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Abstract—IoT systems may provide information from different
sensors that may reveal potentially confidential data, such as a
person’s presence or not. The primary question to address is
how we can identify the sensors and other devices in a reliable
way before receiving data from them and using or sharing it.
In other words, we need to verify the identity of sensors and
devices. A malicious device could claim that it is the legitimate
sensor and trigger security problems. For instance, it might send
false data about the environment, harmfully affecting the outputs
and behavior of the system. For this purpose, using only primary
identity values such as IP address, MAC address, and even the
public-key cryptography key pair is not enough since IPs can be
dynamic, MACs can be spoofed, and cryptography key pairs can
be stolen. Therefore, the server requires supplementary security
considerations such as contextual features to verify the device
identity. This paper presents a measurement-based method to
detect and alert false data reports during the reception process
by means of sensor behavior. As a proof of concept, we develop a
classification-based methodology for device identification, which
can be implemented in a real IoT scenario.

Index Terms—Internet of Things, Device identification, Device
profiling, Identity theft, Smart campus

I. INTRODUCTION

Rapid growth of the Internet and online banking forces
society to face frauds, especially financial ones. In the past
couple of years, frauds (e.g. data breaches and identity thefts)
have posed as a major challenge for plenty of IT companies
due to the increasing number of online data breaches. Based on
statistics released by Identity Theft Resource Center (ITRC)
and CyberScout, 791 data breaches were reported in the U.S.
by the end of June 2017. In addition, research conducted by
the Statistic Brain Research Institute declared that credit card
fraud totalled 5.55 billion dollars worldwide in 2016. In fact,
credit-card fraud (33% of all frauds) is considered the most
common form of identity theft reported [1]. The Federal Trade
Commission (FTC) in 2001 reported identity theft as one of
the fastest growing crimes in the United States. Identity theft
is defined as the appropriation of someone else’s personal or
financial identity to commit fraud or theft [2]. It is typically
initialized by stealing an identity (or creating a fake one) and
terminates with illegally using the fake identity to to commit
crimes or to gain access to the victim’s services [1].

Internet of Things (IoT) as a vision of future Internet, where
the barrier between the physical world and digital information
will be removed, could confront the same statistics and threats
in the near future. The Internet made theft of personal or

financial identity easier, because of its ability to accumulate
vast amounts of information electronically [2]. In the same
vein, IoT technology makes it much easier since beside digital
communication among humans, IoT also connects the smart
devices owned by humans and aggregates the large volumes
of information leaking from each device. Additionally, in IoT,
it is more difficult to prevent or detect threats since data in
IoT could be under attack not only remotely, but devices may
also be physically accessed in many environments.

In IoT environments such as smart cities, large numbers of
physically accessible devices are deployed all over the city.
As a result, the physical security of these devices is of highest
priority since poor physical security related e.g. to device
easy to disassemble, access by software via USB ports, and
removable storage media are considered top security threats
[3]. In addition to physical security, providing secure commu-
nication sets another important challenge. Currently for secure
communication, a pair of private and public keys or certificate
is installed on devices to provide device identity. But these
certificates have their drawbacks. For instance, unauthorized
access of these certificates might result in identity theft and
allows to communicate or send false data to other devices.
This might impact the overall decision since decisions are
made based on the aggregation of all sensor data and any
single false data might affect the entire system. In order to
cope with such identity theft, the system must be capable of
identifying these kinds of threats.

Paper Contribution: To detect IoT devices uniquely, an
efficient identity management approach should be defined. We
tackle this problem by presenting Measurement-based Device
Identification (MeDI) framework based on device behavior or
device profile. MeDI does so by monitoring the data packets
coming from smart devices to protect the server from receiving
and spreading false data. Each device behavior is defined by
its features which are characterized by three profiling methods
specified in the proposed framework. For proof-of-concept, a
smart campus, in the subcategory of smart city, is selected as
an IoT environment, in which sensors are available in public
areas. This smart campus is called Otaniemi3D [4], which
provides information about energy consumption, occupancy,
and user comfort by integrating Building Information Models
(BIMs) and IoT devices through open standards called Open
Messaging Interface (O-MI) and Open Data Format (O-DF).
O-MI provides a communication framework between products



and distributed information systems which consume and pub-
lish information on a real-time basis. O-DF is defined as a
simple ontology, specified as an extensible XML Schema, for
representing the payload in IoT applications. [5]

II. SECURITY MANAGEMENT IN OTANIEMI3D

All devices and software systems involved in IoT ap-
plication scenarios typically exchange confidential product
information with each other. Hence, they are potential subjects
to attacks by unauthorized parties that attempt to gain access to
such information or to manipulate the information exchange.
Therefore, various layers and aspects of security based on our
perspective are needed for the O-MI server 1. From one per-
spective, security in Otaniemi3D or any other IoT systems can
be divided into two layers: client-side and device-side (Fig. 1).
The security problems on the client-side are mostly related to
managing client user authentication (or registration), and then
controlling their level of access to different information. In
Otaniemi3D, this problem was resolved by means of a security
module [6] using Facebook authentication with OAuth2 and an
Access Control List (ACL) approach, where access rules are
specified using an O-DF tree as the information structure. Fig.
1 shows the security architecture of Otaniemi3D in which the
client-side is secured using authentication and access control
module while the device-side might be affected by malicious
activities.

In a campus-wide system such as Otaniemi3D, several
sensors send their data to a server about real users and spaces.
Sensors are installed inside the building without lock or any
hardware security and the server code is also available online
at Github, which makes it attack-prone. Thus, attackers could
access the sensors, reprogram their firmware (e.g. sending
sensitive data to a malicious server or sending false data to
the server) or find the sensor identity and spoof it. In other
words, the attacker is capable of connecting to the server
with fake devices but a correct identity of the legitimate
device. Since the current system runs no concrete device
identification, the server will accept its identity claim. If the
system runs the normal identification (e.g. based on the IP
address), the problem still exists, since the attacker could
simply eavesdrop the IP address of a special device or sensor
in the network, even if other identities such as MAC are
deployed. Thus, employing only one or two identifiers is not
enough for identifying the device; instead, a combination of
various identifiers is necessary, determined by device features.

III. ADVERSARY MODEL

Otaniemi3D authenticates sensor devices and the O-MI
server by means of the TLS certificate using HTTPS encryp-
tion. As certificates are attached to devices, they can be stolen
by attackers. This represents a serious source of threats to
be considered. In particular, several malicious activities can
be performed by an adversary with a stolen certificate. First,
all current operational data stored on the certificate are read

1O-MI server: a server that implements the O-MI and O-DF standards and
required functionality

Fig. 1: Security architecture in Otaniemi3D

out, if they are not encrypted. If not protected appropriately,
the attacker obtains the encryption and decryption mechanism
implemented on the certificate and applies them to eavesdrop
messages sent and received by this device. Ultimately, the
attacker replicates the device by means of reverse engineering
in order to exploit the attacked devices for malicious attacks.

A. Attack model:

An attacker attaches an extra device with the same identity
(or certificate) of an authorized device to the system and
employs this identity to send messages to the IoT server on
behalf of the legitimate device. This attack, also known as
object emulation attack [7], is performed in order to send
false data (or falsify data). The attacker physically accesses
device certificates from a legitimate device and installs them
on another sensor device, after which the malicious device
begins sending false data to the server. In a critical situation,
false data can trigger a false alarm, after which false alarms
(e.g. fire alarm) can induce disasters. This is a type of physical
security which has two feasible defense solutions [8]: placing a
barrier around the network or security control at network layer.
Since placing a barrier in large-space and open environments
like smart campuses is impossible, we explore security control
at the network layer.

IV. IOT DEVICE IDENTIFICATION

Recently, researchers attempted to employ various types of
features for device identifications in communication networks.
Some feasible features (or dimensions) for this purpose could
be as follows: location extracted from GPS and WiFi [9],
[10], familiarity of devices derived from Bluetooth, time [10],
identity (IP, MAC, or RFID tag) [10], unique hardware-specific
characteristics like clock skew [11]–[13], device fingerprinting
which uses MAC and properties of packets received from a
device such as address and port of client/server [14], padding,
packet size, destination IP counter [15], and inter-arrival
time [16]. In order to avoid false alarms, environmental and
real-time factors also have to be considered during attack
detection [7]. Considering these features, it is necessary to
have a continuous identity verification system. When the server
receives the data, it will verify the sensor data and its behavior
by comparing it with earlier values available in the feature
database.

Fig. 2 shows a high-level overview of a framework that takes
device identity decisions by performing automatic classifica-
tion of the devices. The classification works based on device



Fig. 2: Device Identification MeDI framework

features and a classifier model. This system has four layers in
total: Data Collection, Dimension Extraction, Analysis Engine
and Identification layer. Additionally, it has two main mod-
ules: Model Management and Security Management. Model
Management is responsible for detecting the sufficient features
and then analyzing them through machine learning methods.
Once the dimensions have been extracted and the machine
learning model of the current device is identified, Security
Management makes the security decision (authenticated or
not) and provides the enforcement support. In addition to the
modules in the system, two databases (DBs) are also available
to manage the data. The first one is the Data and Features DB,
which includes the sensor data and dimension name. Once the
required dimensions have been exposed from the first DB, the
value of each dimension will be extracted from the observation
and the learned model will be stored in Model DB.

The framework is driven by data which can be observed
with the sensors of the devices through Bluetooth, WiFi, and
GPS in the Data Collection step. The features are fed to the
Features Extraction module to calculate features (or feature
vector) describing the current observation and according to the
extracted features value, the Data Preparation module sends
a data query to Data and Features DB to find the required
sensor data. If the device is undergoing its learning phase, then
after extracting features and sensor data, they are employed
to learn the model for the device by producing the training
and test set. The model learned by the Classification Engine,
is stored in Model DB. After learning phase comes the next
phase of model processing, i.e. prediction phase (red lines in
Fig. 2). Once the features have been extracted from new data,
the Classification Engine adopts them plus the classifier model
loaded from Model DB to classify new observations. Based on
the classification result, a security level (e.g. binary value) will
be assigned as output which is forwarded to the Identification
layer. This security layer considers the security level while it is
verifying the device identity. The Identification module verifies

the identity, labels the device features of current observation
as malicious or legitimate.

V. USE CASE DESCRIPTION

Device Profiling. The main challenge is to authenticate
the origin of the received messages on the server since
there is no comprehensive restrictive authentication process or
other effective method for detecting identity thefts. We apply
device profiling (device behavior) for authentication, which
has been adopted for user authentication. The researchers
seek for behavioral features for continuous user authentication
to overcome the weaknesses in earlier authentication solu-
tions. For instance, the password-based solution suffered from
password theft. Similarly, the certificate-based approach for
device identification, suffered from certificate theft. Device
profiling is extracted from messages received from the device.
The message arriving to server has two parts [7]: data part
measurement of the sensor and fingerprint part object unique
fingerprint. In previous research, the fingerprint could be
extracted from network traffic features such as inter-arrival
time or from device-specific features like Radio Frequency
(RF)-based signals. We believe that sensor measurement can
also be a useful value for creating the fingerprint. For this
purpose, in this paper, the device behavior is learned by
combining both parts of messages, considering these feature
sets: measurement-based and statistical features. According to
these sets, three profiling methods are appointed for each de-
vice. Measurement-based features make the measurement-only
method, statistical features construct statistic-only method, and
the combination of these features establishes the aggregation
method.

Feature Extraction. Since not enough data from the
Otaniemi3D server could be extracted for our research pur-
poses, we found a similar dataset to Otaniemi3D: Intel Lab
Dataset 2 includes six columns (timestamp, epoch, humidity,

2http://db.csail.mit.edu/labdata/labdata.html



temperature, light, and voltage) collected from 54 sensors
deployed in the Intel Berkeley Research lab. In addition to
four sensor measurements (humidity, temperature, light, and
voltage), we created one more feature which was also used
by previous papers for fingerprinting. The inter-arrival time
is computed for each packet (or data record) according to the
time interval between two consecutive packets (current and
previous packets). The statistical features must be calculated
over a flow or sequence of packets from the source. In this
paper, 12 consecutive packets are considered the packet flow.
Based on the analysis, 12 packets is a good trade-off for
flow length; the same number was used by [15] for making
fingerprints. Based upon timestamp, epoch (monotonically in-
creasing sequence number from each device), and inter-arrival
time, five statistical attributes are calculated: flow duration,
inter-arrival average, number of expected packets, number of
missing packets, and idleTime. In the same vein, the sensor
measurements are replaced with their average values in each
flow of 12 packets (see TABLE I).

Device Model. We construct a binary classifier model for
each device using fixed-length fingerprints. Each classifier
classifies the data captured from its corresponding device,
i.e. 𝐷𝑒𝑣𝑖𝑐𝑒𝑖, as legitimate class and data from other devices
as malicious class. Finally, a single classifier which is the
ensemble of all the classifiers, is used to recognize an unknown
fingerprint as belonging to legitimate or malicious class. When
a new device emerges, after collecting enough data from the
device, a new classifier is trained and added to the pool of
classifiers without making any modification to the existing
classifiers. Our analysis showed that the data are cluttered, i.e.
data from legitimate class are not linearly separable from other
class. Thus, nonlinear classifiers such as tree-based algorithms
are reasonable methods. Random forest is amongst the top
performer tree-based algorithm in terms of prediction accuracy
[17].

TABLE I: Weights of values and statistics attributes

Attribute type Attribute name Weight

Sensor measurements voltage average 2.6431
light average 2.5460
humidity average 1.6467
temperature average 1.3752

Device statistics flow duration 0.9120
inter-arrival average 0.8976
number of expected packets 0.5714
number of missed packets 0.5668
idle time 0.3174

VI. EVALUATION

Based upon two categories of features (statistical and
measurement-based), three profiling methods are estab-
lished: statistic-only, measurement-only, and aggregation. The
statistic-only method includes only the device statistics fea-
tures (last five features in TABLE I). Measurement-only con-
tains only the sensor measurements (first four features in
TABLE I). The aggregation method combines all these nine
features to one model.

A. Classification Results

The average value of performance metrics (accuracy and
F-measure) is calculated for 53 classifications according to
53 sensor devices. One device in Intel lab data is ignored in
analysis since it has empty measurement values. Experimental
results (see TABLE II) show that the average accuracy for
the statistic-only, the measurement-only and the aggregation
model equal to 65.21%, 71.18% and 76.15% respectively.
The aggregation model obtains a 11% accuracy improvement
over the statistic-only model. However, the results achieved
by the sensor measurement-only and the aggregation models
are close. The aggregation model provides a 4% improvement
to the measurement-only method. Following the same trend,
as the results display, f-measure, precision, and specificity are
improved by aggregating the measurement-based attributes and
statistic-based attributes. Thus, the aggregation model achieves
the best average result in all metrics.

TABLE II: Classification performance with three methods

Accuracy F-measure Precision Specificity
Statistic-only 65.21% 0.583 0.556 0.652
Measurement-only 71.18% 0.481 0.728 0.921
Aggregation 76.15% 0.625 0.781 0.901

By Random Forest algorithm, the importance for each
predictor variable (or feature) is also computed based on
prediction error, i.e. out-of bag error [18]. The larger this value,
the more important the variable is for predicting the device
identity. TABLE I lists the attributes in each method, sorted
by their importance rate. The important weights show that
sensor variables are more important that statistical variables.

B. Statistical Analysis

To verify that there is enough evidence to support our
findings about the results, we run a statistical test. In [19],
Friedman test is employed to compare various machine learn-
ing algorithms over multiple datasets. We follow a similar
procedure of statistical analysis by considering data of each
device a separate dataset and by comparing the three profiling
methods concerning these devices. The Friedman test ranks
the algorithms for each dataset separately so that the best
performing model ranks fist, the second ranks second and so
on [19]. Table III lists the accuracies and their ranks for 53
devices concerning three methods.

The Friedman test compares the average ranks of algorithms
𝑅𝑗 =

1
𝑁

∑︀
𝑖 𝑟

𝑗
𝑖 where 𝑟𝑖 is the rank of the 𝑗-th of models on

the 𝑖-th dataset. The null hypothesis is that all three methods
are equivalent. The Friedman statistic is computed as follows:

𝑋2
𝐹 =

12𝑁

𝑘(𝑘 + 1)
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𝑗

𝑅2
𝑗 −

𝑘(𝑘 + 1)2

4

]︃
(1)

𝑋2
𝐹 =

12 * 53
3 * 4

[︃
(1.2552+2.1602+2.5852)−3 * 42

4

]︃
= 48.934



TABLE III: Accuracy and ranking for each device

Aggregation Measurement-
only Statistic-only

𝐷𝑒𝑣𝑖𝑐𝑒1 76.90% (1) 71.74% (2) 55.16% (3)
𝐷𝑒𝑣𝑖𝑐𝑒2 68.66% (1) 66.10% (2) 56.70% (3)
𝐷𝑒𝑣𝑖𝑐𝑒3 68.28% (1) 62.10% (2) 54.03% (3)
𝐷𝑒𝑣𝑖𝑐𝑒4 73.65% (1.5) 73.65% (1.5) 54.96% (3)
𝐷𝑒𝑣𝑖𝑐𝑒5 79.62% (2) 81.50% (1) 61.76% (3)
𝐷𝑒𝑣𝑖𝑐𝑒6 58.78% (2) 53.41% (3) 69.51% (1)
𝐷𝑒𝑣𝑖𝑐𝑒7 64.60% (1) 62.24% (2) 61.36% (3)
𝐷𝑒𝑣𝑖𝑐𝑒8 74.72% (1) 72.16% (2) 54.83% (3)
𝐷𝑒𝑣𝑖𝑐𝑒9 62.18% (2) 64.43% (1) 56.86% (3)
𝐷𝑒𝑣𝑖𝑐𝑒10 71.92% (1) 7184% (2) 57.59% (3)

....

....

....

....

𝐷𝑒𝑣𝑖𝑐𝑒53 75.73% (1) 71.52% (2) 70.23% (3)
Average rank
(𝑅𝑗 ) 1.255 2.160 2.585

Variables 𝑘 and 𝑁 are the total number of methods and
the total number of datasets, respectively. With three methods
(𝑘 = 3) and 53 datasets (𝑁 = 53), the computed Friedman
statistic for our experiment is 48.934. Friedman statistic,
being conservative, was substituted by better statistic which
is distributed according to the 𝐹 -distribution with 𝑘 − 1 and
(𝑘 − 1)(𝑁 − 1) degrees of freedom:

𝐹𝐹 =
(𝑁 − 1)𝑋2

𝐹

𝑁(𝑘 − 1)−𝑋2
𝐹

(2)

𝐹𝐹 =
(53− 1) * 48.934

53 * (3− 1)− 48.934
= 44.59

Based on the number of methods and data, 𝐹𝐹 is distributed
according to the F distribution with 3−1 = 2 and (3−1)(53−
1) = 104 degrees of freedom. The critical value of 𝐹 (3, 104)
for 𝛼 = 0.05 is 2.691 which is less than the 𝐹𝐹 . Therefore,
the null hypothesis is rejected, which means that the three
methods are statistically different in accuracy.

Whenever a significant difference between three or more
sample means has been revealed by analyses like Friedman,
a post-hoc test can be used to recognize sample means that
are significantly different from each other. Nemenyi test [20],
a post-hoc test, considers the performance of two methods
significantly different if the corresponding average ranks differ
by at least the Critical Difference (CD) with 𝑞𝛼 as the critical
value. Based on two-tailed Nemenyi test, the critical value
𝑞0.05 for 3 models is 2.343, so the CD can be:

𝐶𝐷 = 𝑞𝛼

√︂
𝑘(𝑘 + 1)

6𝑁
= 2.343

√︂
3 * 4
6 * 53

= 0.455 (3)

Comparison of this 𝐶𝐷 with each average rank proves
that the aggregation method performs significantly better than
statistic-only (|1.255 − 2.585| ≥ 0.455) and also better than
the measurement-only method (|1.255 − 2.160| ≥ 0.455).
Therefore, considering the two test results, we can claim that
exploiting the sensor measurements can amend the process of
device identification.

VII. RELATED WORK

As multiple users and devices need to authenticate each
other through trustable services, it is essential to manage
identity authentication in the IoT [21]. The idea of device
identification to handle the privacy of data was first introduced
in 2009 by Sarma and Girao [22] while most of Service
Oriented Architecture (SOA)-based identity management pre-
viously proposed in IoT like Liberty Alliance, Card-Space, and
Shibboleth did not consider device identity in the framework
[23]. Recently, identities are adopted as representations of
entities of all kinds as the end points of communication. An
IoT device can identify itself using its identity or its specific
features [24]. Cloud-based IoT solutions like that introduced
in [25] exploit the former method presenting a framework for
identity management with basic functions such as Registration
of sensors and receiver device to the cloud, Identification of
hosted services, and Authentication of sensors and receiver
device.

with the increasing number of security attacks in the world,
device basic identity is not enough for device authentication
since it can be forged easily. Therefore, specific features
require to be extracted from the device. The most common
method employs device traffic data for device-type identifica-
tion. Network traffic classification can be based on different
major attributes: Payload-based attributes according to signa-
tures of the traffic at the application layer level; Statistical-
based attributes related to traffic statistical characteristics [26].
Statistical-based attributes could be mostly extracted from
the device header. Depending on the IoT devices and their
environment, these features can be calculated from specific
features of device. For example, for mobile devices, signal
noise from microphone [27] has been nominated as a good
identifier. In addition, some external database like Alexa Rank
and Geo IP could be accompanied to the traffic data from
different network layers [26].

The proposed method in this paper can be considered a
traffic analysis method with certain differences. The payload
information is ignored in traffic analysis since most of the
payloads are encrypted and fingerprints can not be extracted
from encrypted traffic [15] while in our environment, due to
a new messaging standard (O-MI), the server authenticates
the device before storing the decrypted data in database; it
has access to the unencrypted payload data. In addition to
exploiting payload data, the proposed method operates during
the entire life-cycle of devices although some of the previous
traffic analyzer denote for specific stage of life. For example,
IoT Sentinel [15] verifies the identification for new devices
only during their registration process but several attacks could
occur during device life-cycle. Furthermore, some papers [7]
consider different features for various object types, while in
our method, features assumed to be the same for all IoT
devices.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an IoT device identification
framework. We also presented three device identification meth-



ods, according to their profiles. Two methods are based on
a single data category (the sensor measurement-only and the
statistic-only), while the third one (the aggregate model) is
constructed by the merger of all features provided by the first
two methods. We evaluated the performance of these models
by adopting a lab dataset. Our results show a significant
accuracy improvement of the aggregate model in comparison
to the statistic-only model. However, the gain between the
aggregate model and the sensor measurement-only model is
slight. Overall, measurement features are more informatics
than packet statistics.

This work can be extended by analyzing the performance
of header-based models of identification and comparing them
with the proposed measurement-based model in the same IoT
platform. The performance of the proposed method can also be
analyzed by running an intrusion environment. In addition to
a physical attack, there are several attack scenarios including
remote hacking, which requires further investigation. This can
be inspected as the next step of this research.

IX. ACKNOWLEDGMENT

The research leading to this publication is supported by
the European Union's Horizon 2020 research and innovation
program (grant 688203) and Academy of Finland (Open
Messaging Interface; grant 296096).

REFERENCES

[1] W. Wang, Y. Yuan, and N. P. Archer, “A contextual framework for
combating identity theft,” IEEE Security & Privacy, vol. 4, no. 2, pp.
30–38, 2006. [Online]. Available: https://doi.org/10.1109/MSP.2006.31

[2] G. R. Milne, A. J. Rohm, and S. Bahl, “Consumers’ protection of online
privacy and identity,” Journal of Consumer Affairs, vol. 38, no. 2, pp.
217–232, 2004.

[3] E. Bertino and N. Islam, “Botnets and internet of things security,”
IEEE Computer, vol. 50, no. 2, pp. 76–79, 2017. [Online]. Available:
https://doi.org/10.1109/MC.2017.62

[4] A. Buda, T. Kinnunen, B. Dave, and K. Främling, “Developing a campus
wide building information system based on open standards,” in Joint
Conference on computing in Construction, JC3, Heraklio, Greece, July
4-7, 2017, 2017, pp. 733–740.

[5] T. O. Group, Open Data Format (O-DF), an Open Group Internet of
Things (IoT) Standard, 2014, http://www.opengroup.org/iot/odf/.

[6] N. Yousefnezhad, R. Filippo, A. Javed, B. Andrea, M. Madhikermi, and
K. Främling, “Authentication and access control for open messaging
interface standard,” in Mobile and Ubiquitous Systems: Computing,
Networking and Services (MOBIQUITOUS), 2017 14th International
Conference on. ACM, 2017.

[7] Y. Sharaf-Dabbagh and W. Saad, “On the authentication of devices
in the internet of things,” in 17th IEEE International Symposium on
A World of Wireless, Mobile and Multimedia Networks, WoWMoM
2016, Coimbra, Portugal, June 21-24, 2016, 2016, pp. 1–3. [Online].
Available: https://doi.org/10.1109/WoWMoM.2016.7523532

[8] L. SolarWinds Worldwide, Detecting and Preventing Rogue
Devices, 2017. [Online]. Available: http://web.swcdn.net/creative/pdf/
Whitepapers/UDT_WP_Detect_Prevent_Rogue_Devices.pdf

[9] M. Miettinen, S. Heuser, W. Kronz, A. Sadeghi, and N. Asokan,
“Conxsense: automated context classification for context-aware access
control,” in 9th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’14, Kyoto, Japan - June
03 - 06, 2014, 2014, pp. 293–304. [Online]. Available: http:
//doi.acm.org/10.1145/2590296.2590337

[10] C. Perera, A. B. Zaslavsky, P. Christen, and D. Georgakopoulos,
“Context aware computing for the internet of things: A survey,” IEEE
Communications Surveys and Tutorials, vol. 16, no. 1, pp. 414–454,
2014. [Online]. Available: https://doi.org/10.1109/SURV.2013.042313.
00197

[11] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device
fingerprinting,” in 2005 IEEE Symposium on Security and Privacy
(S&P 2005), 8-11 May 2005, Oakland, CA, USA, 2005, pp. 211–225.
[Online]. Available: https://doi.org/10.1109/SP.2005.18

[12] C. Arackaparambil, S. Bratus, A. Shubina, and D. Kotz, “On the
reliability of wireless fingerprinting using clock skews,” in Proceedings
of the Third ACM Conference on Wireless Network Security, WISEC
2010, Hoboken, New Jersey, USA, March 22-24, 2010, 2010, pp. 169–
174. [Online]. Available: http://doi.acm.org/10.1145/1741866.1741894

[13] S. Jana and S. K. Kasera, “On fast and accurate detection of
unauthorized wireless access points using clock skews,” IEEE Trans.
Mob. Comput., vol. 9, no. 3, pp. 449–462, 2010. [Online]. Available:
https://doi.org/10.1109/TMC.2009.145

[14] R. R. R. Barbosa, R. Sadre, and A. Pras, “Flow whitelisting in
SCADA networks,” IJCIP, vol. 6, no. 3-4, pp. 150–158, 2013. [Online].
Available: https://doi.org/10.1016/j.ijcip.2013.08.003

[15] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi, and
S. Tarkoma, “Iot SENTINEL: automated device-type identification for
security enforcement in iot,” in 37th IEEE International Conference
on Distributed Computing Systems, ICDCS 2017, Atlanta, GA,
USA, June 5-8, 2017, 2017, pp. 2177–2184. [Online]. Available:
https://doi.org/10.1109/ICDCS.2017.283

[16] S. V. Radhakrishnan, A. S. Uluagac, and R. Beyah, “Gtid: A technique
for physical device and device type fingerprinting,” IEEE Transactions
on Dependable and Secure Computing, vol. 12, no. 5, pp. 519–532,
2015.

[17] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and
B. P. Feuston, “Random forest: A classification and regression tool for
compound classification and QSAR modeling,” Journal of Chemical
Information and Computer Sciences, vol. 43, no. 6, pp. 1947–1958,
2003. [Online]. Available: https://doi.org/10.1021/ci034160g

[18] C. Fuchs, Predicting outcomes of bariatric surgery using datamin-
ing techniques, Eindhoven University of Technology, Department of
Industrial Engineering and Innovation Sciences, Information Systems
Research Group, 2017.

[19] J. S. Sartakhti, H. Afrabandpey, and M. Saraee, “Simulated annealing
least squares twin support vector machine (SA-LSTSVM) for pattern
classification,” Soft Comput., vol. 21, no. 15, pp. 4361–4373, 2017.
[Online]. Available: https://doi.org/10.1007/s00500-016-2067-4

[20] P. Nemenyi, “Distribution-free multiple comparisons,” in Biometrics,
vol. 18, no. 2. INTERNATIONAL BIOMETRIC SOC 1441 I ST,
NW, SUITE 700, WASHINGTON, DC 20005-2210, 1962, p. 263.

[21] M. Abomhara and G. M. Køien, “Security and privacy in the internet
of things: Current status and open issues,” in 2014 International
Conference on Privacy and Security in Mobile Systems, PRISMS
2014, Aalborg, Denmark, May 11-14, 2014, 2014, pp. 1–8. [Online].
Available: https://doi.org/10.1109/PRISMS.2014.6970594

[22] A. C. Sarma and J. Girão, “Identities in the future internet of things,”
Wireless personal communications, vol. 49, no. 3, pp. 353–363, 2009.

[23] P. Mahalle, S. Babar, N. R. Prasad, and R. Prasad, “Identity
management framework towards internet of things (iot): Roadmap and
key challenges,” in Recent Trends in Network Security and Applications
- Third International Conference, CNSA 2010, Chennai, India, July
23-25, 2010. Proceedings, 2010, pp. 430–439. [Online]. Available:
https://doi.org/10.1007/978-3-642-14478-3_43

[24] R. Roman, P. Najera, and J. López, “Securing the internet of things,”
IEEE Computer, vol. 44, no. 9, pp. 51–58, 2011. [Online]. Available:
https://doi.org/10.1109/MC.2011.291

[25] S. Horrow and A. Sardana, “Identity management framework for
cloud based internet of things,” in First International Conference
on Security of Internet of Things, SECURIT ’12, Kollam, India
- August 17 - 19, 2012, 2012, pp. 200–203. [Online]. Available:
http://doi.acm.org/10.1145/2490428.2490456

[26] D. Bekerman, B. Shapira, L. Rokach, and A. Bar, “Unknown malware
detection using network traffic classification,” in 2015 IEEE Conference
on Communications and Network Security, CNS 2015, Florence,
Italy, September 28-30, 2015, 2015, pp. 134–142. [Online]. Available:
https://doi.org/10.1109/CNS.2015.7346821

[27] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile device
identification via sensor fingerprinting,” CoRR, vol. abs/1408.1416,
2014. [Online]. Available: http://arxiv.org/abs/1408.1416


