and thus presumably only able to generate the MeCP2-
E2 protein (Gianakopoulos et al., 2012). Additionally, a
genuine RTT missense mutation (A2V) within the same
N-terminal region of MeCP2-E1 was reported in two patients
(Fichou et al., 2009; Saunders et al., 2009). The mutation
resulted in an RTT phenotype characterized by severe epilepsy,
cognitive impairment and developmental delay, in addition to
microcephaly and no language in one patient (Fichou et al.,
2009), and is described as classic Rett syndrome in the other
(Saunders et al., 2009). Importantly, neither the transcriptional
nor the translational properties of MeCP2-E2 were affected as
observed in fibroblasts or lymphocytes obtained from the patients
(Fichou et al., 2009; Gianakopoulos et al., 2012). An apparent
synonymous or silent mutation in exon 1, p.Gly16Gly, that
was shown to trigger usage of a cryptic splice donor resulting
in a frameshift and premature truncation for the MeCP2-E1
isoform but with no predicted effect on the MeCP2-E2 isoform
has also been documented (Sheikh et al., 2013). A study on
the cellular and molecular effects caused by the A2V mutation
showed that, while it neither impacted the localization of the
MeCP2-E1 isoform nor its co-localization with chromatin, it
affected the N-terminal co- and post-translational modifications
that regulate the physiological turnover of the protein. Complete
N-methionine excision (NME) and evidence of excision of
multiple alanine residues from the N-terminal poly-alanine
stretch of wild type (WT) MeCP2-E1 was observed, whereas the
A2V mutant exhibited only partial NME of either methionine
or valine and reduced N-acetylation (NA). This resulted in
different in vitro protein degradation rates between the WT and
the mutant. Indeed, a higher proteasomal degradation activity
was observed for MeCP2-E1-A2V compared with that of WT
MeCP2-E1 (Sheikh et al., 2017). Hence, the etiopathology of this
mutation is likely due to a reduced bio-availability of MeCP2
resulting from the defective co-post-translational N-terminal
modifications that lead to a faster degradation of the A2Vmutant
(Sheikh et al., 2017).

Apart from A2V, there are no other published reports of exon
1 missense mutations. In fact, there are remarkably few examples
of missense mutations within the N-terminal region leading up to
the MBD. One of these few rarities is A59P. The A59P mutation
was described in three Tunisian RTT patients with variable scores
of clinical severity (Kharrat et al., 2015). Despite the intrinsically
disordered organization of the MeCP2 NTD, such an amino acid
change was predicted to have an important structural effect on
the overall conformation of the protein backbone. However, the
structural role and protein stability properties affected remain to
be determined. This also applies to all the other NTD mutations
described above, with the exception of A2V, and hints to the
complexity of the molecular mechanisms probably involved.

MeCP2 Missense Mutations

Missense mutations represent the most abundant mutations
in RTT [over 70% (Spiga et al., 2019)] and mainly affect the
MBD (residues 78 to 162, Figure 1B) where they make up to

approximately 45% of the cases (Ghosh et al., 2008), underscoring
the primary role of the MBD in the function of this protein.
This domain corresponds to the main structured part within
this intrinsically disordered protein (Dunker et al., 2001; Ausió
et al., 2014), and is the only region that has been amenable to
crystallization (Ho et al., 2008). The MBD crystal structure has
provided an excellent resource for the analysis of the structural
alterations caused by mutations within this region.

Because of their high occurrence, these mutations have been
studied extensively using in vitro structural, in situ cell culture
and in vivo mouse model approaches (Tillotson and Bird, 2019).
Within the first category, we have already referred to the early
pioneering work on R106W, R133C, F155S, and T158M by
Ballestar et al. (2000). This structural work was followed by a
study of R106W, R111G, R133C, F155S, and T158M, which,
in the absence of crystallographic MBD information (Ho et al.,
2008), used NMR and provided a more detailed molecular
characterization of the structural changes resulting from these
mutants (Free et al., 2001). It was noticed that the R133C
mutation affected DNA binding without changing the MBD
structure, thus highlighting, for the first time, the relevance for
proper DNA binding of the basic amino acids at the MBD-DNA
interface (Spiga et al., 2019). These studies were ensued by a later
characterization of the same mutants using a combination of
biophysical techniques that included fluorescence spectroscopy
and circular dichroism. They allowed the authors to correlate
the magnitude of the structural changes elicited by each mutant
to the severity of the associated RTT phenotypes (Ghosh et al.,
2008). Due to the complexity of the structural work, initial studies
focused on some of the most prevalent RTT mutations and
only more recently have been extended to other mutants such
as the Y120D and to their binding to mCH (where H = A, T,
or C) (Sperlazza et al., 2017), and in particular to mCA (Gabel
et al., 2015). Although no structural differences were observed
between the binding of the MeCP2 mutants to mCG versus
mCA (Sperlazza et al., 2017), this study was very relevant as,
immediately after birth, during neuron differentiation, mCH
(Lister et al., 2013) and MeCP2 (Kaufmann et al., 2005b;
Olson et al., 2014) concomitantly increase during a changing
methylation landscape that may account for the onset of RTT
(Lavery and Zoghbi, 2019). From the structural point of view, the
different missense MBD-RTT associated mutations can change
either the stability of the MBD, its DNA binding affinity, or both
to a different extent. In this regard, a couple of recent exhaustive
structural studies summarize this in a way that clusters these
mutations into three different groups (Kucukkal et al., 2015; Yang
et al., 2016) (see Table 1 and Figure 3).

The information from the structural studies has been
complemented by in situ experiments in different cell culture
settings. A few representative papers covering a wide spectrum
of mutations have been published by Kudo et al. (2003), and
by Agarwal et al. (2007). In addition to stability and affinity
of binding, these studies have also focused on the clustering
ability of MeCP2 around the pericentromeric heterochromatin.
Importantly, the work has also provided insight to the altered
distribution within the nuclear/cytoplasmic compartments
caused by the MeCP2 mutations (Figure 3C). As with the in vitro
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TABLE 1 | Classification of MeCP2 MBD missense mutations according to their

structural characteristics (Yang et al., 2016).

Group

(Cluster)

Mutation (No. of cases)

(Krishnaraj et al., 2017; Spiga

et al., 2019)

Structural characteristics

Group 1 L100V (7)

S134C (21)

P152R (71)

D156E (15)

MBD propensity to unfold and

reduced binding affinity for C

methylated DNA

Group 2 R106W (132)

R106Q (21)

R133H (8)

R133C (217)

F155S (2)

T158M (419)

T158A (2)

No major changes in MBD structure

but various binding affinities for C

methylated and unmethylated DNA

Group 3 R111G (1)

A140V (29)

Loss of MBD flexibility leads to

reduced binding affinity for either C

methylated or unmethylated DNA

structural work, an attempt has been made to correlate the
observations made with clinical severity (Sheikh et al., 2016;
Figure 3C). Interestingly, while some of the MeCP2 protein
mutants resulting fromMBDmutations (i.e., R133C and A140V)
are still able to bind to chromatin, their interaction with ATRX
is fully compromised (Nan et al., 2007). ATRX is a protein
member of the ATP-dependent SWI/SNF family of chromatin
remodeling complexes (Pazin and Kadonaga, 1997). This
additional disruption of a functionally relevant protein-protein
interaction underscores the molecular mechanistic complexity of
some of these mutations.

In more recent years, a few knock-in mice models have
been produced for the Y120D, R133C and T158M/A mutations
as well as two transgenic models for the R111G and R306C
mutations (Heckman et al., 2014). These models have provided
useful information from an in vivo perspective. This work has
revealed that, in instances such as T158M, where the mutation
significantly decreases the amount of MeCP2 in the nucleus, the
RTT phenotype can be rescued by increasing the expression of the
T158M mutant (Lamonica et al., 2017). Moreover, the decrease
in the mutated MeCP2 was shown to be due to proteasomal
degradation (Lamonica et al., 2017). This decrease is reminiscent
of that observed for the truncated form of MeCP2 expressed in
the Jaenisch (Mecp2 TM1.1Jae/Mmcd) mouse model (Stuss et al.,
2013), in which exon 3 of MeCP2 is deleted (Figure 1A) such that
most the MBD is lacking (Chen et al., 2001).

MeCP2 Nonsense and C-Terminal Mutations

In this section, we include all the mutants affecting MeCP2
beyond its MBD. These include mutations affecting the ID,
TRD, and CTD domains that encompass the NID and RNA
binding domain (RBD) (Figure 3A). The C-terminal region
defined in this way, is also where MeCP2 mutations pertaining
to other brain disorders such as schizophrenia, which involves
the ID, (Sheikh et al., 2018; Chen et al., 2020) take place.
Many of the RTT nonsense mutations occur within this region
and its most significant missense mutations take place in the
TRD (Figure 3A). From a structural perspective, mutations
within this region have been less extensively studied, in contrast
to those of the MBD. This is particularly true as it pertains
to the nonsense and frameshift mutations leading to early

FIGURE 3 | Effect of a few MBD missense mutations [groups G1 to G3 (Yang et al., 2016)] on MeCP2 structure (stability) (A), binding affinity (magenta star: G1;

yellow star: G3) (B) and nuclear distribution (C).
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termination. In this regard, a hint into some of their potential
molecular effects can be envisaged from the early structural
work carried out in the late Alan Wolffe’s lab (Chandler et al.,
1999; Yusufzai and Wolffe, 2000) which used C-terminally
truncated versions of MeCP2 to show that the CTD facilitates
its binding to nucleosomes (Chandler et al., 1999) and hence to
chromatin. A more detailed follow up, carried out by Nikitina
et al., highlighted the role of residues 295–486 for chromatin
interaction (Nikitina et al., 2007b), and showed that R294X failed
to produce the nucleosome–nucleosome interactions (Nikitina
et al., 2007a) that are observed with the native form of the
protein. Disruption of the inter-nucleosome interactions may
play an important role in the intrinsic ability of MeCP2 to
organize chromatin into chromocenters (Brero et al., 2005;
Agarwal et al., 2011; Ausio, 2016; Wang et al., 2020). The
RTT nonsense mutations, R168X, R255X, R270X, and R294X,
which together account for about 90% of all nonsense mutations
(Krishnaraj et al., 2017) were recently shown to disrupt the
ability of MeCP2 to cluster heterochromatin (Li et al., 2020)
in a way that progressively decreased with the proximity of
the MeCP2 truncation to the C-terminus (Wang et al., 2020).
These results agree with the clinical observations which indicate
that severity of the C-terminal truncations decreases with its
proximity to the carboxy-terminus of MeCP2, with individuals
with the R168X mutation being more severely affected than
those with R294X (a mild RTT mutation) or other more
C-terminal mutations (Neul et al., 2008; Bebbington et al., 2010;
Cuddapah et al., 2014). They also agree well with the recently
described critical role of the unstructured MeCP2 CTD in
conjunction with theMBD to form heterochromatin condensates
(Li et al., 2020). Of note, the R255X and R270X mutations
fall within the NLS region, however, the molecular relevance
of this is not clear, especially since NLS inactivation does not
affect the progression of the disease in a RTT mouse model
(Lyst et al., 2018).

Given the confounding effects resulting from the mosaic
expression of MeCP2 in females (XX), boys (XY) with RTT
allow for a better correlation between mutation and phenotype
severity. In this regard, boys with truncation or frameshift
mutations before or including residue R270 exhibit neonatal
encephalopathy and death, whereas males with the same type
of mutations beyond G273 survive. Using R270X and G273X
mouse models, the breaking point was shown to be due to the
disruption of an AT-hook 2 HMGA1 (high mobility group)-
like domain in MeCP2 that was found to be critical for
chromatin maintenance and α-thalassemia mental retardation
X-linked protein (ATRX) localization in the nervous system
(Baker et al., 2013), underscoring again the multifaceted role
of MeCP2 in chromatin organization. As with the chromatin
architectural HMGA1 non-histone protein (Reeves, 2001),
MeCP2 contains three homologous AT hook domains (Ausió
et al., 2014) that provide the molecule with DNA binding
properties involved in chromatin clustering and heterochromatin
organization. Interestingly, HMGAs play an important role in
the regulation of the neurogenic potential of neuron precursor
cells, and their expression is lost during neuron differentiation
(Tyssowski et al., 2014).

In addition to all the above, the possibility exists that the
deleterious consequences of the nonsense mutations giving rise
to the truncated forms of MeCP2 may also be partially indirect
in nature. Indeed, analyses of the histone PTMs in lymphocytes
from RTT patients showed a decrease in the levels of acetylation
of lysines 9 and 14 of histone H3 (Kaufmann et al., 2005a). These
analyses are interesting, and add to the promise of biomarker
discovery in RTT patient lymphocytes, but unfortunately they
do not provide insight into the potential molecular mechanisms
involved. In experiments carried out on clonal cell cultures
from an RTT female with the R168X mutant and cells from a
male hemizygote for the frameshift mutation 803delG (V288X),
both sets of mutant cells exhibited histone H4 hyperacetylation
specifically associated with increased acetylation of lysine 16
(H4K16ac) (Wan et al., 2001). In a different study using a
mouse model of Rett syndrome expressing MeCP2 truncated by
introducing a stop codon after codon 308 (Mecp2308/y), a 2–3
fold increase in histone H3 acetylation was observed in cortex
(Shahbazian M. et al., 2002). The changes in global acetylation
observed in these studies might have important alterations in
gene expression and in both instances had been attributed to
the inability of these truncated versions of the expressed protein
to recruit the MeCP2-associated histone deacetylase (HDAC)
complexes (Nan et al., 1998; Jones et al., 2001). However, the
relation of this acetylation to the MeCP2-dependent HDAC
recruitment is surprising, as the null mouse model lacking the
expression of MeCP2 does not exhibit any differences in histone
H3 or H4 acetylation (Urdinguio et al., 2007). A more plausible
explanation would be that MeCP2 might have a developmental-
dependent downstream effect on gene expression (Thatcher and
Lasalle, 2006) which is altered in different ways in the presence of
different truncated MeCP2 forms and in different tissues.

The most important C-terminal missense mutations (in terms
of frequency): P302R, K304E, K305R, and R306C occur in
the TRD within the NID (Figure 3A). In this regard, R306C
represents one of the most frequent mutations observed in RTT
with 245 (5.1%) RTT cases reported (Krishnaraj et al., 2017).
R306C suppresses MeCP2 binding to the nuclear receptor co-
repressor (NCoR)-mediated recruitment of HDACs, which is
also severely compromised by any of these four RTT mutations
(Kruusvee et al., 2017). Yet, despite the functional relevance to
RTT attributed to the MeCP2 NID (Tillotson et al., 2017), and
despite the main functional role of MeCP2 in the brain being to
recruit the NCoR1/2 co-repressor complex to methylated DNA
sites in this tissue (Tillotson and Bird, 2019), mutations within
this region correspond to some of the clinically milder RTT
forms reported (Schanen et al., 2004; Cuddapah et al., 2014;
Neul et al., 2014). Also, the genomic sites to which the NCoR1/2
complex is recruited (Connolly and Zhou, 2019) and their relative
abundance are still unknown.

Other molecular implications for the mutations within the
MeCP2 C-terminus could arise from the fact that the CTD
had been shown early on to contain a WW domain binding
region (WDR) encompassing amino acids 325–498. This region
is responsible for the interaction of MeCP2 with group II
WW-containing domains in splicing factors FBP11 and HYPC
(Buschdorf and Stratling, 2004). Several missense mutations
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and small C-terminal INDELs causing truncations occur within
this region (Kyle et al., 2018; Lavery and Zoghbi, 2019;
Spiga et al., 2019), the most prominent being E395K (Krishnaraj
et al., 2017). However, structural information for any of these
is still lacking.

Proteasomal Degradation and the PEST Sequences

As has already been mentioned above for various MeCP2
mutations, several of the anomalous cellular levels and
pathological aspects involved arise from alterations in the
proteasomal degradation processing of these mutants (Lamonica
et al., 2017; Sheikh et al., 2017). Whether the proteasome activity
takes place in the nucleus or in the cytoplasm is not yet clear and
it may be dependent on the type of mutation. While both the N
terminus-dependent pathway and the lysine-dependent (PEST)
degradation pathways can occur in the nucleus, the latter occurs
more actively in the cytoplasm (Lingbeck et al., 2003). Hence,
the cellular localization of the MeCP2 protein molecules to be
degraded might be mutation dependent. Indeed, the MBD by
itself is important for nuclear localization (Lyst et al., 2018) and
hence MeCP2 partitioning within the cell might be affected by
impairment of its ability to bind to its methylated DNA target.

Regardless of the cellular compartment where the degradation
of MeCP2 mutants takes place, the ubiquitin proteasome
system (UPS) plays a very important role in neurological
diseases, including cognitive disorders like RTT (Lehman, 2009).
Mesenchymal stromal cells from a heterozygous RTT female
mouse model null for MeCP2 (Mecp2tm1.1Bird), which mimics
partial MeCP2 loss of function, have been shown to exhibit
increased proteasome activity (Squillaro et al., 2019). Similar
observations associated with changes in cellular ubiquitination
have been described for peripheral blood lymphomonocytes from
RTT patients (Pecorelli et al., 2013).

In view of all of this, we propose here a mechanism for
MeCP2 degradation of missense mutations that relies on the
presence of two PEST domains in MeCP2 (Thambirajah et al.,
2009; Figure 3B). These domains consist of consensus sequences
enriched in proline, glutamate, serine, and threonine (PEST)
residues, which act as a recognition signal for rapid degradation
by the 26S UPS (Rogers et al., 1986; Rechsteiner and Rogers,
1996). The two PEST domains of MeCP2 are N-terminally and
C-terminally located at amino acid residues 73–94 and 389–
426, respectively (Thambirajah et al., 2009). However, whether
this mechanism would apply to all the RTT mutations it is not
clear and, as in the case of the N-terminal mutations, additional
mechanisms may also apply (Sheikh et al., 2017). While limited
detailed information is available for some of the N-terminal
(Sheikh et al., 2017) and MBD missense (Lamonica et al., 2017)
mutations, information in this regard on mutations occurring
at other MeCP2 domain locations is significantly lacking, and
information on stability and binding affinity it is only known in
a few instances. Such is the case of the reduced DNA binding
affinity of the R306C mutation described in the previous section,
which affects the TRD/NID (Figure 3A). Using a mouse model
for this mutation, Heckman et al. have conclusively shown
that, beyond the impairment of binding the repressive NCoR
complex (Kruusvee et al., 2017), alteration of the basic cluster

of basic amino acids (304–309) within the RNA binding domain
(Figure 3A) by R306C lowers the binding affinity of the mutant
protein by MeCP2 binding sequences in vivo (Heckman et al.,
2014). Importantly, it might also disrupt the interaction of the
protein with RNA as will be described next.

MeCP2 as an RNA Interacting Protein
MeCP2 RNA Binding Domain(s)

Direct interaction between MeCP2 and RNA was first shown
by in vitro electrophoretic mobility assays (Jeffery and Nakielny,
2004). MeCP2 shifted mouse immunoglobulin mRNA and
XenopusU1 spliceosomal small nuclear (sn)RNA, but not human
tRNA or Xenopus 5 S rRNA, suggesting that RNA binding is
not promiscuous. Removal of an RG repeat motif C-terminal
to the MBD abolished RNA binding (Figure 2A). Of note,
double stranded (ds), but not single stranded (ss) RNA was
shown to compete with methylated DNA, implying mutually
exclusive binding to methylated DNA or dsRNA. Despite these
promising but preliminary results, very little further research
has been performed to characterize MeCP2-RNA interactions.
It is becoming increasingly clear that protein interactions with
both DNA and RNA are key to almost all nuclear processes,
particularly because of the emerging regulatory roles played by
lncRNAs (Hudson and Ortlund, 2014). RG repeat motifs are well
established RNA binding modules (Thandapani et al., 2013). The
binding preference for these motifs is debated, but evidence tends
toward affinity for G-quadruplexes or GC-rich dsRNA, where
arginine residues form hydrogen bonds with guanines (Jarvelin
et al., 2016). This allows for almost transcriptome-wide binding
possibilities, where specificity might be modulated by structural
context and/or residues commonly occurring near RG repeats,
such as the PGG, GGG, and polyalanine residues found inMeCP2
(Figure 2A; Chong et al., 2018). MeCP2 has a relatively short
RG repeat, which is generally associated with low RNA binding
affinity. An AT-hook domain overlaps the RG repeat, which was
later characterized as a non-canonical extended AT-hook (eAT-
hook) (Figure 2A; Filarsky et al., 2015). eAT-hook proteins have
an order of magnitude greater affinity for dsRNA than DNA,
and long stem-loop RNA structures are preferred over short
hairpins (Figure 2C).

Advanced proteome-wide screens of RNA binding proteins
(RBPs) have identified MeCP2 as an important RBP (He et al.,
2016; Trendel et al., 2019). Recent comprehensive in vivo
capture of RBPs identified a lysine-rich non-canonical RNA
binding motif within the TRD of MeCP2 (Castello et al., 2016).
RNA binding domains (RBDs) that lack sequence homology
to known RBDs are being found with increasing frequency,
and are presently characterized by basic (R and K) and
disorder-promoting (R, G, P, S, and Q in MeCP2) residues.
K-rich regions in DNA binding domains are thought to allow
“hopping” or “sliding” to specific sequences; however, K-rich
RNA binding domains characterized to date imply RNA structure
over sequence-specific binding (Wilson et al., 1998; Takeuchi
et al., 2009; Castello et al., 2016; Figure 2C). Most non-canonical
RBDs are also enriched in having DNA and protein interaction
surfaces, suggesting competition between RNA binding and
other molecular interactions at these regions. This agrees with
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the K-rich RBD of MeCP2 overlapping its NID, a region
within which RTT-causing missense mutations are also enriched
(Figure 2A). RTT-like phenotype rescue in knock-in Mecp2-
null mice expressing a minimal MeCP2 protein lacking the
N- and C-terminal regions as well as the intervening region
suggest that just the MBD and NID are necessary and sufficient
for MeCP2 function (Figure 2A; Tillotson et al., 2017). The
CTD probably plays a minor functional role, as its absence
caused mild intellectual phenotypes. The discrepancy between
a minimal peptide and diverse functionality of the protein has
been reconciled by concluding that the dominant role of MeCP2
is to mediate transcriptional repression via NCoR complex
recruitment to methylated DNA. An alternative explanation
could be that the regions containing the MBD and/or NID
mediate some degree of protein multifunctionality (Ghosh et al.,
2010). Surface plasmon resonance assays show that MeCP2-
TBLR1 (the direct binding subunit of the NCoR complex)
interaction is relatively weak (KD 9.5 ± 0.5 µM), which could
be due to a lack of physiological context in vitro, or it could
indicate transient binding (Kruusvee et al., 2017). Evidence for
NCoR mutations specifically causing Rett syndrome is lacking
(Sakaguchi et al., 2018; Zaghlula et al., 2018). Instead, they can
cause intellectual disabilities, rather than RTT, per se, similar
to misregulation of other MeCP2-associated processes such as
mRNA splicing or miRNA biogenesis, suggesting comparable
importance of MeCP2’s differing roles (Young et al., 2005; Ha
and Kim, 2014). Given a growing catalog of diverse regulatory
RNAs, the presence of a flexible RBD within the indispensable
NID region ofMeCP2 is a good candidate to explain its functional
multiplicity. Moreover, combinatorial action between the K-rich
RBD and the eAT-hook/RG repeat region of MeCP2 could add
to the complexity.

Post-translational modifications (PTMs) are another
regulatory mechanism of RBPs, some of which MeCP2 may
share (Xu et al., 2019). Conservation analysis of PTMs found
within RBDs showed that phosphoserine is often immediately
preceded by a conserved glycine, and phosphothreonine can
often be found 5 amino acids upstream from a conserved serine
such as that seen on MeCP2 residues S274 and T308 (Figure 2A;
Castello et al., 2016). Both PTMs have been experimentally
determined (Bellini et al., 2014). Differential activity-dependent
mechanisms determine phosphorylation of S274 (protein kinase
A) and T308 (membrane depolarization), where phosphorylated
T308 abrogates NCoR binding, potentially also representing
differential activity-dependent mechanisms of RNA binding
regulation (Ebert et al., 2013). MeCP2 is also ubiquitinated
(K271) and acetylated (K271, K289, K305 or 307) at sites within
the RBD (Gonzales et al., 2012; Pandey et al., 2015). The roles
of these PTMs are unclear, but ubiquitination can influence
protein conformation, and acetylated K305 could be important
for protein function, as indicated by the acetyl-defective RTT
mutations, K305E/R (Ausió et al., 2014). Methylation at R162
within the RG repeat motif could affect affinity for RNA, as is
common for other RGG/RG proteins (Blackwell and Ceman,
2012; Guo et al., 2014). PTMs outside of RBDs can also modulate
RBP function, allowing for further positive or negative regulation
of RNA processing and fate (Lovci et al., 2016). This may

also be true for MeCP2, similar to how activity-dependent
phosphorylation outside the MBD bi-directionally regulates
DNA binding (Tillotson and Bird, 2019). Altogether, the
available data support MeCP2-RNA binding, but the role(s)
RNA may play, and how the K-rich and/or RG repeat motifs are
involved, can only be speculated as of now.

mRNA Splicing Regulation

Methyl CpG binding protein 2 has been shown to increase exon
inclusion of a CD44 minigene reporter through RNA-dependent
interaction with the YB-1 splice factor in HeLa and Neuro2A
cells (Young et al., 2005). MeCP2 pulls-down YB-1 through TRD
residues, but a C-terminal RTT-causing truncation, MeCP2-
308X, binds less efficiently to YB-1, reducing exon inclusion.
MeCP2 also immunoprecipitates CD44 precursor (pre-) mRNA,
and MeCP2-308X abrogates this binding. Given that MeCP2’s
putative RBDs do not overlap with the CTD (see above), the
pre-mRNA interaction may be indirect, or direct pre-mRNA
binding could require CTD-protein binding, PTMs, or structural
context.Wild type andMecp2308/Y mice have significantly altered
genome-wide alternative splicing (AS), including that of Dlx5
and Cdk10 – direct targets of MeCP2-mediated repression and
activation, respectively. Activity-dependent dephosphorylation
at Serine pS80 enhances MeCP2-YB-1 interaction, suggesting
MeCP2-dependent splicing regulation occurs in the brain
(Gonzales et al., 2012).

In addition to YB-1, MeCP2 binds many splicing factors in
different contexts, primarily through the CTD, and to a lesser
extent the transcriptional repression domain (TRD) (Table 2;
Buschdorf and Stratling, 2004; Long et al., 2011; Maxwell et al.,
2013). The RNA-binding or RTT relevance of these interactions
also vary, or are unknown. MeCP2 assembles with pre-mRNA
processing factor 3 (Prpf3) and serologically defined colon
cancer antigen gene 1 (Sdccag1) to pre- and mature mRNA of
the MeCP2 gene targets Cdk10 and Frg1 (Long et al., 2011).
The number of documented MeCP2 splice factor interactions
continues to grow, with one article even reporting that the
majority of MeCP2-bound proteins are involved in RNA splicing
and processing (Cheng et al., 2017). The spliceosome is a
massive macromolecular complex with many auxiliary proteins
providing context-specific AS, so it is unsurprising that such
variation exists and that concrete ties to RTT pathology have been
difficult to make.

C-terminal truncations account for ∼10% of RTT cases, yet
significant functional relevance has yet to be attributed to this
domain. Several truncations tested in the articles above coincide
with known Rett syndrome genotypes, suggesting correlation
with splice factor binding.

Most reported MeCP2-mediated AS events are cassette exon
inclusion and intron exclusion (Young et al., 2005; Wong et al.,
2017; Osenberg et al., 2018). Intron exclusion events were
aberrant for MeCP2 target gene transcripts, Dlx5 and Cdk10, in
Mecp2308/Y mice (Young et al., 2005). RNA-seq analysis inMecp2
KOmouse cortex, however, suggests bidirectional roles in several
types of AS (Li et al., 2016). In addition to protein-RNA-mediated
regulation, AS is intimately tied with DNA methylation, and
MeCP2 binds methylated exonic DNA, stalling RNA Polymerase
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TABLE 2 | MeCP2 interacting splicing factors.

Splicing

Factor

Tissue/Cell type Methods MeCP2

interaction site

RTT mutations

abrogate binding?

RNA

dependent?

Ref

FBP11,

HYPC

HEK293 GST pull-down and Co-IP From 325 (CTD) Yes, C-terminal

truncations

Untested

Untested

Buschdorf and

Stratling, 2004

YB-1 HeLa, Neuro2a GST pull-down and Co-IP 195–329 (TRD) Yes, C-terminal

truncations

Yes Young et al., 2005

Prpf3

Sdccag1

Whole rat brain nuclei GST pull-down and Co-IP 104–141 (MBD),

207–294 (TRD)

From 311 (CTD)

Yes, C-terminal

truncations

No

No

Long et al., 2011

Prp8

Top2b

DXH9

Whole mouse brain

nuclei

Co-IP, MS Unmapped Untested No

Yes

Yes

Maxwell et al., 2013

LEDGF,

DXH9

MeCP2-Flag KI whole

mouse brain nuclei

Co-IP 163–270 (TRD)

Unmapped

Yes, TRD truncations

Untested

No

No

Li et al., 2016

TDP-43,

FUS,

hnRNP F

No

No

No

II (RNAPII), thus reducing the chance of skipping alternative
exons (Maunakea et al., 2013). These initial findings did
not distinguish methylation (5mC) from hydroxymethylation
(5hmC). However, more discriminatory experiments reveal
enrichment of 5hmC at exon-intron boundaries in neurons,
whereas 5mC exon-intron enrichment is prevalent in non-
neuronal cells, supporting a role for 5hmC in MeCP2-mediated
AS in the brain (Khare et al., 2012; Wen et al., 2014; Li et al.,
2016). This agrees with MeCP2 enrichment on exon-intron
gene boundaries and on 5hmC at active neuronal genes during
postnatal development (Kinde et al., 2015; Li et al., 2016).

Alternative splicing is a highly conserved process allowing for
greater protein and ncRNA diversity than provided by individual
genes (Weyn-Vanhentenryck et al., 2018). A plethora of splice
factors with different expression profiles is essential for correct AS
during development. Cassette exon inclusion increases in mouse
brain during development, which correlates with the increase
in MeCP2 expression (Olson et al., 2014; Weyn-Vanhentenryck
et al., 2018). MeCP2 interaction with the spliceosome and with
pre-mRNA occur primarily through the CTD, suggesting some
RTT pathologies from C-terminal truncations could, to some
extent, derive from aberrant AS. Of note, during the writing of
this manuscript, two research articles related to MeCP2’s role in
AS were published. In the first, quantitative assessment of high-
quality sequencing datasets found little variation in global AS as
a result of differential MeCP2 and/or DNA methylation levels
(Chhatbar et al., 2020). However, in the second article, MeCP2
was found to be required for maintaining mature hippocampal
AS profiles, and to regulate splicing of specific neuronal genes
in the hippocampus during memory consolidation (Brito et al.,
2020). These two recent papers underscore the still long road
ahead in understanding MeCP2’s role in AS, as well as the
importance of careful context-specific interpretation of MeCP2
studies moving forward.

miRNA Biogenesis and Binding

MicroRNAs (miRNAs) represent an important class of ∼22
nucleotide molecules with key roles in regulating the translation

of the proteome (Ha and Kim, 2014). Genome-wide miRNA
expression levels are aberrant in the brains of Rett syndrome
patients, and offer a potential tool to measure RTT disease
progression and treatment response (Wu et al., 2010; Sheinerman
et al., 2019). Processing primary (pri-) miRNA into precursor
(pre-) miRNA by the nuclear microprocessor complex before
export to the cytoplasm is the key regulatory step in determining
mature miRNA levels in the cell (Conrad et al., 2014). The
core microprocessor proteins are Drosha, which cleaves the pri-
miRNA, and DiGeorge syndrome critical region 8 (DGCR8),
which provides RNA binding affinity to Drosha (Ha and Kim,
2014). Additional development and cell-type specific co-factors
regulate microprocessor activity. In addition to MeCP2, a major
atypical RTT-pathogenic protein, FOXG1, is recruited to Drosha
to influence miRNA biogenesis, implicating the importance of
this process to RTT pathology (Weise et al., 2019).

At a resting state, phosphorylated MeCP2 pS80 inhibits
miRNA biogenesis in cultured rat cortical neurons by binding
and sequestering DGCR8; activity-dependent dephosphorylation
reduces this interaction, allowing miRNA processing to proceed
(Cheng et al., 2014). In Mecp2-KO mice, miR-134 increases,
resulting in decreased levels of its targets involved in neuronal
development and plasticity, in addition to reduced dendritic
growth. Another group corroborated MeCP2 regulation of
miRNA processing through microprocessor interaction, but with
some key differences that require reconciliation (Tsujimura et al.,
2015). Here, MeCP2 was found to positively regulate miRNA
levels in neurons and neural stem cells (NSCs). The authors
posited that the different state of MeCP2 phosphorylation,
which varies between neuron types and brain regions, could
explain the seemingly opposite observations. A global screen of
significantly reduced miRNAs in Mecp2-KO neurons and NSCs
identified miR-199a as important to RTT pathophysiology due
to its positive regulation of mechanistic target of rapamycin
(mTOR) signaling.MeCP2-mediatedmiR-199a biogenesis results
in targeted inhibition of mTOR inhibitors SIRT1, HIF1a, and
PDE4D. SIRT1 deacetylates MeCP2, adding the possibility
of feedback regulation by acetylation level, in addition to
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phosphorylation (Zocchi and Sassone-Corsi, 2013). Furthermore,
phosphorylation of DGCR8 by the mTOR-kinase ERK increases
its stability (Herbert et al., 2013). RNA immunoprecipitation
(RIP) shows either direct or indirect in vivo interaction of MeCP2
with pri-miR199a-1 and pri-miR199a-2. Similar to a proposed
mechanism of alternative splicing (see above), MeCP2 binds
to methylated miRNA gene boundaries, stalling RNAPII, and
enhancing miRNA biogenesis by permitting access to processing
machinery (Glaich et al., 2019). It could be that methylation level
and MeCP2-DNA binding promote miRNA biogenesis, such as
with miR199a, whereas unmethylated miRNA genes are subject
to alternative MeCP2-mediated miRNA biogenesis suppression,
like in Cheng et al. (2014). The above data offer tenuous
support of direct MeCP2-RNA binding in miRNA processing
regulation. It is intriguing to speculate a correlation between
MeCP2 interaction with paraspeckle lncRNA, NEAT1, which can
scaffold Drosha and DGCR8 to peripheral paraspeckle proteins,
resulting in the regulation of miRNA biogenesis (Jiang et al.,
2017). MeCP2 is known to bind the long isoform of NEAT1 in
the brain (see below) (Cheng et al., 2018).

In addition to pri-miRNAs, RIP identifies 87 mature nuclear
miRNAs associated with MeCP2 in primary mouse cortical cells
(Khan et al., 2017). All MeCP2-interacting miRNA target gene
sets are inhibited in Mecp2-null mouse cerebellum, implying an
inhibitory role of MeCP2 on mature miRNAs, thus positively
targeting gene expression. In addition to the canonical role of
miRNAs in mRNA decay, nuclear miRNAs are associated with
transcriptional repression and activation, as well as alternative
splicing (Roberts, 2014).

miRNAs are essential to mammalian cell function, and their
aberrant regulation as a result of MeCP2 mutations likely
contributes to RTT phenotypes, but the exact interplay of
molecular interactions, and whether RNA is directly involved, is
complex and remains unclear.

lncRNA Interactions

Long non-coding RNAs (lncRNAs) are>200 base molecules with
low coding potential, the varying species of which are involved at
every processing step in the nucleus (Zhang et al., 2019). Tissue-
specific expression patterns of lncRNAs during development
are highly dynamic, allowing diverse outcomes, and are thus
unsurprisingly aberrant in RTT (Petazzi et al., 2013; Hosseini
et al., 2019). Protein-lncRNA interactions occur with all major
classes of epigenetic modifying complexes (Betancur, 2016).
Notably, all known RNA-binding subunits of lncRNA-interacting
epigenetic complexes lack a canonical RNA binding region, and
have at least some level of disorder, similar to MeCP2. Currently,
there are four lncRNAs whose interaction with MeCP2 has been
reported: Evf2, RNCR3, Neat1L, and HSATII, as discussed below.

During embryonic GABAergic neuron development, Evf2
recruits MeCP2 and the transcriptional activator distal-less
homeobox 1 (DLX1) to the Dlx5/6 homeotic gene cluster,
and inhibits DNA methylation there to facilitate antagonism
between the two proteins (Berghoff et al., 2013). Evf2 deletion
leads to impaired synaptic connectivity, and Mecp2-KO as
well as common RTT mutations present GABAergic defects
(Horike et al., 2005; Schule et al., 2007). Evf2 also recruits the

SWI/SNF-like chromatin remodeling complex protein brahma-
related gene 1 (BRG1) to Dlx5/6, which has overlapping
protein and RNA binding motifs, similar to MeCP2 (Cajigas
et al., 2015). These data led to an important speculation that
global DNA binding proteins that paradoxically cause specific
intellectual phenotypes when dysregulated, such as MeCP2 in
RTT or BRG1 in Coffin-Siris syndrome, may be regulated by
specific lncRNAs like Evf2. RNA immunoprecipitation of mouse
cerebellum robustly pulled down the retinal non-coding RNA
(Rncr3), followed by metastasis associated lung adenocarcinoma
transcript 1 (Malat1) (Maxwell et al., 2013). Rncr3 is upregulated
during retinal development, whereas its expression is reduced
in Mecp2-null mice (Blackshaw et al., 2004). Rncr3−/− mice
display hindlimb clasping, small brain size, and aberrant axonal
sprouting, similar to RTT phenotypes, but these phenotypes are
attributed to miR-124a, which is expressed from the Rncr3 gene
(Sanuki et al., 2011).

Aberrant expression of pericentric HSATII RNA occurs in
several cancers, and recruits polycomb group complex 1 (PRC1)
as well as MeCP2 and its protein partner Sin3a into large nuclear
condensates (Landers et al., 2020). These epigenetic factors are
sequestered from regular function, facilitating genomic instability
and cancer development.HSATII RNA is also aberrantly enriched
in Parkinson’s disease patient blood samples, and MeCP2
regulates pericentric heterochromatin regions in neurons in an
RNA-dependent manner, suggesting a role for HSATII RNA
with MeCP2 in intellectual disorders (Billingsley et al., 2019;
Marano et al., 2019). A paper published during the preparation
of this manuscript showed that MeCP2 and major satellite RNA
cooperate to organize pericentric heterochromatin, and that RNA
interaction depends on the TRD (Fioriniello et al., 2020). This
is consistent with the presence of an RBD overlapping MeCP2’s
NID, as mentioned earlier.

Huntington’s disease (HD) studies found that MeCP2 binds
and inhibits the long isoform of nuclear enriched abundant
transcript 1 (Neat1L) lncRNA in various neuronal and brain
tissue types (Cheng et al., 2018). MeCP2 inhibits NEAT1L
through RNA rather than DNA interaction in wild type
cells, whereas MeCP2 is reduced in HD, and increased
NEAT1L levels protect against the mutant HTT gene. NEAT1L
increases expression of anti-inflammatory and growth factors
including peroxisome proliferator activated receptor-γ (PPARG),
Nuclear Factor Kappa B Subunit 1 (NFκB1), and brain-
derived neurotrophic factor (BDNF), which are also targets
of MeCP2-mediated repression (Martinowich et al., 2003;
Mann et al., 2010; Kishi et al., 2016). The short (3,735 nt,
Neat1S) and long (22,741 nt, Neat1L) NEAT1 transcripts are
ubiquitously expressed in mammalian cells, and the long isoform
is required for the formation of massive ribonucleoprotein
paraspeckles, which are heavily implicated in transcriptional
regulation (Yamazaki et al., 2020). Neat1, Malat1, and Evf2 are
upregulated upon neuronal differentiation, similar to MeCP2
(Olson et al., 2014; Roberts et al., 2014). Overall, the data
point toward important corollary roles for lncRNAs and
MeCP2 during brain development. Further research of their
interactions with MeCP2 are integral to understanding how
they may relate to RTT. Of note, RNA has been shown
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to promote the formation of spatial compartments in the
nucleus (Quinodoz et al., 2020), and might assist MeCP2 in its
formation of heterochromatin condensates (Sheikh et al., 2016;
Li et al., 2020).

Histone PTMs and lncRNAs

Given that MeCP2 repression occurs primarily through HDAC
recruitment, it would be expected that MeCP2 deletion invariably
increases histone acetylation levels. However, as we discussed
earlier (section “MeCP2Non-sense and C-Terminal Mutations”),
studies to date have been conflicting (Wan et al., 2001; Balmer
et al., 2002; Kaufmann et al., 2005a; Thatcher and Lasalle,
2006; Lilja et al., 2013). As explored in the previous section,
lncRNAs are a promising means to explain disparate functions
of the same protein complexes. Proteome-wide analysis of RNA-
dependent protein complex formation shows that the Sin3a
complex, including HDACs 1 and 2, requires RNA, whereas the
NCoR1 complex, including HDAC3, forms independent of RNA
(Caudron-Herger et al., 2019). This is consistent with mutually
exclusive MeCP2 binding to RNA or NCoR, as suggested by
their overlapping binding domains (Figure 1). Moreover, Sin3a
has been shown to bind lncRNAs in the brain (Dharap et al.,
2013). Whether there is any specific binding and regulation
of MeCP2 together with Sin3a and its associated HDACs by
lncRNA, however, has yet to be determined.

In addition to methylated DNA, MeCP2 has been shown
to interact with histone methylation marks associated with
constitutive and facultative heterochromatin: di-methylated
histone H3 lysine 9 (H3K9me2) and tri-methylated histone H3
lysine 27 (H3K27me3), respectively, in mouse brain nuclear
extracts (Thambirajah et al., 2012). A recent report shows that
MeCP2 preferentially binds nucleosomes with H3K27me3 via the
MBD (Lee et al., 2020; Figure 2A). Also, the genomic distribution
of the DNA and histone methylation marks overlap, and MeCP2
differentially regulates transcription depending on H3K27me3
and H3K9ac profiles. MeCP2 also associates with histone
methyltransferases G9a, protein arginine methyltransferase 6
(PRMT6), and euchromatic histone-lysine N-methyltransferase
1 (EHMT-1) (Dhawan et al., 2011; Xue et al., 2013; Subbanna
et al., 2014). MeCP2 increases H3K9 methylation in mouse
fibroblasts (Fuks et al., 2003). The Neat1 lncRNA interacts
with EHMT-1 at select genes in neuronal cells, and Neat1
knockdown decreases H3K9me2 and is associated with increased
memory formation (Butler et al., 2019). Little is known
about the relationship between MeCP2 and H3K27me3 in
the context of RTT, except the previously mentioned findings
in the brain, and contrasting findings by Zachariah et al.
(2012) where MeCP2 overlaps more with constitutive than
facultative heterochromatin marks in primary mouse cortical
neurons. These contradictory findings may be explained by
the different contexts, or the fact that H3K27me3 levels were
compared to different normalizers. Both constitutive (H3K9me3
marked) and facultative (H3K27me3 marked) heterochromatin
domains have been shown to be regulated or stabilized to
some extent by lncRNA (Yang et al., 2015; Thakur et al.,
2020). Despite convoluted results, MeCP2 has continued to be
found associated with various histone PTMs and chromatin-
modifying enzymes over the years. Whether they are relevant to

altered gene expression profiles in RTT patients is still unclear,
and will require scrupulous context-specific examination in the
future to form conclusions. Potential regulation by previously
unconsidered factors like lncRNAs adds to the complexity of
the issue.

Functional Roles of MeCP2 Beyond the
Brain
Because of MeCP2 multi-functionality as well as its high
abundance in the brain, alterations of MeCP2 have been
involved in almost every single neurodevelopmental and
neurodegenerative disorder of this organ (Ausio, 2016).
Nevertheless, besides the brain, the protein is quite abundant
in several other tissues, for instance in the lungs (Shahbazian
M.D. et al., 2002), and the implications of MeCP2 mutations for
RTT within this context represent one of the less studied areas
in RTT research. It is thus highly possible that several symptoms
observed in RTT do not simply arise from neurological disorders,
but are also caused in part by disfunctional cellular regulation
(Kyle et al., 2018) in organs other than the brain. Indeed, RTT
patients often develop breathing issues and one of the most
abundant causes of death in RTT is related to respiratory failure
(Ehrhart et al., 2016).

In what follows, we will provide a few examples where MeCP2
has been shown to have an involvement that transcends the
neural system and which might be of relevance to RTT.

MeCP2 plays an important role in the modulation of the
immune system by influencing the expression of the transcription
factor FOXP3 (fork head box P3) – a master regulator of
T-helper and T-reg cells (Li et al., 2014). Thus, MeCP2 mutations
can contribute to the pathogenesis of inflammatory disease in
RTT. Moreover, intestinal isolates from RTT subjects show the
presence of an altered microbiota and altered production of
short chain fatty acids (Strati et al., 2016), and the presence of
proinflammatory strains of Candida parapsilosis (Strati et al.,
2018). The alteration in the microbiota may also contribute to
the gastrointestinal pathophysiology such as constipation status
(Motil et al., 2012; Strati et al., 2016). MeCP2 can also contribute
to the development of rheumatoid arthritis (Miao et al., 2013).

Cardiac arrhythmia is one of the factors contributing to
the greater than expected occurrence of sudden death in RTT
individuals (Acampa and Guideri, 2006). Although the molecular
involvement of MeCP2 is not completely understood, it appears
that dysregulation of Rho GTPase cytoskeletal and inflammation
mediated chemokine and cytokine signaling pathway genes are
involved (Wang et al., 2018).

Osteopenia is another early symptom that RTT patients are
at a risk of developing, and which is dependent on the MeCP2
mutation type (Caffarelli et al., 2020). Although the use of
RTT murine models suggest an epigenetic regulation of bone
(O’Connor et al., 2009) which might involve RANKL (receptor
activator of nuclear factor-κB ligand) (Kitazawa and Kitazawa,
2007), which negatively regulates osteoblast differentiation and
bone formation in bone marrow mesenchymal stem cells (Cao,
2018). Yet, the detailed molecular mechanism(s) by which
MeCP2 is involved are not understood. This example underscores
how the studies on the effects of MeCP2 mutations in non-neural

Frontiers in Genetics | www.frontiersin.org 12 January 2021 | Volume 12 | Article 620859

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Good et al. MeCP2: RTT Genetics and Epigenetics

cell types are still in their relative infancy, as this area of MeCP2
research remains understudied.

Metabolic dysfunction also represents an important
component of RTT (Kyle et al., 2018). In this regard, it was
recently shown that MeCP2 plays an important role in the
regulation of liver homeostasis through a molecular mechanism
that involves the targeting the NCoR1/HDAC3 complex to
lipogenic gene targets in hepatocytes (Kyle et al., 2016). This
underscores the relevance of the MeCP2/HDAC complex
outside the neuronal realm. Moreover, lipid metabolism is a
more approachable therapeutic target, offering the potential to
alleviate the symptoms associated with altered metabolism in
RTT patients (Kyle et al., 2016).

Although some of the RTT peripheral organ-related
symptoms described above might also have a neuronal
component (Cronk et al., 2016), the transcriptional regulatory
role of MeCP2 of specific genes within the context of the cell
types of the particular organs affected indicates an important role
of the MeCP2 mutations within each specific tissue. As in the
case of the impaired response to stimuli and stressors observed
in RTT (Pillion et al., 2003; Rose et al., 2019), such specificity
might also be MeCP2 isoform-dependent, as will be discussed in
the next section.

Do MeCP2-E1 and MeCP2-E2 Isoforms
Play a Role in RTT?
Not only is the function ofMeCP2 important in tissues other than
the brain, but also within the brain its role transcends (Ausio,
2016, 2018) that of mere involvement in neurodevelopmental
and neurodegenerative disorders (Tan and Zoghbi, 2019). For
example, under healthy conditions, the levels of MeCP2 in mouse
have been shown to change in a circadian cycle-dependent way
(Martinez de Paz et al., 2015; Figure 4) – a mechanism which
is likely regulated by miR-132/212 (Mendoza-Viveros et al.,
2017) in response to the metabolism-dependent circadian cycle
changes of the epigenome (Haws et al., 2020). This might have
consequences for RTT (Tsuchiya et al., 2015). Indeed, a circadian

rhythm disruption has been described in a mouse model of
RTT, and disruption of the cycle was observed in fibroblasts
from RTT patients (Li et al., 2015). RTT patients are known to
frequently experience sleep disorders (McArthur and Budden,
1998). However, the implications of MeCP2 in the circadian cycle
are undoubtedly much broader, and the system has allowed us to
gain some insight into the different functionality of the E1 and E2
isoforms (Martínez de Paz et al., 2019).

Ironically, for several years most of the research on MeCP2
was carried out with the E2 isoform, which was the first to be
identified (Lewis et al., 1992). However, it was not until almost
12 years later that a previously unknown MeCP2 isoform, which
is much more highly expressed in human brain than its MeCP2-

E2 counterpart, was discovered first in humans (Mnatzakanian

et al., 2004), and then several months later in mice (Kriaucionis

and Bird, 2004). The two isoforms are the product of alternative
splicing. Despite an initially conflicting nomenclature, it was
agreed that the longer E1 isoform corresponds to the encoded
form starting at exon 1 (skipping exon 2) whereas the E2
isoform was the one encoded starting at exon 2 (Figure 1A). The
physiological relevance of the two different isoforms of MeCP2
[MeCP2-E1 and MeCP2-E2 (Figure 1B)] and in particular, the
relevance of the E2 form to RTT have been very controversial
(Itoh et al., 2012). However, it is worth emphasizing that RTT
mutations have never been identified within exon 2. In all these
considerations, however, it is important to recognize that the
ratio between the two isoforms and their overall abundance
varies significantly from tissue to tissue (Mnatzakanian et al.,
2004), and particularly in mature brain, MeCP2-E2 is present at
a much lower ratio (approximately 15 fold less) than MeCP2-E1
(Martínez de Paz et al., 2019) as a result of their differential gene
expression (Mnatzakanian et al., 2004).

In what follows, we will discuss the information available in
support of a different specialized functional involvement of the
two isoforms. As we mentioned in the previous sections, the
occurrence so far of mutations in the amino acid distinctive
MeCP2-E1 NTD suggests that only this isoform is relevant to

FIGURE 4 | Circadian-dependent MeCP2 (A-1) and resulting chromatin changes (A-2) and diurnal dynamic change heatmaps for MeCP2-E1 and MecP2-E2

isoform gene occupancy (B), divided into 5 clusters, with isoform-specific enrichment on the different clustered genes over time shown in (C). MeCP2-E1 and

MeCP2 enrichment differences in the different clusters in (A) (Martinez de Paz et al., 2015; Martínez de Paz et al., 2019).
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RTT. However, as it was also mentioned earlier, mutations in
exon 1 interfere with the translation of the MeCP2-E2 isoform
(Saxena et al., 2006) and the possibility exists for other mutations
along the MeCP2 protein to have a similar effect. At the gene
level, the 5′ and 3′ UTRs of each isoform have been shown
to be differently regulated in a cell type and development-
dependent way (Liyanage et al., 2019; Rodrigues et al., 2020). At
the 3′UTR, the transcripts undergo alternative polyadenylation
affecting the length of these regions, ranging from 0.1 to 8.6 kb,
with a preferential association of MeCP2-E1 with the longest
3′UTR (Rodrigues et al., 2020). Although how these differences
regulate the expression of the isoforms is not clearly understood,
they represent important targets for the binding of regulatory
miRNAs and RBPs (Rodrigues et al., 2016). At the 5′ UTRs, it was
reported that DNA methylation is significantly correlated with
the differential expression of the two isoforms in neurons and
astrocytes in a sex-dependent way, with higher levels of DNA
methylation corresponding to lower levels of their expression
(Liyanage et al., 2019).

As it was mentioned at the beginning of this section, recently,
we took advantage of the circadian oscillation of MeCP2 to gain
a functional insight on the role of the MeCP2-E1 and MeCP2-E2
isoforms. ChIP-seq analysis, taking advantage of the availability
of isoform-specific antibodies, showed a differential binding site
preference. MeCP2 isoform-specific enrichments were found to
be mainly involved in ligand-receptor interaction in E1 and
ribosomal proteins in E2 (Martínez de Paz et al., 2019). Of note,
analysis of brains from RTT patients carrying MeCP2 mutations
showed abnormal ribosome biogenesis (Olson et al., 2018).

At the protein level, a biophysical analysis using isothermic
titration calorimetry and fluorescence spectroscopy analyses of
the interaction of the E1 and E2 NTD-MBD protein region
(Figure 1B) with methylated and unmethylated DNA showed a
10-fold higher affinity and higher structural stability of this region
for the E2 isoform compared to the E1 counterpart. Half-life, MS,
and FRAP (fluorescence recovery after photobleaching) analysis
consistently reported a higher dynamic turnover of MeCP2-
E1 compared to MeCP2-E2 (Sheikh et al., 2017; Martínez de
Paz et al., 2019). Moreover, using isoform-specific antibodies,
a proteomic analysis of the proteins interacting with the two
isoforms revealed that, while both isoforms appear to be involved
in similar processes, they act through different sets of protein
partners. Of interest was the enriched association found between
E1 and β-tubulin and microtubule-associated proteins (Martínez
de Paz et al., 2019). The extent of overlap observed is, to a
certain degree, unsurprising. It has been recently shown that
MeCP2-E2 is able to partially compensate for the lack of the
E1 isoform in a male case of RTT phenotype (Takeguchi et al.,
2020). However, the association of E1 with tubulin remains
intriguing. MeCP2 deficiency and mutations have been shown to
affect microtubule stability (Delepine et al., 2013) and ciliogenesis
(Frasca et al., 2020), respectively, through an indirect association
between MeCP2 alteration and HDAC6 deacetylation of tubulin
(Gold et al., 2015), though the molecular mechanisms are not yet
clearly understood.

In conclusion, while the two MeCP2 isoforms may have a
significant extent of generic overlapping functionality as a result

of their extensive overlapping primary structure (Figure 1), they
nevertheless exhibit important distinctive functional traits. Their
effect(s) may depend on their different stoichiometry and overall
abundance in different tissues as well as on the alteration of the
mechanisms regulating their gene expression (Rodrigues et al.,
2020), and their potential implications for RTT should not to be
overlooked. Indeed, it has been recently shown that, in human
brain, the MeCP2E1/E2-BDNF-miR132 homeostasis regulatory
network is region-dependent and is altered in RTT patients
(Pehjan et al., 2020).

Epigenetic Therapeutics
The area of therapeutics for RTT has become quite crowded
over recent years. There are two main approaches, firstly that
of addressing downstream effects of the MECP2 mutation, for
instance attempting to upregulate genes under MeCP2’s control,
such as BDNF or IGF1 [reviewed in Vashi and Justice (2019)],
or neurotransmitter pathways such as NMDA receptors, or
downstream target K+/Cl− co-transporter 2 (KCC2) (Tang et al.,
2019). The second approach is to target MECP2 directly, either
through gene therapy, delivering a functional version of the
MECP2 gene exogenously, for example using adenoviral delivery
systems [e.g., (Tillotson et al., 2017)], through correcting the
mutation at the level of genomic DNA, for example using
CRISPR/cas9 editing, or at the RNA level by programmable RNA
editing (e.g., Sinnamon et al., 2020), or using compounds such as
aminoglycosides to enable “read-through” of MECP2 nonsense
mutations [e.g., (Merritt et al., 2020)].

Attempts at epigenetic therapies for RTT, also within this
second category of direct targeting of MECP2, would aim at the
upregulation of MECP2 expression. This in itself is a somewhat
hazardous approach, as MECP2 over-expression may also have
severe developmental repercussions, as witnessed in MECP2-
duplication syndrome (MIM # 300260). Since RTT is almost
exclusively in females, who carry one normal copy of the
MECP2 gene along with a mutated copy, one approach that
is being considered is reactivating the silent X [reviewed in
Vashi and Justice (2019)]. Naturally occurring X-chromosomal
inactivation (XCI) randomly silences one or other of the
two X-chromosomes possessed by females epigenetically. This
process allows dosage compensation of X-linked genes, which
helps maintain the expression of most X-linked genes at a
similar level to males.

Skewed XCI may favor the wild-type (WT) allele and hence
expression of WT MECP2, in which cases RTT symptoms are
milder, or, with extreme skewing, asymptomatic. If XCI skewing
favors the mutant allele, expression of mutantMECP2 is favored,
and RTT symptoms would be more severe. XCI is an epigenetic
process that occurs through the expression of an X-linked
non-coding RNA, Xist. One potential therapeutic strategy for
RTT (and other X-linked disorders) involves reactivating the
inactive X chromosome in order to increase expression of WT
MECP2, which should compensate for the loss of function
(and/or expression) of the mutant MECP2. The drawback here
is that X reactivation could potentially increase dosage of other
X-linked genes to pathogenic levels, and so the challenge is to
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reactivate only MECP2 or MECP2 and its immediate genomic
neighbors. Studies are still at an early stage, and there have
been a number of high-throughput screens to identify molecules
that can reactivate MECP2 expression from the inactive X
chromosome [e.g., (Minkovsky et al., 2015; Lessing et al., 2016;
Sripathy et al., 2017)]. Subsequently, in one study, researchers
used a small-molecule inhibitor of DNA methylation, 5-aza-
2′-deoxycytidine, together with an antisense oligonucleotide
knock-down of Xist RNA in vitro, that significantly upregulated
MECP2 expression, and in vivo using Xist knockout mice
together with the 5-aza-2′-deoxycytidine-induced inhibition of
DNA methylation successfully reactivated the inactive (Carrette
et al., 2018a). In heterozygous Mecp2 knockout mice with a
mutation in Tsix, the antisense regulator of Xist, the phenotype
observed resembled that of severely affected knockout null male
mice, and demonstrated that small increases (5–10%) in WT
MeCP2 protein expression can have dramatic improvements
on the phenotype (Carrette et al., 2018b). The Tsix/Mecp2
mouse model generated in this study may prove to be an

excellent preclinical model for evaluating the effects of XCI-based
epigenetic therapeutic compounds.
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